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ABSTRACT 
 

 
Economists often have to use temporally aggregated data in causality tests. A number of 

theoretical studies have pointed out that temporal aggregation has distorting effects on 

causal inference. This paper examines the issue in detail by plugging in theoretical cross 

covariances into the limiting values of least squares estimates. An extensive Monte Carlo 

study is conducted to examine small sample results. An empirical example is also 

provided. It is observed that in general the most distorting causal inferences are likely at 

low levels of aggregation where the order of aggregation just exceeds the actual causal 

lag. At high levels of aggregation, causal information concentrates in contemporaneous 

correlations. At present, a data-based approach is not available to establish the direction 

of causality between contemporaneously correlated variables. 
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1. INTRODUCTION 

 

The use of highly temporally aggregated data for causal inference is quite common in the 

applied econometric literature. Some commonly investigated cases are the causality 

between economic growth and export growth, economic growth and trade, and economic 

growth and financial development. On one side are those who use Granger causality tests 

with mostly quarterly or annual data (see, for example, Jung and Marshall 1985, Rao 

1989, Demitriades and Hussein 1996). On the other side are those who use cross-country 

regressions with data averaged over many years. Causality in these studies is pre-imposed 

and testing is done on the contemporaneous correlations (see, for example, Feder 1983, 

Kormendi and Merguire 1985, Ram 1986, Grier and Tullock 1989, Barro 1991, Levine 

and Renelt 1992, King and Levine 1993, Levine and Zervos 1993, Frankel and Roamer 

1999). Both approaches suffer from the problems of temporal aggregation. The objective 

of this paper is to examine how temporal aggregation affects causal relationships among 

variables. 

 There is a sizable theoretical literature that investigates the impact of temporal 

aggregation on ARIMA models (see Wei, 1990, and references therein). A number of 

studies have also focused on temporal aggregation and the dynamic relationships between 

variables and shown that temporal aggregation weakens the distributed lag relationships 

(Telser 1967, Zellner and Montmarquette 1971, Sims 1971, Wei and Tiao 1975, Tiao and 

Wei 1976, Wei 1978, Wei and Metha 1980).  Wei (1982), using Geweke’s decomposition 

of a linear relationship, finds that temporal aggregation turns one-way causality into a 

feedback system. Campos et al. (1990) find that phase averaging in business cycle 
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analysis produces inconsistent estimates and induces endogeneity into previously 

exogenous variables. Ericsson et al. (1994) examine how seasonal adjustment filters, 

which essentially embody a form of temporal aggregation, alter the short run dynamics 

while preserving cointegrating relationships. Ericsson et al. (2000) highlight the 

misspecifications involved in cross-country regressions that involve heavy temporal 

aggregations. Marcellino (1999) derives the vector ARIMA form of a temporally 

aggregated process (see also Lütkepohl, 1987) and shows that integration (unit roots) and 

cointegration are invariant to temporal aggregation, but many other aspects such as 

seasonal unit roots, exogeneity, causality, impulse responses, trend-cycle components, 

measures of persistence and forecasting are all affected by the aggregation process1.   

 Although these studies have already pointed out some potential problems associated 

with temporally aggregated data, a comprehensive study that focuses on Granger 

causality alone would still be of immense value because of the practical significance of 

causality testing based on aggregated data. Our study looks into this problem in detail and 

provides some new insights.  

In the next section, we derive the theoretical cross covariance between aggregated 

and disaggregated processes. This result plays a fundamental role in our exercise and is 

applicable to both stationary and integrated processes. In Section 3, we then derive the 

limiting values of least squares estimates of a VAR(1) process under different levels of 

temporal aggregation. In Section 4 we summarize the findings of an extensive Monte 

Carlo study. Section 5 provides a unique empirical example. In the concluding section we 

                                                 
1  Marcellino (1999) provides a long list of references (both theoretical and empirical) where these points 
have been previously established.  On the empirical side Rossana and Seater (1992, 1995) find that the 
effects of temporal aggregation are much larger compared to cross-sectional aggregation. 
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summarize the results and highlight some important issues involved in Granger causality 

testing with temporally aggregated data. 

 

2.  RELATIONSHIP BETWEEN CROSS COVARIANCES OF DISAGGREGATE 

AND AGGREGATE SERIES 

 Let zt = (z1t, z2t,….. ,znt ) be a vector of basic disaggregate series and Zt be the 

temporally aggregated vector. Temporal aggregation involves the construction of non-

overlapping sums that can easily be obtained by defining the overlapping sum 

t
m

t zLLX )...1( 1−+++=  and then defining Zt=Xmt. This is the same as systematic 

sampling of the Xt process at m intervals where m is a positive integer and is called the 

order of aggregation. For example, aggregating monthly data to quarterly figures involves 

setting m=3. Stram and Wei (1986) have derived the relationship between the 

autocovariances of the basic disaggregated series and the aggregated series for the 

univariate case.  We extend their work to the multivariate case and examine how causal 

inferences are affected by the aggregation.  

Let wt = (1-L)d zt be a weakly stationary process with mean zero and variance 

covariance matrix  

 njikwwEk ktt
w ,...,2,1,   )],([  )(  )( ij ===Γ − γ  (1)  

where γw
ii(k) is the autocovariance of the i-th component, wit, at lag k and γw

ij(k) is the 

cross covariance between i-th and j-th components. Further γw
ii(0) is the variance of the i-

th series and γw
ij(0) represents the contemporaneous cross covariance between the series.  

Let L′ be the backward shift operator on the aggregate time unit τ . Thus, 

  )’1( =− τZL  τττττ m
m

mm XLXXZZ )1(   )1(1 −=−=− −− . Let  )’1(  W =−= ττ ZL d  
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ττ m
dm

m
dm wLLXL 11 ).....1( )1( +−+++=− . Since Wτ is a finite moving average of a 

stationary process wt, the d-th differenced aggregated series Wτ is also a covariance 

stationary process (Anderson, 1975). The cross covariance between Wiτ and Wjτ-k  is given 

by  

))1)(1(()......1(  ),(  )( )1(212 −++++++== +−
− mdmkLLLWWCovk w

ij
dm

kji
W
ij γγ ττ  (2) 

where L operates on the index of γw
ij(k) such that Lγw

ij(k) = γw
ij(k-1) (see Appendix for 

the derivation of 2). It may be useful to expresses (2) in matrix form as well: 

 njikWWEk W
ijk

W ,...,2,1,  )],([  )(  )( ===Γ − γττ             (3) 

           ))1)(1(()1( )1(212 −++Γ++++= +− mdmkLLL wdm�  

where L operates on each element of the matrix Γw(k). The basic relation given in (2) or 

(3) plays a crucial role in the assessment of the impact of temporal aggregation on 

Granger causality testing. Some special cases are discussed below. 

 

3. CAUSAL INFERENCE FROM TEMPORALLY AGGREGATED DATA 

 To derive more specific results consider the following stationary bivariate 

VAR(1) system: 







+











=






−

−

t

t

t

t

t

t

e

e

x

y

x

y

2

1

1

1

2221

1211

ϕϕ
ϕϕ

,  



























2
2

2
1

2

1

0

0
,

0

0
~

σ
σ

N
e

e

t

t .        (4) 

In this system the coefficients 12ϕ and 21ϕ measure the feedback between yt and xt, with 

012 ≠ϕ implying Granger causality from x to y and 021 ≠ϕ  implying Granger causality 

from y to x. We have set the contemporaneous correlation between the two error series to 
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zero (i.e., 0/ 211212 == σσσρ ) in order to assess the impact of temporal aggregation on 

this correlation. 

The variances, autocovariances and cross-covariances of system (4) are given by 

2
1121211

22
12

22
11

2
11 )0(2)()0( σγϕϕσϕσϕσγ +++=== w

xytty
w yyE    (5) 

2
2122221

22
22

22
21

2
22 )0(2)()0( σγϕϕσϕσϕσγ +++=== w

xyttx
w xxE    (6) 

)0()()()0()0( 1222122211
2

2212
2

21112112
w

xytt
ww xyE γϕϕϕϕσϕϕσϕϕγγ +++===  (7) 

)1()1()()( 2112111111 −+−== − kkyyEk ww
ktt

w γϕγϕγ      (8) 

)1()1()()( 2222122122 −+−== − kkxxEk ww
ktt

w γϕγϕγ      (9) 

)1()1()()( 2212121112 −+−== − kkxyEk ww
ktt

w γϕγϕγ      (10) 

)1()1()()( 2122112121 −+−== − kkyxEk ww
ktt

w γϕγϕγ      (11) 

 

Solving (5)-(7), we get 

( ) ( )[ ]
[ ][ ] [ ][ ]1331233223321331

1331
2
22332

2
132

cbcbcacacbcbcaca

cbcbcbcbc
y −−−−−

−−−
=

σσσ     (12) 

( ) ( )[ ]
[ ][ ] [ ][ ]1331233223321331

1331
2
22332

2
132

cacacbcbcacacbcb

cacacacac
x −−−−−

−−−
=

σσσ     (13) 

[ ]
3

2
3

2
3

12 )0(
c

ba xyw
σσ

γ
+−

=         (14) 

where 2
111 1 ϕ−=a , 2

121 ϕ−=b , 12111 2 ϕϕ−=c , 2
212 ϕ−=a , 2

222 1 ϕ−=b , 22212 2 ϕϕ−=c , 

21113 ϕϕ−=a , 22123 ϕϕ−=b  and [ ]211222113 1 ϕϕϕϕ +−=c . 
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 Let τY and τX be the m-period non-overlapping aggregates of ty and tx  respectively. 

We now consider estimating the following bivariate VAR(1) from the temporally  

aggregated series: 


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
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where τiE  (i=1,2) represent the error process of the aggregated model. The OLS 

estimates *ˆ ijϕ  and *ˆlim ijp ϕ  are given by: 

 

( )( ) ( )( )
( )( ) ( )

( ) ,
)0()0()0(

)0()1()0()1(
ˆlim

ˆ

2

122211

12122211*
11
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11
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111
2

11*
11

WWW

WWWW

p
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XYXYXYY
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ττττ

τττττττ

−

−
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−

−
=

∑∑∑
∑∑∑∑

−−−−

−−−−−

    (16) 

and similarly 

( )2122211

12111112*
12

)0()0()0(

)0()1()0()1(
ˆlim

WWW

WWWW

p
γγγ

γγγγϕ
−

−
=        (17) 

( )2122211

12222221*
21

)0()0()0(

)0()1()0()1(
ˆlim

WWW

WWWW

p
γγγ

γγγγϕ
−

−
=       (18) 

( )2122211

12211122*
22

)0()0()0(

)0()1()0()1(
ˆlim

WWW

WWWW

p
γγγ

γγγγϕ
−

−
= .      (19) 

 

Using (2) the above parameters of the aggregate process can be expressed in 

terms of the moments of the disaggregated process and these in turn can be expressed in 

terms of the parameters of the original process using (5)-(14). Here we consider m=3, 12, 



 8

and 60 to correspond to aggregating monthly data to quarterly, annual, and five-year 

aggregates2. Although we consider only the stationary case (d=0), the distortionary 

effects that we talk about are equally valid for non-stationary cases. The basic findings 

for d=0 and d=1 are similar though the magnitudes of the parameters are different. Note 

that d=1 involves aggregating I(1) series and then taking differences to make them 

stationary. In the case of cointegrated processes the model may be formulated as an error 

correction model in I(0) space (see Section 5). 

 

Case 1: No Granger Causality Between the Variables in the Disaggregated Form 

 In this case 02112 ==ϕϕ  and with 012 =σ  the two series are uncorrelated. Therefore, 

from (10), (11) and (14) 0)( =kw
ijγ  for all k and ji ≠  ( 2,1, =ji ). Further from (2) we 

can see that 0)( =kW
ijγ  for all k and ji ≠ . Thus, if the cross-covariances between the 

disaggregated series are zero then the cross-covariances between the aggregated series 

will also be zero. And from (17) and (18) we can see that 0*
21

*
12 ==ϕϕ . Thus, if there is 

no Granger causality between the disaggregated series then the Granger causality 

between the aggregated series will also be absent. Unfortunately, as we shall see later, the 

converse may not be true. 

 

Case 2: Causality Between the Disaggregated Series is One-Sided 

 Let 012 =ϕ  such that xt does not Granger cause yt. Accordingly, from (5)–(14) we get 

2
11 )0( y
w σγ =  and 2

11111111 )1()( y
kww kk σϕγϕγ =−=      (20) 

                                                 
2  Many cross-country studies use long-term averages like those over five years. 
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0
1
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2111
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11212222122122 −+










−
=−+−= − kkkk wykwww γϕ

ϕϕ
σϕϕ

ϕϕγϕγϕγ  (22) 

0)1()1()1()( 2122
2

21
1

112122112121 >∀−+=−+−= − kkkkk w
y

kwww γϕσϕϕγϕγϕγ   (23) 

Thus, (17) changes to 
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)0()0()0(

)0(
1

)0(...1

ˆlim
WWW

WW
y

m

p
γγγ

γ
ϕϕ

ϕϕγσϕϕϕϕ
ϕ

−









−





−

+++
=

−

  (24)  

and *
21ˆlimϕp  remains unchanged as in (18). 

  It is clear from the above expressions (and (2)) that when 011 =ϕ , 0*
12 =ϕ , 

suggesting that if the one-sided causality runs from a white noise series to a stationary 

series in the disaggregated form then temporal aggregation will not produce a spurious 

feedback relationship. Similar inference does not apply when 022 =ϕ . In the following 

calculations we set 5.022 =ϕ  in order to produce results in terms of 3-dimentional 

graphs.  

 Figures 1a-1c show the effect of temporal aggregation on *
12ˆlim ϕp  over the 

parameter ranges ( 85..85. 11 ≤≤− ϕ ) and ( 11 21 <<− ϕ ). To make the reading easier 

Table 1 provides *
12ˆlim ϕp  for selected values of 11ϕ  and 21ϕ . What is immediately 

noticeable is that as m increases VAR(1) tends to become VAR(0). However, when 11ϕ  

reaches unity, we get a near cointegrated specification and as a result VAR(1) remains 
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VAR(1) as m increases3.  The most important observation is the creation of a spurious 

feedback effect as shown by the non-zero values of *
12ˆlim ϕp . Interestingly when both 

11ϕ  and 21ϕ  are of the same sign the feedback effect created is negative and when they 

are of opposite signs this becomes positive. The magnitude of the spurious feedback is 

large for large positive 11ϕ . Since large positive 11ϕ  is more likely in practice, spurious 

feedback is very likely with temporally aggregated data. For certain parameter 

combinations as m increases the feedback effect first increases and then decreases. 

================== 

Figure 1 and Table 1 

================== 

 

Case 3: Granger Causality Between the Disaggregated Series is Bi-Directional 

In this case both 12ϕ  and 21ϕ are non-zero. The required aggregated parameters  

( *
21

*
12 ,ϕϕ ) are given in (17) and (18). To make computations easier and also to be used in 

the next section, we set 011 =ϕ and 022 =ϕ .  Accordingly the results in (8)-(14) 

specialize into  

 

0)0(12 =wγ           (25) 

0)1(11 =wγ  and )1()( 211211 −= kk ww γϕγ        (26) 

0)1(22 =wγ  and )1()( 122121 −= kk ww γϕγ        (27) 

2
1212 )1( x

w σϕγ =  and )1()( 221212 −= kk ww γϕγ       (28) 

                                                 
3  Because of this, in Figures 1a-1c we have restricted the range of ϕ11 to lie between -.85 and +.85 in order 
to highlight the shrinkage of VAR(1) to VAR(0).  
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2
2121 )1( y

w σϕγ =  and )1()( 112121 −= kk ww γϕγ       (29) 

Through recursive substitution, we also get 

,....2,1)()2(,0)12( 2
21121111 =∀==− kkk y

kww σϕϕγγ     (30) 

,....2,1)()2(,0)12( 2
21122222 =∀==− kkk x

kww σϕϕγγ     (31) 

,....2,10)2(,)()12( 12
21

21121212 =∀==− − kkk w
x

kw γσϕϕϕγ     (32) 

,....2,10)2(,)()12( 21
21

21122121 =∀==− − kkk w
y

kw γσϕϕϕγ     (33) 

and 
2
21

2
12

2
212

1

1

ϕϕ
ϕσ

−
+

=x ,  
2
21

2
12

2
122

1

1

ϕϕ
ϕσ

−
+

=y        (34) 

         

For different values of m the expressions for ( *
21

*
12 ,ϕϕ ) can be evaluated using 

(30) – (34).  Figures 2a-2c plot *
12ˆlim ϕp  over the range 1,1 2112 <<− ϕϕ  and Table 2 

provides a summary. As in the one-way causal system above, even in the feedback case 

the VAR(1) tends to become VAR(0) as m increases. What is more disturbing though is 

that a positive 12ϕ may become negative *
12ϕ . Furthermore, the magnitudes of *

12ˆlim ϕp  

are such that in practice it is quite possible to conclude that causality is one-way though it 

is bi-directional.   

 

==================== 

Figure 2 and Table 2 

==================== 
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Case 4: Contemporaneous Correlation 

 An important well-known problem of temporal aggregation is the creation of 

contemporaneous correlation even when such a correlation is absent. Using the VAR(1) 

system in (4) with 011 =ϕ  and 022 =ϕ  Ericsson et al. (2000) examined the effect of 

temporal aggregation on contemporaneous regression coefficient for m=2 and observed 

that this coefficient could be positive, negative, or zero. Here we generalize their result 

for any m. Note that with 0122211 === σϕϕ  the contemporaneous correlation between yt 

and xt is zero (i.e., 0)0(12 =wγ ). 

 From the contemporaneous regression relationship ttt ucXY += with aggregated 

data we get  

,ˆ
2∑

∑=
τ

ττ

X

XY
c  and  plim

)0(

)0(
ˆ

11

12
W

W

c
γ
γ

=  .      (35) 

As before (35) can be evaluated by substituting the relevant expressions for the 

disaggregated series from the previous results. Figures 3a-3c and Table 3 show results of 

cp ˆlim  for different values of 12ϕ  and 21ϕ . Here we let 12
2

2
1 ==σσ  for the ease of 

computation. 

As observed by Ericsson et al. (2000) for m=2, the contemporaneous regression 

coefficient (also the correlation) could take positive, negative or zero at any level of 

aggregation. If both 12ϕ  and 21ϕ  are positive (negative) then the contemporaneous 

correlation will also be positive (negative). However, when the above parameters are of 

opposite signs then the sign of the contemporaneous correlation is determined by the sign 

of the larger of the two in absolute value. 
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================= 

Figure 3 and Table 3 

================= 

4. MONTE CARLO RESULTS 

The theoretical results presented above show how temporal aggregation creates 

spurious causal relations and Tables 1-3 show how the magnitude of the coefficients are 

affected asymptotically. It would be of interest to see how in small samples the standard 

test statistics such as t test would detect whether a coefficient is zero or not. To examine 

this we conducted a Monte Carlo study based on the VAR(1) process in (4) with 

),0( IN errors and recorded the rejection frequencies for 012 =ϕ based on the standard 

OLS based t-test. We also tested the hypothesis 012 =ρ  based on the Breusch-Pagan 

Lagrange multiplier test, )1(~  22
12

* χλ rTLM =  where T*=T/m is the effective sample size 

and 12r  is the correlation coefficient between the residuals of the two equations of (15) 

(see Lütkepohl, 1991).  

Tables 4 and 5 provide some summary results that may be compared with Tables 1 

and 24. In general, we find that the temporal aggregation of causally unrelated series does 

not create any spurious causality at any level of aggregation. Concurring with the 

previous theoretical results, a common finding across all experiments is that as m 

increases VAR(1) becomes VAR(0) and lagged causality turns to instantaneous or 

contemporaneous causality. (The rejection frequency for 012 =ρ  turns 100% when ijϕ  

                                                 
4  The results of a more extensive Monte Carlo study that cover all the three cases in Section 3 based on 
500 replications, T=480 and m=1, 3, 6, 12, 24 are available in Gulasekaran (1999). The fall in the effective 
sample size as m increases is what we observe in practice. However, we also carried out a limited number 
of experiments by fixing the effective sample size at 160 and observed that the basic findings remain 
unaffected. 
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values become large). Absence of Granger-causality between highly aggregated series, 

therefore, does not necessarily mean that the disaggregated series are non-causal. 

Unfortunately, given that most data are available only in temporally aggregated form, the 

previous theoretical result that unrelated series remain unrelated after aggregation is of 

little use in practice for Granger causality testing because of the concentration of causal 

information in contemporaneous correlations. 

The causality distortions discussed in the previous section are further highlighted in 

Tables 4 and 5. The rejection frequencies in Table 4 show that, in small samples, the 

conversion of one-way causality to a spurious feedback system becomes very prominent 

for small m and large values of 11ϕ  and 21ϕ . Results in Table 5, on the other hand, show 

that when 12ϕ  is small, at low levels of aggregations, a feedback system may be 

misdiagnosed as a one-way causal system5.  

=============== 

Table 4 and 5 

=============== 

 

6. AN APPLICATION 

In this section we present a unique empirical example to illustrate the distortionary 

effects of temporal aggregation on Granger causality. The example is unique because the 

main variable of the empirical model is available monthly in disaggregated form (which 

is very rear for economic time series) and the model resembles an ideal theoretical one. 

The example we consider is the following.  

                                                 
5  Note that, though not strictly comparable, the rejection frequencies in Tables 4 and 5 represent the size 
and power of the test respectively. 
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To curb the car population, the Singapore government implemented a car quota 

system in August 1990. For this, cars were grouped into five categories according to their 

engine capacity (small, medium, large, luxury and open). To buy a new car the buyers 

first have to buy a piece of paper called the certificate of entitlement (COE). The price of 

the COE, known as the quota premium (QP), is decided through a monthly bidding 

process. The minimum successful bid within a quota becomes the quota premium. The 

monthly QP is not an aggregated series in any sense.  

After considering a number of determinants of QP of various categories Lai 

(2001) finds that the only significant determinant of the QP of the luxury category is the 

performance of the stock market. He measures the latter by the “all equity price index” 

compiled by the Stock Exchange of Singapore (SES). In this section we examine the 

relationship between the QP of luxury cars and the above stock price index.6 Note that the 

average monthly stock price index involves temporal aggregation. Here we ignore the 

dynamic relationship that exists between monthly QP and the disaggregated stock prices. 

We denote the two variables by y = ln(QP of luxury cars) and x = ln(Stock price 

index). For temporally aggregated data we take the average over m months of QP and 

stock price index separately and then take logarithms. Preliminary estimation shows that 

the most appropriate model for monthly data is a VAR(1) of the form (4) with 

021 =ϕ and 122 =ϕ . Moreover, the two error processes are also uncorrelated ( 012 =σ ). 

This means that xt is an exogenous random walk and Granger causality is unidirectional 

                                                 
6  Our sample period is 1990M8-1999M4. The data since May 1999 are not usable because the government 
merged a number of car categories to form a different classification. The data on QP can be downloaded 
from the TREND database maintained by the Department of Statistics, Government of Singapore and the 
stock price data can be downloaded from the SES website. 
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from x to y. Johansen’s contegration tests strongly suggest that the two variables are 

cointegrated. We, therefore, proceeded with the following VECM: 
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Since x is exogenous we expect 02 =α . Table 6 reports the estimation results for m=1 

(no aggregation) to m=6. In the table we report the normalized cointegrating coefficient 

12 / βββ −= . The estimates are based on the Johansen procedure in PCGIVE. 

 It should be noted that (36), being a cointegrated VAR(1) process, does not 

reduce to VAR(0) as m increases. As a result the contemporaneous cross correlation of 

the residuals (r12) does not increase with m either. The results show that β̂  remains 

roughly the same as m increases. This shows the invariance of cointegration we 

mentioned earlier.  However, the magnitude of 1α̂  increases steadily and remains highly 

significant. The magnitude of 2α̂  also tends to increase though not in a systematic 

manner. Most importantly 2α̂  becomes significant at the 10% level for m=4 and m=6. As 

observed in our analytical results in Section 3 on spurious feedback, 2α̂  remains 

persistently negative. (Actually, since the same cointegrating vector enters both the 

equations we expect 0ˆ1 <α  and 0ˆ 2 >α .)   Despite the sharp drop in the effective sample 

size (T*=T/m) when m increases, the example is highly instructive since it shows the 

possibility that temporal aggregation can create a spurious feedback to a strictly 

exogenous variable7. 

 

                                                 
7  Monte Carlo results in Mamingi (1996) based on a data generating process similar to (36) shows that the 
probability of detecting a spurious feedback increases dramatically when both T* and m increase. 
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============= 

Table 6 

============= 

 

5. CONCLUSION 

Economists often have to use temporally aggregated or systematically sampled data in 

econometric models. Unfortunately many properties of the data generating process alter 

as a result of temporal aggregation and systematic sampling. In this paper we have 

presented a methodology to evaluate the magnitude of the Granger causality distortions 

resulting from temporal aggregation. While our results reaffirm previous theoretical 

findings we also find that most of the distortions occur only at low levels of aggregation 

where the order of aggregation just exceeds the true causal lag. At high levels of 

aggregations what is left would be only the contemporaneous correlation. The standard 

Granger causality tests that ignore the contemporaneous correlation have to be used with 

utmost care because a finding of “no causality” with temporally aggregated data does not 

necessarily mean “no causality” between the variables. 

This means that the practitioner must have a good understanding about the causal lag. 

For example, the knowledge about how long it takes for the production and delivery to 

take place is important for a study on the relationship between orders and sales. The 

causal lag varies with the nature of the product and the data gathered must be as close as 

possible to the causal lag. Unfortunately, often, such data are not available. With 

temporally aggregated data a feedback system seems to be the norm. Although it makes a 

lot of sense to formulate an unrestricted VAR to account for the feedback, causality tests 
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based on such models may have no correspondence to the underlying true causality. 

Given the significance of the contemporaneous correlation in temporally aggregated data, 

it does not make sense to throw away this information in the causality tests. 

Unfortunately only causal inference one could attach to contemporaneous correlation is 

that based on a priori information, a theory, a practice that economists have been 

following all along. This, however, takes us back to square one, the very dilemma the 

causality tests were trying to resolve.  

One solution is to develop a causality test within a cointegration framework.  

Cointegration is invariant to temporal aggregation and implies Granger causality 

(Granger, 1988). Unfortunately at the moment there is no data-based approach to 

establish the direction of causality between two cointegrated variables. This is an area 

worth exploring. 
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Appendix 1: Derivation of (2) 

Define the forward shift operator F = L-1 such that Fwt  =  wt+1 and Fγij(k) = γij(k+1). Let 

ci be the coefficient of Li of the polynomial (1+L+…+Lm-1)d+1. 
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Figure 1a. Spurious feedback created by temporal aggregation, m=3 
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 Figure 1c. Spurious feedback created by temporal aggregation, m=60 
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Table 1. Spurious feedback created by temporal aggregation:  
 Values of *

12limϕp  when 12ϕ =0 
 

m=3 

21ϕ across 

11ϕ  down 

 
-0.95 

-0.8 
 

-0.5 
 

-0.2 
 

0 
 

0.2 
 

0.5 
 

0.8 
 

0.95 
 

-0.95 -0.08 -0.08 -0.06 -0.02 0.00 0.02 0.06 0.08 0.08 
-0.8 -0.06 -0.05 -0.04 -0.02 0.00 0.02 0.04 0.05 0.06 
-0.5 -0.03 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.03 
-0.2 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.01 0.01 0.01 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.2 0.02 0.02 0.01 0.01 0.00 -0.01 -0.01 -0.02 -0.02 
0.5 0.06 0.06 0.06 0.03 0.00 -0.03 -0.06 -0.06 -0.06 
0.8 0.14 0.14 0.15 0.09 0.00 -0.09 -0.15 -0.14 -0.14 
0.95 0.18 0.20 0.21 0.14 0.00 -0.14 -0.21 -0.20 -0.18 

m=12 
-0.95 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.01 0.01 0.01 
-0.8 -0.02 -0.02 -0.01 0.00 0.00 0.00 0.01 0.02 0.02 
-0.5 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.01 0.01 0.01 
-0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.2 0.01 0.01 0.01 0.00 0.00 0.00 -0.01 -0.01 -0.01 
0.5 0.05 0.04 0.03 0.01 0.00 -0.01 -0.03 -0.04 -0.05 
0.8 0.26 0.26 0.23 0.12 0.00 -0.12 -0.23 -0.26 -0.26 
0.95 0.75 0.80 0.83 0.52 0.00 -0.52 -0.83 -0.80 -0.75 

m=60 
-0.95 -0.02 -0.01 -0.01 0.00 0.00 0.00 0.01 0.01 0.02 
-0.8 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 
-0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.5 0.01 0.01 0.01 0.00 0.00 0.00 -0.01 -0.01 0.00 
0.8 0.12 0.10 0.07 0.03 0.00 -0.03 -0.07 -0.10 -0.12 
0.95 1.24 1.24 1.06 0.53 0.00 -0.53 1.06 -1.24 -1.24 
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Figure 2a. *
12ˆlim ϕp  from a feedback system, m=3 
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Figure 2b. *
12ˆlim ϕp  from a feedback system, m=12 
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Figure 2c. *
12ˆlim ϕp  from a feedback system, m=60
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Table 2. Effects of temporal aggregation on a feedback system 
 Values of *

12limϕp  when 0,0 2112 ≠≠ ϕϕ  
 

m=3 

21ϕ across 

12ϕ  down 

 
-0.95 

-0.8 
 

-0.5 
 

-0.2 
 

0 
 

0.2 
 

0.5 
 

0.8 
 

0.95 
 

-0.95 -0.88 -0.79 -0.65 -0.52 -0.40 -0.25 0.05 0.44 0.71 
-0.8 -0.67 -0.58 -0.49 -0.40 -0.32 -0.22 -0.01 0.24 0.39 
-0.5 -0.26 -0.25 -0.23 -0.21 -0.18 -0.14 -0.06 0.03 0.08 
-0.2 -0.06 -0.06 -0.07 -0.07 -0.07 -0.06 -0.04 -0.02 -0.01 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.2 0.01 0.02 0.04 0.06 0.07 0.07 0.07 0.06 0.06 
0.5 -0.08 -0.03 0.06 0.14 0.18 0.21 0.23 0.25 0.26 
0.8 -0.39 -0.24 0.01 0.22 0.32 0.40 0.49 0.58 0.64 
0.95 -0.71 -0.44 -0.05 0.25 0.40 0.52 0.65 0.79 0.88 

m=12 
-0.95 -0.39 -0.37 -0.25 -0.17 -0.13 -0.11 -0.07 -0.03 -0.01 
-0.8 -0.16 -0.18 -0.15 -0.12 -0.10 -0.08 -0.06 -0.03 -0.01 
-0.5 -0.03 -0.04 -0.06 -0.05 -0.05 -0.04 -0.03 -0.02 -0.01 
-0.2 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.01 -0.01 0.00 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.2 0.00 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.01 
0.5 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.04 0.03 
0.8 0.01 0.03 0.06 0.08 0.10 0.12 0.15 0.18 0.16 
0.95 0.01 0.03 0.07 0.11 0.13 0.17 0.25 0.37 0.39 

m=60 
-0.95 -0.16 -0.10 -0.05 -0.04 -0.03 -0.02 -0.02 -0.01 -0.01 
-0.8 -0.03 -0.04 -0.03 -0.03 -0.02 -0.02 -0.01 -0.01 0.00 
-0.5 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.00 
-0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.5 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00 
0.8 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.03 
0.95 0.01 0.01 0.02 0.02 0.03 0.04 0.05 0.10 0.16 
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Figure 3a. Contemporaneous regression coefficient, m=3 
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Figure 3b. Contemporaneous regression coefficient, m=12 
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Figure 3c. Contemporaneous regression coefficient, m=60 
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Table 3. Contemporaneous regression coefficient cp ˆlim  

 

M=3 

21ϕ across 

12ϕ  down 
-0.95 

 
-0.8 

 
-0.5 

 
-0.2 

 
0 
 

0.2 
 

0.5 
 

0.8 
 

0.95 
 

-0.95 -0.79 -0.72 -0.57 -0.43 -0.33 -0.24 -0.12 -0.03 0.00 
-0.8 -0.83 -0.75 -0.58 -0.43 -0.33 -0.23 -0.10 0.00 0.03 
-0.5 -0.87 -0.77 -0.57 -0.39 -0.27 -0.15 0.00 0.13 0.18 
-0.2 -0.78 -0.67 -0.46 -0.26 -0.10 0.00 0.19 0.36 0.45 

0 -0.63 -0.53 -0.33 -0.13 0.00 0.13 0.33 0.53 0.63 
0.2 -0.45 -0.36 -0.19 0.00 -0.13 0.26 0.46 0.67 0.78 
0.5 -0.18 -0.13 0.00 0.15 0.27 0.39 0.57 0.77 0.87 
0.8 -0.03 0.00 0.10 0.23 0.33 0.43 0.58 0.75 0.83 
0.95 0.00 0.03 0.12 0.24 0.33 0.43 0.57 0.72 0.79 

m=12 
-0.95 -0.99 -0.90 -0.73 -0.57 -0.46 -0.35 -0.19 -0.05 0.00 
-0.8 -1.05 -0.95 -0.76 -0.57 -0.45 -0.33 -0.15 0.00 0.06 
-0.5 -1.12 -1.00 -0.76 -0.52 -0.37 -0.22 0.00 0.20 0.29 
-0.2 -1.04 -0.90 -0.63 -0.35 -0.18 0.00 0.26 0.51 0.64 

0 -0.87 -0.73 -0.46 -0.18 0.00 0.18 0.46 0.73 0.87 
0.2 -0.64 -0.51 -0.26 0.00 0.18 0.35 0.63 0.90 1.04 
0.5 -0.29 -0.20 0.00 0.22 0.37 0.52 0.76 1.00 1.12 
0.8 -0.06 0.00 0.15 0.33 0.45 0.57 0.76 0.95 1.05 
0.95 0.00 0.05 0.19 0.35 0.46 0.57 0.73 0.90 0.99 

m=60 
-0.95 -1.00 -0.92 -0.76 -0.60 -0.49 -0.38 -0.23 -0.07 0.00 
-0.8 -1.06 -0.97 -0.79 -0.60 -0.48 -0.36 -0.18 0.00 0.08 
-0.5 -1.15 -1.03 -0.79 -0.55 -0.39 -0.24 0.00 0.23 0.34 
-0.2 -1.09 -0.95 -0.66 -0.38 -0.19 0.00 0.28 0.56 0.70 

0 -0.93 -0.79 -0.49 -0.20 0.00 0.20 0.49 0.79 0.93 
0.2 -0.70 -0.56 -0.28 0.00 0.19 0.38 0.66 0.95 1.09 
0.5 -0.34 -0.23 0.00 0.24 0.39 0.55 0.79 1.03 1.15 
0.8 -0.08 0.00 0.18 0.36 0.48 0.60 0.79 0.97 1.06 
0.95 0.00 0.07 0.23 0.38 0.49 0.60 0.79 0.92 1.00 
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Table 4. Rejection frequencies (%) for H0: ϕ12=0 when ϕ12=0 
(One-way causal system, ϕ22=0.5, T=480, 2000 replications, %5=α ) 

 
M=3  

21ϕ across 

11ϕ  down 

 
0.1 

0.2 
 

0.3 
 

0.4 
 

0.5 
 

0.6 
 

0.7 
 

0.8 
 

0.9 
 

0.1 5.0 4.1 5.3 5.3 4.8 5.5 5.8 4.8 4.9 
0.2 4.6 5.8 4.5 4.8 4.6 6.3 5.0 6.0 6.2 
0.3 4.4 4.3 5.8 6.0 7.4 6.8 8.4 9.1 9.5 
0.4 4.6 5.4 6.4 7.8 8.5 10.6 12.4 12.5 15.5 
0.5 5.8 5.9 8.2 10.7 12.0 16.0 19.4 21.2 21.9 
0.6 5.5 8.0 11.6 16.6 19.9 24.2 27.7 31.2 33.9 
0.7 7.1 9.6 15.2 23.3 31.4 36.6 40.8 47.6 49.4 
0.8 7.8 13.2 24.1 34.9 45.0 52.3 58.8 62.7 67.1 
0.9 8.4 18.2 32.2 46.9 59.5 70.1 76.1 79.6 81.2 

M=12  
0.1 5.6 4.8 5.0 5.2 5.8 4.4 5.0 4.9 5.8 
0.2 5.8 5.4 5.2 5.0 5.8 5.1 5.5 5.3 5.1 
0.3 5.0 5.2 5.4 5.0 5.5 5.8 5.4 5.7 5.8 
0.4 5.4 5.7 5.1 4.6 5.4 5.5 5.7 5.8 5.7 
0.5 5.1 5.2 5.8 5.6 5.4 6.1 6.7 6.2 6.4 
0.6 5.3 5.1 5.2 5.2 6.0 6.3 7.7 7.4 7.7 
0.7 5.8 6.1 5.0 6.9 9.1 9.1 10.3 11.1 12.5 
0.8 5.4 6.5 9.8 10.6 13.0 14.7 17.8 20.1 23.4 
0.9 6.4 11.4 16.2 21.7 28.3 34.0 39.4 43.9 46.6 
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Table 5. Rejection frequencies (%) for H0: ϕ12=0 when ϕ12≠0 
(Feedback system ϕ12≠0, ϕ21≠0, ϕ11=ϕ22=0, T=480, 2000 replications, %5=α ) 

 
M=3  

21ϕ across 

12ϕ  down 

 
0.1 

0.2 
 

0.3 
 

0.4 
 

0.5 
 

0.6 
 

0.7 
 

0.8 
 

0.9 
 

0.1 6.4 6.2 7.2 6.3 6.4 5.3 6.3 5.8 6.5 
0.2 11.8 11.9 11.2 12.0 10.8 13.7 11.7 12.1 11.5 
0.3 24.7 23.9 25.3 26.0 24.5 25.7 25.4 25.5 26.4 
0.4 36.3 41.2 42.4 43.0 43.6 45.9 48.4 51.6 55.9 
0.5 51.4 58.0 60.0 64.3 68.0 70.5 73.8 80.4 85.4 
0.6 68.9 73.6 78.7 79.8 85.3 89.5 92.1 95.8 97.5 
0.7 81.0 85.9 89.2 92.9 95.7 97.7 98.8 99.7 99.9 
0.8 88.5 93.1 96.9 97.9 98.8 99.6 99.9 100.0 100.0 
0.9 95.0 97.5 98.8 99.6 99.9 100.0 100.0 100.0 100.0 

m=12  
0.1 5.1 5.3 6.0 4.5 5.0 4.8 5.3 4.6 5.9 
0.2 5.8 5.7 5.7 4.9 5.5 5.2 5.0 5.6 4.3 
0.3 5.4 5.3 5.4 5.6 5.5 5.8 5.6 4.9 5.4 
0.4 5.4 6.3 6.1 5.8 5.9 5.9 4.2 5.7 5.4 
0.5 4.9 6.0 4.9 5.6 6.3 5.1 5.6 5.1 5.3 
0.6 6.8 6.1 5.2 5.9 5.5 5.2 6.3 5.8 6.4 
0.7 7.4 5.8 5.9 6.2 6.5 6.2 6.5 5.7 5.8 
0.8 6.7 8.6 7.4 7.8 7.1 7.0 6.1 7.4 6.1 
0.9 6.8 7.8 8.2 7.9 7.8 7.8 8.1 7.3 7.1 
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Table 6. VECM estimates for car quota premium and stock price example 

 1α̂  2α̂  β̂  12r  T* 

m=1 -0.191 (0.048) -0.003 (0.007) 3.71 -0.02 104 
m=2 -0.230 (0.062) -0.016 (0.013) 3.56 -0.10 51 
m=3 -0.342 (0.093) -0.015 (0.021) 3.74 -0.02 34 
m=4 -0.368 (0.109) -0.046 (0.026) 2.79 0.12 25 
m=5 -0.483 (0.133) -0.027 (0.036) 3.06 -0.04 20 
m=6 -0.572 (0.095) -0.088 (0.044) 3.25 -0.01 16 

      T* is the effective sample size. The numbers in parentheses are standard 

errors. 
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