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Abstract 

Non-standard distributions are a common feature of many tests for unit-roots and 

cointegration that are currently available. The main problem with non-standard 

distributions is that when the true data generating process is unknown, which is the case 

in general, it is not easy to engage in a specification search because the distribution 

changes as the specification changes, especially with respect to deterministic 

components. We use a mixed-frequency regression technique to develop a test for 

cointegration under the null of stationarity of the deviations from a long-run relationship. 

What is noteworthy about this MA unit root test, based on a variance-difference, is that, 

instead of having to deal with non-standard distributions, it takes testing back to the 

normal distribution and offers a way to increase power without having to increase the 

sample size substantially. Monte Carlo simulations show minimal size distortions even 

when the AR root is close to unity and that the test offers substantial gains in power 

against near-null alternatives in moderate size samples. Although the null of stationarity 

is the research line to be pursued, we also consider an extension of the procedure to cover 

the AR unit root case that provides a Gaussian test with more power. An empirical 

exercise illustrates the relative usefulness of the test further. 

Key words:  Null of stationarity, MA unit root, mixed-frequency regression, variance 

difference, normal distribution, power. 
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1. Introduction 

Unit root tests, though used extensively in applied work, are beset with problems of non-

standard distributions, size distortions and extremely low power.
1
 The biggest problem 

with non-standard distributions is that when the true data generating process is unknown, 

which is the case in general, it is not easy to engage in a specification search because the 

distribution changes as the specification changes, especially with respect to deterministic 

components. As Cocharan (1991, p. 202) expressed: “To a humble macroeconomist it 

would seem that an edifice of asymptotic distribution theory that depends crucially on 

unknown quantities must be pretty useless in practice.” Some reprieve to this has been 

offered by Phillips (1998, 2002) who argued that there is no point of considering the 

trend-stationary alternative because the limiting forms of unit root processes can be 

expressed entirely in terms of deterministic trend functions. 

 

In this exercise we are re-visiting the problem with the objective of presenting a unit root 

and cointegration test based on the null of stationarity that put the distribution back to 

Normal and offers substantial improvement in size and power properties. The importance 

of tests based on the null of stationarity need not be overemphasized. Unit roots in 

individual series are not that much of interest to economists. What is of interest is 

whether the regression provides stable parameters with stationary residuals regardless of 

the nature of the non-stationarity of the individual series. For example, two variables 

which are causally related may have structural breaks in them and AR unit root tests may 

take them to be I(1) processes. In a regression relationship, however, the structural break 

                                                 
1
  See Maddala and Kim (1998) for an extensive survey of the unit root literature.  
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may disappear and the regression may render stationary residuals.
2
 Therefore, forming a 

null of stationarity will allow us to test it against different alternatives such as AR unit 

roots, fractional integration, structural breaks and policy interventions. The relevant 

alternative has to depend on the particular empirical analysis carried out. In this exercise 

we consider only the AR unit root alternative and defer the evaluation of other 

alternatives to future work. It should be noted, however, that, as the literature on 

structural breaks highlights, an AR unit root could be a manifestation of the 

misspecification of the basic regression relationship; therefore the AR unit root 

alternative encompasses many other forms of non-stationarities.  

 

The basic concept embodied in our test procedure emanated from a mixed-frequency 

regression presented in Abeysinghe (1998, 2000) and temporal aggregation and dynamic 

relationships studied in Rajaguru and Abeysinghe (2002) and Rajaguru (2004). The test 

procedure involves a simple data transformation to obtain a mixed frequency regression 

and focusing on the difference in error variances of the original model and the 

transformed model. This method can be exploited to develop even better tests with 

standard distributions. As an extension, we consider the non-stationary null (AR unit 

root) as well. 

 

2. Power of Existing Unit Root Tests 

Table 1 provides a non-exhaustive summary of power of unit root tests near the null at 

sample size 100 (or 200 in a few cases). Panel (a) in the table is for the non-stationary 

null (AR unit root) and panel (b) for the stationary null (MA unit root or its variants). 

                                                 
2
 There are also cases where economic theory leads to using variables like investment/GDP ratio or the 

average tax rate in regressions. The meaning of a unit root in these variables is unclear. 
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Panel (a) also includes a representative citation of power under structural breaks. The 

literature on unit roots under structural breaks has also grown rapidly and we do not 

digress into this literature. The reference model given in the table involves an over-

simplification for some simulation exercises. A general specification of the stationary 

null is given in models (1) and (2) of the paper.  

 

The summary in Table 1 highlights the low power of unit root tests in general though 

some test procedures produce reasonably large power at sample size 100. As stated 

earlier, all these tests have to deal with non-standard distributions and increasing power 

needs increasing the sample size. These are the problems that we try to overcome in this 

exercise. 

============== 

Insert Table 1 here 

============== 

  

3. Methodology 

Consider the following model that Leybourne and McCabe (1994) extended from Harvey 

(1989) and Kwiatkowski et al. (1992) to test the null of stationarity against an alternative 

of difference stationarity: 

 

1 0

( )

      ,  

t t t

t t t

L y t   

    


  

  
       (1) 

where 
2~ (0, )

t
iid


  , 

2~ (0, )
t

iid


  , both of which are independent of each other, 

and 
1

( ) 1 ... p

p
L L L       with roots outside the unit circle. This has the following 

ARIMA(p,1,1) representation: 
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1 1 1
...

t t p t p t t
y y y u u      

  
          (2) 

where 
2~ (0, )

t
u iid   with 

2 2 /


   , 
2 1/ 2( ( 4 ) 2) / 2        and 

2 2/
 

    is the signal-to-noise ratio. The so-called hyper-parameter 
2


  is a measure 

of the size of the random walk in (1). If 
2 0


   , 1   and model (2) collapses to a 

stationary AR(p) process. Alternatively, 
t

y  in (2) has a non-invertible ARMA(p,1) 

representation.  To test the null of stationarity a number of researchers formulated tests 

based on 
2

0
: 0H


   vs 

2

1
: 0H


  . These are in effect tests of the MA unit root and 

the distributions involved are in general non-standard. 

 

As   increases,   approaches zero and we get a standard unit root autoregression:  

1 1 1
...

t t t p t p t
y y y y u     

  
         (3) 

with 1  .  

 

In our paper the ARIMA model in (2) forms the basis for our main test and for this reason 

we denoted 
2

u
  by 

2 .  We then extend the test procedure for H0: 1   in (3). This 

provides an AR unit root test with more power. 

 

3.1 Null of Stationarity (MA Unit Root) 

As stated earlier our test is based on a mixed frequency regression procedure 

(Abeysinghe, 1998, 2000) that helps in increasing the power of the test at a given sample 

size. To illustrate the idea, (2) can be written as 

1
( )

t t t
u u L y   


   .       (4) 
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If 
t

u  is assumed to be observed at intervals ,2 ,...,t m m T , where 2m   is a positive 

integer, and 
t

y  is observed at intervals 1,2,..,t T , the basic idea of the mixed 

frequency regression is to transform 
1t

u


 in (4) to 
t m

u


. This transformation is easily 

obtained by multiplying (4) through by the polynomial 
1 1( ) 1 ... m mL L L        . 

The transformed model can be written as 

 ( ) ( ) (1)
t t

L L y V            (5) 

where ( )(1 ) m

t t t t m
V L L u u u  


    . 

 

Now note that under the null 
0
: 1H   , 

2 2( ) 2
t m

Var V     and under the alternative 

1
:| | 1H   , 

2 2 2( ) (1 ) 2m

t
Var V      . Therefore, 

2 22
m

   forms the basis of 

our test. By transforming the test of   into a test of ( )
t

Var V  we can arbitrarily increase 

the distance between the null and the alternative simply by increasing m whereby a 

substantial gain in power is made possible. For example, a test of 1   when 0.9   

translates into comparing 
22  against 

2( ) 1.43
t

Var V   for m=4 and 

2( ) 1.08
t

Var V   for m=12. This transformation allows us to formulate a number of 

test statistics that follow standard distributions and thus alleviates a serious handicap of 

current unit root tests. 

 

Given that we can obtain consistent estimates of the parameters in (2), we can compute 

2̂  and  
2ˆ
m

  (see below) and then form the test statistic 
2 2ˆ ˆ( 2 )
m

T    to test 1   

against | | 1  . To establish the distribution of the test statistic define the (1 )T p   

design matrix X with the tth row given by 1(1, ,..., )t t py y    and the (1 ) 1p   vector c 
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given in the text before (A8).  Using the subscript T to indicate the dependence on the 

sample size the following theorem establishes the asymptotic distribution of the test 

statistic.  

 

Theorem 1 

Given that 
2~ (0, )

t
u iid   and assuming 

4

4
( )

t
E u   , under the null hypothesis 

of 1  , 
2 2 4

,
ˆ ˆ( 2 ) (0,4 )d

m T T
T N    . In small samples  

2 2 4 4 2

, 4 4

2 1

ˆ ˆ[ ( 2 )] 4[ ( /( ) 1) 2( )( /( ) )

                                   ( / ) ].

m T T
Var T T T m mT T m

T

     

 

       

  c X X c

 

Proof: see Appendix.  

 

Our Monte Carlo simulation exercise shows that when m>p, 
2 1( / )T  c X X c  

contributes very little to the variance and can be ignored. The test procedure in practice, 

therefore, is the following. Assuming p+1 pre-sample values 0,...,py y  are available, 

estimate the ARMA(p,1)
3
  for 

t
y  in (2) by ML and obtain ̂  and 

2 2

1

ˆ ˆ /( 2)
T

t
t

u T p


    (these are provided by  standard computer software 

procedures). Then obtain ˆˆ ˆ ˆm

t t t m
V u u


  and 

2 2

1

ˆ ˆˆ ( ) /( 1)
T

m t a
t m

V V T
 

   , where 

a
T T m  , and compute the z score. If 

t
u  is assumed to be Normal then 

2 2 2 2 1/ 2ˆ ˆ ˆ( 2 ) /[2 (1 3( / 1) / ) ]
m a a

z T T T mT T        and reject the null 

                                                 
3
  Model selection criteria and the usual diagnostics may be used for determining the structure of the model 

(see the empirical exercise in Section 5).  
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hypothesis 1   if z c  where c is a left-hand critical value from the standard normal 

distribution. We may term this as z(MA) test. 

 

In estimating   there are two problems that we have to guard against. One is the well 

known pile-up problem of the ML estimator at the invertibility boundary (see Breidt et 

al., 2006, for references). The pile-up problem is an issue that is being addressed by a 

number of researchers. In particular Davis and Dunmuir (1996) have explored the 

possibility of using a Laplace likelihood with a local maximizer to estimate an MA(1) 

model with a unit root or a near unit root. It is very likely that an estimator of   that will 

overcome the pile-up problem will emerge in due course. From a practical point of view, 

the pile-up problem of the Gaussian likelihood may not be a serious problem. Although 

over-differenced stationary series produce 1  , AR unit-root series are likely to produce 

a   well away from unity.    Many empirical estimates of  from non-stationary series 

hardly exceed 0.9 and do not exhibit the presence of the pile-up problem. As we shall see, 

our test offers sufficient power against the alternative of  =0.9 in moderate-sized 

samples.  

 

The other difficulty is the near common factor problem. Although the ML estimator of   

under the null is T-consistent (see Davis and Dunmuir, 1996, and reference therein), an 

AR factor with a root close to unity may render a highly unreliable estimate of   in 

certain samples. The near common factor problem can easily be spotted by fitting an 

AR(p) model to ty  and ARMA(p,1) to ty  (see the application in Section 5). If ty  is 

stationary with an AR root near unity and if it is not well estimated in the  ARMA model 
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then it is important to re-estimate the model using different starting values for  , 

including  =1.
4
  

 

3.2 Monte Carlo results 

In this section we present the results of a limited number of Monte Carlo experiments to 

highlight the size and power properties of the test under near unit root alternatives. The 

basic generating process we consider is the following ARIMA(1,1,1) model: 

 
1

(1 ) (1 )
t t

L z L u       .      (6) 

We consider two cases. In the first set up, 
t

z  represents a single data series that is being 

tested for unit roots or cointegration with a known coefficient vector. In the second set up 

t
z  represents OLS residuals from a static regression that is being tested for cointegration. 

The cointegrating model is given by 

 
0 1

1
.

t t t

t t t

y x z

x x

 




  

 
        (7) 

In this setting, both 
t

u  and 
t
  are generated from independent (0,1)N  distributions. The 

size of the test is obtained when 1  . For this we set 1 0.5,  0.9,  0.95  . For power, 

we use 0.8,  0.9   with 1 0.5  . In the first setting 1   and in the second setting 

0   and 0 1 1   . To obtain a preliminary assessment we conducted the simulation 

experiment for T=300 and m=2,4,6,8,10,12 and observed that as m increases the size also 

tends to increase slightly. For example, at the 5% level a representative sample of 

                                                 
4
  It is instructive to use a dedicated ARIMA software procedure for estimation. We used SAS PROC 

ARIMA in our exercise by removing the default boundary constraint by invoking “nostable” option. One 

could devise alternative estimators that avoid the need for estimating . We tried an IV estimator, but it did 

not improve power much. 
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rejection frequencies for m given above is (0.032,0.058,0.072,0.083,0.075,0.083). Since 

the test relies on the consistency of ̂ , small-sample bias of the estimator tends to distort 

the distribution of the test statistic as m increases. Based on both size and power an 

optimal choice of m seems to be 4 for moderately sized samples. Table 2 reports detailed 

results for m=4. What is important to note in this table is that testing regression residuals 

for cointegration does not lead to much distortion in size or a reduction in power. 

 

Table 2: Size and power of MA unit root test for m=4  

(z(MA) test, 2000 replications) 

Size 

1 =0.5,  =1 

T 

Single series 

(known cointegrating vector) 

 

Regression residuals 

 1% 5% 10% 1% 5% 10% 

100 0.021 0.045 0.075 0.046 0.084 0.129 

200 0.015 0.046 0.079 0.022 0.064 0.104 

300 0.022 0.064 0.103 0.023 0.056 0.090 

500 0.014 0.055 0.098 0.012 0.048 0.095 

1 =0.9,  =1 

200 0.023 0.070 0.107 0.040 0.087 0.132 

300 0.027 0.077 0.128 0.028 0.078 0.122 

500 0.008 0.043 0.096 0.019 0.060 0.105 

1 =0.95,  =1 

500 0.014 0.046 0.081 0.025 0.072 0.121 

       

Power 

1 =0.5,  =0.8 

100 0.572 0.609 0.637 0.507 0.547 0.572 

200 0.874 0.895 0.905 0.827 0.848 0.862 

300 0.957 0.967 0.974 0.947 0.957 0.960 

500 0.995 0.996 0.997 0.993 0.994 0.994 

1 =0.5,  =0.9 

100 0.315 0.357 0.391 0.242 0.293 0.326 

200 0.606 0.674 0.705 0.555 0.623 0.658 

300 0.809 0.848 0.875 0.794 0.834 0.852 

500 0.955 0.964 0.968 0.950 0.959 0.963 
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4. Extension: Null of Non-stationarity (AR unit root) 

We can extend the above procedure to transform the ADF test to a Gaussian test based on 

the variance difference. Now the basic regression model is the one in (3). The mixed 

frequency regression procedure in this case involves multiplying (3) through by the 

polynomial 
1 1( ) 1 ... m mL L L         that yields 

1 1
( )(1 ) (1) ( ) ... ( ) ( )

t t p t p t
L L y L y L y L u          

 
      .  (8) 

This provides 

1 1 1

1 1 1 1
0 0 0

...
m m m

m i i i

t t m t i p t p i t
i i i

y y y y V        
  

      
  

              (9) 

 

where 
1

0

m
i

t t i
i

V u





 . Now under the null
0
: 1H   , 

2 2( )
t m

Var V m    and under 

the alternative 
1
:| | 1H   , 

1
2 2 2

0

( )
m

i

t
i

Var V m  




  .  In this case, 
2 2

m
m   

forms the basis of our test. Note that for notational consistency we have re-defined 
t

V  

and
2

m
 . As in the MA unit root case, by transforming the test of   into a test of 

( )
t

Var V  we can arbitrarily increase the distance between the null and the alternative 

simply by increasing m whereby a substantial gain in power is made possible. For 

example, a test of 1   when 0.9   translates into comparing 
2m  against 

2( ) 3.44
t

Var V   for m=4 and 
2( ) 7.18

t
Var V   for m=12.  
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To establish the distribution of 
2 2ˆ ˆ( )
m

T m  , define the (1 )T p   design matrix X 

with tth row given by 1(1, ,..., )t t py y    and (1 ) 1p   vector c given in A21. Using the 

subscript T to indicate the dependence on the sample size, the following theorem 

establishes the asymptotic distribution of the test statistic 
2 2ˆ ˆ( )
m

T m  . 

 

Theorem 2 

Given that 
2~ (0, )

t
u iid   and assuming 

4

4
( )

t
E u   , under the null hypothesis 

of 1   
2 2

,
ˆ ˆ( ) d

m T
T m    

4 2 1(0,2 (2 1)( 1) /3) 4 ( / ) )N m m m T      c X X c . 

Proof: See Appendix. 

 

To avoid the possibility of a negative estimate for the variance in the above theorem we 

recommend setting m p . When p=0, c is a zero vector. Incidentally when p=0 the 

variance of the above test statistic specializes to that of the variance ratio test obtained by 

Lo and MacKinlay (1988) in a different setting under the iid Gaussian assumption. The 

major advantage of our test over the variance ratio test is that our test entails a 

mechanism to increase power at a given sample size. 

 

The test procedure in practice is the following. Assuming p+1 pre-sample values 

0,...,py y  are available, obtain the OLS estimate ̂  and the residuals ˆ
t

u  from the 

regression in (3) and compute 
2 2

1

ˆ ˆ /( (2 ))
T

t
t

u T p


   , 
1

0

ˆ ˆ ˆ
m

i

t t i
i

V u





  and 
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2 2ˆ ˆˆ ( ) /
T

m t
t m

V V n


  , where ( 1)(1 2 / )n T m m T     (see Appendix). Then 

compute 
2 2ˆ ˆ( ) / var
m

z T m   , where var is the variance given in Theorem 2 

with   replaced with̂ ,  and reject the null hypothesis 1   if z c  where c is a left-

hand critical value from the standard normal distribution. We may term this as z(AR) test. 

 

Monte Carlo experiments as in Section 3.2 show that in small samples such as T=100 the 

test produces desirable size properties when p=0 in (3) and some size distortions occur 

when p1.  Even when p=0 size remains close to the nominal level as m increases only if 

the test is treated as a two-tailed test; as m increases the left-tail probability declines and 

the right-tail probability increases while the sum remains the same. This is also what Lo 

and MacKinlay (1989) observed in their variance ratio test and they used a two-tailed 

test. This problem, however, disappears as the sample size increases. One-tailed test can 

be used safely in samples of size about 100  by setting 8m  .  The test entails substantial 

gains in power. For example, when =0.9 and T=100, the power of the 5% one-tailed test 

increases from 0.24 to 0.45 when m is increased from 2 to 8. At this stage we can 

recommend the test for p=0 setting only.
5
  

 

5. Some empirical results 

As empirical illustrations we present two tables of results, the first is a representative set 

of variables from Abeysinghe and Choy (2007) where they present a 62-equation 

macroeconometric model (ESU01 model) for the Singapore economy, the second is a test 

                                                 
5
  Since the test requires further work for higher order AR processes we do not report the Monte Carlo 

results to conserve space. 
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of stationarity of the average propensity to consume (APC) in OECD countries and 

finally analyze the unit root properties for ln(I/Y).  

 

Abeysinghe and Choy (2007) estimated all the key behavioral equations in their model 

individually in the form of error correction models by crafting out the underlying long-

run (cointegrating) relationships carefully paying attention to specific features of the 

Singapore economy, economic theory, and parameter stability. Table 3 presents test 

results for two groups of cointegrating relationships: (i) cointegrating regression 

residuals
6
 and (ii) relations with known coefficients. In the latter group, the oil price 

equations were designed to check the extent of exchange rate pass-through.
7
 Relative unit 

business cost (RUBC) and the real exchange rate (RER) are both measures of 

competitiveness. Although the RER presented in the table is not a variable in the ESU01 

model we use it here for further illustration of the performance of the test.  

 

In Table 3, all series except for RER clearly pass as AR(1) processes and it is worth 

noting that the estimates of  from AR and ARMA(1,1) models are very close. Therefore, 

first estimating an AR(p) model provides a good check against the ARMA(p,1) 

estimation for the MA unit root test. It is also useful to note that when over-differencing 

is not involved as in the RER case (also those in Table 4 below) the MA root is likely to 

be a distance away from unity in many practical cases and as a result our test carries a lot 

of power against such alternatives.   

                                                 
6
  Readers interested in the regression equations are referred to Abeysinghe and Choy (2007). 

7
 As the third largest oil refining center and trading hub in the world Singapore may have some price 

setting power on its oil market in which case the stationarity of the long-run relationship with unity 

restriction has to be rejected. Note that short-run pass through is well below unity. 
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The test results in Table 3 show that if we were to use the ADF test to test for 

cointegration  only three equations (consumption, exports and oil export price) qualify as 

cointegrating relationships (the null of AR unit root is rejected). Our z(MA) test, on the 

other hand, does not reject the null of stationarity (and cointegration) in all the cases 

except the last one. The RER series with ̂ =0.98 clearly comes out as a non-stationary 

process. Unlike the ADF test, our z(AR) test concurs with the outcome of the z(MA) test 

with one exception, the CPI equation. As stated earlier z(AR) test needs further 

refinements. Since Abeysinghe and Choy (2007) have already studied these cointegrating 

relationships in detail and that the z(MA) test concurs with these findings is a strong case 

in favor of the new test.  

Table 3: Cointegration test for selected equations  

from the ESU01 model of the Singapore economy 

(Abeysinghe and Choy, 2007) 

Equation in the model T ̂  ARMA(1,1) ADF 

Variance Difference 

z(MA) 
m=4 

z(AR) 
m=8 

(i) Regression Residuals       

   Consumption 104 0.67 0.70, 0.99 -4.48* -0.77 -2.65* 

   Exports (non oil domestic) 96 0.54 0.56, 0.99 -5.27* 0.63 -2.71* 

   Employment 96 0.86 0.88, 0.99 -2.41 0.51 -1.73* 

   Wages  96 0.89 0.87, 0.99 -2.94 0.49 -1.93* 

   CPI 96 0.93 0.95, 0.99 -2.01 0.05 -0.86 

(ii) Known coefficients (log form)       

   Oil import price in S$ 104 0.89 0.85, 0.99 -2.43 -1.49 -2.92* 

   Oil export price in S$ 104 0.76 0.79, 0.99 -3.68* 0.42 -2.99* 

   RUBC 96 0.91 0.93, 0.99 -2.17 0.25 -1.72* 

   RER 336 0.98 0.00, -0.25 -2.39 -9.03* -1.20 

RUBC=relative unit business cost. RER=real exchange rate (S$/US$, CPI based). Oil price 

relationships are: oil price in Singapore dollars equals oil price in US$ times the Sin/US exchange rate. 

First eight series are quarterly from 1978Q1 or 1980Q1 to 2003Q4. RER is monthly over 1975-2003. 

The null for z(MA) is stationarity (MA unit root) and that for ADF and z(AR) is non-stationarity (AR 

unit root). * significant at the 5% level (left-tail test). 
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As a further illustration of the test, Table 4 presents the test results on APC for 21 OECD 

countries.
8
 Because of the non-availability of sufficiently long data series on non-durable 

consumption and disposable income we measure APC by the ratio of total consumption 

expenditure to GDP. Although the APC is expected to be stationary for developed 

economies, some countries show local trends in their APCs over the sample period. This 

is reflected in large values of ̂  (the sum of AR coefficients) in Table 4. This is where 

many tests may misconstrue APC to be an I(1) process.  

 

As in Table 3 we can notice the close correspondence between AR(p) coefficients and 

ARMA(p,1) coefficients in identifiable stationary cases. It is also worth noticing that in 

stationary cases ̂  turns out to be almost unity. This means that the size distortion we 

noticed in the Monte Carlo experiment resulting from under estimation of  may not be a 

serious problem in practice.  

 

Again the ADF test turns out to be the least powerful against near unit root alternatives, it 

renders the I(1) verdict on 18 of the 21 APC series. The Johansen test fairs reasonably 

better, it recognizes eight cases as cointegrating relationships. Our z(MA) test on the 

other hand, takes 16 of the APC series to be stationary. It rejected stationarity only when 

̂ 0.97 and when the local trend dominated the series; see the cases of Canada and 

Korea for a comparison, both with ̂ =0.97, one is assessed to be I(0), the other I(1). Like 

many fast growing developing economies Korea experienced a falling APC till the mid 

                                                 
8
  Data for this exercise are from the IFS database except for France. IFS data for France show some 

irregularities, therefore, France data were taken from the OECD database which covers a shorter time span 

than the IFS database. 
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1980s before stabilizing to fluctuate around a constant mean. Rejecting the null of 

stationarity of APC is, therefore, an indication of the interplay of other variables that need 

to be considered instead of taking APC to be an I(1) process. 

 

Table 4: Cointegration test on APC 

Country 

Sample 

period 

(quarterly) T 

AR 

Lags 

AR 

Coefficients ̂  ARMA(p,1) ADF 

Johansen 

VAR(4) 

z(MA) 

m=4 

Australia 1960-2007 192 1 0.92 0.92 0.94, 0.99 -2.71 yes 0.39 

Austria 1965-2007 172 1,2,3 0.55,0.18,0.18 0.91 0.56, 0.19, 0.20, 0.99 -2.33 no 0.34 

Belgium 1980-2007 111 1 0.98 0.98 0.00, 0.12 -0.77 no -5.37* 

Canada 1957-2007 204 1 0.97 0.97 0.97, 0.99 -1.97 no -0.30 

Denmark 1978-2007 124 1,4 0.75, 0.21 0.96 0.75, 0.17, 0.99 -1.71 yes -0.57 

Finland 1970-2007 152 1,4 0.71, 0.21 0.92 0.72, 0.19, 0.99 -2.21 no -1.41 

France 1978-2007 120 1 0.94 0.94 0.97, 0.99 -2.1 yes 0.48 

Germany 1961-2007 188 1,3 0.71, 0.23 0.94 0.72, 0.23, 0.99 -1.99 yes -1.13
 

Italy 1970-2007 151 1,4 0.70, 0.12 0.82 0.66, 0.99 -2.98* yes -0.5 

Japan 1965-2007 172 1 0.94 0.94 0.95, 0.99 -2.45 no -1.29 

Korea, South 1965-2007 172 1 0.97 0.97 0.00, 0.20 -2.45 no -6.51* 

Mexico 1981-2007 108 1 0.88 0.88 0.88, 0.99 -2.62 no -0.14 

Netherlands 1977-2007 124 1,2 0.51, 0.46 0.97 0.35, 0.25 -0.78 no -5.75* 

New Zealand 1987-2007 82 1 0.72 0.72 0.75, 0.99 -3.69* yes 0.58 

Norway 1961-2007 188 1,2 0.75, 0.23 0.98 0.00, 0.25 -0.83 no -6.52* 

Spain 1970-2007 152 1,4 0.79, 0.20 0.99 0.00, 0.24 -0.06 no -6.66* 

Sweden 1980-2007 112 1,2,4 0.66, 0.39, -0.17 0.88 0.61, 0.41, -0.17, 0.99 -2.21 no -0.81 

Switzerland 1970-2007 152 1,2,3 0.60, 0.51, -0.18 0.94 0.59, 0.53, -0.16, 0.99 -1.81 no -1.11 

Turkey 1987-2007 83 1 0.62 0.62 0.57, 0.99 -4.23* yes 0.36 

UK 1957-2007 204 1,3 0.73, 0.24 0.97 0.73, 0.25, 0.99 -1.55 yes 1.21 

US 1957-2007 204 1,2 0.83, 0.17 1.00 0.00, 0.17 -0.18 no -7.29* 

Note that some data series end in Q2 or Q3 in 2007. Tests are based on log(APC) = log(C/Y), where C is 

total consumption expenditure and Y is GDP, both in nominal terms and seasonally adjusted. * Significant 

at the 5% level (left-tail test). For the Johansen test “yes” means acceptance of cointegration between 

log(C) and log(Y) with the cointegrating vector (1, -1).  

 

 

The results reported in Table 5 for 25 OECD countries further assures that unit root 

hypothesis is rejected for most of the countries based on the proposed test than the other 

traditional alternatives. 
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Table 5. Unit Root Test on ln(Investment/GDP) 

Country 

Sample 
Period 

ADF Test 

PP Test KPSS Test 

Z(MA) Test 

Lags 

 

  
 

ADF AR Lags 

 

  
 

z(MA), 

m=4 

Australia 

1949-

2010 0 0.78 -3.59** 

 

-3.60** 0.15 0 0.98 -0.71 

Austria 

1948-

2010 0 0.81 -4.87*** 

 

-4.82*** 0.20 0 0.99 -0.53 

Belgium 

1953-

2010 0 0.79 -2.77 -2.90 0.11 0 0.98 -0.75 

Canada 

1948-

2010 1 0.99 -2.02 -2.05 0.12* 2 0.97 -0.48 

Chile 

1948-

2010 1 0.39 -4.95*** 5.21*** 0.09 2 0.99 -0.91 

Denmark 

1950-

2010 1 0.88 -2.11 -1.93 0.17** 1 0.96 1.30 

Finland 

1950-

2010 2 0.84 -2.66 -2.76 0.18** 2 1.00 -0.23 

France 

1959-

2009 5 0.84 -1.98 -2.25 0.11 5 0.95 -1.10 

Germany 

1960-

2009 1 0.57 -3.92*** -2.56 0.04 1 0.97 1.09 

Greece 

1948-

2009 4 0.77 -2.97** 3.56*** 0.11 4 0.97 -0.77 

Hungary 

1970-

2010 0 0.87 1.52 1.59 0.16** 0 0.07 -3.25*** 

Iceland 

1950-

2010 4 0.6 -2.97 -2.77 0.15** 4 0.62 -3.29*** 

Ireland 

1950-

2009 1 0.87 -2.51 -2.38 0.12* 2 0.95 -0.13 

Italy 

1951-

2010 4 0.85 -2.21 -2.62 0.19** 4 0.96 -1.15 

Japan 

1955-

2009 2 0.89 -2.37 -4.01*** 0.1 0 0.96 -1.27 

Korea, 

South 

1953-

2009 3 0.93 -2.25 -3.15** 0.09 4 0.99 -0.40 

Luxembourg 

1950-

2009 2 0.63 -3.45** -3.24** 0.33 2 0.96 0.75 

Netherlands 

1956-

2009 2 0.77 -2.59 -2.50 0.06 3 0.96 -0.58 

New 

Zealand 

1950-

2009 4 0.66 -3.68** -3.59** 0.09 4 0.97 -1.18 

Norway 

1949-

2010 3 0.93 -2.28 2.87 0.15** 4 0.97 -1.12 

Poland 

1980-

2010 3 0.49 -3.28* -3.36* 0.07 3 0.97 -0.34 

Portugal 

1953-

2009 3 0.81 -2.71 -1.72 0.23*** 3 0.95 -0.82 

Spain 

1954-

2010 2 0.76 -3.08 -2.27 0.08 2 1.00 -0.19 

Switzerland 

1948-

2010 2 0.85 -3.25* -3.34* 0.10 2 0.89 -0.88 

UK 

1948-

2009 4 0.85 -2.01 -1.94 0.25*** 4 0.95 -1.47* 

US 

1948-

2010 3 0.67 -3.97** -3.55** 0.07 4 0.96 -0.90 

*.** and *** are rejection at10%, 5% and 1% respectively 

 

̂ ̂
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5. Conclusion 

This exercise addresses three important issues. First, it highlights the importance of 

formulating tests based on the null of stationarity. Unfortunately the profession has not 

paid enough attention to this. What is of general importance is whether a regression 

relationship produces stationary residuals regardless of the nature of non-stationarities of 

the individual series. Moreover, AR unit roots in individual series is some thing hard to 

pin down. The apparent unit root could be a manifestation of some other forms of non-

stationarity. We present an MA unit root test based on the null of stationarity. Unlike the 

AR unit root which is a behavioral outcome, the MA unit root is created by over-

differencing and therefore easier to pin down. Although testing for an MA unit root is not 

new to the literature none of the existing tests have gained much popularity in applied 

work.   

 

The second important aspect of the exercise is that the proposed test brings us back to 

Normal distribution, away from non-standard distributions, and makes specifications 

searches easier. The third aspect of the exercise is that the test procedure entails a 

mechanism to increase power without necessarily having to increase the sample size. 

This addresses the problem of extremely low power at near null alternatives of many unit 

root tests that are currently available. Despite our emphasis on the null of stationarity we 

also offer a test based on the null of an AR unit root that shares the above properties. 

Although this test requires further refinements the Monte Carlo and empirical results 

seem to favor the MA unit root test. 
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An important objection one could raise against our test is the difficulty of estimating an 

MA root on or near the unit circle. Some researchers are actively working on this 

problem and a better estimation method is likely to emerge in due course. Nevertheless, 

as our empirical exercise highlights, the estimation problem may not be that serious in 

problems encountered in practice. 

 

Appendix 

Proof of Theorem 1 

Here we derive the distribution of 
2 2

,
ˆ ˆ( 2 )

m T T
T    under the null hypothesis 1  . 

The ML estimates of the parameters are obtained by running the model in (2). Using the 

results below it can easily be verified that 
2 2

,
ˆ ˆ( 2 ) 0p

m T T
T    . To derive the 

variance, this can be expressed as  

 

2 2 2 2 2 2 2 2
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   (A1) 

 

It is well established that 
2 2ˆ ˆˆ (1/ ) (1/ )p p

T T T T T
T T    u u u u  and 

2 2 4

4
ˆ( ) (0,( )).d

T
T N       (See, for example, Hamilton, 1994, p. 212.)  

 

For  
2

,
ˆ

m T
 , with reference to model (2) define 

1
( , ,..., )

p
   β , the (1 )T p   

matrix X with the th row given by 
1
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 
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( , ,..., )
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1 2
( , ,..., )

m m m T
u u u

  
u , and the ( )T m T  aggregation 

matrix A: 
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Model (2) now can be written in vector-matrix notation as 
1




  y Xβ u u . Pre-

multiplying this by A and using the subscript a to indicate aggregation, we obtain 

m

a a m



  y X β u u  which can be re-arranged to give 

( 1)m

a a m



   y X β V u  where 

m
 V u u  under the null. Now we can obtain 

 

* * *
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m
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a
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where 
*

a
X  is augmented 

a
X  with the first element of the tth row given by 

t m
u


 and 

* *ˆ( )β β  is augmented ˆ( )β β  with the first element given by ˆ( 1)m  . Now 

defining the diagonal scaling matrix   of dimension (2 ) (2 )p p   with the first 

diagonal element given by T and the rest by 
1/ 2T  (Sims et al., 1990; Note, ̂  is T-

consistent) we obtain under the null: 
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This result holds because 
* *ˆ( / )( ) p

T T
T β - β 0  while the rest converge to 

bounded quantities.  

 

Now we have to consider the distribution of 
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where the presence of the constant term in the 
a

X  matrix is inconsequential. 

 

Now consider the variance of the first term on the RHS of (A5): 
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where k =1,2,... 
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From the first term of (A6): 
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From the second term of (A6): 
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Combining the two terms of (A6) we obtain: 
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Note that 
2 2( 2 )

t
V   is a stationary process and therefore by the central limit 

theorem
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Now consider the second term on the RHS of (A5). To obtain its variance first note that 
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m

T X V T y V T L V V

T L L L u u u

 

 

 

 

 



 

     

 

  

  

 

Proceeding in this way, we obtain for p=m: 
2

1 2
(0, , ,...,1)

m m
  

 
  c .  If p>m the c 

vector will have zero entries for the excess terms. Using these results the variance of the 

second term of (A5) can be written as 
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2 1ˆ[2 ( ) ( / )] 4 ( / )
T aT T a

Var T T T    β β X V c X X c .  (A8) 

 

Now using Hausman’s approach (Hausman, 1978) the variance of
2 2

,
ˆ( 2 )

m T
T    in 

(A5) can be obtained as the difference of the variances given in (A7) and (A8). Thus we 

obtain 

 

      
2 2 2 1

, 4
ˆ( 2 ) (0,  4( ( / ) )).d

m T
T N T        c X X c   (A9) 

 

Although the covariance term of (A1) can be worked out we can apply the Hausman 

approach again to obtain the overall variance of 
2 2

,
ˆ ˆ( 2 )

m T
T   :  

 

2 2 2

,
ˆ ˆ[ ( 2 )]

m T T
E T   =

2 1 4

4 4
4 4 ( / ) 4( )T      c X X c  

                                       =
4 2 14( ( / ) )T    c X X c .    (A10) 

 

This is the variance of the sum of two asymptotically normally distributed variables, 

hence we establish that  

 

 
2 2 4 2 1

,
ˆ ˆ( 2 ) (0,4( ( / ) ))d

m T T
T N T        c X X c .  (A11) 

 

In small samples from (A7): 

2 2

,

4 4 2

4 4

2 1

ˆ ˆ[ ( 2 )]

        4[ ( /( ) 1) 2( )( /( ) )

        ( / ) ].

m T T
Var T

T T m mT T m

T

 

   

 

 

     

  c X X c

  (A12) 

QED 
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Proof of Theorem 2   

We need the distribution of 
2 2

,
ˆ ˆ( )

m T T
T m   under the null hypothesis 1  . The 

steps involved in the proof are similar to those of Theorem 1 though the quantities are 

different. The OLS estimates of the parameters are obtained by running the model in (3). 

From the results below it is easily seen that 
2 2

,
ˆ ˆ( ) 0p

m T T
T m   . The variance 

can be expressed as 

 

2 2 2 2 2 2 2 2

, ,

2 2 2 2 2 2 2 2 2 2 2

, ,

ˆ ˆ ˆ ˆ[ ( )] [( ) ( )]

ˆ ˆ ˆ ˆ   = [ ( ) ( ) 2 ( )( )].

m T T m T T

m T T m T T

E T m TE m m

T E m m E mE m

     

       

    

     
(A13) 

 

As before we have the established result 
2 2ˆ ˆˆ (1/ ) (1/ )p p

T T T T T
T T    u u u u  

and 
2 2 4

4
ˆ( ) (0,( )).d

T
T N        

 

For 
2

,
ˆ

m T
 , with reference to model (3) we re-define the earlier aggregation matrix A in 

(A2) to be of dimension ( 1)T m T    with   replaced with  . Further, redefine
*

β  

as 
*

1
( , , ,..., )

p
    β , β  is the same as before, replace the first element of tth row 

of  
*

X  with 
1t

y


, and V Au , (
1

1 1
... m

t t t t m
V u u u  

  
    ). Again using the 

vector-matrix notation similar to that of Theorem 1 we obtain under the null 1  : 
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2 * * *

,

* * * * * *

* * 1 *

* * 1 *

ˆˆ ˆˆ (1/ ) (1/ ) (2 / )( )

ˆ ˆ                             ( ) ( / )( )

ˆ    (1/ ) 2( ) ( / )( / )

ˆ        ( ) ( / )(

m T T T T T T aT T

T aT aT T

T T T T T aT T

T T T aT a

T T T

T

T T T

T



 

 





    



  



V V V V β - β X V

β - β X X β - β

V V β - β X V

β - β X X
* 1 * *

2

ˆ)( / )( )

     .

T T T T

p

T

m

 







β - β

 (A14)  

This result holds because 
* *ˆ( / )( ) p

T T
T  β β 0  while the rest converge to 

bounded quantities. 

 

Now we have to consider the distribution of 
2 2

,
ˆ( )

m T
T m  . Multiplying (A14) 

through by T  shows that the last term of (A14) converges in probability zero and in the 

second term, 3/ 2

1
ˆ( 1)( )a t tT T X V   0

p
  and 2

ˆ( )(1/ ) 0p

a t tT T X V   . 

Thus we have to consider the distribution of : 

 

 
2 2 2

,
ˆˆ( ) ( / ) 2 ( ) ( / )

m T a T aT T a
T m T T m T T        

T T
V V β β X V  (A15) 

 

where 1
a

T T m   . 

 

Now consider the first term on the RHS of (A15). Its variance can be written as  

 

2 2 2

2 2 2 2 2 2 2

0

0 1 2 1

1 1

0
1 1

[(1/ )( ( )]

       (1/ )[ ( ) 2 ( )( )

       { (2 / )[( 1) ( 2) ... ( 1) ]}

       2 (2 / )

t

t t t k
k

m

m m

k k
k k

E T V m

T E V m E V m V m

T T T T m

T k



  

   

  






 

 



    

        

  



 

 

  (A16) 
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where   represents the variance and covariance terms and as we shall see later 0,
k
   

for k m  . 

 

Now consider the variance term in (A16): 

 

 

2 2 2 4 2 4 2 2

0

4 2 4

( ) ( 2 )

                             ( )

t t t

t

E V m E V m m V

E V m

   



    

 
 

where 

 

1 1
4 4 2 2

0 0

2 2

2 2 2 2

( ) ( ) [( ) ]

          =E[ 2 ]

          =E[( ) 4( ) 4( )( )]

m m

t t i t i
i i

t i t i t j
i j

t i t i t j t i t i t j
i j i j

E V E u E u

u u u

u u u u u u

 

 
 

  


     
 

 



 

 

 

   

 

                         

4 2 2 2 2

4

4

4

4

( ) 2 ( ) 4 ( )

( 1)
6

2

3 ( 1) .

t i t i t j t i t j
i j i j

E u E u u E u u

m m
m

m m m

 

 

    
 

  


 

  

  

 

 

In this expression, the terms that become zero upon taking expectation have been dropped 

out. Combining the terms we get 

 

 

2 2 2 4 2 4

0 4

2 4 4

4

( ) 3 ( 1)

                             2 3

t
E V m m m m m

m m m

    

  

     

  
   (A17) 

 

Now consider the covariance terms in (A16): 

 

2 2 2 2 2 2 2 4( )( ) ( )
t t k t t k

E V m V m E V V m  
 

     
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where 

 

1 1
2 2 2 2

0 0

2 2

2 2

( ) [( ) ( ) ]

             [( 2 )( 2 )]

             ( ) 4 ( ).

m m

t t k t i t k i
i i

t i t i t j t k i t k i t k j
i j i j

t i t k i t i t j t k i t k j
i j i j

E V V E u u

E u u u u u u

E u u E u u u u

 

   
 

        
 

        
 



  

 

 

   

   

 

In this expression, the two cross product terms that become zero upon taking expectation 

have been dropped out. By evaluating the above two terms we obtain: 

 

 

2 4 4 2 4

1 4

2 4 4 2 4

2 4

2 4 2 4

1 4

2 4 2 4

( 1) ( ( 1)) (1/ 2)( 1)( 2)

( 2) ( ( 2)) (1/ 2)( 2)( 3)

.                        

( 1))

0,  .

m

k

m m m m m m

m m m m m m

m m

m m k m

    

    

   

  



        

        

   

   

 

 

From these we obtain: 

 

1 1 1 1
2

4
1 1 1 1

2 4

4

4

( ) [ ( ( )) (1/ 2) ( )( 1)

           ( 1)]

       (1/ 2) ( 1) (1/ 6) ( 1)(4 11)

m m m m

k
k k k k

m k m m k m k m k

m m

m m m m m

 



 

   

   

        

 

    

   

      (A18) 

 

and 

 

1 1 1 1
2

4
1 1 1 1

2 4

2 2 4

4

( ) [ ( ( )) (1/ 2) ( )( 1)

           ( 1) / 2]

       (1/ 2) ( 1) (1/ 24) ( 1)( 6)

m m m m

k
k k k k

k k m k k m m k k m k m k

m m m

m m m m m

 



 

   

   

        

 

    

   

 

(A19) 
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In our simulation results we observe that the term in (A19) does not make much 

contribution to the results in small samples and therefore we simply use the asymptotic 

result. Therefore, adding (A17) and 2 times (A18) yields the variance of the first term on 

the RHS of (A15): 

 

2 2 2 2 4

4
[(1/ ) ( ] (4 1)( 2) /3

t
E T V m m m m m       . (A20) 

 

Now consider the second term on the RHS of (A15). To obtain its variance first note that 

2 1ˆ( ) ( , ( / ) )dT N T  β β 0 X X  and 
2

1
/ ( , ,..., , )p

aT T p
T m   X V c  

where c is a (1 ) 1p  vector. This vector can be derived easily by noting that the 

aggregated form of model (3) under the null provides, 
1( ) ( ) ( )

m t t t
y L V L S L u    , 

where 
1 2

1 2
( ) ( ) 1 ...L L L L          and 

2 1( ) 1 ... mS L L L L      . 

Note that the first term of /
aT T a

TX V  that corresponds to the constant term of the model 

is zero. Now consider the second term in the /
aT T a

TX V   vector: 

 

*

2 1 1

2 2 1

1 1 2 1

2

1 2 2

(1/ ) (1/ ) (1/ ) ( ( ) ( ) ) ( )

               (1/ ) [(1 (1 ) (1 ) ...) ](1 ... )

               [( 1) ( 2) ( 3) ... ].

a t t m t t t t

m

t t

m

T X V T y V T L S L u S L u

T L L u L L L u

m m m

 

  

   

 







 

          

       

  

  

 

Proceeding in this way, we obtain for p=m-1:  
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1 2 2

1 2 32

0

( 1) ( 2) ( 3) ...

( 2) ( 3) ( 4) ...

.

.

1

m

m

m m m

m m m

  

  






 
 

      
 
       

  
 
 
 
 

c .      (A21) 

 

The c vector can easily be computed from ˆ(1/ ) m t k tT y V , k=1,2,…,p. If pm the c 

vector will have zero entries for the excess terms. Using these results the variance of the 

second term of (A15) can be written as 

 
2 1ˆ[(2/ )( ) ] 4 ( / )

T a
Var T T    β β X V c X X c .   (A22) 

 

Now using Hausman’s approach (Hausman, 1978) the required variance can be obtained 

as the difference of the asymptotic variances. Using (A20) and (A22) we have: 

 

2

2 4 2 1

4

ˆ[(1/ )( ) (2/ )( ) ]

        ( (4 1)( 2) /3) 4 ( / ) .

T a
Var T Tm T

m m m m T



   

   

     

T T
V V β β X V

c X X c

  (A23) 

 

Note that 
2 2( )

t
V m  is a stationary process and therefore by the central limit theorem  

 

2 2

,

2 4 2 1

4

ˆ( )

        (0,  (4 1)( 2) /3 4 ( / ) )

d

m T
T m

N m m m m T

 

   

 

     c X X c
.  (A24) 

 

Although the covariance term of (A13) can be worked out we can apply the Hausman 

approach again to obtain the overall variance of 
2 2

,
ˆ ˆ( )

m T
T m  :  
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2 2 2 4 2 1 1 1ˆ ˆ[ ( )] 2 (2 1)( 1) /3 4 ( )
m

E T m m m m            c X X c .  

           (A25) 

 

This is the variance of the sum of two asymptotically normally distributed variables, 

hence we establish that  

 

2 2

,

4 2 1 1 1

ˆ ˆ( )

             (0,2 (2 1)( 1) /3 4 ( ) ).

d

m T T
T m

N m m m

 

     

 

   c X X c

  (A26) 

QED 

 

Through simulations in small samples we observe that the degrees of freedom in 

estimating 
2ˆ
m

  in (A26) plays an important role in obtaining the correct size of the test. 

To derive the degrees of freedom express the sum of squares of ˆ
t

V  in matrix form as 

2ˆ ˆ ˆ
T

t
t m

V


 V V . By taking expectation of this we get under the null 

 

2

2

2 2

2

ˆ( | ) [( ) ( ) | ]

                [ ( ) ( ) | ] ( )

                [ ( ) ( ) ]

                [ ( 1) 2 ( 1) /

                ( 1)(1 2 / ).

a a

E E

E tr tr

tr tr

m T m m T m T

m T m m T











 

  

   

     

   

1

V V X AMu AMu X

AMu AMu X AMA

AA X X X X  

 

This approximation holds exactly for p=0 in (3). If a constant term is not included in the 

model 2m has to be replaced with m. Here we have used  -1
M = I - X(X X) X , where 

X  represents the full design matrix from (4). 
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Table 1: Power of unit root tests at the 5% level and T=100 

   Reference model: 2

1 1,  ~ (0, )t t t t ty t y iid              

(When T=100 is not available 200 is used and marked with an asterisk against author’s name) 

 

(a) Non-stationary null ( = 1) 

Name of Authors Year Model Type Test Type  = 0.80 0.85 0.90 0.95 0.975 Remarks 

Dicky & Fuller 1979 =0, =0 ̂  0.86  0.30 0.10  

DF test, AR(1) process   =0, =0 t 0.73  0.18 0.06  

Bhargava  1986 =0, =0 DW  0.73 0.49 0.25 0.10  Also Sargan & Bhargava 1983 

Phillips & Perron 1988 =0, =0 t  0.47    ADF, Said & Dicky 1984 

  =0.8, =0 t  0.30    ADF 

  =0, =0 Z(t)  0.69    PP 

  =0.8, =0 Z(t)  0.35    PP 

Pantula & Hall* 1991 =0, =0 IV     0.09-0.33  Range of IV estimates. In 

general power > 0.05   =0.8, =0 IV     0.01-0.35  

DeJong et al. 1992 =0, 0 () 0.75 0.49 0.24 0.10  For starting value 0. Power 

drops slightly as starting value 

increases.    F(,) 0.65 0.39 0.19 0.08  

Blough 1992 =0, =0 ADF, IV      

Graphical presentation. Power 

drops to 5% for >0.5. 

Schmidt & Phillips 1992 =0, 0 LM   0.27 0.108  

Reported is highest power 

under different specifications 

Choi 1992 =0, 0 DH 0.97 0.84 0.54 0.24  Durbin-Hausman 

Lee & Schimidt 1994 =0.8, =0 IV    0.22  Compares Hall-IV with SP-IV 

Pantula et al. 1994 =0, =0 WS   0.602 0.261  Compares OLS, MLE as well. 

Yap & Reinsel * 1995 =0, =0 LR 1.00  0.82 0.33   

  =0.8, =0 LR -  0.74 0.56   

Leybourne 1995 =0, =0 DFmax 0.88  0.34    
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Table 1 continued 

Name of Authors Year Model Type Test Type  = 0.80 0.85 0.90 0.95 0.975 Remarks 

Park & Fuller 1995 =0, =0       

Graphical. For intercept  model: 

WS>SS>OLS. For interceptless 

model: OLS>SS>WS. 

(SS=simple symmetric, 

WS=weighted symmentric) 

Perron & Ng * 1996 =0.8, =0 MZ()   0.75 0.42  

Modified PP 

   MSB   0.79 0.46  

   MZ(t)   0.63 0.30  

Elliot et al. 1996 =0.8, =0 t 0.51  0.30 0.15  

Power at =0.95 not very 

different across models  

Hwang & Schmidt 1996 =0, 0 GLS 0.28 0.18    

Power is roughly similar across 

different tests reported 

          

Non-stationary null: Structural breaks 

Lanne & Lutkepohl 2002 Perron    0.21   

Known break, level shift. Power 

is very similar for slope change. 

See the article for model 

specification. 

  Perron & Vogelsang   0.14   

  Amsler & Lee   0.12   

  Schmidt & Phillips   0.09   

  Lanne et al   0.23   

Lanne et al. 2003 Test 1, drift   0.28   
Unknown break, level shift. 

Power is very similar for slope 

change. See the article for 

model specification. 

  Test 2, drift   0.20   

  Test 3, trend   0.23   

  Test 3, trend   0.18   
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Table 1 continued 

(b) Stationary null ( = 1,  = 1) 

Name of Authors Year Model Type Test Type  = 0.80 0.85 0.90 0.95 0.975 Remarks 

Park 1990  J1 test      No simulation results 

Kwiatkowski et al. 1992 =0 () l0   0.59  0.17 

KPSS test. The test basically 

involves testing 
2

  = 0 in 

model (1) in Section 3. 

  =0 () l4   0.51  0.15 

  =0 () l12   0.38  0.10 

  0 () l0   0.35  0.05 

  0 () l4   0.28  0.05 

  0 () l12   0.17  0.04 

Saikkonen & Luukkonen 1993 =0 R2 0.81 0.71 0.56 0.32  

Authors also consider non-

white errors. 

Breitung 1994 =0 Spectral 0.04  0.03 0.03   

   Var diff 0.87  0.43 0.16   

   Tanaka 0.86  0.62 0.32   

Leybourne and McCabe 1994 
Extended 

KPSS  

 

s() p=1   0.61  0.17 
Show that KPSS is subject to 

severe size distortions in 

general ARIMA cases. 

  s() p=2   0.59  0.17 

  s() p=3   0.56  0.16 

Choi 1994 =0 w1 l=2 0.47     

Power remains low for other 

lags on w2 test 

   w1 l=3 0.38     

   w1 l=4 0.27     

   w1 l=5 0.06     

  0 w2 l=1 0.08     

 

 

 

 

 


