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ABSTRACT

Economists often have to use temporally aggregated data in causality tests. A number of
theoretical studies have pointed out that temporal aggregation has distorting effects on
causal inference. This paper examines the issue in detail by plugging in theoretical cross
covariances into the limiting values of least squares estimates. An extensive Monte Carlo
study is conducted to examine small sample results. An empirical example is also
provided. It is observed that in general the most distorting causal inferences are likely at
low levels of aggregation where the order of aggregation just exceeds the actual causal
lag. At high levels of aggregation, causal information concentrates in contemporaneous
correlations. At present, a data-based approach is not available to establish the direction

of causality between contemporaneously correlated variables.



1. INTRODUCTION

The use of highly temporally aggregated data for causal inference is quite common in the
applied econometric literature. Some commonly investigated cases are the causality
between economic growth and export growth, economic growth and trade, and economic
growth and financial development. On one side are those who use Granger causality tests
with mostly quarterly or annual data (see, for example, Jung and Marshall 1985, Rao
1989, Demitriades and Hussein 1996). On the other side are those who use cross-country
regressions with data averaged over many years. Causality in these studiesis pre-imposed
and testing is done on the contemporaneous correlations (see, for example, Feder 1983,
Kormendi and Merguire 1985, Ram 1986, Grier and Tullock 1989, Barro 1991, Levine
and Renelt 1992, King and Levine 1993, Levine and Zervos 1993, Frankel and Roamer
1999). Both approaches suffer from the problems of tempora aggregation. The objective
of this paper is to examine how temporal aggregation affects causa relationships among
variables.

There is a sizable theoretical literature that investigates the impact of temporal
aggregation on ARIMA models (see Wei, 1990, and references therein). A number of
studies have a so focused on tempora aggregation and the dynamic rel ationships between
variables and shown that temporal aggregation weakens the distributed lag relationships
(Telser 1967, Zellner and Montmarqguette 1971, Sims 1971, Wei and Tiao 1975, Tiao and
Wei 1976, Wei 1978, Wei and Metha 1980). Wei (1982), using Geweke' s decomposition
of a linear relationship, finds that temporal aggregation turns one-way causality into a

feedback system. Campos et a. (1990) find that phase averaging in business cycle



analysis produces inconsistent estimates and induces endogeneity into previousy
exogenous variables. Ericsson et al. (1994) examine how seasonal adjustment filters,
which essentially embody a form of temporal aggregation, ater the short run dynamics
while preserving cointegrating relationships. Ericsson et a. (2000) highlight the
misspecifications involved in cross-country regressions that involve heavy temporal
aggregations. Marcellino (1999) derives the vector ARIMA form of a temporally
aggregated process (see also Litkepohl, 1987) and shows that integration (unit roots) and
cointegration are invariant to tempora aggregation, but many other aspects such as
seasonal unit roots, exogeneity, causality, impulse responses, trend-cycle components,
measures of persistence and forecasting are all affected by the aggregation process'.

Although these studies have already pointed out some potential problems associated
with temporally aggregated data, a comprehensive study that focuses on Granger
causality alone would still be of immense value because of the practical significance of
causality testing based on aggregated data. Our study looks into this problem in detail and
provides some new insights.

In the next section, we derive the theoretical cross covariance between aggregated
and disaggregated processes. This result plays a fundamenta role in our exercise and is
applicable to both stationary and integrated processes. In Section 3, we then derive the
limiting values of least squares estimates of a VAR(1) process under different levels of
tempora aggregation. In Section 4 we summarize the findings of an extensive Monte

Carlo study. Section 5 provides a unique empirical example. In the concluding section we

! Marcellino (1999) provides along list of references (both theoretical and empirical) where these points
have been previously established. On the empirical side Rossana and Seater (1992, 1995) find that the
effects of temporal aggregation are much larger compared to cross-sectiona aggregation.



summarize the results and highlight some important issues involved in Granger causality

testing with temporally aggregated data.

2. RELATIONSHIP BETWEEN CROSS COVARIANCES OF DISAGGREGATE
AND AGGREGATE SERIES
Let z = (z, Zx,..... ,Zut ) be a vector of basic disaggregate series and Z; be the
temporally aggregated vector. Tempora aggregation involves the construction of non-
overlapping sums that can easily be obtained by defining the overlapping sum
X, =@+L+..+L™")z and then defining Z=Xy. This is the same as systematic
sampling of the X; process at m intervals where m is a positive integer and is called the
order of aggregation. For example, aggregating monthly data to quarterly figuresinvolves
setting m=3. Stram and We (1986) have derived the relationship between the
autocovariances of the basic disaggregated series and the aggregated series for the
univariate case. We extend their work to the multivariate case and examine how causal
inferences are affected by the aggregation.
Let w, = (1-L)? z be a weakly stationary process with mean zero and variance

covariance matrix
M (k) = E(wwe ) =[y; (K], 1, j=12,...,n (D
where y"ii(K) is the autocovariance of the i-th component, wi;, at lag k and )¥;(K) is the
cross covariance between i-th and j-th components. Further );i(0) is the variance of thei-
th series and §*;;(0) represents the contemporaneous cross covariance between the series.
Let L’ be the backward shift operator on the aggregate time unit 7. Thus,

A-L)Z,=  Z,-Z, =Xy =Xy =@-L™X,,. Let W,=@1-L)'Z, =

T mr



L-L")*X,, =@+L+...+L"")"w_. Since W; is a finite moving average of a
stationary process w;, the d-th differenced aggregated series W; is aso a covariance
stationary process (Anderson, 1975). The cross covariance between Wi;and Wi is given
by
yi' (K)=Cov(W,, W, ) =L+ L+L*+....+ L")y (mk + (d +1)(m~1)) (2)
where L operates on the index of )¥;(k) such that Ly"j(k) = y¥(k-1) (see Appendix for
the derivation of 2). It may be useful to expresses (2) in matrix form as well:

M (k) =EWW,_) =[yj (K], i,j =12...n 3

=@A+L+L2+-+ "D MY (mk + (d +)(m-1))

where L operates on each element of the matrix (k). The basic relation given in (2) or

(3) plays a crucia role in the assessment of the impact of temporal aggregation on

Granger causality testing. Some special cases are discussed below.

3. CAUSAL INFERENCE FROM TEMPORALLY AGGREGATED DATA
To derive more specific results consider the following stationary bivariate

VAR(1) system:

%? E: %n b %t—l E‘f Et E %t E~ N%E%ﬁ 02 % @)
t 2 D K 2t 2t 0 o,
In this system the coefficients ¢,,and ¢, measure the feedback between y; and x;, with

¢,, Z 0implying Granger causality from x toy and ¢,, # 0 implying Granger causality

from y to x. We have set the contemporaneous correlation between the two error series to



zero (i.e, p, =0,/0,0, =0) in order to assess the impact of temporal aggregation on
this correlation.

The variances, autocovariances and cross-covariances of system (4) are given by
¥ (0) = 0'32/ =E(Y,Y,) = ¢1210-)2/ + 9507 +20.,0,y15(0) + 07 5
V2 (0) = 0-5 =E(xx) = ¢2210-32/ + ¢2220>f +20,0,,11,(0) + 022 (6)

V12(0) = ¥2,(0) = E(Y,X ) = ¢ 00y + 010,05 + ($uf + $1202) 115 (0) (7)

Y (K) = E(Y, Vi) = @uyn(K-D+ @,y (k1) (8)
V22 (K) = E(XX1) = @0V (K= D) + P (k=) (9)
Vi (K) = E(Yi X)) = @uayip (K=D) + @) (K -1) (10)
Var(K) = E(X Vi) =@y (K=1) + )y (k—1) (11)

Solving (5)-(7), we get

o? = G |_0-12 (bzcs _ bscz) — J22 (b1C3 _ b3C1)J (12)
’ [a103 a ascl][bzcs B bscz] _[ aC; ~ ascz][ b,c, - b3C1
2 _ Cs |_012 (azca B ascz) ~ J22 (a1C3 &6 )J (13)
" [blcs - bscl][azcs - ascz] _[ b,c; — bscj[ ac; — a301
w _ [a3032/ + b30—>3]

V12(0) = (14)

Cs
where a, =1- ¢1211 b, = _¢1221 C, =200, &= _¢221' b, =1- ¢222' C, ==20,0,,,

A =P, by =—¢,0,, and c, :1_[¢11¢22 + ¢12¢21]'



Let Y,and X, be the m-period non-overlapping aggregates of y,and x, respectively.

We now consider estimating the following bivariate VAR(1) from the temporally

aggregated series:

L EBRE
T 21 ¢22 -1 2r
where E;, (i=1,2) represent the error process of the aggregated model. The OLS

estimates ¢; and plimg; aregiven by:

$. = (Z YoV )(Z X r2—1) B (Z Yo Xoo )(2 Yo X r—1)
; (Z Y )(Z X r2—1) a (Z Y X r—1)2

(16)
p”m(ﬁ; =yg(1)y\z/\£(0)_y¥;(1)yr2/(20)
ZHOIACRIAC)
and similarly
olimg;, = Ye@yi(©@-yn®y: O an

YOy - (2 )

olimg;,  =/alVz(Q-rz0yz O (18)

Y0y 0 - (2 )

olimg;,  =Y2@a@-yar:©) (19)

YOy - (2 )

Using (2) the above parameters of the aggregate process can be expressed in
terms of the moments of the disaggregated process and these in turn can be expressed in

terms of the parameters of the original process using (5)-(14). Here we consider m=3, 12,



and 60 to correspond to aggregating monthly data to quarterly, annual, and five-year
aggregates”. Although we consider only the stationary case (d=0), the distortionary
effects that we talk about are equally valid for non-stationary cases. The basic findings
for d=0 and d=1 are similar though the magnitudes of the parameters are different. Note
that d=1 involves aggregating 1(1) series and then taking differences to make them
stationary. In the case of cointegrated processes the model may be formulated as an error

correction model in [(0) space (see Section 5).

Case 1. No Granger Causality Between the Variables in the Disaggregated Form
Inthiscase¢,, = ¢,, =0 and with g,, =0 the two series are uncorrelated. Therefore,
from (10), (11) and (14) (k) =0 for adl kand i # j (i, j =12). Further from (2) we
can see that yi‘j’v(k) =0 for all kand i # j. Thus, if the cross-covariances between the
disaggregated series are zero then the cross-covariances between the aggregated series
will also be zero. And from (17) and (18) we can seethat ¢,, = ¢,, = 0. Thus, if thereis

no Granger causality between the disaggregated series then the Granger causality
between the aggregated series will also be absent. Unfortunately, as we shall see later, the

converse may not be true.

Case 2: Causality Between the Disaggregated Seriesis One-Sided

Let ¢,, =0 such that x does not Granger cause y:. Accordingly, from (5)—14) we get

yi(0) =07 and yyi(K) = guyi(k-1) = gy (20)

2 Many cross-country studies use long-term averages like those over five years.



¢11¢21 Fu¥ay H¢11¢ 2%y
0 k k-1 k>0 21
y12( 0) = 1-¢.0,, y12( )= ¢11y12( ) = ¢11 ¢11¢22 %] > (21)

Vi (K) =@ yis (k=1 +@,ym(k—1) = ¢21¢1;1Bf”zﬂ¢y%mzyzz(k 1) (22)

Yo (K) = @i (K=D) + @y (k=1 = 179107 + Py (k-D0k >0 (23)

Thus, (17) changesto

2 U O
ulirpuroir o ol O P75 B o
] ¢11¢ 22 [l

020 - (2 )

plim @y, = (24)

and plimg,, remainsunchanged asin (18).
It is clear from the above expressions (and (2)) that when ¢, =0, ¢,, =0,

suggesting that if the one-sided causality runs from a white noise series to a stationary
series in the disaggregated form then temporal aggregation will not produce a spurious

feedback relationship. Similar inference does not apply when ¢,, = 0. In the following
calculations we set ¢,, =0.5 in order to produce results in terms of 3-dimentional
graphs.

Figures la-1c show the effect of temporal aggregation on plim@,, over the
parameter ranges (-.85<¢,, <..85) and (-1<¢,, <1). To make the reading easier
Table 1 provides plim ¢, for selected values of ¢,, and ¢,,. What is immediately
noticeable is that as m increases VAR(1) tends to become VAR(0). However, when ¢,

reaches unity, we get a near cointegrated specification and as a result VAR(1) remains



VAR(1) as mincreases®. The most important observation is the creation of a spurious
feedback effect as shown by the non-zero values of plim @,,. Interestingly when both
¢,, and ¢,, are of the same sign the feedback effect created is negative and when they
are of opposite signs this becomes positive. The magnitude of the spurious feedback is
large for large positiveg,,. Since large positive ¢,, is more likely in practice, spurious
feedback is very likdy with temporally aggregated data. For certain parameter

combinations as mincreases the feedback effect first increases and then decreases.

Figure1 and Table 1

Case 3: Granger Causality Between the Disaggregated Series is Bi-Directional

In this case both ¢,, and ¢,,are non-zero. The required aggregated parameters
(¢,,,9,,) aregivenin (17) and (18). To make computations easier and also to be used in

the next section, we set ¢,, =0and ¢@,, =0. Accordingly the results in (8)-(14)

specidizeinto

V(0)=0 (25)
yu@ =0 and yyi(K) = @,y (k-1 (26)
V(1) =0 and yy (K) = @15 (k=) (27)
Vi (D) = ¢,,05 and yy5(K) = @,y5 (k- 1) (28)

3 Because of this, in Fi gures 1la-1c we have restricted the range of ¢y, to lie between -.85 and +.85 in order
to highlight the shrinkage of VAR(1) to VAR(O).

10



V() = 9,07 and yy (K) = gy (k=) (29)

Through recursive substitution, we aso get

Vi(2k-1 =0, yi(2k)=($$) 0y Dk=12,.. (30)
Vo (2k=1) =0, i (2K)=(90,) 02 Ok=12,... (31)
Vi (2K =1) = $p,($1,00) 0%, yip(2k) =0 Dk=12.. (32)
Va(2k =) =4, (Pr8) "0y, yu(2k)=0 Tk=12,... (33)

and 0.2 - 1+¢221 0.2 = l+¢122

x 2 1 Yy 2 42 (34)
1_¢12¢21 1_¢12¢21

For different values of m the expressions for (¢,,,¢,,) can be evaluated using

(30) — (34). Figures 2a-2c plot plim@,, over the range -1<¢,,,¢,, <1 and Table 2
provides a summary. As in the one-way causal system above, even in the feedback case

the VAR(1) tends to become VAR(0) as m increases. What is more disturbing though is
that a positive ¢,, may become negative ¢,,. Furthermore, the magnitudes of plim ¢,

are such that in practice it is quite possible to conclude that causality is one-way though it

is bi-directional.

11



Case 4: Contemporaneous Correlation

An important well-known problem of tempora aggregation is the creation of
contemporaneous correlation even when such a correlation is absent. Using the VAR(1)
system in (4) with ¢,, =0 and ¢,, =0 Ericsson et a. (2000) examined the effect of
tempora aggregation on contemporaneous regression coefficient for m=2 and observed
that this coefficient could be positive, negative, or zero. Here we generalize their result

for any m. Note that with ¢,, =¢,, = g,, =0 the contemporaneous correlation between y;
and x iszero (i.e, y;,(0)=0).

From the contemporaneous regression relationship Y, = cX, +u, with aggregated

data we get
Y X W
e=L 0", and plim ¢=12(0 (35)
ZXT yll(o)

As before (35) can be evaluated by substituting the relevant expressions for the
disaggregated series from the previous results. Figures 3a-3c and Table 3 show results of
plim ¢ for different values of ¢,, and ¢.,. Here we let o7 = gZ? =1 for the ease of
computation.

As observed by Ericsson et al. (2000) for m=2, the contemporaneous regression
coefficient (also the correlation) could take positive, negative or zero at any level of
aggregation. If both ¢, and ¢, are positive (negative) then the contemporaneous
correlation will also be positive (negative). However, when the above parameters are of
opposite signs then the sign of the contemporaneous correlation is determined by the sign

of the larger of the two in absolute value.

12



Figure3 and Table 3

4, MONTE CARLO RESULTS

The theoretical results presented above show how temporal aggregation creates
spurious causa relations and Tables 1-3 show how the magnitude of the coefficients are
affected asymptotically. It would be of interest to see how in small samples the standard
test statistics such ast test would detect whether a coefficient is zero or not. To examine
this we conducted a Monte Carlo study based on the VAR(1) process in (4) with

N(O, I')errors and recorded the rejection frequencies for ¢,, = 0based on the standard

OLS based t-test. We also tested the hypothesis p,, =0 based on the Breusch-Pagan
Lagrange multiplier test, A, =T r2 ~ x2(1) where T =T/mis the effective sample size
and r, is the correlation coefficient between the residuals of the two equations of (15)
(see Lutkepohl, 1991).

Tables 4 and 5 provide some summary results that may be compared with Tables 1
and 2*. In general, we find that the temporal aggregation of causally unrelated series does
not create any spurious causality at any level of aggregation. Concurring with the
previous theoretical results, a common finding across al experiments is that as m
increases VAR(1) becomes VAR(0) and lagged causdlity turns to instantaneous or

contemporaneous causdlity. (The rejection frequency for p;, =0 turns 100% when ¢;

4 The results of amore extensive Monte Carlo study that cover all the three casesin Section 3 based on
500 replications, T=480 and m=1, 3, 6, 12, 24 are availablein Gulasekaran (1999). Thefall in the effective
sample size as mincreases is what we observe in practice. However, we aso carried out alimited number
of experiments by fixing the effective sample size at 160 and observed that the basic findings remain
unaffected.

13



values become large). Absence of Granger-causality between highly aggregated series,
therefore, does not necessarily mean that the disaggregated series are non-causal.
Unfortunately, given that most data are available only in temporally aggregated form, the
previous theoretical result that unrelated series remain unrelated after aggregation is of
little use in practice for Granger causality testing because of the concentration of causal
information in contemporaneous correl ations.

The causality distortions discussed in the previous section are further highlighted in
Tables 4 and 5. The rgection frequencies in Table 4 show that, in small samples, the
conversion of one-way causality to a spurious feedback system becomes very prominent

for small mand large values of ¢,, and ¢,,. Resultsin Table 5, on the other hand, show
that when ¢,, is small, at low levels of aggregations, a feedback system may be

misdiagnosed as a one-way causa system®.

Table4 and 5

6. AN APPLICATION

In this section we present a unique empirical example to illustrate the distortionary
effects of temporal aggregation on Granger causality. The example is unique because the
main variable of the empirical model is available monthly in disaggregated form (which
is very rear for economic time series) and the model resembles an ided theoretical one.

The example we consider is the following.

® Notethat, though not strictly comparable, the rejection frequenciesin Tables 4 and 5 represent the size
and power of the test respectively.

14



To curb the car population, the Singapore government implemented a car quota
system in August 1990. For this, cars were grouped into five categories according to their
engine capacity (small, medium, large, luxury and open). To buy a new car the buyers
first have to buy a piece of paper called the certificate of entitlement (COE). The price of
the COE, known as the quota premium (QP), is decided through a monthly bidding
process. The minimum successful bid within a quota becomes the quota premium. The
monthly QP is not an aggregated seriesin any sense.

After considering a number of determinants of QP of various categories Lai
(2001) finds that the only significant determinant of the QP of the luxury category is the
performance of the stock market. He measures the latter by the “all equity price index”
compiled by the Stock Exchange of Singapore (SES). In this section we examine the
relationship between the QP of luxury cars and the above stock price index.® Note that the
average monthly stock price index involves temporal aggregation. Here we ignore the
dynamic relationship that exists between monthly QP and the disaggregated stock prices.

We denote the two variables by y = In(QP of luxury cars) and x = In(Stock price
index). For temporally aggregated data we take the average over m months of QP and
stock price index separately and then take logarithms. Preliminary estimation shows that
the most appropriate model for monthly data is a VAR(1) of the form (4) with

¢,, =0and ¢,, =1. Moreover, the two error processes are also uncorrelated (o, =0).

This means that x; is an exogenous random walk and Granger causality is unidirectional

® Our sample period is 1990M8-1999M 4. The data since May 1999 are not usable because the government
merged a number of car categories to form a different classification. The data on QP can be downloaded
from the TREND database maintained by the Department of Statistics, Government of Singapore and the
stock price data can be downloaded from the SES website.

15



from x to y. Johansen’s contegration tests strongly suggest that the two variables are

cointegrated. We, therefore, proceeded with the following VECM:

rhrhie 2B0R S =

Since X is exogenous we expect a, =0. Table 6 reports the estimation results for m=1
(no aggregation) to m=6. In the table we report the normalized cointegrating coefficient
B =-0,1B,. The estimates are based on the Johansen procedure in PCGIVE.

It should be noted that (36), being a cointegrated VAR(1) process, does not

reduce to VAR(0) as m increases. As a result the contemporaneous cross correlation of
the residuals (ri2) does not increase with m either. The results show that [3’ remains
roughly the same as m increases. This shows the invariance of cointegration we
mentioned earlier. However, the magnitude of &, increases steadily and remains highly
significant. The magnitude of &, aso tends to increase though not in a systematic
manner. Most importantly &, becomes significant at the 10% level for m=4 and m=6. As
observed in our analytical results in Section 3 on spurious feedback, &, remains
persistently negative. (Actualy, since the same cointegrating vector enters both the
eguations we expect @, <0 and @, >0.) Despite the sharp drop in the effective sample

size (T =T/m) when m increases, the example is highly instructive since it shows the
possibility that temporal aggregation can create a spurious feedback to a strictly

exogenous variable’.

" Monte Carlo resultsin Mamingi (1996) based on a data generating process similar to (36) shows that the
probability of detecting a spurious feedback increases dramatically when both T* and mincrease.

16



Table 6

5. CONCLUSION

Economists often have to use temporally aggregated or systematically sampled data in
econometric models. Unfortunately many properties of the data generating process alter
as a result of temporal aggregation and systematic sampling. In this paper we have
presented a methodology to evaluate the magnitude of the Granger causality distortions
resulting from temporal aggregation. While our results reaffirm previous theoretical
findings we also find that most of the distortions occur only at low levels of aggregation
where the order of aggregation just exceeds the true causal lag. At high levels of
aggregations what is left would be only the contemporaneous correlation. The standard
Granger causality tests that ignore the contemporaneous correl ation have to be used with
utmost care because a finding of “no causality” with temporally aggregated data does not
necessarily mean “no causality” between the variables.

This means that the practitioner must have a good understanding about the causal |ag.
For example, the knowledge about how long it takes for the production and delivery to
take place is important for a study on the relationship between orders and sales. The
causal lag varies with the nature of the product and the data gathered must be as close as
possible to the causal lag. Unfortunately, often, such data are not available. With
temporally aggregated data a feedback system seemsto be the norm. Although it makes a

lot of sense to formulate an unrestricted VAR to account for the feedback, causality tests

17



based on such models may have no correspondence to the underlying true causality.
Given the significance of the contemporaneous correlation in temporally aggregated data,
it does not make sense to throw away this information in the causality tests.
Unfortunately only causal inference one could attach to contemporaneous correlation is
that based on a priori information, a theory, a practice that economists have been
following al aong. This, however, takes us back to square one, the very dilemma the
causality tests were trying to resolve.

One solution is to develop a causdlity test within a cointegration framework.
Cointegration is invariant to temporal aggregation and implies Granger causality
(Granger, 1988). Unfortunately at the moment there is no data-based approach to
establish the direction of causality between two cointegrated variables. This is an area

worth exploring.

18



Appendix 1: Derivation of (2)
Define the forward shift operator F = L™ such that Fw; = w1 and Fyij(K) = vij(k+1). Let

c' be the coefficient of L' of the polynomial (1+L+...+L™%)*,

vi (&) =EWW, ]

SE[@+ L+ + L") @ L+ L") w ]
= E[(CO\Nimt TG Wi +"'C(d+1)(m—1)Wirm—(d+1)(m—1))

(COijt—mk + Clemt—mk—l +- "C(d+1)(m—l)Wjmt—mk—(d+1)(m—1))

=ColCoif (MK) +C i (MK +1) + -+ + € g gy gy Vi (MK +(d +D)(M=1))]
+¢[Coly (Mk =1) + ¢ ) (MK) + -+ + C gy gy Vi (MK +(d +1)(M=1) -]

* Clg+1)(me1 [COyi‘jN(mk —(d+)(m-1)+ Clyi\jN(mk —(d+)(m=-H-1---+ Ca+am-1) yi‘jN(mk)]

=C[+F +- F™) ™yl (mk)] + [+ F +- - F™ )™y (mk =D +---+
* Cgsnmy [AF F - F™) Ty (mk = (d + ) (m-1)]

=L+ F 4+ FTH oy (mK) + oy (MK =1) ++ Cgoyime Vi (MK = (d + (M= 1]
=@+ F 4+ FTHEN @ L+ LT O i (mk)
= [ (d(m-1) (L+L+--+ Lm—l)(d+l) yi\jN(mk)

=@+ L4+ LmH2ED (ke + (d +1)(m-1)).
Thus,

Vi (K) = (L+ L+ + LMDy (mk + (d +1)(m=1)).
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Figure 1c. Spurious feedback created by temporal aggregation, m=60
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Table 1. Spurious feedback created by temporal aggregation:

Vauesof plimg,, when ¢,,=0

m=3

¢, 8Cr0SS 08 -05 -02 0 02 05 08 095
¢,, down -0.95

095 |-008 -008 -006 -002 000 002 006 008 008
.08 |-006 -005 -004 -002 000 002 004 005 006
05 |-003 -003 -002 -001 000 001 002 003 003
02 |-001 -001 -001 000 000 000 001 001 001
0 000 000 000 000 000 000 000 000 0.0
0.2 002 002 001 00L 000 -001 -001 -002 -0.02
0.5 006 006 006 003 000 -003 -006 -006 -0.06
0.8 014 014 015 009 000 -009 -015 -0.14 -0.14
095 | 018 020 021 014 000 -014 -021 -020 -0.18

m=12
095 |-001 -001 -001L 000 000 000 001 001 001
08 |-002 -002 -001 000 000 000 001 002 002
05 |-001 -001 -001 000 000 000 001 001 001
02 | 000 000 000 000 000 000 000 000 0.00
0 000 000 000 000 000 000 000 000 0.0
0.2 001 00l 001 000 000 000 -001 -001 -0.01
0.5 005 004 003 00L 000 -001 -003 -004 -0.05
0.8 026 026 023 012 000 -012 -023 -026 -0.26
095 | 075 080 083 052 000 -052 -0.83 -080 -0.75

m=60
095 |-002 -001 -001 000 000 000 001 001 002
08 |-001 -001 000 000 000 000 000 001 001
05 | 000 000 000 000 000 000 000 000 0.00
02 | 000 000 000 000 000 000 000 000 0.0
0 000 000 000 000 000 000 000 000 0.0
0.2 000 000 000 000 000 000 000 000 0.0
0.5 001 00l 00l 000 000 000 -001 -001 0.00
0.8 012 010 007 003 000 -003 -007 -010 -0.12
095 | 1.24 124 106 053 000 -053 106 -124 -1.24
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Figure 2b. plim @,, from afeedback system, m=12
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Table 2. Effects of temporal aggregation on a feedback system

Vauesof plimg,, when ¢, #0,4,, 20

m=3

¢, 8Cr0ss 08 -05 -02 0 02 05 08 09
¢,, down -0.95

095 |-088 -079 -065 -052 -040 -025 005 044 071
08 |-067 -058 -049 -040 -032 -022 -001 024 039
05 |-026 -025 -023 -021 -018 -014 -006 003 0.8
02 |-006 -006 -007 -007 -007 -006 -004 -0.02 -0.01
0 000 000 000 000 000 000 000 000 0.0
0.2 001 002 004 006 007 007 007 006 006
05 |-008 -003 006 014 018 021 023 025 026
08 |-039 -024 001 022 032 040 049 058 064
095 | -071 -044 -005 025 040 052 065 079 088

m=12
095 |-039 -037 -025 -017 -013 -011 -007 -0.03 -0.01
08 |-016 -018 -015 -012 -010 -0.08 -0.06 -0.03 -0.01
05 |-003 -004 -006 -005 -005 -004 -003 -0.02 -0.01
02 |-001 -001 -001 -002 -002 -002 -001 -001 0.00
0 000 000 000 000 000 000 000 000 0.0
0.2 000 001 001 002 002 002 001 001 001
0.5 001 002 003 004 005 005 006 004 003
0.8 001 003 006 008 010 012 015 018 0.16
095 | 001 003 007 011 013 017 025 037 039

m=60
095 |-016 -010 -005 -004 -003 -002 -002 -001 -0.01
.08 |-003 -004 -003 -003 -002 -002 -001 -001 0.00
05 | 000 -001 -001 -001 -001 -001 -001 000 0.0
02 | 000 000 000 000 000 000 000 000 0.0
0 000 000 000 000 000 000 000 000 0.0
0.2 000 000 000 000 000 000 000 000 0.0
0.5 000 000 001 ©00L 001 001 001 001 0.00
0.8 000 001 001 002 002 003 003 004 003
095 | 001 001 002 002 003 004 005 010 016
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Figure 3a. Contemporaneous regression coefficient, m=3
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Figure 3b. Contemporaneous regression coefficient, m=12
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Table 3. Contemporaneous regression coefficient plimc

Pn&I0SS| 95 08 -05 -02 0 02 05 08 095
¢,, down

-0.95 -0.79 -0.72 -057 -043 -033 -024 -012 -0.03 0.00
-0.8 -0.83 -0.75 -058 -043 -033 -023 -0.10 0.00 0.03
-0.5 -0.87 -0.77 -057 -039 -027 -015 000 0.13 0.18
-0.2 -0.78 -067 -046 -026 -010 000 019 036 045

0 -063 -053 -033 -0.13 0.00 013 033 053 0.63
0.2 -045 -036 -019 000 -013 026 046 0.67 0.78
0.5 -0.18 -0.13 0.00 0.15 0.27 039 057 077 0.87
0.8 -0.03 0.00 0.10 0.23 0.33 043 058 075 0.83

0.95 000 0.03 012 0.24 0.33 043 057 072 0.79

m=12

-0.95 -099 -090 -073 -057 -046 -035 -019 -0.05 0.00
-0.8 -105 -095 -076 -057 -045 -033 -0.15 0.00 0.06
-0.5 -112 -100 -076 -052 -037 -022 000 020 0.29
-0.2 -104 -090 -063 -035 -018 000 026 051 0.64

0 -087 -0.73 -046 -0.18 0.00 018 046 0.73 0.87
0.2 -064 -051 -026  0.00 0.18 035 063 090 1.04
0.5 -0.29 -020 0.00 0.22 0.37 052 076 100 112
0.8 -0.06 0.00 0.15 0.33 0.45 057 076 09 1.05

0.95 000 0.05 019 0.35 0.46 057 073 090 0.99

m=60

-0.95 -100 -092 -0.76 -060 -049 -038 -0.23 -0.07 0.00
-0.8 -106 -097 -079 -060 -048 -036 -0.18 0.00 0.08
-0.5 -1.15 -103 -0/9 -055 -039 -024 000 023 034
-0.2 -109 -095 -066 -038 -019 000 028 05 0.70

0 -093 -0.79 -049 -020 0.00 020 049 079 0.93
0.2 -0.70 -056 -0.28  0.00 0.19 038 066 09 1.09
0.5 -0.34 -023 0.00 0.24 0.39 05 079 103 115
0.8 -0.08 0.00 0.18 0.36 0.48 060 079 097 1.06

0.95 000 0.07 023 0.38 0.49 060 079 092 1.00
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Table 4. Regection frequencies (%) for Ho. $1.=0 when ¢1,=0

(One-way causal system, $,,-0.5, T=480, 2000 replications, a =5%)

M=3
¢, 8Cr0ss 02 03 0.4 05 06 07 08 09
¢,, down 0.1
0.1 50 41 53 5.3 48 55 58 48 49
0.2 46 58 45 48 46 63 50 60 62
0.3 44 43 58 6.0 7.4 68 84 91 95
0.4 46 54 64 7.8 85 106 124 125 155
0.5 58 59 82 107 120 160 194 212 219
0.6 55 80 116 166 199 242 277 312 339
0.7 71 96 152 233 314 366 408 476 494
0.8 78 132 241 349 450 523 588 627 67.1
0.9 84 182 322 469 595 701 761 796 812
M=12
0.1 56 48 50 5.2 5.8 44 50 49 58
0.2 58 54 52 5.0 5.8 51 55 53 51
0.3 50 52 54 5.0 55 58 54 57 58
0.4 54 57 51 4.6 5.4 55 57 58 57
0.5 51 52 58 5.6 5.4 61 67 62 64
0.6 53 51 52 5.2 6.0 63 77 74 17
0.7 58 61 50 6.9 9.1 91 103 111 125
0.8 54 65 98 106 130 147 178 201 234
0.9 6.4 114 162 217 283 340 394 439 466
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Table 5. Rejection frequencies (%) for Ho. $12=0 when ¢1,#20
(Feedback system ¢1,20, $2120, ¢11=¢2,=0, T=480, 2000 replications, a =5%)

M=3

¢, 8Cr0ss 02 03 04 05 06 07 08 09
¢,, down 01

0.1 6.4 6.2 7.2 6.3 6.4 5.3 63 58 6.5
0.2 118 119 112 12.0 10.8 137 117 121 115
0.3 247 239 253 26.0 24.5 257 254 255 264
04 36.3 412 424 43.0 43.6 459 484 516 559
0.5 514 580 60.0 64.3 68.0 705 738 804 854
0.6 689 736 787 79.8 85.3 895 921 958 975
0.7 81.0 859 89.2 92.9 95.7 97.7 988 99.7 999
0.8 885 931 96.9 97.9 98.8 99.6 999 100.0 100.0
0.9 95.0 975 988 99.6 99.9 100.0 100.0 100.0 100.0

m=12

0.1 5.1 5.3 6.0 4.5 5.0 4.8 53 46 5.9
0.2 5.8 5.7 5.7 4.9 55 5.2 50 56 4.3
0.3 54 5.3 54 5.6 55 5.8 56 4.9 5.4
04 54 6.3 6.1 5.8 5.9 5.9 42 57 5.4
0.5 4.9 6.0 4.9 5.6 6.3 5.1 56 51 5.3
0.6 6.8 6.1 5.2 5.9 5.5 5.2 63 58 6.4
0.7 14 5.8 5.9 6.2 6.5 6.2 65 57 5.8
0.8 6.7 8.6 74 7.8 7.1 7.0 61 74 6.1
0.9 6.8 7.8 8.2 7.9 7.8 7.8 81 7.3 7.1




Table 6. VECM estimates for car quota premium and stock price example

al ﬁz ,8 r.12 T*
m=1 -0.191(0.048) -0.003 (0.007) 3.71  -0.02 104
m=2 -0.230(0.062) -0.016 (0.013) 356 -0.10 51
m=3 -0.342(0.093) -0.015 (0.021) 3.74 -002 34
m=4 -0.368 (0.109) -0.046 (0.026) 2.79 0.12 25
m=5 -0.483(0.133) -0.027 (0.036) 3.06 -0.04 20
m=6 -0.572(0.095) -0.088 (0.044) 325 -001 16

T isthe effective sample size. The numbers in parentheses are standard

errors.
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