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A Systematic Strategy to Incorporate Intensification and
Diversification into Ant Colony Optimisation

Marcus Randall1

School of Information Technology
Bond University, QLD 4229, Australia

Ph: +61 7 55953361
Email: mrandall@bond.edu.au

Abstract. Modern meta-heuristic search strategies are often used to solve discrete optimisation
problems with little regard to varying the level of search intensity. Search intensity refers to
whether the search concentrates in a particular region of space or is allowed to visit disparate
regions. An intensification/diversification strategy for ant colony optimisation is developed
based on the tabu search notion of the frequency of incorporation of elements into solutions. The
tabu search meta-heuristic in particular has had a set of systematic intensification/diversification
strategies developed for it. In this paper, these strategies are adapted for use in the relatively new
ant colony optimisation techniques. The travelling salesman problem is used as the benchmark
with encouraging results, particularly for larger problem instances.

Keywords: Search optimisation, intensification/diversification, ant colony optimisation, intelligent
agents.

1 Introduction

The tabu search meta-heuristic [7] incorporates explicit strategies to control the level of search in-
tensity. For instance, the search may be intensified in a promising region of space. This means that
solution elements that have been associated with good solutions will be more favoured than other
elements. As such, large variations to the solution state are not encouraged. However, if the search is
in a region of space in which the solutions are poor, large changes to the solution will be necessary in
order to find another pocket of high quality solutions (diversification).

A simple intensification strategy in tabu search is to record the best solutions as they are found.
Periodically throughout the search process, the search is restarted from one of these solutions. This
has the effect of “intensifying” the search around known good solutions that often form a cluster in
state space. Another intensification strategy is to preserve a part of the solution by not allowing local
search operators to change its elements. The preserved partial solution would contain elements that
have traditionally been associated with good solutions. A popular method of achieving diversification
in tabu search is to use a restarting method (in particular Battiti [1]). However, implementations of
this method have tended to be non-systematic as they simply generate a random solution and restart
the tabu search from this solution (with an empty tabu list). However, Glover and Laguna [7] suggest
a method in which a set of diversifying moves (deliberately different from recent moves) are made
and recorded on the tabu list to ensure that the search does not return to the previous region.



Ant colony optimisation (ACO) algorithms have some inbuilt intensification/diversification mech-
anisms. In terms of the ant colony system (ACS) algorithm in particular, intensification is achieved by
a) reinforcing the pheromone levels of the elements that comprise the best found solution at each iter-
ation of the search process and b) by often biasing the choice of the next element to be the one with the
best combination of pheromone and heuristic value. Some measure of diversification is obtained by a)
decreasing the pheromone on a selected solution element by use of a local updating rule, b) decreas-
ing the pheromone on solution elements through evaporation at each iteration of the algorithm and c)
occasionally allowing the probabilistic choice of the next element to be added to the ant’s solution.
For theMAX −MIN Ant System meta-heuristic [12], some implicit diversification is achieved
because pheromone values are bounded by a lower and upper value. Thus, as in the case with ACO
techniques, a small set of very good solution elements will not dominate the other elements.

There have also been some attempts to explicitly incorporate intensification/diversification strate-
gies into ACO techniques. Gambardella, Taillard and Dorigo [6] propose a hybrid ant system in which
the usual constructive component is replaced by local search instead (thus it is an unusual ACO tech-
nique in this sense). It has been implemented for the quadratic assignment problem (QAP) and is
subsequently known as HAS-QAP. It incorporates simple intensification and diversification processes
into the algorithm. HAS-QAP begins each iteration with a complete solution (rather than constructing
it). In an intensification phase, this initial solution is the best solution found to date. When diversifi-
cation is activated, both the pheromone matrix and the initial solution are reinitialised. In the case of
the latter, the solution is a random solution (i.e. a random permutation for the QAP). Blum [2] follows
similar ideas to the above by allowing the search to intensify around a set of elite solutions (inten-
sification phase) and diversifying by having a number of restart phases and resetting the pheromone
values to random levels.

Randall and Tonkes [10] outline a scheme based on the ACO meta-heuristic ACS in which
the characteristic element equations (see Equations 1 and 2) are modified so that the level of
pheromone, in relation to the heuristic information, is varied. The premise is that elements having
higher pheromone levels have shown in the past to be attractive and vice-versa. During an inten-
sification phase, pheromone levels have a higher influence, while during diversification, elements
with large amounts of pheromone are actively discouraged. Unfortunately there was no significant
difference in solution quality between the intensification/diversification schemes and a control ACS
strategy. Nakamichi and Arita [9] define a simple diversification strategy for the travelling salesman
problem (TSP). At each step of the ant algorithm, each ant will have a probability of selecting a city
at random, without regard to pheromone or heuristic (cost) information. This will allow the search to
diversify, however, the results were far from conclusive as only one relatively small problem instance
(eil51, see TSPLIB [11]) was used.

A common theme to the aforementioned works is that they rely on some form of random-
ness to achieve intensification and diversification. A more systematic approach to intensifica-
tion/diversification, based on the frequency of incorporating elements into the solution, is outlined
herein. The remainder of this paper is organised as follows. Section 2 outlines the standard me-
chanics of the ACS search paradigm in regards to the TSP while Section 3 outlines how intensifi-
cation/diversification strategies can be applied to the ACO meta-heuristic, ACS. Section 4 gives the
computational results and Section 5 has the conclusions of this work.
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2 Ant Colony System for the Travelling Salesman Problem

ACO is modelled on the foraging behaviour ofArgentineants. The seminal work by Dorigo [3]
showed that this behaviour could be used to solve discrete optimisation problems. ACO is in fact
a collection of meta-heuristic techniques. This section gives a brief overview of one of these, ant
colony system [4].

ACS can best be described with the TSP [4, 8] metaphor as it is a well understood optimisation
problem. In addition, it will be used to test the strategies outlined in this paper. Consider a set of cities,
with known distances between each pair of cities. The aim of the TSP is to find the shortest path to
traverse all cities exactly once and return to the starting city. The ACS paradigm is applied to this
problem in the following way. Consider a TSP withN cities. Citiesi andj are separated by distance
d(i, j). Scatterm ants randomly on these cities (m � N ). In discrete time steps, all ants select their
next city then simultaneously move to their next city. Ants deposit a substance known aspheromone
to communicate with the colony about the utility (goodness) of the edges. Denote the accumulated
strength of pheromone on edge (i, j) by τ(i, j).

At the commencement of each time step, Equations 1 and 2 are used to select the next citys for ant
k currently at cityr. Equation 1 is a greedy selection technique that will choose the city that has the
best combination of short distance and large pheromone levels. Using the first branch of Equation 1
exclusively will lead to sub-optimal solutions due to its greediness. Therefore, there is a probability
that Equation 2 will be used to select the next city instead. This equation generates a probability and
then roulette wheel selection is used to generates.

s=

arg maxu∈Jk(r)

{
τ(r, u)[d(r, u)]β

}
ifq ≤ q0

Equation 2 otherwise
(1)

pk(r, s) =

{
τ(r,s)[d(r,s)]β∑

u∈Jk(r) τ(r,u)[d(r,u)]β
ifs ∈ Jk(r)

0 otherwise
(2)

Note thatq ∈ [0, 1] is a uniform random number andq0 is a parameter. To maintain the restriction
of unique visitation, antk is prohibited from selecting a city which it has already visited. The cities
which have not yet been visited by antk are indexed byJk(r). It is typical that the parameterβ is
negative so that shorter edges are favoured. Linear dependence onτ(r, s) ensures preference is given
to links that are well traversed (i.e. have a high pheromone level). The pheromone level on the selected
edge is updated according to the local updating rule in Equation 3.

τ(r, s)← (1− ρ) · τ(r, s) + ρ · τ0 (3)

Where:

ρ is the local pheromone decay parameter,0 < ρ < 1.
τ0 is the initial amount of pheromone deposited on each of the edges.

Upon conclusion of an iteration (i.e. once all ants have constructed a tour), global updating of the
pheromone takes place. Edges that compose the best solution (so far) are rewarded with an increase
in their pheromone level while the pheromone on the other edges is evaporated (decreased). This is
expressed in Equation 4.

τ(r, s)← (1− γ) · τ(r, s) + γ ·∆τ(r, s) (4)
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∆τ(r, s) =
{
Q
L if(r, s) ∈ best tour
0 otherwise.

(5)

Where:

∆τ(r, s) is used to reinforce the pheromone on the edges of the iteration best solution (see Equa-
tion 5).
L is the length of the best (shortest) tour to date whileQ is a constant.
γ is the global pheromone decay parameter,0 < γ < 1.

It is typical that a local search phase is performed on the best solution in the current iteration,
before the pheromone updating takes place. In the experimental work carried out in this paper, 200
inversion transitions are performed in a greedy fashion for the best solution. An inversion consists of
randomly choosing two cities and inverting the sequence of cities between them.

An in-depth pseudocode description of the ACS algorith can be found in Dorigo and Gam-
bardella [5].

3 Applying Intensification and Diversification Strategies to ACS

In this paper, ACS, with intensification/diversification extensions, is used to solve TSP problem in-
stances. However, the techniques described in this section are adaptable to a range of discrete optimi-
sation problems. There are two parts to defining an intensification/diversification strategy:

1. how intensification/diversification is to be achieved (i.e. the mechanics) and
2. whenan intensification or a diversification phase is to be triggered and how long should it last.

In regards to the former, the frequency with which edges are incorporated into ant solutions is
important for the operation of intensification and diversification. A matrixu, (u(i, j), 1 ≤ i, j ≤ N)
is used to store the number of times each edge has been incorporated into the ant solutions. This
corresponds to a long term memory structure (as outlined in Glover and Laguna [7]).

During an intensification phase, edges that have been frequently used (as they have been found
to be historically good) will receive a higher weighting by a new termw that is incorporated into the
characteristic element selection equations (see 1 and 2). Equation 6 outlines howw is calculated.

w(i, j) =
u(i, j)

maxNk=1u(k, j)
(6)

Thus thew values are bounded between 0 and 1. Diversification encourages the use of edges that
have not been incorporated into solutions frequently. The weighting factor is given by Equation 7.

w(i, j) = 1− u(i, j)
maxNk=1u(k, j)

(7)

If neither intensification nor diversification are required (i.e. these phases have not been invoked
or are finished),w(i, j) = 1, ∀i, j (referred to as the “normal” phase). The weighting function is
incorporated into the standard element selection equations as shown in Equations 8 and 9.
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s=


arg maxu∈Jk(r)

{
w(r, u)τ(r, u)[d(r, u)]β

}
ifq ≤ q0

Equation 2 otherwise
(8)

pk(r,s)=


w(r,s)τ(r,s)[d(r,s)]β∑

u∈Jk(r) w(r,u)τ(r,u)[d(r,u)]β
ifs ∈ Jk(r)

0 otherwise
(9)

A method of determining if an intensification or diversification phase is required relies on the
solution cost information generated by the ant colony. Some simple measures to determine if either
intensification or diversification are necessary are outlined below:

– Intensification- Improved solution costs are received at a frequency greater thanintens iterations
of ACS (whereintens is a parameter). This would indicate that the colony is in a promising region
of the state space. Thus, highly used edges are encouraged while less used edges will receive little
attention.

– Diversification- An improved solution cost has not been received fordivers iterations of ACS
(wheredivers is a parameter). This indicates that the search is stuck (or has prematurely con-
verged) and requires new areas of the state space to be explored.

During the intensification and diversification phases,w will be calculated according to Equa-
tions 6-7 respectively. Each phase will last forphase length iterations of ACS (wherephase length
is a parameter).

4 Computational Experience

Twenty-one TSP problem instances are used to test both the control and the intensifica-
tion/diversification settings of the solver1. The control strategy is ACS without the explicit intensifica-
tion and diversification mechanism. These problems are from TSPLIB [11] and are given in Table 1.
The computing platform used to perform the experiments is a Sun Ultra 5. Each problem instance is
run across ten random seeds.

The ACS parameter settings are given in Table 2. The values of the parametersβ, γ, ρ, m and
q0 have been found to be robust by Dorigo and Gambardella [5]. Three thousand iterations per run
were used as this could be carried out in a reasonable amount of computational time while allowing
for the interplay between the intensification and diversification mechanisms. In order to test the effect
of the intensification/diversification parameters, three problems from the test set, eil51, kroA100 and
d198, have been run with varying levels ofintens, divers andphase length. intens anddivers
were given the levels of{100, 200, 500} while phase length had{10, 20, 100}. Each combination
of variable values were tested, giving 270 runs for each problem instance. A univariate analysis of
variance procedure with log-based transform on the dependent variable andα = 0.05 was used to
test if any statistical differences arose. The analysis showed that no significant variations occurred
for any of the variables or combinations thereof. This suggests that the intensification/diversification
parameters are fairly robust in terms of choices of values.

The results of the control and intensification/diversification strategies are shown in Tables 3 and
4. In order to describe the range of costs gained by these experiments, the minimum (denoted “Min”),
median (denoted “Med”), maximum (denoted “Max”) and Inter Quartile Range (denoted “IQR”) are
given. Non-parametric descriptive statistics are used as the data are highly non-normally distributed.
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Table 1.Problem instances used in this study.

Name Size (cities) Best-Known Cost
gr24 24 1272
fri26 26 937
swiss42 42 1273
hk48 48 11461
eil51 51 426
berlin52 52 7542
st70 70 675
eil76 76 538
kroA100 100 21282
bier127 127 118282
si175 175 21407
d198 198 15780
ts225 225 126643
gil262 262 2378
pr299 299 48919
lin318 318 42029
pcb442 442 50778
d493 493 35002
si535 535 48450
u574 574 36905
rat575 575 6773

Table 2.Parameter settings used in this study.

Parameter Value
β -2
γ 0.1
ρ 0.1
m 10
q0 0.9
intens 20
divers 200
phase length 200
iterations 3000

It is evident from the result tables that the control strategy is fairly consistent within problem in-
stances. For the smaller problems, it proves to be more effective than the intensification/diversification
strategy. However, for the larger instances, the intensification/diversification strategy (in a few cases
at least) seems to be able to break out of sub-optimal regions of space to find better solutions. To test
this statistically, a one tailed t test withα = 0.05 on normalised transformed data revealed that there

1 This software is available upon request from the author.
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Table 3.The results for the control strategy.

Problem Best-known CostMin Med Max IQR
gr24 1272 1272 1278 1336 5.25
fri26 937 937 955 961 0
swiss42 1273 1273 1307.5 1369 34
hk48 11461 11461 11509.5 11772 100
eil51 426 427 434.5 451 11.5
berlin52 7542 7542 7770 7961 207.75
st70 675 681 692.5 721 14.75
eil76 538 550 558 568 4.75
kroA100 21282 21292 21438 22659 839.25
bier127 118282 120637 123171 124039 903.5
si175 21407 23142 23322 23394 166
d198 15780 15972 16116.5 16311 93.25
ts225 126643 133055 134149.5 135523 784.75
gil262 2378 2430 2483.5 2532 56.25
pr299 48919 54441 55378 56332 825.5
lin318 42029 48172 48712.5 49383 645.25
pcb442 50778 61170 61658 62593 671.75
d493 35002 40989 41859 42250 509
si535 48450 54071 55375 56180 667
u574 36905 45801 46662.5 47457 752.75
rat575 6773 7965 8129 8242 138.75

was not a significant difference across the entire problem set. However, the larger problems (pr299
onwards) showed that intensification/diversification scheme produced significantly improved results
over the control strategy.

5 Conclusions

In order to find and explore promising regions of the state space, it is often necessary to use intensifi-
cation and diversification strategies. These strategies have been explicitly described in the tabu search
literature [7], however, many practical implementations of meta-heuristic search techniques tend not
to include these strategies, despite their potential benefits.

This paper described a method of incorporating intensification/diversification strategies into the
ACO meta-heuristic ACS. The approach used herein is considered systematic because it explicitly
utilises frequency information about solution elements to decide whether the search should concen-
trate on a particular region in state space or find another, more promising, region. In contrast to other
techniques it does not rely on randomness to achieve intensification and diversification. This approach
is consistent with tabu search long term memory techniques.

The results indicate that the intensification/diversification technique finds improved solutions
(over the control strategy) to many of the large problems. In addition, it was found that it produced
significantly better results for the largest problems. This is an encouraging initial result, however, the
strategy must be improved so that it is more uniformly effective.
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Table 4.The results of the intensification/diversification strategy.

Problem Best-known CostMin Med Max IQR
gr24 1272 1272 1278 1336 1
fri26 937 937 955 961 0
swiss42 1273 1273 1313.5 1369 35
hk48 11461 11461 11645.5 11876 207.75
eil51 426 427 435 455 12.25
berlin52 7542 7542 7801 8067 157.5
st70 675 682 698 721 12.75
eil76 538 551 558 570 8.5
kroA100 21282 21452 22107 23228 1041
bier127 118282 119721 121256.5 127380 4546.75
si175 21407 21757 23241 23394 940
d198 15780 16246 16400 16740 130.25
ts225 126643 129634 130802.5 138909 6647.75
gil262 2378 2564 2626.5 2715 64
pr299 48919 51751 53382 57295 3043
lin318 42029 45012 50260.5 51170 4325.5
pcb442 50778 53777 62305.5 63935 6212
d493 35002 36938 37695.5 43346 757.25
si535 48450 54071 55375 56180 667
u574 36905 39636 41556 47769 6795.25
rat575 6773 7509 7780 8322 631

In future, it will be interesting to study different mechanisms for triggering each of the intensifi-
cation and diversification phases. In the current implementation, an intensification or diversification
phase is forced onto the entire colony. It would be interesting to see the effect of allowing each ant to
control its own search intensity. Also, at the present time, each phase lasts for a fixed number of itera-
tions. It may be preferable to allow the phases to terminate if sufficient intensification/diversification
progress has been made. How this condition is judged is an open question. Once these issues have
been resolved, this technique will be empirically compared with other intensification/diversification
approaches.
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