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Abstract 
 

Accurate business failure prediction models would be extremely valuable to many 
industry sectors, particularly in financial investment and lending. The potential value of 
such models has been recently emphasised by the extremely costly failure of high profile 
businesses in both Australia and overseas, such as HIH (Australia) and Enron (USA). 
Consequently, there has been a significant increase in interest in business failure prediction 
from both industry and academia. 

Statistical business failure prediction models attempt to predict the failure or 
success of a business. Discriminant and logit analyses have been the most popular 
approaches, but there are also a large number of alternative techniques available. In this 
paper, a comparatively new technique known as survival analysis has been used for 
business failure prediction. In addition, hybrid models combining survival analysis with 
either discriminant analysis or logit analysis were trialled, but their empirical performance 
was poor. Overall, the results suggest that survival analysis techniques provide more 
information that can be used to further the understanding of the business failure process. 
 
 
JEL Classification Codes: G33, G32 

 
Introduction 
The field of business failure prediction has many aliases, such as bankruptcy prediction, firm failure 
prediction and financial (de)stress prediction. Hereafter it will be referred to as business failure 
prediction (BFP). As the name suggests, BFP involves developing models that attempt to predict the 
financial failure of a business before it actually happens. Accurate BFP models would be extremely 
useful and valuable in the real world, as recently emphasised by the extremely costly failure of high 
profile businesses in both Australia (HIH and OneTel) and overseas (particularly Enron in the United 
States). Consequently, there has been a significant increase in interest in BFP, from both industry and 
academia. 

Statistical BFP models attempt to predict the failure or success of a business based on publicly 
available information about that business, such as financial ratios from financial statements. In 
addition, some studies also include indicators of industry and economy wide performance to aid in the 
business failure predictions. The advantages of accurate business failure prediction models are that: 

• Banks, investment banks, credit unions, and other financial institutions could avoid lending to 
businesses that will fail, and thus never repay their loans. 
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• The financial investment sector could improve the risk return trade-off from investments by not 
investing in failing businesses. 

• Businesses could establish long-term relationships with other businesses (such as suppliers) that 
will not fail in the future, and thus increase the longevity and viability of their business 
relationships. 

• Regulatory bodies, such as the Australian Securities and Investments Commission (ASIC), 
could make early identifications of failing businesses. This early identification would assist 
regulatory bodies in ensuring that business failure is ‘handled’ legally and illegal activities, 
such as avoiding taxes or diluting debt holders’ claims by issuing substantial common stock 
dividends prior to failure, are avoided. 
In addition to all the industry sectors that will profit from accurate BFP models, individuals and 

other entities dealing with businesses could also profit from using accurate BFP models in order to 
preferentially deal with successful businesses. Overall, accurate BFP models will increase people’s 
confidence in investment, lending and the development of profitable business relationships, which will 
result in increased stable economic growth for the benefit of all involved. 

The most important characteristics of a BFP model are its two forms of accuracy, namely 
classification and prediction. A model’s classification accuracy is obtained by assessing its accuracy on 
the data set from which it was developed. Following that, the more important prediction accuracy of 
the model is assessed from its application to a brand new set of data, which reveals how well the model 
will perform on future predictions. Nevertheless, when measuring either classification or prediction 
accuracy there is a real world important consideration that should be noted. It is a more critical error to 
classify a failing business as successful (Type I Error) than to classify a successful business as failing 
(Type II Error). The reason for this is that a Type II Error only creates a lost opportunity cost from not 
dealing with a successful business, for example, missed potential investment gains. In contrast, a Type 
I Error results in a realised financial loss due to involvement with a business that will fail, for example, 
losing all money invested in an impending bankrupt business. Thus, the misclassification costs are not 
equal in the real world, and when analysing BFP models a higher weighted penalty should be imposed 
for a misclassification of a truly failing business (Type I Error). A quantifiable difference in 
misclassification costs has not been agreed upon in the literature, as it seems to vary for different 
circumstances and usually involves subjective decision making. 

Additional information beyond the fail/succeed prediction is a desirable characteristic of a BFP 
model. As future predictions can never be made with absolute certainty, the confidence level 
(probability) of failure predictions is also useful. For example, 

• Interest premiums on loans are usually based on the borrowing business’ probability of failure. 
• Regulatory bodies can focus their activities on businesses that have a higher probability of 

failure. 
• Investors often weight a business’ expected future cash flows at (1 – probability of failure) to 

more accurately calculate the fair price of a stock. This fair price can then be compared with the 
market price to determine whether to buy, sell or hold the stock. 
Nevertheless, a model’s accuracy still remains its most important characteristic. 
The remainder of this paper is structured as follows. A brief review of BFP models is followed 

by an analysis and review of survival analysis for BFP. This is followed by sections explaining the data 
and methodology used, the results and the conclusions of the research. Gepp’s thesis (2005) [available 
from http://www.it.bond.edu.au/publications/Theses.htm] contains more detail about each section; in 
particular, Chapter 2 contains a detailed review of BFP models and Chapter 4 details the research on 
BFP using SA techniques. 
 
 

Business Failure Prediction Models: A Brief Review 
Many different techniques have been applied to BFP since its beginnings in the 1960’s. The field 
arguably started earlier, but the first statistical and mathematical models for BFP were published in the 
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1960s. Beaver (1966) presented a univariate model, then Altman (1968) pioneered the use of Multiple 
Discriminant Analysis (MDA) that was further developed by Deakin (1972), Edminster (1972) and 
others. Ohlson (1980) in his pioneer study, to avoid some significant problems associated with MDA, 
employed conditional Logit Analysis (LA) for predicting the survival of businesses. LA does not 
require normality nor equal covariances, which are pre-requisites for MDA. Subsequently both logit 
and probit models have been used with a focus of providing a measure of probability of business 
failure. Kumar and Ganesalingam (2001) have since focused on predicting the financial distress of a 
selection of major Australian companies. This research used principal component analysis, factor 
analysis, discriminant analysis and cluster analysis. 

Based on Healy’s (1987) multivariate cumulative sum (CUSUM) method, Theodossiou (1993) 
introduced a sequential procedure to predict a business’ tendency towards failure. This procedure is 
based on the hypothesis that signals of a business’ deteriorating condition are produced sequentially for 
many years prior to failure. As the business’ economic condition deteriorates, its financial 
characteristics shift toward those of failed businesses and this procedure detects that shift. 
Theodossiou’s CUSUM procedures for BFP had excellent empirical results. 

The soft computing methods known as artificial neural networks (ANNs) have also been used 
in BFP. Unlike traditional statistical techniques, ANNs do not require any restrictive assumptions such 
as linearity, normality and independence among input variables. These soft computing models are 
important as they offer qualitative methods that traditional quantitative tools in statistics and 
economics can not quantify due to the complexity of translating the systems into precise functions. 
ANNs have been shown to be good at classifying businesses into various groups based on financial 
distress. There are many research papers that apply ANNs to BFP, such as Odom and Sharda (1990) 
and Fletcher and Goss (1993) who respectively compared the performance of an ANN with a 
discriminant analysis and logit analysis model. More information about the various ANN methods 
applied in BFP are summarised in a book by Tan (2001). 

There are also numerous other techniques that have been applied to BFP. For example, Wilcox 
(1976) applied the Gambler ruin model taken from probability theory to predict business risk and 
Casey (1980) used the human information processing (HIP) model to show that operating cash flow 
data can lead to more accurate predictions of business failure. 
 
 

Survival Analysis (SA) 
A survival analysis technique is the term applied to a dynamic statistical tool used to analyse the time 
till a certain event. Thus, the SA approach to BFP is fundamentally different from the other approaches 
mentioned above. While other techniques model BFP as a classification problem, SA models BFP as a 
timeline, where businesses are represented by lifetime distributions. Lifetime distributions are 
distributions with a nonnegative random variable that represents the lifetimes of individuals (or 
businesses) in some population. Lifetime distributions can be characterised by a number of descriptor 
functions, the most commonly being the survival or hazard function. The survival function S(t) 
represents the probability that a business will survive past a certain time t, while the hazard function 
h(t) represents the instantaneous rate of failure at a certain time t. The interpretations of these two 
functions is very different, but either one can be derived from the other. 

There are many different SA techniques available to estimate the survival and hazard descriptor 
functions. These techniques use past data to calculate the functions at each specific time, but they do 
not have to ability to make future predictions. Thus, they can be used to analyse past failure to help 
further the understanding of the failure process. The most popular of these is a non-parametric 
technique known as the Product-Limit, or Kaplan-Meier, estimator. There is also a less-popular 
technique called the Nelson-Aalen Additive Estimator. This technique has some statistical advantages 
over the Kaplan-Meier estimator, which are briefly discussed by Harrell (2001) in Chapter 16. In 
addition to these techniques, there are also different SA models that define relationships between one 
of the descriptor functions (usually the survival or hazard function) and the set of explanatory 
variables. These models can also be used for prediction and are estimated using regression. 
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Regression Based Estimation 
The basic difference between various SA models is the assumptions about the relationship between the 
hazard (or survival) function and the set (vector) of explanatory variables (X). Thus, the general 
regression formula can be written as h(t) = g (t, XTβ), where XT is the transpose of X, β is the vector of 
explanatory variable coefficients (also known as covariates) and g is an arbitrary function. In SA 
models estimated from regression it is customary to estimate the hazard rate, and then derive the 
survival rate as required. Traditionally, SA has been divided into two main types of regression models. 
These types are the proportional hazards (PH) and accelerated failure time (AFT) models, both of 
which have fully parametric and semi-parametric versions (refer to Prashanthi (2005) for more details). 
Due to its flexibility, the most prominent model applied in the medical and business failure field is the 
semi-parametric PH model defined by Cox (1972). Cox’s PH model (Cox, 1972) is defined as h(t) = 
ho(t) exp(XTβ+c), where: 
• ho(t) is termed the baseline hazards function and describes how the hazard function changes over 

time and is the nonparametric part of the model; and, 
• exp(XTβ+c) describes how the hazard function relates to the business specific explanatory 

variables and is the parametric part of the model, where c is an estimated constant. Note that 
some or all of the explanatory variables can be time dependent. 

The regression coefficients β are calculated by an efficient method very similar to the 
maximum likelihood method (detailed in Kalbfleisch and Prentice (1980)). Furthermore, as with 
traditional regression techniques, the best explanatory variables are chosen from a starting set by 
forward or backward selection methods. 
 
Theoretical Analysis 
SA techniques are more sophisticated than the traditional popular techniques of discriminant analysis 
(DA) and logit analysis (LA). Except for sequential CUSUM procedures, SA is the only well-known 
technique that incorporates the time series (or longitudinal) nature of BFP data into its model. Thus, 
SA does not assume that the failure process remains stable over time. All other cross sectional models 
are only valid if the underlying failure process remains stable over time, which is a problem as the 
steady failure process assumption is usually violated in the real world (Laitinen and Luoma, 1991). 
This fundamental difference between the time-series SA models and cross-sectional traditional models 
also makes empirical comparisons between the techniques difficult. For example, a single SA model 
can make predictions of varying length; however, a single DA model can only make predictions of a 
fixed length based on its training data. Therefore, a single SA model is usually compared with many 
traditional models. This is an advantage in itself as one SA model is clearly more powerful in making 
different predictions than one traditional model. 

The built in time factor in SA models allows them to model time dependent explanatory 
variables. Zavgren (1985) found that in BFP the signs of the explanatory variable coefficients may 
change in different years before failure. Laitinen and Luoma (1991) went further and added that the 
values of the coefficients may also change relative to time before failure. Thus, an advantage of SA is 
the capability to model these changes, which can not be done with cross sectional models. Therefore, 
SA models appear to be more suited to modelling a dynamic process, such as business failure, than 
cross sectional models. This also means that theoretically, the predictive accuracy of SA models should 
be greater than that of both DA and LA. 

Almost all well-known approaches assume that the data (businesses) comes from two distinct 
populations, which are those either going to succeed or fail. SA models do not make this assumption, 
but rather assume that all businesses come from the same population distribution. In SA models, the 
successful businesses are distinguished by treating them as censored data, which indicates that their 
time of failure is not yet known. This assumption more accurately models the real world (Laitinen and 
Luoma, 1991). SA models can also deal with the delayed entry and early exit of businesses from a 
study, which is likely to happen in studies of business failure. Furthermore, SA does not make any of 
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the restrictive distribution assumptions inherent in DA and LA, such as linearity. The semi-parametric 
and parametric SA models make some distribution assumptions, but they are less commonly violated. 

In addition to the easily interpretable probability of success or failure, SA models also produce 
the interpretable hazard function that is not available in other techniques. Analysis of the hazard rate 
can aid understanding of any process of death or failure (Harrell, 2001). Thus, SA is able to provide 
more information than other techniques, which is a significant component of any good model 
(Chatfield, 1995). 

There are also a few disadvantages associated with the use of SA. There is evidence to suggest 
that the sample construction, specifically the proportion of failing and successful businesses, may 
affect the estimation of the SA model. However, this problem seems to be minor as most randomly 
selected BFP data sets contain a mixture of failing and successful businesses. Some researchers also 
identified that SA techniques (particularly the Cox model) are subject to multicollinearity problems, 
but these can be easily avoided by using standard forward and backward variable selection procedures. 
A more important disadvantage is that SA is designed to focus on determining the effects of 
explanatory variables on the life of businesses, rather than being designed to predict outcomes such as 
the failure of businesses. The ramification of this is that obtaining predictions from SA models is more 
difficult than anticipated. 
 
Review of Survival Analysis in BFP 
SA has not yet become as popular in BFP as DA and LA, but it is considered to be a popular 
alternative to these main techniques. The pioneering paper on SA applied to BFP is by Lane et al. 
(1986), who used the Cox model to predict bank failure. Lane et al. created their model based on a 
selection of 334 successful and 130 failed banks from the period 1979 to 1983. The model was then 
tested on a hold-out sample with one and two year predictions, in which the cut-off value was set at the 
proportion of failed banks in the sample. The prediction accuracy of the Cox model was found to be 
comparable with DA on the initial and hold-out data, but the Cox model produced lower Type I Errors. 
In addition, Crapp and Stevenson (1987) applied a Cox model to some Australian credit unions with 
similar encouraging results. 

Laitinen and Luoma (1991) again applied the Cox model to business failure. The significance 
of this paper is that it was the first to critically present the advantages and disadvantages of using SA to 
predict business failure. Laitinen and Luoma also empirically compared the classification accuracy of 
the Cox model with DA and LA using 36 failed Finnish limited companies and 36 successful 
counterparts. Their predictions were made by dividing the businesses into two groups based on their 
hazard ratios, according to the ratio of failed and successful businesses in the original sample (equal 
groups in this case). Businesses in the group with the higher and lower hazard ratios were then 
predicted to fail or succeed respectively. Although the techniques were comparable, DA and LA were 
found to be slightly superior predictors to the Cox model. Nevertheless, Laitinen and Luoma argued 
that the SA approach was more natural, appropriate and flexible, and used more information. It was 
also stated that the empirical underperformance could have been due to the small sample or sample 
bias inadvertently caused by the authors. Therefore, it was the author’s belief that further research into 
SA as a BFP tool would result in SA models becoming superior to traditional models. Earlier support 
was also given by Keasey et al. (1990) and Ogg (1988) who recommended that SA techniques be used 
in BFP. 

Kauffman and Wang (2001, 2003) used SA techniques to examine the drivers behind the 
survival of Internet businesses. The data set comprised quarterly data on 100 Internet businesses from 
the period of 1996 to 2001. Six explanatory variables were used: one industry specific, two business-
specific, two ecommerce specific, and one macroeconomic variable. Two SA techniques were applied 
to this data: a Kaplan-Meier model was used to perform a descriptive analysis, and the Cox model was 
used to explore the relative strengths of explanatory variables. Useful conclusions, such as businesses 
targeting both commercial and consumers groups are less likely to fail, were drawn from both of the 
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SA techniques applied. Although this work did not develop an SA model for predicting business 
failure, it demonstrated the usefulness of SA techniques for researching the business failure process. 

Shumway (2001) applied the first SA model to a data set of significant size. The model was 
formed using various financial ratios and market-driven variables for over 2000 companies from the 
NYSE and AMEX over 31 years. This was the pioneering use of a multiperiod logit model to estimate 
the SA model coefficients. This allowed Shumway to estimate an AFT SA model, which had not been 
previously applied to BFP. Consistent with previous studies, Shumway noted the theoretical superiority 
of SA techniques over the more popular techniques (DA and LA). In addition, Shumway’s SA model 
was shown to empirically outperform both DA and LA in hold-out predictions. However, less than 
10% of the businesses in the data set were failed, which is much lower than the percentage in the real 
world. In addition, Shumway only considered Type I Error. 

Laitinen and Kankaanpää (1999) presented a comparative study, in which the Cox model along 
with DA, LA, RPA (a decision tree approach), ANN and HIP were analysed. The six techniques were 
empirically compared for their 1, 2 and 3 year prediction accuracy using a data set containing three 
explanatory variables from 76 Finnish companies (with equal number of success and failures). Their 
analysis showed that SA had superior predictive power for 2 and 3 year predictions. However, they 
concluded that there were no statistically significant differences in the predictive powers of any of the 
six models, except for LA being slightly superior to SA for one year predictions. 

Overall, there have been few studies on the application of SA to BFP, and most of the previous 
research has used Cox’s model. Although Lane et al. (1986), Laitinen and Luoma (1991) and many 
more have indicated that the Cox model was very appropriate for use in BFP, it has not been 
consistently shown to be superior to traditional techniques. Lane et al. (1986) found the Cox model to 
slightly empirically outperform DA, but Laitinen and Kankaanpää (1999) found no overall statistical 
difference between the empirical performance of DA and LA, while Laitinen and Luoma (1991) found 
both DA and LA empirically superior to SA. Therefore, it would be valuable research to apply the Cox 
model to a large set of data and compare it to both DA and LA again. Furthermore, comparing the 
techniques across different misclassification costs has never been done. 
 
 
Data Analysis and Methodology 
The main goal of this current research is to assess the empirical classification and prediction accuracy 
of the Cox SA model when applied to BFP. This analysis has been undertaken on a sufficiently large 
data set and over different years of predictions with different misclassification costs, in order to address 
the gaps in the SA literature identified above. 
 
Data 

A large time-series data set has been used for this research. This data set was acquired from Kahya and 
Theodossiou (1999) who have previously undertaken BFP studies. The main properties of this time-
series data set are presented in Table 1. More information on the data, the list of explanatory variables 
and the definition of business failure used can be found in Kahya and Theodossiou’s (1999) paper on 
the CUSUM procedure. It is important to note though that there is no sampling bias in the data, which 
is a weakness of the previous major BFP study of the Cox model by Laitinen and Luoma (1991). 
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Table 1: Description of Data Used. 
 

Property Value 
Businesses (Type)  Manufacturing and Retail (from AMEX and NYSE) 
Selection Procedure  Random selection 
Businesses (Number)  189: 117 successful and 72 failed 
Explanatory Variablest  27 financial variables: mostly financial ratios 
Time-line  1974-1991 (18 years) 
Number of Business-Years (Instances)  2,954 

 
A separate hold-out data set was created for the purpose of estimating each model’s ability to 

predict the failure or success of businesses not used in the model estimation process. The hold-out data 
set was created as approximately 10% of the size of the initial data set with similar proportions of 
successful and failed businesses. The 11 successful and 7 failed businesses were randomly chosen from 
the initial data set of 117 successful and 72 failed businesses; therefore, the training data set comprised 
106 successful businesses and 65 failed businesses. Overall, this meant that the training data set 
comprised 2,669 instances, and the hold-out data set comprised 285 instances. 
 
 
Methodology 
Cox, DA and LA models were all estimated using forward stepwise regression procedures with the 
significance level boundaries for entry and removal set to 5% and 10%. The classification and 
prediction ability of the three models was then analysed and compared. The classification ability was 
determined by how accurately a model classified businesses in the original training data set, known as 
‘in-sample’ classification. The prediction ability was determined by how accurately a model classified 
new businesses from the hold-out data set. 

The different models were compared based on prediction intervals of 1-year, 2-year, and every 
subsequent yearly period for up to 10-years. The purpose of this extensive comparison was to reveal 
whether certain techniques perform better at shorter or longer term predictions. Due to the time-series 
nature of the Cox model, a single Cox model was compared with a separate DA and LA model for each 
different prediction length. It is arguable that this could bias the results towards the traditional models, 
but this is the process that would be undertaken for real-world predictions of different length with both 
DA and LA. 

The different models have also been compared for various misclassification costs over each 
prediction length to assess how they adapt to higher Type I Error costs. All three techniques output a 
probability of survival, which is then compared with a cut-off value ranging between 0 and 1 to 
determine whether the prediction is for failure or success. For the SA model, the cut-off values were 
compared with values of the survival function. The different misclassification costs were achieved by 
varying the cut-off value for the probability of success. Usually this cut-off value is set to 0.5 
representing equal misclassification costs, whereby a business with a probability of success/survival 
greater than 0.5 results in a successful prediction (else a fail prediction if less than 0.5). The DA, LA 
and Cox models have been compared over 8 different cut-off values, ranging from 0.5 up to 0.85, in 
0.05 intervals. Higher cut-off values represent higher Type I Error costs. Thus, cut-off values lower 
than 0.5 were not studied as they represent Type II Error being more costly than Type I Error, which is 
not a realistic scenario. 

To analyse whether a combination of the Cox model with one of the most popular techniques 
(DA or LA) would better predict business failure, two hybrid models were also developed. These 
hybrid models were generated by including the values of the survival function as an extra explanatory 
variable in the DA or LA model estimation process. The survival function values included in the data 
set matched the prediction length of the DA or LA model; for example, S(3) values were used for the 
DA and LA model for 3-year ahead predictions. The DA and LA models were then developed (and 
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analysed) for each prediction length in the same way as described above, but with this extra 
explanatory variable. 
 
 
Results 
The results are structured as follows. Firstly, the change in the business failure process over time is 
analysed by using information obtained from the Cox model. The empirical performance of the 
techniques is then investigated. The DA, LA and Cox models are compared with equal 
misclassification cost, and with varying misclassification cost for both classification and prediction 
accuracy. The hybrid models are then analysed. Finally, the relative significance and importance of the 
explanatory variables is analysed. Summary tables of the classification and prediction accuracy of the 3 
main models are presented in Appendix A and Appendix B respectively. 
 
Business Failure Process 

The Cox model automatically outputs the survival function and the cumulative hazard function, and 
information on how they change over time. The survival and cumulative hazard function for an average 
business over time is shown in Figure 1. This graph reveals a linear decline in the survival rate of a 
business over the first 15 years of it being included in the study. The survival probability of a business 
reduces by approximately 8% each year. However, after 15 years the survival probability does not drop 
significantly and remains steady at about 77%. A consistent trend was found from analysing the 
cumulative hazard function. The cumulative hazard function is shown to increase in a linear trend for 
the first 15 years, but then remains somewhat constant thereafter. This means that assuming a business 
has survived for 15 years or more, the likelihood it will fail in the near future is low. In addition, the 
probability of survival for more than 15 years is not significantly lower than the probability of survival 
for 15 years. This seems intuitively logical as established businesses have historically been considered 
much less likely to fail than relatively new businesses, although 15 years is longer than expected for a 
business to become established. 

This analysis is an example of how the extra information automatically generated by the Cox 
model (as a SA technique) aids the understanding of the business failure process. 
 

Figure 1: Survival (left) and Hazard (right) Function at the mean of explanatory variables. 
 

 
 
Equal Misclassification Costs 

The in-sample classification accuracy of the three models over the 10 different prediction lengths is 
presented in Figure 2. Overall, the performances of the LA, DA and Cox models are very similar with 
equal misclassification costs. It is also apparent from this graph that the classification ability of all 
techniques reduces as the prediction interval increases. All three models correctly classify about 96% 
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of businesses according to their possible failure within one year; however, this accuracy decreases 
constantly to approximately 82% accuracy when classifying businesses according to their possible 
failure within 10 years. Although the decline in classification accuracy occurs mostly in a linear trend, 
the graph suggests that the accuracy level may flatten out for longer prediction intervals, especially for 
the DA and LA techniques. Nevertheless, this decline in accuracy is not a large problem, as an 82% 
correct classification percentage indicates a good model that will be useful in the real world. 
 

Figure 2: Percentage of correct in-sample classifications. 
 

 
 

Figure 2 also shows that the DA and LA models always have a slightly higher number of 
correct classifications compared with the Cox model. However, the difference between the correct 
classification percentages is less than 1% on average, with the largest difference when classifying 
businesses based on their possible failure within 6 years: the DA model and LA model correctly 
classified 1.54% and 1.57% more businesses respectively. Although the DA and LA lines in Figure 2 
are very similar, the LA models had a slightly higher correct classification percentage than the DA 
models for 6 out of the 10 different prediction intervals. This is consistent with previous DA and LA 
research that found the two techniques to be very similar in terms of classification ability, and that the 
LA models are more often slightly better. It is also interesting to note that the relative performance of 
the Cox model did not improve for longer prediction intervals (up to 10 years). On average over the 
various prediction intervals, the number of correct classifications made out of the 2,669 in-sample 
classifications was 2,356, 2,352, and 2,331 for the LA, DA and Cox model respectively. Hence, the 
Cox model is very similar to both DA and LA in terms of classification ability, but the relative order of 
the techniques according to classification ability with equal misclassification costs is LA, DA and then 
the Cox model. 

The prediction accuracy is more similar than the classification accuracy for equal 
misclassification costs, as shown in Figure 3. It is again evident that the accuracy of the models 
decreases as the prediction interval increases. This result is consistent with the intuitive thought that it 
is harder to classify and predict events that occur further into the future. From comparing this graph 
with the previous graph of classification accuracy (Figure 2) it can be seen that there has only been a 
small decline in accuracy when moving from the in-sample to hold-out data. This suggests that all the 
techniques have successfully generated models predominantly based on general trends in the training 
data set, and overly complex models have not been created. However, it is observable that the loss in 
accuracy between classification and prediction is more evident with longer prediction intervals. 



International Research Journal of Finance and Economics - Issue 16 (2008) 22 

Figure 3: Percentage of correct hold-out predictions. 
 

 
 

When moving from classification to prediction, the LA, DA and Cox models respectively lost 
1.62%, 1.43% and 0.91% accuracy on average. That is, the techniques declined in accuracy 
proportional to their in-sample classification accuracy. Hence, the predictive ability of all the three 
techniques is almost the same, and the best predictive technique depends upon the prediction interval. 
The Cox model is the best for 8 and 9 year ahead predictions, but DA is more than 1% more accurate 
than both the Cox and LA model for 10 year ahead predictions. Therefore, again there is no evidence to 
suggest that the Cox model performed better with longer prediction intervals. From 285 predictions 
made, the LA and DA techniques averaged 247 correct, while the Cox model averaged 246. Thus for 
equal misclassification costs, the Cox model has produced almost identical prediction accuracy 
compared with LA and DA models. 
 

Figure 4: The cost of one year ahead in-sample classifications. 
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In-sample Classification 

The in-sample classification accuracy over different misclassification costs was analysed for each 
prediction length. Due to the varying misclassification costs, a weighted error cost measure was used to 
compare the classification (and prediction in the following sub-section) accuracy of the techniques. 
This cost measure weighted the number of Type I and Type II Errors by their respective relative costs, 
which enabled unbiased comparisons to be made that allowed for the effect of the varying 
misclassification costs. 

The comparison of the costs of the Cox, DA and LA models for classification based on failure 
or success in one year is presented in Figure 4. The Cox model is clearly the worst performing 
technique with the highest weighted error cost for all misclassification costs. In addition, the Cox 
model does not adapt as well as the other techniques to increasing Type I Error costs. Therefore, the 
relative superiority of DA and LA as classifiers increases as the cost of Type I Error increases. The DA 
and LA models have very similar performance, where LA was marginally better for lower Type I Error 
costs, but DA was marginally better for the highest Type I Error costs. 

Averaged over the various prediction intervals and misclassification costs, the classification 
accuracy of LA and DA were very similar, but LA was slightly superior. The observation that the Cox 
model was more costly than DA and LA, especially for high Type I Error costs, continues through to 
prediction intervals of ten years. However, the performance gap between the Cox model and DA and 
LA models decreases as the prediction interval increases from one year to six years. In addition, the 
increase in the performance gap for higher Type I Error costs becomes less significant as the prediction 
interval increases. These observations are illustrated in Figure 5 and 6, which shows the results for 
prediction intervals of 3, 6 and 10 years. Thus, the relative superiority of the DA and LA models over 
the Cox model decreases as the prediction interval increases. In addition, the Cox model adapts better 
to higher Type I Error costs as the prediction interval increases. 
 

Figure 5: The cost of three year ahead in-sample classifications. 
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Figure 6: The cost of six (top) and ten (bottom) year ahead classifications. 
 

 

 
 
Hold-out Predictions 

The prediction accuracy was more varied than the classification accuracy discussed in the above sub-
section. The one year prediction accuracy, estimated on the holdout data, for the Cox, DA and LA 
models is presented in Figure 7. Although the Cox model, had a lower cost compared with the DA 
model for lower Type I Error costs, the Cox model did not adapt well to larger costs of Type I Error. 
Thus, the Cox model became significantly more costly than its DA and LA model alternatives for 
higher Type I Error costs. The best predictor between LA and DA was LA for all but one 
misclassification cost. 
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Figure 7: The cost of one year ahead hold-out predictions. 
 

 
 

Prediction intervals from two to ten years reveal a general trend of higher costs for Cox models 
that become worse with higher Type I Error cost. However, there are some slight variations in these 
general trends that are explained and illustrated below. 

• Two Years (Figure 8): Although the cost of the Cox model increases with the cost of Type I 
Error compared with the LA model, the Cox model actually became slightly better than the DA 
model for the highest Type I Error cost. 

 
Figure 8: The cost of two year ahead predictions. 

 

 
 

• Three to Eight Years (Figure 9): The Cox model became very costly relative to DA and LA for 
higher Type I Error Costs, but was comparable to both the other models for lower Type I Error 
costs. As the prediction interval increased, the Cox model became costlier than the LA and DA 
models starting from lower Type I Error costs. 
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Figure 9: The cost of four (top) and eight (bottom) year ahead predictions. 
 

 

 
 

• Nine and Ten Years (Figure 10): The Cox model followed a similar pattern of becoming the 
most costly alternative for error cost ratios of above 1.5, but it adapted better to the highest 
Type I Error costs. The Cox model had better prediction accuracy than LA for the second 
highest cost of Type I Error for nine year predictions, and DA for the highest cost of Type I 
Error for ten year predictions. 
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Figure 10: The cost of nine (top) and ten (bottom) year ahead predictions. 
 

 

 
 

The technique with the best predictive ability varies between DA and LA depending upon the 
prediction intervals and misclassification costs. It is not possible to choose an overall ‘best technique’ 
as the prediction interval and misclassification costs are factors specific to each particular situation. 
Nevertheless, if a ranking must be made the LA would be slightly superior to DA in terms of 
prediction accuracy as it was superior in more situations and, on average, adapted better to rising Type 
I Error costs. 

Although the Cox model was comparable in many situations, the predictive power of the Cox 
model was slightly worse than DA and LA, especially for high costs of Type I Error and up to seven 
year prediction intervals. Furthermore, the relative performance of the Cox model as the prediction 
level increased was dependent upon the misclassification costs. For lower Type I Error costs there was 
no improvement, or even a decline, in the prediction accuracy of the Cox model as the prediction 
interval increased. However with higher Type I Error costs, the prediction accuracy of the Cox model 
improved for the longer prediction intervals. 
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Hybrid Models 

In most cases, the stepwise procedure for the LA-Cox hybrid model did not even include the survival 
probabilities as an explanatory variable in the LA model. The survival probability was only included 
by the stepwise procedure for the 10 year ahead predictions. Furthermore, the hybrid model that was 
developed for 10 year ahead predictions did not adapt as well to higher costs of Type I Error, as it 
produced more Type I Error than the simple LA model without a corresponding reduction in Type II 
Error for both classification and prediction. 

The survival probabilities were included in all the DA-Cox hybrid models, but the results were 
similar to the 10 year LA-Cox hybrid model. For nearly all cases, the weighted error cost measure was 
higher for the DA-Cox hybrid model than the simple DA model. The reason for this was that the Type 
I Error had increased in the hybrid model, particularly for higher Type I Error costs and longer 
prediction intervals. 

Overall, this method of producing hybrid models did not improve the ability to classify or 
predict business failure, and consequently is not appropriate for classifying or predicting business 
failure. 
 
Analysis of the Importance of Variables 

The simplest analysis of variable importance is obtainable from the Cox model, as it was the one model 
capable of being used for all the different prediction intervals. The details of the variables included in 
the Cox model are presented in Table 2, where the Exp (∆) column represents the estimated percentage 
change in the hazard of failure for a 0.1 increase in a given explanatory variable. Therefore, this value 
can be used to determine the importance of each variable, where a higher (absolute) value indicates that 
the variable has a larger impact on the failure of a business. Hence, it is clear that the financial leverage 
ratio of long-term liabilities to total assets (LTL/TA) is the most important variable, whereby for each 
0.1 increase in the ratio the hazard of failure will increase by 42.95%. It is also observable that a range 
of variable types are shown to be important in the Cox model, as is the case for most BFP models. 
 
Table 2: Variables included in the Cox model, ordered by importance from the top down. Note that all the 

variables are significant at the 1% significance level. 
 
Variable Variable Type Coefficient Significance Exp(∆) 
LTL/TA Financial Leverage 1.667 0.00 42.95% 
OPI/TA Profitability 6.855 0.00 9.99% 
RCV/CA Management Efficiency 1.482 0.00 7.73% 
OPI/FA Profitability 0.466 0.00 5.93% 
CA/TA Liquidity 0.718 0.00 5.12% 
Ln(SLS) Business Size 0.586 0.00 4.43% 
RE/TA Profitability 0.492 0.00 3.88% 
QA/CL Liquidity 0.349 0.00 2.95% 
Ln(EMPL) Business Size 0.202 0.00 2.23% 
MVE/TL Market Structure 0.100 0.00 0.95% 

 
 
Conclusions 
The Cox model was able to classify and predict business failure as well as both DA and LA models for 
equal misclassification costs. However, the hybrid models were not appropriate for classifying or 
predicting business failure. This does not mean however that there are not other ways of developing 
hybrid models that could be appropriate for business failure prediction. DA and LA adapted better to 
higher Type I Error costs, but the prediction accuracy of the Cox model was comparable with DA and 
LA when the Type I Error cost was 1.5 times greater than Type II Error cost. The ability to adapt to 
high Type I Error costs also improved for the Cox model, relative to DA and LA, as the prediction 
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interval increased. It should also be noted that the DA and LA models had very similar classification 
and predictive ability as has been found in many previous studies. 

In addition to the prediction accuracy of the Cox model being comparable with the major 
techniques (DA and LA), it provides more information about the business failure process through the 
interpretation of the hazard and survival function over time. In addition, for the situation of different 
prediction intervals, the Cox model is much easier to interpret and assess the importance of variables as 
only one model is needed to cater for different prediction intervals. 
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Appendix A: In-sample Classifications 
 
Table A.1: The breakdown of the in-sample classifications of each technique into correct classifications 

(OK), Type I Error (I) and Type II Error (II). This table includes prediction intervals of 1 to 5 
years. The number written following each technique’s name represents the prediction interval, for 
example, the heading Cox3 represents a prediction interval of 3 years with the Cox model. 

 
 Cox1 Cox2 Cox3 Cox4 Cox5 

Cut-off OK I II OK I II OK I II OK I II OK I II 
0.5 2552 113 4 2489 169 11 2436 219 14 2378 266 25 2323 312 34 
0.55 2550 112 7 2488 165 16 2438 210 21 2374 259 36 2320 301 48 
0.6 2549 111 9 2495 157 17 2433 204 32 2368 250 51 2323 276 70 
0.65 2548 107 14 2495 150 24 2426 197 46 2360 234 75 2307 254 108 
0.7 2545 103 21 2485 145 39 2412 188 69 2350 208 111 2294 223 152 
0.75 2546 97 26 2468 140 61 2390 163 116 2316 181 172 2242 186 241 
0.8 2535 88 46 2439 122 108 2334 143 192 2246 146 277 2163 146 360 
0.85 2500 82 87 2355 105 209 2240 102 327 2100 106 463 1990 110 569 

 DA1 DA2 DA3 DA4 DA5 
Cut-off OK I II OK I II OK I II OK I II OK I II 

0.5 2561 77 31 2517 125 27 2458 175 36 2401 229 39 2346 278 45 
0.55 2557 76 36 2517 120 32 2461 169 39 2399 222 48 2348 260 61 
0.6 2557 75 37 2515 117 37 2458 163 48 2400 209 60 2349 242 78 
0.65 2557 71 41 2511 113 45 2451 156 62 2392 198 79 2344 226 99 
0.7 2555 70 44 2505 110 54 2432 149 88 2379 182 108 2319 205 145 
0.75 2549 67 53 2494 107 68 2417 140 112 2364 168 137 2293 175 201 
0.8 2543 65 61 2479 102 88 2394 130 145 2333 147 189 2232 152 285 
0.85 2531 63 75 2450 91 128 2361 107 201 2269 119 281 2129 121 419 

 LA1 LA2 LA3 LA4 LA5   
Cut-off OK I II OK I II OK I II OK I II OK I II 

0.5 2567 89 13 2515 136 18 2467 184 18 2408 234 27 2359 271 39 
0.55 2566 88 15 2514 132 23 2467 178 24 2406 224 39 2359 255 55 
0.6 2566 81 22 2518 127 24 2462 171 36 2405 209 55 2345 242 82 
0.65 2562 79 28 2519 120 30 2454 160 55 2390 196 83 2343 216 110 
0.7 2562 75 32 2511 115 43 2441 148 80 2377 180 112 2308 191 170 
0.75 2558 73 38 2495 103 71 2413 136 120 2352 151 166 2267 165 237 
0.8 2549 67 53 2470 90 109 2375 118 176 2277 128 264 2181 129 359 
0.85 2509 62 98 2420 75 174 2288 89 292 2145 99 425 2032 99 538 
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Appendix A: In-sample Classifications 
 
Table A.2: This table extends table A.1 to include prediction intervals of 6 to 10 years. 
 

 Cox6 Cox7 Cox8 Cox9 Cox10 
Cut-off  OK I II OK I II OK I II OK I II OK I II 

0.5 2275 349 45 2248 364 57 2217 382 70 2206 391 72 2185 401 83 
0.55 2279 322 68 2239 343 87 2226 348 95 2213 355 101 2194 355 120 
0.6 2269 300 100 2245 309 115 2224 313 132 2207 308 154 2189 309 171 
0.65 2268 266 135 2242 269 158 2212 265 192 2186 260 223 2175 260 234 
0.7 2247 225 197 2208 227 234 2172 225 272 2138 219 312 2113 215 341 
0.75 2189 181 299 2147 179 343 2092 181 396 2056 181 432 2030 175 464 
0.8 2092 141 436 2022 147 500 1976 136 557 1938 123 608 1907 114 648 
0.85 1914 99 656 1845 91 733 1795 81 793 1755 75 839 1722 72 875 

 DA6 DA7 DA8 DA9 DA10 
Cut-off OK I II OK I II OK I II OK I II OK I II 

0.5 2316 294 59 2268 339 62 2242 351 76 2208 368 93 2206 355 108 
0.55 2314 276 79 2275 310 84 2243 324 102 2217 334 118 2212 317 140 
0.6 2319 254 96 2271 280 118 2241 287 141 2209 296 164 2192 287 190 
0.65 2299 236 134 2250 254 165 2225 252 192 2186 258 225 2197 240 232 
0.7 2280 214 175 2224 217 228 2186 218 265 2166 222 281 2147 215 307 
0.75 2232 185 252 2169 187 313 2145 184 340 2106 185 378 2079 175 415 
0.8 2174 151 344 2096 148 425 2053 149 467 2013 147 509 1982 137 550 
0.85 2063 121 485 1969 118 582 1914 108 647 1875 102 692 1834 98 737 

 LA6 LA7 LA8 LA9 LA10 
Cut-off OK I II OK I II OK I II OK I II OK I II 

0.5 2317 306 46 2266 335 68 2236 350 83 2217 346 106 2211 341 117 
0.55 2310 283 76 2263 306 100 2234 310 125 2232 300 137 2214 305 150 
0.6 2305 262 102 2268 269 132 2245 268 156 2234 257 178 2205 265 199 
0.65 2285 237 147 2240 244 185 2221 233 215 2191 238 240 2176 233 260 
0.7 2250 203 216 2215 201 253 2164 205 300 2141 204 324 2120 200 349 
0.75 2184 173 312 2145 170 354 2095 168 406 2078 160 431 2051 164 454 
0.8 2100 133 436 2037 134 498 2003 129 537 1967 126 576 1951 120 598 
0.85 1953 95 621 1889 99 681 1857 91 721 1843 86 740 1811 81 777 
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Appendix B: Hold-out Predictions 
 
Table B.1: Breakdown of the hold-out predictions of each technique into correct predictions (OK), Type I 

Error (I) and Type II Error (II). This table includes prediction intervals of 1 to 5 years. The same 
naming convention as in Appendix A has been used. 

 
 Cox1 Cox2 Cox3 Cox4 Cox5 

Cut-off OK I II OK I II OK I II OK I II OK I II 
0.5 272 13 0 265 20 0 258 27 0 253 32 0 247 35 3 

0.55 272 13 0 265 20 0 259 26 0 254 30 1 247 34 4 
0.6 272 13 0 265 20 0 260 25 0 253 29 3 248 32 5 

0.65 272 13 0 266 19 0 258 23 4 252 28 5 249 30 6 
0.7 272 13 0 266 18 1 258 22 5 253 26 6 249 28 8 

0.75 273 12 0 263 17 5 258 20 7 254 23 8 245 27 13 
0.8 274 11 0 261 16 8 257 18 10 248 22 15 237 24 24 

0.85 269 10 6 260 13 12 252 16 17 234 19 32 222 18 45 
 DA1 DA2 DA3 DA4 DA5 
Cut-off OK I II OK I II OK I II OK I II OK I II 

0.5 271 9 5 266 15 4 259 21 5 255 28 2 247 32 6 
0.55 269 9 7 264 15 6 257 21 7 254 28 3 249 29 7 
0.6 269 9 7 264 15 6 258 20 7 250 28 7 249 28 8 

0.65 269 8 8 263 14 8 255 20 10 250 26 9 250 27 8 
0.7 269 8 8 263 14 8 253 20 12 250 26 9 249 27 9 

0.75 270 7 8 262 14 9 254 18 13 253 21 11 245 25 15 
0.8 269 7 9 258 14 13 256 16 13 252 19 14 245 17 23 

0.85 269 7 9 258 13 14 254 15 16 245 16 24 243 12 30 
 LA1 LA2 LA3 LA4 LA5 
Cut-off OK I II OK I II OK I II OK I II OK I II 

0.5 274 10 1 267 16 2 260 21 4 252 27 6 247 32 6 
0.55 274 10 1 265 15 5 259 20 6 253 26 6 247 31 7 
0.6 274 9 2 266 14 5 258 20 7 253 26 6 247 30 8 

0.65 273 9 3 264 14 7 258 20 7 251 25 9 247 29 9 
0.7 271 9 5 263 14 8 255 20 10 252 24 9 249 27 9 

0.75 269 9 7 263 14 8 254 20 11 253 21 11 247 22 16 
0.8 271 7 7 260 13 12 255 17 13 249 16 20 243 17 25 

0.85 269 7 9 260 12 13 252 10 23 242 12 31 234 13 38 
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Appendix B: Hold-out Predictions 
 
Table B.2: This table extends table B.1 to include prediction intervals of 6 to 10 years. 
 

 Cox6 Cox7 Cox8 Cox9 Cox10 
Cut-off OK I II OK I II OK I II OK I II OK I II 

0.5 242 39 4 238 43 4 235 46 4 230 50 5 223 56 6 
0.55 244 37 4 241 40 4 236 44 5 228 50 7 222 55 8 
0.6 245 35 5 242 38 5 233 44 8 225 49 11 221 52 12 

0.65 246 33 6 238 38 9 230 43 12 223 46 16 219 47 19 
0.7 243 32 10 237 35 13 229 37 19 220 40 25 215 43 27 

0.75 235 31 19 230 30 25 223 33 29 218 32 35 215 34 36 
0.8 229 24 32 220 25 40 215 26 44 214 26 45 205 27 53 

0.85 218 17 50 207 19 59 194 18 73 186 18 81 183 18 84 
 DA6 DA7 DA8 DA9 DA10 
Cut-off OK I II OK I II OK I II OK I II OK I II 

0.5 244 35 6 238 42 5 234 45 6 229 50 6 228 52 5 
0.55 244 34 7 241 38 6 235 44 6 229 48 8 223 51 11 
0.6 246 32 7 242 36 7 235 43 7 227 47 11 221 50 14 

0.65 244 32 9 241 35 9 236 38 11 230 42 13 224 40 21 
0.7 245 29 11 241 33 11 235 32 18 226 36 23 224 35 26 

0.75 247 25 13 236 29 20 232 25 28 229 28 28 221 32 32 
0.8 238 22 25 236 20 29 226 23 36 216 24 45 206 27 52 

0.85 232 14 39 222 15 48 212 17 56 200 19 66 191 22 72 
 LA6 LA7 LA8 LA9 LA10 
Cut-off OK I II OK I II OK I II OK I II OK I II 

0.5 243 36 6 240 39 6 234 44 7 229 49 7 224 54 7 
0.55 243 35 7 240 38 7 235 42 8 228 46 11 221 50 14 
0.6 243 34 8 241 37 7 233 39 13 229 41 15 226 44 15 

0.65 246 31 8 241 32 12 238 31 16 233 33 19 226 38 21 
0.7 243 28 14 244 25 16 234 28 23 229 32 24 221 37 27 

0.75 248 22 15 240 23 22 226 27 32 224 28 33 219 31 35 
0.8 242 17 26 227 22 36 215 23 47 208 25 52 205 26 54 

0.85 226 11 48 217 15 53 204 17 64 198 17 70 192 17 76 
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