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ABSTRACT  

Ample evidence identifies strong links between major depressive disorder (MDD) and both risk of 

ischemic or coronary heart disease (CHD) and resultant morbidity and mortality. The molecular 

mechanistic bases of these linkages are poorly defined. Systemic factors linked to MDD, including 

vascular dysfunction, atherosclerosis, obesity and diabetes, together with associated behavioural 

changes, all elevate CHD risk. Nonetheless, experimental evidence indicates the myocardium is 

also directly modified in depression, independently of these factors, impairing infarct tolerance and 

cardioprotection. It may be that MDD effectively breaks the heart’s intrinsic defense mechanisms. 

Four extrinsic processes are implicated in this psycho-cardiac coupling, presenting potential targets 

for therapeutic intervention if causally involved: sympathetic over-activity vs. vagal under-activity, 

together with hypothalamic-pituitary-adrenal (HPA) axis and immuno-inflammatory dysfunctions. 

However, direct evidence of their involvement remains limited, and whether targeting these 

upstream mediators is effective (or practical) in limiting the cardiac consequences of MDD  is 

unknown. Detailing myocardial phenotype in MDD can also inform approaches to cardioprotection, 

yet cardiac molecular changes are similarly ill defined. Studies support myocardial sensitization to 

ischemic insult in models of MDD, including worsened oxidative and nitrosative damage, apoptosis 

(with altered Bcl-2 family expression) and infarction. Moreover, depression may de-sensitize hearts 

to protective conditioning stimuli. The mechanistic underpinnings of these changes await 

delineation. Such information not only advances our fundamental understanding of psychological 

determinants of health, but also better informs management of the cardiac consequences of MDD 

and implementing cardioprotection in this cohort. 

 

Keywords:  Cardioprotection; Chronic Stress; Major Depressive Disorder; Ischemic Heart Disease; 

Myocardial Infarction 



	 3 

1. Introduction 

Major depressive disorder (MDD) shares a reciprocal relationship with coronary heart 

disease (CHD) (reviewed in [1-3]). This behavioral disorder places healthy individuals at increased 

risk of CHD [4-7], is strongly linked to CHD in those with or without existing cardiac disease [6,8-

10], is an independent risk factor for cardiovascular mortality and morbidity [11-13], and is more 

prevalent in those who have suffered AMI [12,14]. As a CHD risk factor, MDD exerts an impact 

similar to conventional determinants (eg.  smoking, elevated cholesterol, hypertension, diabetes) 

[15,16], and increases the risk of recurrent cardiac events and death in those with CHD by up to 4-

fold [11,17,18]. The magnitude of CHD risk is also related to the severity of MDD, ranging from a 

2-fold increase to up to 5-fold with more severe depression [7]. Depression thus appears as 

powerful a determinant of CHD risk and outcomes as more traditional risk factors, and its 

occurrence is significant: recent analyses indicate a lifetime prevalence of ~16% in the US [19], 

with varying estimates from other populations (and diagnostic criteria), for example ~11% in 

Canada [20], 4-7% in Singapore [21], 12% in a Scottish cohort [22], 18% in urban Ethiopians [23], 

and 5% in rural-to-urban Chinese workers [24]. Whether overall incidence is on the rise is 

questionable, with a perceived growing epidemic of MDD and anxiety disorders potentially 

reflecting population growth, among other factors [25]. Whether more extensive ‘sub-threshold’ 

depression influences CHD risk and outcomes is also unclear. 

As opposed to most major CHD risk factors, the biological mechanisms linking depressive 

disorders and heart disease remain to be detailed. From a holistic perspective [reviewed in 2,26], 

depressive and chronic heart disorders share the same physiological network of mechanisms (thus 

risk factors). This Psycho-Immune-Neuroendocrine (PINE) network is predicated on key regulatory 

systems [26], including the autonomic nervous, immune and endocrine systems, and components of 

the central nervous system (Figs. 1 & 2). Perturbation of the regulatory PINE network may 

predispose an individual to both MDD and CHD, with onset of either disease (and manifestation of 
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one ahead of the other) influenced by hereditary and environmental factors [26] (Fig. 1). 

Highlighted in Fig. 1, there is a high degree of bidirectional interconnectedness between CHD and 

MDD – common mechanistic elements are implicated in both scenarios, and pathologic outcomes 

of each exert positive feedbacks on the other. For example, MDD may promote cardiac dysfunction 

via intermediate pathological and physiological mechanisms: behavioral changes with MDD 

contribute to inactivity, in turn promoting obesity, dyslipidemia, type 2 diabetes and hypertension, 

while associated social isolation additionally worsens CHD risk and mortality. There is also 

evidence that disruption of the PINE network can physiologically promote risk of dyslipidemia, 

type 2 diabetes and hypertension, and thus CHD [26]. The same intermediary pathologies can 

equally contribute to MDD.  

Although now a well-recognized and clinically important manifestation of psycho-cardiac 

coupling, and while the PINE network model provides a framework for understanding depression-

dependent changes in CHD risk and outcomes [26], relatively few studies have investigated the 

molecular mechanistic basis of these interactions. In particular, how the heart itself is intrinsically 

modified by depression remains to be fully detailed. Certainly, co-morbidities associated with or 

promoted by MDD, including obesity, diabetes and aging, are known to negatively impact 

myocardial stress-resistance and cardioprotection [27-30]. However, experimental evidence reveals 

that chronic stress and MDD directly impair myocardial capacity to withstand injury/infarction 

independently of these systemic factors. This review focuses on these direct myocardial impacts of 

depression, specifically the heart’s capacity to withstand damage with infarction and respond to 

protective intervention. Not only contributing to worsened CHD risk and outcomes, depression may 

simultaneously render the heart resistant to cardioprotective interventions. While Tako-Tsubo 

cardiomyopathy exemplifies the notion of a ‘broken heart', evidence suggests depression may 

effectively break the heart’s intrinsic defense mechanisms, thus ability to withstand cellular injury 

and death. Beyond accumulating epidemiological evidence, and development of frameworks with 
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which to test and unravel these interactions [2,26] (Fig. 1), the molecular bases of these myocardial 

changes await more detailed investigation (Fig. 2).    

 

2.  Impacts of depression on myocardial infarction  

2.1 Pre-ischemic depression 

 It is only relatively recently that studies have examined the detrimental impacts of stress and 

MDD on the heart’s response to ischemic insult or infarction. Data generated in the landmark 

Whitehall study revealed strong relationships between social stress and metabolic and 

cardiovascular health outcomes [31-33]. In terms of those at risk of AMI, the prevalence of 

depression is significant with approximately 1-in-5 patients referred for diagnostic catheterization 

and angiography suffering pre-existing MDD [8,34], confirming significant prevalence of the 

disorder in those at risk of AMI. Early investigations revealed that depression impairs heart rate 

variability and autonomic control in humans [35], and that chronic stress (inducing depressive 

symptoms) increases heart rate, sympathetic tone, and cardiovascular reactivity to stress in animals 

[36,37], suggesting enhanced cardiac vulnerability to arrhythmia and injury. Further investigations 

over the last 3 decades have largely relied on chronic stress models (eg. subjecting animals to 

physical restraint, social isolation, predation stress, forced swimming, environmental instability, and 

randomized series of such stressors), which exhibit symptoms of depression that may include 

anhedonia and decreases in sexual drive, aggression, investigative behavior and locomotion, 

together with circadian disruption, disordered sleep and weight loss [38,39] (models discussed 

below in section 4). These studies identify both ultrastructural disruption in otherwise healthy hearts 

[40,41] and substantial changes in myocardial injury responses [40,42-47]. However, they have not 

yet developed a mechanistic understanding of these cardiac outcomes. Most research to date has 

focused on key end-points, including cell death, infarction, arrhythmogenesis and stunning, with 

few delving into underlying molecular mechanisms. 
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 Scheuer and Mifflin showed that experimental infarction in rats is significantly worsened by 

daily restraint stress [42]. These investigators had previously identified worsened infarction in 

response to chronically elevated corticosterone [43].  Subsequent work indicates that chronic 

emotional stress exaggerates infarction in rats in association with increases in markers of oxidative 

and nitrosative damage [44]. Ravingerova et al. found chronic stress also increases contractile 

dysfunction and risk of post-ischemic arrhythmias in normotensive rats, though stress somewhat 

paradoxically improved these parameters in hypertensive animals [45]. While emulating post-

traumatic stress disorder (PTSD), a more recent study in a psychosocial predator-based animal 

model reports increases in contractile dysfunction and myocardial death following ischemia, though 

specifically in males and not females [46]. Delving into mechanistic elements, Rakhshan et al. 

found that  chronic physical or psychological stress worsened myocardial damage during infarction, 

and that this effect was eliminated by chemical sympathectomy (without influencing corticosterone 

levels) [47]. While not assessing infarction per se, Xinxing et al. report an association between 

myocardial injury and shifts in adrenaline, noradrenaline, corticosterone and 5-HT in a rat model of 

chronic stress [40]. There is thus some support for sympathetic over-activity and HPA dysfunction 

in myocardial stress intolerance in depressive disorders, though the identities and roles of 

neurohumoral factors involved await confirmation (Fig. 2).  

 There is also relatively little information available regarding the myocardial molecular 

changes that underpin these reductions in ischemic tolerance, with data essentially limited to 

damage markers and expression of pro- and anti-apoptotic Bcl-2 family proteins (Fig. 2). An 

analysis of cardiac and nervous responses reveals induction of Bax and repression of Bcl-xl 

transcripts in a rodent model of depression, potentially predisposing to apoptosis [48]. Subsequent 

investigations from this group confirm shifts in both transcript and protein for apoptotic regulators, 

including increased myocardial Bax, Bcl-2 and Bax/Bcl-2 ratio without changes in caspase-3 in 

rodent models of depression either prior to [49] or following [50] infarction. This may evidence 
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differential activation of caspase-3 independent death pathways with depression: Bax and Bcl2 not 

only modulate caspase-3 dependent apoptosis, but influence mitochondrial respiration, membrane 

permeability, cytochrome c release, and caspase-3 independent death. How these proteomic and cell 

death responses arise remains to be determined, though reported elevations in oxidative and 

nitrosative damage [44] will certainly promote apoptosis and oncosis. Nonetheless, the bases of the 

latter molecular damage outcomes are also unknown – are processes of reactive oxygen or nitrogen 

species generation dysregulated, and/or are anti-oxidant and molecular detoxification and repair 

mechanisms impaired with depression? There is preliminary evidence myocardial anti-oxidants 

levels are suppressed [44] and injurious toll-like receptor 4 and NFkB signaling up-regulated [41] 

with chronic stress, whereas cardioprotective NOS and Akt signaling are only modified by chronic 

stress (crowding) in the hearts of hypertensive and not normotensive rats  [45,51]. Further work 

examining shifts in pro-survival vs. pro-injury signaling pathways across a broader range of models 

may clarify the basis of intrinsically impaired infarct tolerance in depression. 

 Other unknowns include the impacts of differing types and durations of stress. For example, 

while several models of chronic stress detrimentally influence myocardial infarct tolerance, 

crowding stress reportedly fails to modify infarction in hypertensive rats [51], while acute forms of 

stress can be cardioprotective. The latter response, a form of hormesis, is exemplified in the broadly 

conserved pre-conditioning phenomenon - transient ischemia induces powerful protection against 

subsequent prolonged insult. This contrasts the generally detrimental effects of chronic 

psychological stress on myocardial phenotype [52]. Both acute and chronic stressors may influence 

intrinsic myocardial defense mechanisms: chronic metabolic disorders and aging dysregulate 

survival kinase signaling engaged by acute stressors, resulting in impaired infarct tolerance [53,54].  

Physical stress (eg. wheel-running in naïve mice) induces cardioprotection via the same kinase 

signaling [55], and our recent unpublished findings suggest that psychological effects of 

environmental enrichment (placement of a locked running wheel in cages) may similarly boost 
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infarct tolerance in caged mice, coupled with phospho-regulation of the same survival and stress 

kinases (see preliminary data in Fig. 3). These intriguing observations of acute protection via simple 

environmental enrichment warrant further investigation, highlighting the importance of 

psychological state in dictating myocardial phenotype and also raising questions regarding 

behavioral status in ‘control’ caged rodents. Finally, it is relevant to note there is evidence that the 

impacts of differing types of stress may be sex-dependent, with a model of PTSD selectively 

exaggerating post-ischemic myocardial damage and dysfunction in males only [46], while in 

contrast other stress (eg. crowding, sleep deprivation) worsens ischemic outcomes in females and 

not males [51,56]. 

 From a cellular perspective, depression or chronic stress appears to impact all major 

cardiovascular elements. Studies to date support exaggerated cardiomyocyte apoptosis [40,49] and 

hypertrophy [57-59], together with myocyte abnormalities that include edema, myofibrillar damage 

and changes to mitochondria, nuclei and sarcoplasmic reticulum [40,41]. Myocyte contractile 

properties are also reportedly impaired, in association with depression of Ca2+ levels  [59]. 

Exaggerated myocardial fibrosis, with increased transcripts for collagens, connective tissue growth 

factor and transforming growth factor-β1 [57-59], implicate shifts in cardiac fibroblast 

phenotype/function. Coronary vascular function is also modified, with evidence of impaired 

coronary perfusion [45], while cardiac endothelial cells may also degenerate [41]. Chronic stress 

can also induce vascular stiffening [60], together with potentially adaptive NO generation and 

relaxation [61,62], though these outcomes have not been assessed specifically in coronary vessels. 

Thrombotic processes are also dysregulated, with evidence for involvement of circulating tissue 

factor (not vascular tissue factor, or platelet function) [63], although others report enhanced platelet 

aggregation [64]. Inflammatory and immune function is a key implicated element in the 

cardiovascular sequelae of MDD, and there is evidence for increased inflammatory cell infiltration 

and pro-inflammatory signaling in hearts of chronically stressed animals [41,58]. It thus appears all 
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major cellular elements of the heart, including myocytes, fibroblasts, endothelium and coronary 

vascular cells may be impacted in depression, together with invading or resident 

inflammatory/immune cells, and potentially platelets.    

 

2.2 Post-Ischemic Depression 

 The occurrence of MDD after acute myocardial infarction (AMI) is well established, and is 

associated with both worsened quality of life [65] and higher mortality and rehospitalization [11,66, 

67]. Up to 25% of patients suffer from depression post AMI, which is 2-4 times higher than the 

general population [8,34,68,69]. Though less well studied than the negative impacts of pre-existing 

depression, depression induced after AMI also appears to exaggerate cardiac apoptotic signaling 

and death [50] and tissue remodeling [70]. On the other hand, a recent study of post-infarction 

housing stress in rats found no significant effects on subsequent progression of heart failure [71]. 

Whether myocardial mechanisms underlying the effects of pre- vs. post-infarct depression are 

similar remains to be addressed, though Wang and colleagues find evidence of altered expression of 

apoptosis proteins in both scenarios [49,50].  

  

3. Potential mediators of myocardial infarct intolerance in depression 

 There are 4 inter-related regulatory systems perturbed in MDD that plausibly give rise to 

myocardial intolerance to infarction (Figs. 1 & 2): sympathetic over-activity, vagal dysfunction, 

HPA axis abnormalities, and shifts in immune function and inflammation [2,26]. There is limited 

experimental support for involvement of the former neurohumoral mediators, while roles of 

immune and inflammatory processes have yet to be directly tested. The mechanistic roles of these 4 

regulatory systems thus require more detailed investigation. 
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3.1 Sympathetic over-activity  

 The sympathetic nervous system is an important determinant of cardiovascular disease 

progression [72] and pathogenesis of AMI [73,74]. Individuals suffering depression exhibit 

increased sympathetic activity [74,75], including specifically elevated cardiac sympathetic tone 

[76]. This is also evidenced in reduced heart rate variability in psychological disorders including 

MDD [77-79]. Such autonomic dysfunction has been linked to increased risk of heart disease [80] 

and heart disease mortality and morbidity in MDD [35,81]. At a cellular level chronic sympathetic 

activation can increase oxidative stress and dysregulate apoptotic pathways to worsen myocardial 

injury [82] Sustained release or sudden spikes in catecholamine levels also increase risk of cardiac 

complications such as arrhythmias and sudden cardiac death. Modulation of autonomic nervous 

activity has been shown to reduce myocardial ischemia-reperfusion injury [83-86], and β-blockade 

has been a mainstay in management of patients with CHD/AMI.  

The myocardial effects of sympathetic over-activity are certainly consistent with 

involvement in the negative consequences of MDD (Fig. 2). Increased β-adrenergic receptor 

activity promotes both apoptosis and oncosis [87-90], with pro-death effects potentially involving 

NADPH oxidase activity [91,92], nitric oxide generation and nitrosative stress [93,94], and 

modulation of Bcl-2 protein expression profiles [90,95]. Oxidative stress with noradrenaline has 

also been linked to epigenetic repression of protective PKCε (via NADPH oxidase-1 dependent 

oxidative stress) [96]. Additionally, increased β-adrenergic receptor activity enhances apoptotic 

death in response to immuno-inflammatory activation [95], in association with altered stress kinase 

signaling and Bcl-2 expression. These putative mechanisms are consistent with the elevations in 

myocardial oxidative and nitrosative stress [44], shifts in Bcl-2 proteins and execution of apoptosis 

[47-49], and inflammatory responses [41,58] observed in animal models of depression. Cardiac 

pathologies relevant to risk of and outcomes from AMI have also been linked to β-adrenergic 

receptor activity in models of chronic stress, including hypertrophy, fibrosis, diastolic dysfunction 
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and oxidative stress [58]. 

Although widely assumed, reflecting pro-infarct effects of sympathetic activity in other 

settings, the involvement of sympathetic over-activity in infarct intolerance in MDD has yet to be 

thoroughly tested. Furthermore, whether the degree and pattern of sympathetic activation in animal 

models of depression reflect changes and roles in human MDD is not at all clear. The recent report 

of Rakhshan et al. suggests reduced infarct tolerance in a rat model of chronic stress is blocked by 

chemical sympathectomy [47], consistent with involvement of sympathetic over-activity. Variable 

effects of sympathectomy on infarct tolerance [97-99] nonetheless raise questions regarding 

selectivity and the mechanistic basis of sympathectomy outcomes. That said, studies also confirm 

elevations in circulating noradrenaline and adrenaline in MDD [74-76], and Xinxing et al. recently 

report in vitro cytotoxicity in otherwise healthy cells subjected to changes in noradrenaline, 

corticosterone and 5-HT that mimic those in a rat model of chronic stress [40]. However, the 

involvement of these factors in stress-dependent myocardial changes in vivo has yet to be directly 

tested. For example, a reduction in 5-HT with chronic stress [40] might also promote cell survival 

given recent evidence of 5-HT receptor involvement in cardiac apoptosis and remodeling following 

adrenergic activation [100].  

 It is also important to note that effects of cardiac nerves on ischemic injury are complex, and 

adrenergic receptor sub-types exert distinct effects on myocyte survival vs. death. Regional 

ischemia activates the autonomic nervous system, reducing electrical stability and promoting 

arrhythmias, modifying cardiac O2 supply/demand and worsening myocardial injury. However, 

disrupting extra-cardiac nervous system input can exert either protective [97,98,101] or injurious 

effects [102,103]. Indeed, it has been suggested that absence of cardiac nerve activity may impair 

cardiac functional recovery [104]. In terms of cardioprotection, the second (delayed) but not first 

(acute) window of protection with pre-conditioning may require cardiac nerve activity [105]. Others 

report that surgical denervation does not eliminate pre-conditioning in dogs, yet significantly 
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reduces infarction alone [101]. The cardiac α- and β-adrenergic receptor sub-types activated by 

noradrenaline and adrenaline also exert opposing effects on stress responses and cell death. 

Activation of β-adrenergic receptors can protect against or promote cell death [90], with β1 activity 

contributing to both cardiac apoptosis [90,95,106] and cardioprotection via ischemic 

preconditioning [106-109], while β2 receptor activity may contribute to myocyte survival, ischemic 

tolerance and preconditioning responses [90,110,111]. The α1 adrenergic receptors also exert 

opposing effects, with the higher affinity α1A receptor promoting myocyte survival and ischemic 

tolerance [112-114], contributing to delayed cardioprotection [115], and improved angiogenesis 

[116], remodeling and survival [117] post-infarction. The survival effects of α1A receptor activity 

may involve modulation of Bcl-2 proteins implicated in the pro-apoptotic response to β-adrenergic 

receptor activity, providing a counterbalance to limit apoptosis with sympathetic over-activity.  

Conversely the lower affinity α1B-adrenergic receptor may promote hypertrophy and contractile 

dysfunction [118], and as opposed to the longevity (and anti-cancer) effects of α1A activity, appears 

to reduce lifespan [119]. Thus, sympathetic activation and HPA axis dysfunction may induce 

differential effects on cardiac death, remodeling processes and overall survival, governed by 

adrenergic receptor sub-type expression and activation patterns. These complexities, coupled with 

the limited analyses of sympathetic over-activity to date, indicate more direct and thorough 

assessment is needed to identify roles of sympathetic nervous and humoral signaling in reducing 

myocardial infarct tolerance in MDD (Fig. 2).  

 

3.2 Vagal dysfunction  

 Major depressive disorder is associated with reduced vagal activity, with evidence of a 

causal relationship between vagal function and depression [3,120]. Importantly, vagal dysfunction 

is likely to impair myocardial infarct tolerance, and may also negate capacity to protect the heart of 

MDD patients via widely trialed pre-conditioning interventions (Fig. 1). Detailed below, vagal 
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stimulation and the primary vagal transmitter acetylcholine protect against cardiac and vascular 

injuries, and play an essential role in ischemic pre-conditioning responses (Fig. 2).  

 Early clinical studies identified the importance of autonomic function in mortality following 

AMI [121,122], with experimental studies establishing the role of vagal activity in limiting 

arrhythmogenesis and enhancing survival post-AMI [123-127]. Investigations subsequent to these 

analyses of electrical stability/arrhythmogenesis revealed that acetylcholine and muscarinic receptor 

agonists also protect mammalian myocardium from ischemic injury [128,129], initially implicating 

reactive oxygen species signaling and ATP-gated K+ channel activity [130-133] together with nitric 

oxide [134].  

 Later studies established that vagal stimulation, confirmed to increase cardiac interstitial 

acetylcholine [135], also reduces ischemic damage and infarction [136-139], and improves post-

infarct inflammation and remodeling [140]. The protective effects of vagal activity and 

acetylcholine are not limited to myocardial cells, extending to protection of coronary vascular cells 

[134] and reduction of peripheral vascular inflammation and injury [141] during infarction. Other 

work confirms essential involvement of vagal activity in cardioprotection via remote pre-

conditioning [142,143], with evidence release of the protective factor (which induces protection via 

recruiting intrinsic cardiac ganglia) is dependent upon prior vagal activation [144].  

 Mechanistically, while initial studies focused on roles of reactive oxygen species, KATP 

channels and nitric oxide in the protection elicited by acetylcholine and muscarinic receptors, 

studies also support roles for improved Ca2+ handling [145,146], and the ‘cholinergic anti-

inflammatory pathway’ (involving suppression of JAK-STAT and NFκB signaling) appears key to 

the cardiac and vascular protection with vagal activity (Fig. 2). Acetylcholine modulates myocyte 

expression of inflammatory cytokines [147], and vagal stimulation reduces neutrophil invasion and 

inflammatory markers in post-ischemic myocardium [137], modifies TNF-α expression and 

differentially modulates protective vs. injurious TNF receptor sub-types[138,148], and inhibits 
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expression of injurious Il-17a during infarction [149]. 

  Interestingly, more recent work in cultured cell models of hypoxia/reoxygenation injury 

supports beneficial effects of acetylcholine on autophagy [150], and mitochondrial biogenesis [151] 

and quality control via mitophagy [152]. Similarly, vagal nerve stimulation may limit myocardial 

injury by inhibiting mitochondrial dysfunction and associated apoptosis [139], though this study 

found protection was limited to intra-ischemic intervention while post-ischemic stimulation was 

ineffective. Other work supports vagal control of mitochondrial dynamics, likely promoting stress-

tolerance and limiting cell death [153]. Inhibition of the mitochondrial unfolded protein response 

may additionally contribute to anti-apoptotic effects of acetylcholine, potentially via inhibition of 

mitochondrial oxidant generation [154]. Studies thus collectively reveal important roles for vagal 

activity in dynamic maintenance of mitochondrial phenotype and function. While neuronal 

autophagy appears dysregulated with depression, the effects of  MDD or chronic psychological 

stress on cardiac fission, fusion and mitophagy await analysis. 

 Both muscarinic (M2, M3) receptors and nicotinic receptors may contribute to the protective 

effects of vagal activity and acetylcholine. Studies initially focused on muscarinic M2 receptors, 

with antagonism or knockdown confirming involvement in protection of cardiomyocytes [147,155]. 

Additionally, M3 agonism with choline is cardioprotective [146,156], and the M3 receptor is 

implicated in the anti-apoptotic effects of acetylcholine [154] and in vagally mediated protection 

[133]. Finally, nicotinic receptors may also participate, with the study of Calvillo et al. supporting 

involvement of the nicotinic pathway and inflammatory modulation in cardioprotection via vagal 

stimulation [137]. Activation of the α7nACh receptor also substantially limits inflammation during 

myocardial ischemia-reperfusion [157], and may promote angiogenesis post-infarction [158] (Fig. 

2). 

Despite considerable evidence supporting cardiac protection via vagal activity in other 

settings, no study has yet demonstrated that reduced vagal activity underlies exaggerated 
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myocardial infarction in models of MDD. This is important if vagally targeted therapies were to be 

implemented. Clinically, vagal stimulation has been assessed in chronic heart failure, where it has 

been established as safe and efficacious [159-161]. Trials in myocardial infarction (or surgical 

ischemia) have yet to be undertaken. Among other unknowns, it is unclear whether detrimental 

impacts of sympathetic and vagal dysfunction on infarction and cardioprotective signaling are 

additive or potentially synergistic. It is thus unclear whether combined targeting of vagal and 

sympathetic pathways will be substantially more effective, practical or problematic, in terms of 

protecting against ischemic damage and infarction. We are unaware of studies assessing dual 

treatment via both parasympathetic agonism/nerve stimulation and sympathetic antagonism/nerve 

block. Although in a different setting, combined vagal stimulation and β-blockade has been shown 

to be more effective than either alone in preserving function in a model of chronic heart failure 

[162]. 

 

3.3 The HPA axis  

 The endocrine response to stress involves anterior hypothalamic release of corticotropin-

releasing hormone, and pituitary secretion of adrenocorticotropic hormone to stimulate adrenal 

cortex secretion of glucocorticoids such as cortisol [163]. Chronic stress results in over-secretion of 

glucocorticoids and downstream adrenal catecholamines [164]. Inflammatory dysfunction is an 

important element in MDD, and cytokines also stimulate the HPA axis, with IL-6 particularly 

important in axis activation during chronic stress [165]. Additionally, eicosanoids, platelet-

activating factor and serotonin act as inflammatory mediators to stimulate the HPA axis [166]. 

Chronic activation of the HPA axis in depression may both directly and indirectly influence 

myocardial phenotype and stress-tolerance (Figs. 1 & 2). 

 Glucocorticoids exert direct cardiovascular effects, including positive inotropism and 

increased blood pressure and cardiac output [167]. They also sensitize the cardiovascular system to 
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catecholamines, and prolong the actions of catecholamines at neuromuscular junctions [163]. 

Coupled with sympathetic over-activation, HPA axis dysfunction may exaggerate the pro-injurious 

actions of catecholamines. In addition, cortisol inhibits insulin and promotes lipolysis, modifying 

substrate metabolism and elevating blood glucose. Chronic stress also induces insulin-resistance, 

further promoting hyperglycemia, with both hyperglycemia and insulin-resistance known to impair 

infarct tolerance and cardioprotective signaling [27-30,168,169]. Similarly, elevations in serum 

fatty acids, particularly saturated forms, may induce myocardial dysfunction and apoptotic death, 

while polyunsaturated fats are protective [170,171]. Whether cortisol-dependent inhibition might 

also limit the cardioprotective action of insulin [89,172] has not been tested.  

 Stimulation of the HPA axis reduces production of thyroid-stimulating hormone and 

conversion of thyroxine to triiodothyronine (Fig. 2), which can lead to sick euthyroid syndrome 

[173], associated with cardiac dysfunction under normoxic and post-ischemic conditions [174]. It is 

less clear whether infarction is sensitive to this imbalance [175], although sick euthyroid syndrome 

is associated with greater in-hospital and long-term mortality in AMI patients undergoing 

percutaneous intervention [176]. Gonadal steroid secretion is also reduced with HPA axis activation 

[163], with evidence maintenance of testosterone levels reduces major adverse cardiovascular 

events and death [177], while protective effects of estrogen are well established [178]. Finally, 

prolonged activation of the HPA axis also inhibits growth hormone secretion and IGF-1 [179], with 

the growth hormone/IGF-1 axis known to reduce CHD risk and protect myocardium against 

infarction [180,181]. This spectrum of neuroendocrine outcomes with HPA axis dysfunction may 

collectively contribute to stress intolerance and other myocardial changes. In turn, HPA axis 

dysfunction has been extensively demonstrated in MDD [26] and other mental illness such as 

anxiety disorders [182,183]. While links between MDD and myocardial damage can be postulated 

in terms of mechanisms of autonomic and HPA axis dysregulation, their individual roles and 

contributions have yet to be detailed. Changes in HPA hormones have potential to modify cell death 
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processes [40], yet no study has confirmed involvement of HPA dysfunction in the effects of MDD 

on myocardial infarct tolerance.   

 

3.4 Immuno-inflammatory function    

 Depression increases pro-inflammatory cytokine production and levels of acute-phase 

proteins, chemokines and adhesion molecules [184-189] (Figs. 1 & 2). Pro-inflammatory cytokines 

(eg. IL-1, IL-6, TNFα) promote fatigue, somnolence and withdrawal from social activity [189-191]. 

Moreover, endotoxin induces anhedonia in rats, coupled with somnolence and reduced exploratory 

and social behavior and food intake [191], and in humans induces anxiety, depressed mood and 

impaired memory function [192]. These symptoms have been termed ‘sickness behavior’ [191-

195], and mirror the neuro-vegetative features of MDD. Importantly, sickness behavior symptoms 

induced with pro-inflammatory cytokines are reversed with anti-depressant medication [190,196]. 

 Stress-dependent modulation of the immune response and pro-inflammatory cytokines also 

increases infection susceptibility [197,198], and in humans chronic stress is associated with 

susceptibility to viral infection, delayed wound healing, and impaired antibody responses to 

vaccination [199,200]. These changes are influenced, in turn, by other elements of the integrated 

network of mechanisms that can result in MDD [26] (Fig. 1). For example, both vagal activity and 

the HPA axis impact immune function and inflammation, and corticosteroids impair humoral 

immunity and increase autoimmune inflammatory responses [201] (Figs. 1 and 2). Long-term 

elevations in cortisol with chronic stress can thus promote autoimmune responses while limiting 

capacity to fight infection. In addition, myocardial apoptosis with endotoxemia appears to be 

promoted by β-adrenergic receptor activity [95], suggesting potential synergism between 

sympathetic activity, immune and inflammatory function in MDD.  

 Pro-inflammatory cytokines are known to exaggerate myocardial damage during infarction, 

although effects are complex with evidence of protective actions of transient elevations in cytokines 
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including TNFα [202], together with roles in promoting post-infarct healing [203-205]. Immune 

function is also a critical determinant of infarct outcomes and cardioprotection [206-209]. While no 

studies have effectively confirmed mechanistic involvement of perturbed inflammation and immune 

function in the impacts of MDD or chronic stress on infarct tolerance, there is evidence for 

inflammatory cell infiltration, activation of inflammatory signaling, and toll-like receptor 4 and 

NFκB dependent myocardial injury in models of chronic stress [41,58]. Chronic stress also 

increases macrophage infiltration and growth and vulnerability of atherosclerotic plaques, in 

association with exaggerated infarct occurrence and injury [210].  

 

4. Animal models of depression and their use in studies of infarct tolerance  

 Modeling human disease in animals poses a major challenge in examining mechanisms 

governing myocardial phenotype in depression. Issues include the perennial complication of 

species-specific biology, and questions regarding the nature of behavioral pathologies induced in 

different models. Importantly, while no single model replicates the range of physiological, 

psychological and social components of human depression, specific animal models do manifest 

important elements of the disorder [211]. As outlined by Willner [39], the validity of animal models 

is determined by 3 characteristics: the model should replicate the symptoms of human depression 

(face validity); model symptoms should involve neurophysiologic mechanisms corresponding to 

those in humans (construct validity); and pharmacological or other interventions should 

appropriately influence behavioral outcomes (predictive validity). Of course, it is problematic to 

ascertain the true construct validity of any animal model while the neurophysiological mechanisms 

underpinning human depression remain poorly defined.  Limitations or complications relevant to all 

such models include evidence of significant strain- [212-216], sex- [46,51,217,218] and age-

dependent [219-222] outcomes and responses to anti-depressants.  

 As the diversity of animal models, their pros, cons and relevance to human depression have 
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been reviewed in detail previously [211,223-225], they are addressed here in brief. Animal models 

of depression may be generally divided according to the means of induction of depressive behavior:  

i) exposure to acute or sub-chronic stress, including the despair-based forced swimming and 

tail suspension test models. However, there are questions regarding the validity of these models, 

and they tend to produce limited and short-lasting depressive-like symptoms. On the other hand, the 

learned helplessness model (discussed below) does generate longer lasting behavioral and cognitive 

changes and appears a more valid model within this sub-set.  

ii) chronic exposure to multiple 'mild' stressors, inducing depressive-like symptoms 

including anhedonia, reduced activity and changes in appetite and weight. It is important to 

recognize, however, that the key behavioral indicator of depressive state in these models  - 

anhedonia-like behavior - is not specific to depression, arising in some other behavioral disorders.  

iii) modulation of select physiologic processes to manifest depressive symptoms and 

examine the molecular pathogenesis of depression (eg. modulating HPA axis or immune function). 

However, considerable heterogeneity in behavioral outcomes may arise in such models, and 

outcomes may also not be specific to depression. 

iv) genetic models [226-228] or surgical manipulations (eg. olfactory bulbectomy [220]) to 

modify phenotype and behavior, again more relevant in investigating specific pathophysiological 

elements of depressive disorders.  

 The three models most widely applied in pre-clinical research in recent years are the chronic 

mild stress, forced swim test, and learned helplessness models [224]. The former is most commonly 

applied in studying myocardial stress responses and infarct tolerance. Analyses of myocardial 

outcomes across a broader range of models are warranted, including effects of the forced swim test 

and learned helplessness models on infarct incidence and tolerance. 

Chronic mild stress. The chronic mild stress model of depression was initially developed 

over 35 years ago [229,230], and has been adapted by investigators in studying multiple aspects of 
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depression including cardiac infarct intolerance [44,48-50]. Greater validity and manifestation of 

long-lasting depressive symptomatology are advantages [39]. The model triggers antidepressant-

sensitive anhedonia-like behavior (assessed from reduced sucrose consumption and preference) and 

other depressive characteristics (reduced exploratory behavior and grooming), together with shifts 

in neurotransmitter signaling. These behaviors are induced over a 3-9 wk induction period in which 

differing stressors are applied in random/semi-random order, limiting capacity to adapt. However, 

widely varying durations of stress across studies may lead to differing outcomes, with the impact(s) 

of stressor duration yet to be adequately examined. The model is considered superior to the learned 

helplessness and forced swim test models in terms of the time-course and specific symptoms of 

depression, and also effects of anti-depressants. Disadvantages are in part practical – the method is 

highly labor intensive, the variety and durations of stress raise ethical concerns and may limit ethics 

approval, and importantly the model can be difficult to establish, with considerable variations in 

outcome despite use of similar protocols [39]. Additionally, repeated stressors (despite 

randomization) have the potential to induce resilient phenotypes, complicating interpretation. 

Commonly incorporated within chronic mild stress models, both crowding [231-233] and restraint 

[234,235] are also employed as individual stressors. However, it is possible resilience/adaptation 

arises, limiting their applicability. Studies do support a greater capacity to trigger depressive 

symptoms with unpredictable forms of stress rather than restraint alone [236], and there is also 

some evidence crowding stress does not alter infarct tolerance [51]. Social isolation as a sole stress 

has also not been examined for effects on myocardial infarct tolerance, through has been 

incorporated with other stressors in studies of chronic mild stress [48-50]. 

 Forced swim test. In this model rodents are forced to swim in a partially fluid-filled cylinder 

in order to survive an inescapable situation. A pre-test swim of ~15 min is thought to induce 

behavioral despair, and is followed 24 hrs later by a brief 5 min session. Instances and duration of 

immobility are used as primary indicators of behavioral despair. Although the forced swim test is 
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widely employed in studies of depression, this is largely a reflection of its simplicity, low cost and 

short experimental duration rather than model validity, which remains questionable [237,238]. 

Indeed, the short induction period contrasts patterns of depression development in humans. 

Moreover, variations in parameters such as number of training sessions, testing durations and 

equipment dimensions can significantly impact outcomes. Nonetheless, the practical aspects of the 

model render it popular in high-throughput screening of anti-depressant responses [239]. The model 

has not yet been applied in studying potential shifts in cardiac infarct tolerance.  

 Learned helplessness. The learned helplessness model is increasingly employed, though yet 

to be applied in studying effects on cardiovascular phenotype and stress tolerance. Helplessness is a 

central feature of clinical depression, and is inducible in animal models. Learned helplessness 

reflects a failure to control unpleasant stimuli, and subsequently avoid stressful events. Unavoidable 

electrical shocks are used to induce helplessness in rodents, leading to development of 'escape 

failure' - a negative coping strategy in which animals no longer avoid stress. The model induces 

depressive symptoms, including anxiety-like behavior, and decreased exploratory behavior,  

locomotion and body growth [240-243]. Nonetheless, it is important to note that inescapable stress 

in humans induces short-term depressive-like symptoms not characteristic of clinical depression. 

Moreover, from a practical perspective relatively little is known regarding impacts of protocol 

variations on behavioral and other outcomes. Despite these limitations, together with the 

complexity of the protocol, need for specialized equipment and application of electrical shocks, 

learned helplessness is arguably one of the more valid animal models of depression [244]. While 

not yet studied for impacts on cardiac stress responses and infarct tolerance, the direct and indirect 

effects of unavoidable electrical shock were recently studied by Rakhshan and colleagues [47]. 

 

4.1. Application in studies of cardiac ischemic tolerance  

Changes in myocardial responses to ischemia-reperfusion have only been assessed in a sub-
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set of these depression models. Inhibitory effects on ischemic tolerance have been demonstrated in 

models of chronic mild stress that include: 20 day administration of stressors (daylight/darkness 

exposure, overcrowding, isolation, new hierarchy, cage tilting, restriction of water or food)  [44]; or 

21 days of randomized stressors (confinement to a small cage, restraint, water deprivation, food 

deprivation, isolation, flashing light, forced cold water swimming, group-housing in a soiled cage) 

[48-50]. Scheuer et al. tested the effects of chronic (1-2 hrs/day for up to 14 days) restraint stress 

[42], while crowding stress was assessed by Ravingerova et al. (living space reduced from 480 

cm2/rat to 200 cm2/rat for 8 wks) [45] and Ledvenyiova-Farkasova et al. (living space reduced from 

200 to 70 cm2/100 g body mass for 2 weeks) [51]. Rakhshan et al. employed a model of daily 

electrical shocks (over a 1 hr period/day for 1 wk) or witnessing shocks in communal housing [47], 

mimicking in part elements of the learned helplessness model. As detailed above, these forms of 

chronic stress increase both infarction and contractile dysfunction [42,47], or selectively influence 

contractile recovery [45,51]. Infarct intolerance is also evident in stress models reflective of other 

disorders, including sleep deprivation [56] and a predator/stress model of PTSD [46]. Interestingly, 

2 weeks of crowding stress studied by Ledvényiová-Farkašová and colleagues [51] failed to 

influence infarct tolerance in normotensive animals, though selectively reduced contractile 

recoveries in female hearts (association with reduced NOS activity). This contrasts outcomes in 

models of restraint stress [42], chronic mild stress [40,44,48-50] and physical and psychological 

stress [47], suggestive of a lesser cardiac impact of crowding. Although it has been noted that 

chronic stress can yield mixed results in terms of myocardial infarct tolerance [52], this may reflect 

differing cardiovascular responses to metabolic vs. psychologic stressors. For example, both short-

term and chronic hypoxic stressors are cardioprotective [245], as are brief and chronic caloric 

limitation [246] or physical exercise [247]. However, in the case of chronic ‘forced’ exercise, 

attendant psychological stress may contribute to cardiac detriment that is resistant to metabolic 

modulation [248].  
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 A key limitation in a number of these investigations is failure to undertake behavioral 

assessment to confirm depressive states prior to myocardial insult. The studies in which behavioral 

responses were validated prior to ischemic injury include those of chronic mild stress by Wang et 

al. [48-50] and Xingxing et al. [40], and the work of Rorabaugh and colleagues in a model of PTSD 

[46]. No behavioral outcomes were assessed in other studies of the cardiac impacts of chronic mild 

stress [44], or chronic physical or psychological [47], restraint [43] or crowding [45] stress. Studies 

of other negative cardiovascular consequences of stress also fail to adequately assess associated 

behavioral changes [58].	

 

5. Relevance to clinical cardioprotection  

Beyond reducing the risk and prevalence of CHD, a long-running and intractable challenge 

in cardiology has been the development of cardioprotective therapy to limit myocardial injury with 

AMI or ischemic surgery [28-30,249]. Early reperfusion remains the sole approach to salvage 

ischemic tissue, yet itself induces additional damage, and benefit remains variable and highly time-

sensitive. There are few clinical scenarios in which outcome is so critically time-dependent: 

reperfusion is optimal within a 1.5-2 hr window that is rarely achieved in AMI - most Australians 

for example are reperfused >2.5 hrs from symptom onset, with less than 25% receiving ‘timely’ 

reperfusion [250]. Even optimally timed reperfusion yields highly variable outcomes [251]. As we 

and others argue [27-30], failure to clinically translate cardioprotection reflects in part failure to 

address the negative influences of aging, drugs and common co-morbid conditions (including 

atherosclerosis, obesity, diabetes, hypertension) on the myocardial defense mechanisms targeted by 

widely studied and trialed interventions. Though highly effective in young healthy hearts, many 

cardioprotective interventions appear less effective (if at all) in older hearts or in the presence of 

other co-morbid conditions. Depression is thus a key co-morbidity that has received even less 

attention than aging, obesity, diabetes or hypertension. Approximately 20% of CHD patients suffer 
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from MDD [8,34], while up to 25%  of patients suffer depression post-infarction [252]. Thus, 

approaches to both acute protection against AMI and also later protection against delayed injury 

and remodeling may be significantly impacted.  

The depressed CHD patient may pose a particularly problematic challenge. Protection via 

pre-conditioning may require cardiac nerve activity [105], although this remains contentious [101], 

and both vagal activity [142-144] and sympathetic signaling [106,107,253,254] have been 

implicated in ischemic pre- and post-conditioning responses. Thus, the sympathetic and vagal 

dysfunction potentially worsening infarct tolerance with depression may render these hearts less 

responsive to conditioning interventions. The effects of MDD and chronic stress on the expression 

and functionality of protective signaling pathways engaged by these stimuli, including the 

‘reperfusion injury salvage kinase’ or RISK path [255], and the ‘survivor activating factor 

enhancement’ or SAFE path [202], are largely unstudied. To date only one investigation has 

directly tested the effects of depression on conditioning responses, supporting inhibition of ischemic 

post-conditioning in a rat model of chronic mild stress, potentially involving impaired post-

ischemic activation of protein kinase B and STAT-3 [256]. Curiously, the study did not identify any 

impact of chronic mild stress on infarct size is non-preconditioned hearts, contrary to other reports 

of exaggerated cell death and infarction in similar models [40,44,48-50].    

 

6.  Myocardial effects of anti-depressants 

 Interactions between mood and cardiac phenotype are further evidenced by beneficial 

myocardial effects of anti-depressants [257], which can also improve AMI outcomes and CHD 

mortality [258]. However, it is important to highlight that to date no fully powered study has 

confirmed that anti-depressant (or psycho) therapy improves survival following AMI. Although 

consistent with the detrimental cardiac impacts of depression, interpretation of the above findings is 

complicated by pleiotropic cardioprotective effects of such agents [259,260]. Moreover, other 
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agents exhibiting cardioprotective actions also mediate anti-depressant effects (eg. resveratrol 

[261]), supporting a broad influence of cardiovascular health on depression. A detailed analysis of 

the cardioprotective effects of anti-depressants is needed, in particular identifying the molecular 

mechanisms of such effects, and whether these agents can act directly on the myocardium, 

independently of effects within the central nervous system.     

 

7.  Concluding remarks 

 In summary, studies to date indicate that models of depression worsen myocardial death and 

dysfunction following ischemia or infarction. However, there is a need to perform studies in a 

broader range of animal models (with behavioral outcomes confirmed), and the upstream mediators 

and molecular basis of myocardial changes remain to be detailed. In terms of neurohumoral 

mediators, there is some limited evidence for involvement of sympathetic over-activity [47], 

coupled with indirect evidence implicating catecholamines and 5-HT [40]. Further delineation of 

the roles of the major components of the PINE network - the autonomic nervous, immune and 

inflammatory systems, and the HPA axis - in inducing myocardial infarct intolerance with MDD is 

critical in understanding the reciprocal relationship between MDD and CHD. At the level of the 

myocardium itself, we also have a rather basic view of alterations in chronic stress models of MDD 

(or indeed MDD patients), with injury end-points primarily assessed to date. These studies support 

exaggerated oxidative and nitrosative damage [44], altered expression of Bcl-2 proteins and 

increased apoptosis and infarction [48-50], leaving the regulatory or signaling basis somewhat 

obscure: how are molecular oxidative and nitrosative damage exaggerated, Bcl-2 proteins and 

apoptosis pathways modified, and infarction worsened by MDD? Equally important -  how does 

chronic stress or MDD influence the heart’s intrinsic cytoprotective mechanisms and 

responsiveness to cardioprotective therapies.  A single study indicates depression negates the ability 

of ischemic post-conditioning to limit infarction in rats [256], suggesting that depressive states may 
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be an additional factor in the inability of cardioprotective stimuli to limit infarction in those 

suffering CHD [29,30,249]. Identifying specific myocardial modifications underlying impaired 

infarct tolerance can facilitate development of approaches to improving cardiac phenotype and 

ischemic outcomes in this significant patient population.  
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FIGURES 

Fig. 1. Directional network map highlighting the pathways linking chronic stress and MDD to 

multiple mechanisms of cardiac pathology. Biological systems (boxes) which are nodes in the 

network are depicted in different colors (endocrine mechanisms, purple; autonomic activity, yellow; 

inflammatory mechanisms, green; mechanisms relating to both cardiac tissues and function, red). 

Arrows are colored according effects on target nodes (promotes = blue; inhibits = red). 
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Fig. 2.  Potential signaling governing myocardial stress phenotype in MDD. Within  

myocardium MDD/stress impairs infarct tolerance and cardioprotection, in association with 
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exaggerated nitrosative/oxidative damage, altered expression of apoptotic mediators and increased 

apoptosis. The basis of these direct myocardial changes remains unclear. MDD (and chronic stress 

models of MDD) are associated with sympathetic activation vs. vagal suppression, HPA axis 

dysfunction, inflammation and immunomodulation. The HPA axis dysfunction: elevates adrenal 

glucocorticoid (eg. cortisol) secretion via hypothalamic corticotropin release hormone (CRH) and 

anterior pituitary adrenocorticotropic hormone (ACTH) release; suppresses gonadal hormone 

production (testosterone, estrogen) via reduced hypothalamic gonadotropin releasing hormone 

(GnRH) and pituitary gonadotropin (LS, FSH) secretion; and suppresses thyroid thyroxine (T4) and 

circulating triiodothyronine (T3) levels, and hepatic insulin-like growth factor-1 (IGF-1) release via 

reductions in pituitary thyroid-stimulating hormone (TSH) and growth hormone (GH) secretion, 

respectively. Vagal activity directly impacts the heart, and modifies stress responses/remodeling via 

the cholinergic anti-inflammatory reflex (including inhibition of macrophage/inflammatory cell 

cytokine generation via α7 nicotinic receptors - α7). Sympathetic activity also directly impacts the 

heart while influencing cytokine/substance P release from inflammatory cells, B cell antibody 

production, and acetylcholine (Ach) release from choline acetyl-transferase expressing T cells. 

Cytokines/inflammation in turn signal to the central nervous system via vagal and sensory afferent 

fibers (not shown). Metabolic changes with altered cortisol, catecholamines, T3 and GH include 

insulin-resistance, hyperglycemia, lipolysis and elevated circulating free fatty acids (FFAs). Which 

of this array of neurohumoral, inflammatory and immune factors are key in inhibiting  myocardial 

stress resistance remains to be established.  
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Fig. 3.  Environmental enrichment may mimic the cardioprotection with physical exercise in mice. 

These unpublished data show effects of environment enrichment (initial placement of a locked 

running wheel in the cage for 2 days) compared with 7 days of voluntary wheel running in 

Langendorff perfused hearts isolated from these mice [54]:  phospho-activation of myocardial AKT 

(pro-survival); phospho-inhibition of GSK3β (pro-injury); and functional recovery from 25 min 

global ischemia and 45 min reperfusion (% recovery of left ventricular pressure development, 

LVDP). Note the similar signalling and cardioprotective outcomes with both active wheel-running 

and simple environment enrichment. Data are means±SEM (n=6-7).  


