Bond University Research Repository

Musculoskeletal fitness as a predictor of injury during police academy training A retrospective cohort study

Orr, Rob Marc; Stewart, Matthew; Pope, Rodney R; Stierli, Michael; Hinton, Ben

Published: 01/07/2017

Document Version: Publisher's PDF, also known as Version of record

Link to publication in Bond University research repository.

Recommended citation(APA): Orr, R. M., Stewart, M., Pope, R. R., Stierli, M., & Hinton, B. (2017). *Musculoskeletal fitness as a predictor of injury during police academy training: A retrospective cohort study.* World Confederation for Physical Therapy Congress, Cape Town, South Africa.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository coordinator.

World Confederation for Physical Therapy

C[®]NGRESS 2017

Musculoskeletal fitness as a predictor of injury during police academy training

Robin Orr^{1,2}, Matthew Stewart¹, Rod Pope^{1,2}, SGT Michael Stierli³, Ben Hinton³ ¹Health Science and Medicine, Bond University ²Tactical Research Unit, Bond University ³NSW Police

Introduction

- Tactical training institutions (like those for military, law enforcement and firefighting) often implement intensive training regimes to adequately prepare their candidates (Bullock et al. 2010)
- Recruit training physical fitness assessment items are performed to determine baseline fitness of each recruit
- Previous research has investigated fitness measures as a positive injury predictor among tactical recruits during basic training (Bedno et al., 2013; Knapik et al., 2001; O'connor et al., 2011; Rosendal, et al., 2003)
- However protocols generally include aerobic fitness as part of the process with predominantly military recruit populations (Lisman, et al. 2013: Knapik et al., 2001)

Aim

To investigate using the push-up, vertical jump and grip strength tests as a valid musculoskeletal fitness measure for predicting injury during police academy training

Methods

- Retrospective cohort study
- Non-identifiable data provided from 219 police recruits, covering a period from January 2013 to December 2013
- Inclusion criteria;
 - >18 years
 - Recruit able to complete all areas of fitness assessment
 - No existing injuries at commencement of fitness assessment
- Ethics approved by Bond University HREC, Protocol Number RO1898

Methods

- Fitness testing:
 - Police Physical Training Instructors conducted all of the standardised academy PU, GS and VJ assessments and were unaware of the research
 - The assessments were performed in a single session by all recruits
- Injuries recorded over 12 weeks for each recruit
- Recorders and data processors blinded
- Stats: Backwards linear regression, indep. sample t tests and spearman's correlations

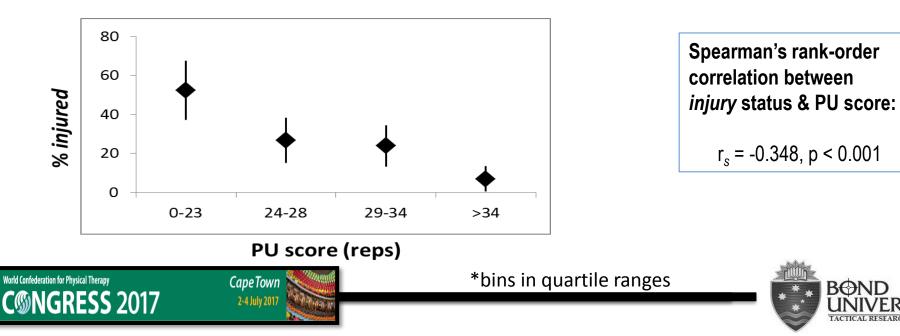
Results

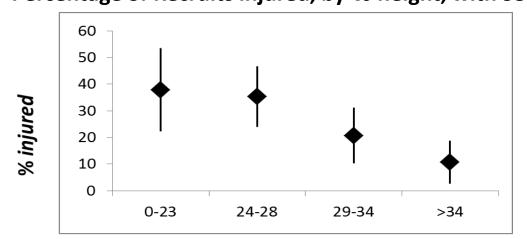
Over 12 weeks of recruit training, of the 219 Police recruits:

- 26% (n=56) injured
- 74% (n=163) non-injured

Backwards linear regression showed a significant (p<0.001) relationship between combined scores for PU, VJ height GS and injury ($R^2 = .112$)

Most predictive variable was push ups ($R^2 = .110$). Lowest scoring group >7 times as likely to sustain injury compared to highest scoring group



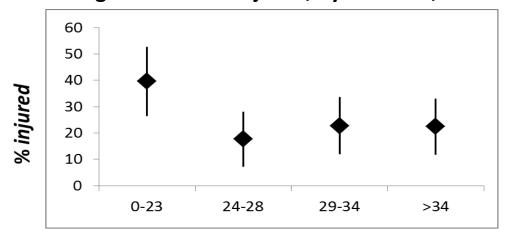

Results: injury vs PU score

Percentage of Recruits injured, by PU score, with 95% CI

$\begin{array}{c} Results: \textit{injury} vs VJ height \\ \textit{Percentage of Recruits injured, by VJ height, with 95\% CI} \end{array}$

Spearman's rank-order correlation between *injury* status & VJ height:

VJ height (cms)



*bins in quartile ranges

Results: *injury* vs GS score Percentage of Recruits injured, by GS score, with 95% CI


```
Spearman's rank-order
correlation between
injury status & GS score:
```

GS score (kg)

*bins in quartile ranges

Discussion

- PU, VJ and GS scores were significantly associated with injury risk
- Musculoskeletal strength and power is a known occupational requirement for Police officers
- Findings by Knapik et, al. (2001) and Butler et, al. (2013) are in agreement showing a correlation between low PU scores and incidence of injury for army and firefighting recruits respectively
- In agreement with our findings Orr et, al. (2016) showed significant correlation between low VJ height and risk of injury

IMPLICATIONS FOR PRACTICE

- Musculoskeletal health and fitness is vital for new recruits wishing to commence police recruit training.
- Therapists treating police recruits undergoing training need to ensure their musculoskeletal rehabilitation and <u>reconditioning</u> is optimised prior to a return to training in order to increase their chance of training success.

References

- 1. Bedno, S. A., Cowan, D. N., Urban, N., & Niebuhr, D. W. (2013). Effect of pre-accession physical fitness on training injuries among US Army recruits. Work, 44(4), 509-515. doi:10.3233/WOR-2012-1355
- 2. Bullock, S. H., Jones, B. H., Gilchrist, J., & Marshall, S. W. (2010). Prevention of physical training-related injuries recommendations for the military and other active populations based on expedited systematic reviews. *American Journal of Preventive Medicine*, *38*(1 SUPPL.), S156-S181. doi:10.1016/j.amepre.2009.10.023
- 3. Knapik, J. J., Sharp, M. A., Canham-Chervak, M., Hauret, K., Patton, J. F., & Jones, B. H. (2001). Risk factors for trainingrelated injuries among men and women in basic combat training. Medicine & Science in Sports & Exercise, 33(6), 946-954.
- 4. O'Connor, F. G., Deuster, P. A., Davis, J., Pappas, C. G., & Knapik, J. J. (2011). Functional Movement Screening: Predicting Injuries in Officer Candidates. Medicine & Science in Sports & Exercise, 43(12), 2224-2230. doi:10.1249/MSS.ob013e318223522d
- 5. Plat, M., Frings-Dresen, M., & Sluiter, J. (2011). A systematic review of job-specific workers' health surveillance activities for fire-fighting, ambulance, police and military personnel. *International Archives of Occupational and Environmental Health*, *84*(8), 839-857. doi:10.1007/s00420-011-0614-y
- 6. Rosendal, L., Langberg, H., Skov-Jensen, A., & Kjaer, M. (2003). Incidence of injury and physical performance adaptations during military training. Clinical Journal of Sport Medicine, 13(3), 157-163.

References

- 7. Rhea, M. R., Alvar, B. A., & Gray, R. (2004). Physical fitness and job performance of firefighters. The Journal of Strength & Conditioning Research, 18(2), 348-352.
- 8. Henderson, N. D., Berry, M. W., & Matic, T. (2007). Field measures of strength and fitness predict firefighter p erformance on physically demanding tasks. Personnel psychology, 60(2), 431-473.
- 9. Pope, R. P. (2002). Prediction and prevention of lower limb injuries and attrition in army recruits: PhD Thesis. Charles Sturt University, 1 270.
- 10. Kodesh, E., Shargal, E., Kislev-Cohen, R., Funk, S., Dorfman, L., Samuelly, G., Sharvit, N. (2015). Examination of the Effectiveness of Predictors for Musculoskeletal Injuries in Female Soldiers. Journal of Sports Science & Medicine, 14(3), 515-521.
- 11. Butler, R. J., Contreras, M., Burton, L. C., Plisky, P. J., Goode, A., & Kiesel, K. (2013). Modifiable risk factors predict injuries in firefighters during training academies. Work, 46(1), 11-17. doi:10.3233/WOR-121545
- 12. Orr, R., Pope, R., Peterson, S., Hinton, B., & Stierli, M. (2016). Leg Power As an Indicator of Risk of Injury or Illness in Police Recruits. International Journal of Environmental Research and Public Health, 13(2), 237.
- 13. Lisman, P., O'Connor, F. G., Deuster, P. A., & Knapik, J. J. (2013). Functional movement screen and aerobic fitness predict injuries in military training. *Med Sci Sports Exerc*, *45*(4), 636-643. doi:10.1249/MSS.ob013e31827a1c4c

Questions

rorr@bond.edu.au

tru@bond.edu.au

