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Abstract. Ant colony optimisation, like all other meta-heuristic search
processes, requires a set of parameters in order to solve combinatorial
problems. These parameters are often tuned by hand by the researcher
to a set that seems to work well for the problem under study or a standard
set from the literature. However, it is possible to integrate a parameter
search process within the running of the meta-heuristic without incurring
an undue computational overhead. In this paper, ant colony optimisation
is used to evolve suitable parameter values (using its own optimisation
processes) while it is solving combinatorial problems. The results reveal
for the travelling salesman and quadratic assignment problems that the
use of the augmented solver generally performs well against one that
uses a standard set of parameter values. This is attributed to the fact
that parameter values suitable for the particular problem instance can
be automatically derived and varied throughout the search process.

1 Introduction

Meta-heuristic search strategies, including tabu search, simulated annealing,
GRASP and ant colony optimisation (ACO), invariably require a set of param-
eters in order to solve combinatorial optimisation problems. These parameters
directly impact on the performance of the solver and as such, researchers and
practitioners will often “hand tune” parameter values before the application of
the production meta-heuristic or use a set of values that have been found to be
traditionally “good” by other researchers (i.e., a standard set).

Relatively little research has been conducted into either the analysis of pa-
rameter values or the ways in which they can be automatically derived or tuned
by meta-heuristics themselves. In this paper, ant colony optimisation is exam-
ined as it is an optimisation framework that has been successfully applied to a
range of combinatorial optimisation problems [3, 7]. ACO represents a group of
constructive meta-heuristics (often coupled with local search) that use collec-
tive intelligence present in insect colonies. The reader is referred to Dorigo and
Gambardella [5] and Dorigo and Di Caro [3] for an overview and background of
ACO. In this work, ant colony system (ACS) [5] is used as it is a robust and
reliable technique.

In regards to ACO studies in which parameters have been analysed, Col-
orni, Dorigo and Maniezzo [2], Dorigo and Gambardella [4], Dorigo, Maniezzo



and Colorni [6], Maniezzo and Colorni [9] and Shmygelska, Aguirre-Herndndez
and Hoos [13] have each compared and contrasted various parameter values on
particular problems (most notably the travelling salesman problem (TSP) and
quadratic assignment problem (QAP)) in order to derive suitable parameter sets.

In terms of automatic parameter adaptation, Ingber [8] developed an imple-
mentation known as Adaptive Simulated Annealing in which parameter values
are changed in a systematic manner throughout the search process. Pilat and
White [10] in their work used concepts from genetic algorithms in order to evolve
solution parameters for a constituent ACO technique, ant colony system. This
was developed as a “Meta ACS-TSP” that would run standard ACS within a
genetic algorithm that evolves solution parameters (a computationally expen-
sive exercise). Using this technique, they were able to suggest alternative good
parameter values to Dorigo and Gambardella [5] for ACS and the TSP.

The approach adopted within uses standard mechanisms of ant colony sys-
tem [5] to modify and to determine appropriate parameter values while problems
are being solved. Therefore, it is conceptually simple to integrate this approach
into an ant colony implementation (moreso than other search techniques, par-
ticularly iterative meta-heuristics). Another advantage is that ant based tech-
niques learn appropriate values for particular problem instances (without the
researcher /practitioner having to derive these manually). Additionally, it does
not add a significant computational overhead to the native algorithm (unlike,
for instance, that of Pilat and White [10]). The results show that good qual-
ity solutions are achieved for a range of TSP and QAP problem instances. The
remainder of the paper is organised as follows. The extensions that allow ACS
to evolve its own parameter values (using aspects of the native algorithm) are
given in Section 2. Computational experiments, using benchmark TSP and QAP
problem instances, are reported in Section 3. Finally, the future directions of this
work and conclusions are outlined in Section 4.

2 Evolving ACO Parameter Values

ACS can use the same mechanics for generating solutions to evolve appropriate
values for its parameters. Within ACS, the core parameters (apart from the
number of ants) are as follows. These are introduced and described in greater
detail by Dorigo and Gambardella [5].

— qo: This parameter determines whether the greedy or probabilistic form of
component selection equation is used by an ant at each step of the algorithm.
A low value will more likely result in the use of the probabilistic form of the
equation (and vice versa).

— p: The local pheromone updating factor.

— ~: The global pheromone updating factor.

— f: Is the relative importance placed on the visibility heuristic.

The standard ACS algorithm is augmented at each iteration by allowing
each ant to select a value for each parameter before commencing the selection



of the solution components. Thus each ant maintains its own parameter values
and in turn uses these to adapt the parameter values.! Additionally, a separate
pheromone matrix is kept so that the system may learn appropriate parameter
values. Selection of a particular value is based exclusively on its pheromone value,
as there is no heuristic analogue (such as the distance measure for the TSP) that
will determine the quality of a particular parameter value.

Local as well as global pheromone updates are used to adjust the parameter
pheromone levels. The «y (global pheromone decay) value of the ant that returns
the best quality solution is used in these equations.

Each parameter must be given a suitable range in which its values can lie. It
must be noted that the setting of the parameter bounds is not quite the same
as setting parameter values. The mechanics of the self-adaptation are designed
to quickly identify suitable regions and values for the problem being solved. Due
to the nature of the ACS equations, the parameters qo, p, v are bound between
the constant values of 0 and 1. Dorigo and Gambardella [5] have specified that
sensible values for 3 solving the TSP and QAP (as minimisation problems), range
between -5 and -1. The initial value of each parameter is chosen as the halfway
point in its range. The parameter pheromone matrix is specified as v(i, ), where
1 represents a particular parameter (1 < ¢ < V), j is the range of values and
V' is the number of parameters (four in this case). Naturally j is discretised
and is bounded between 1 and P. P is a constant the defines the granularity
of parameter values. The parameter division, w;, is chosen using analogues for
the solution component selection equations for v(4, 7). The actual value of each
parameter is then calculated according to Equation 1.

wj

P(Ui—lz’) 1<i<V (1)

pi =1li+
Where:

p; is the value of the i** parameter,

I; is the lower bound value of the i*® parameter,

w; is the discretised division chosen for the " parameter and
u; is the upper bound value of the i** parameter.

In terms of computational overhead, the use of this scheme adds little burden
to the existing ACS search process. As the number of parameters and parameter
divisions is fixed, the overall worst case complexity of the ant algorithm remains
unaffected.

3 Computational Experiments

The computing platform used to perform the experiments is a 2.6GHz Red Hat
Linux (Pentium 4) PC with 512MB of RAM.? Each problem instance is run
across ten random seeds. Two groups of experiments are performed, one using

! It would be also be possible to allow only one ant to modify parameter values.
2 The experimental programs are coded in the C language and compiled with gcc.



a control strategy (referred to as control) and the other using the solver that
evolves its own parameter values (referred to as evolveparam). The control strat-
egy simply allows the user to manually specify these values. In this case they
have been chosen as {f# = —2,7 = 0.1,p = 0.1,qo = 0.9} because these values
have been found to be robust by Dorigo and Gambardella [5]. The number of
ants, m, and the number of parameter value divisions, P, remain constant at 10
and 20 respectively in these experiments for both control and evolveparam.

3.1 Algorithm Implementation

The implementations for the TSP and QAP differ slightly due to their respective
problem definitions. Each problem, however, requires solutions to be permuta-
tions. The objective functions for the TSP and QAP are given by Equations 2
and 3 respectively.

N-1
Minimise Y d(x(i), z(i + 1)) + d(z(N), 2(1)) (2)

Where:

d(i,j) is the distance between cities ¢ and 7,
x(i) is the 3" city visited and
N is the number of cities.

M M
Minimse 3 a(i, 1)b(y(0), y(j) 3)

i=1 j=1
Where:

a(i, j) is the distance between locations ¢ and j,
b(i,j) is the flow between facilities i and j,

y(7) is the facility placed at location ¢ and

M is the number of facilities/locations.

The main differences between the two problems can be characterised by the
pheromone representation, visibility heuristic and the transition operators used
within the local search phase. The pheromone used for the TSP is given by 7(i, j)
where ¢ and j both represent cities (consistent with Dorigo and Gambardella [5]).
For the QAP, 7(k, 1) is used in which k represents the location and [ is the facility
assigned to the location (in accordance with Maniezzo and Colorni [9]).

For the visibility heuristic, the TSP uses the distance measure between the
current city and the potential next city. For the QAP, there are a number of
choices for this heuristic, such as the use of a range of approximation functions
and not using them at all [14]. The definition used here is given by Equation 4.

nw, ) = 3 ali,w)b(y(), ) (4)
=1
Where:



w is the current location and
Jj is the the potential facility to assign to y(w).

The local search phase is performed by each ant at every iteration of ACS.
The transition operators used for the TSP and QAP are inversion and 2-opt
respectively. These operators have been found by Randall and Abramson [11]
to provide good performance for these problems. For each operator, the entire
neighbourhood is evaluated at each step of the local search phase. The phase is
terminated when a better solution cannot be found, guaranteeing a local mini-
mum.

3.2 Problem Instances

Twelve TSP and QAP problem instances are used to test both the effectiveness
of the control and evolveparam strategies. These problems are from TSPLIB [12]
and QAPLIB [1] respectively and are given in Table 1.

Table 1. Problem instances used in this study. “Size” for the TSP and QAP is recorded
in terms of the number of cities and facilities/locations respectively

Name Size  Best-Known Name Size  Best-Known

Cost Cost
hk48 48 11461 nugl?2 12 578
eil51 51 426 nuglb 15 1150
st70 70 675 nug20 20 2570
eil76 76 538 tai2ba 25 1167256
kroA100 100 21282 nug30 30 3124
bier127 127 118282 tai3ba 35 2422002
d198 198 15780 ste36a 36 9526
ts225 225 126643 tho40 40 240516
gil262 262 2378 sko49 49 23386
pr299 299 48191 taib0a 50 4941410
1lin318 318 42029 skob6 56 34458
pcb442 442 50778 sko64 64 48498

3.3 Results

The results are grouped in terms of the problem type. Tables 2 and 3 each show
the results of the control and evolveparam strategies. A particular run of the
ACS solver is terminated when a maximum of 3000 iterations of the algorithm
has elapsed. This should give the ACS solver sufficient means to adequately
explore the search space of these problems. In order to report the results, non-
parametric descriptive statistics are used throughout. This is because the dis-
tribution of results is highly non-normal. The cost results are reported as the
relative percentage deviation (RPD) from the best known solution cost. This is
calculated as % x 100 where E is the result cost and F' is the best known
cost. The runtime is recorded as the number of CPU seconds required to obtain
the best solution within a particular run.



Table 2. The results of the control and the evolveparam strategies on the TSP in-
stances. Each result is given by a percentage difference (RPD) between the obtained
cost and the best known solution. Note that “Min”, “Med” and “Max” represent the
minimum, median and maximum respectively

control evolveparam

Problem Cost Runtime Cost Runtime

Min Med Max Min Med Max |Min Med Max Min Med Max
hk48 0 0.08 0.08 0.04 1.29 16.32 0 0.04 0.08 0.25 3.41 45.02
eil51 0.47 2 2.82 0.08 0.49 40.69 0 0.23 3.52 0.07 9.75 26.42
st70 0.15 1.33 2.07 36.39 43.48 87.56 0 0.89 4.15 8.59 34.9 144.02
eil76 0.19 1.3 2.42 0.08 70.23 114.73 0 0 1.12 2,52 24.58 73.21
kroA100 0 0 0.54 8.67 34.58 192.17 0 0.42 6.32 2.45 195.93 587.38

bier127 (0.32 0.72 1.87 58.64 253.21 855.28 |0.51 3.63 10.45 5.13 64.14 1248.73
d198 0.16 0.33 0.6 154.53 1723.34 2422.52 |0.44 1.69 6.59 10.05 1975.71 4378.37
ts225 0.63 1.15 1.93 513.65 3019.9 5484.59 1.9 3.53 10.84 11.48 611.94 9935.43
gil262 (0.63 2.02 2.65 404.07 1674.22 2726.53 |0.59 2.78 6.31 121.42 5566.07 19385.71
pr299 0.42 0.92 2.68 10139.87 10794.69 13470.37 |0.57 3.36 14.62 23.33 3209.58 19323.87
lin318 (1.39 1.92 3 10388.72 14185.36 16090.43 |2.19 6.27 15.24 36.11 6020.23 27762.95
pcb442 (3.11 3.53 4.39 26903.59 38445.9 57383.08 |2.33 12.1 13.13 63.4 199.06 52065.77

Table 3. The results of the control and the evolveparam strategies on the QAP in-
stances

control evolveparam

Problem Cost Runtime Cost Runtime

Min Med Max  Min Med Max |Min Med Max Min Med Max
nugl2 0 0 0 0 0.02 0.14 0 0 0 0 0 0.04
nuglb 0 0 0 0 0.04 0.38 0 0 0 0 0 0.01
nug20 0 0 0 0.02 0.11 2.54 0 0 0 0.02 0.11 7.12
tai2ba 0.4 0.63 0.89 2.56 14.45 47.33 0 0.65 1.66 0.09 21.17 50.07
nug30 0 0.07 0.39 1.59 26.79 100.71 0 0.07 0.39 0.27 11.7  32.19
tai3ba 0.9 1.34 1.58 84.35 154.21 239.59 |0.73 1.41 2.34 1.52 123.51 242.63
ste36a 0 0.39 0.8 33.76 117.47 246.01 0 0 1.6 0.32 63.84 220.34
tho40 0.01 0.16 0.38 16.57 167.27 340.83 0 0.19 1.13 1120.75 1265.13 1275.84
sko49 0.05 0.09 0.25 1.24 6.78 13.38 (0.05 0.11 0.35 14.74 113.35 480.7
taib0a 1.87 2.21 2.42 68.91 1060.15 1191.32 |1.91 2.18 2.75 1.3 187.79 802.48
sko56 0.02 0.24 0.55 178.62 734.91 1768.55 0 0.18 0.6 42.67 287.06 903.22
sko64 0 0.25 0.6 890.83 2362.08 3553.67 0 0.12 0.58 8.12 298.59 1039.06

The results reveal that overall, evolveparam produces very good results com-
pared to control on the QAPs and the smaller TSPs. While it sometimes finds
better solutions on the large TSPs (such as pcb442) than control, frequently
its average behaviour is not as good as control. Inspection of the runtimes for
both strategies shows there is no consistent advantage of using one approach
over another (i.e., evolveparam does not take considerably longer to run than
control).

It is interesting to note that the parameter values produced by evolveparam
often resemble those of Dorigo and Gambardella [5]. The characteristic values of
each parameter, in terms of both problems, are summarised as follows:

— go: The values were generally between 0.8 and 0.9 for the TSP with the value
0.85 being frequently encountered. However, for the QAPs, lower values,
between 0.2 and 0.5 were often evolved.



— B: Generally the range of values was between -2 and -2.5 (with -2.4 being
common) for the TSP, while the QAPs tended towards values between -1
and -1.5. Occasionally for both problems, the values would be in the range
-4.5 to -5.

— p and ~: Values for both parameters were generally in the range of 0.1 to
0.3. Occasionally, larger values (such as 0.85) would be produced for both
TSP and the QAP.

A characteristic of evolveparam for the larger TSPs is that the values tend
to converge to a stable set within approximately a hundred iterations of the al-
gorithm. However, the results for all the QAPs indicated that parameter values
were more likely to undergo changes throughout the search process. This corre-
lation between increased performance and the dynamic variation of parameter
values warrants further investigation. It would seem appropriate therefore to
apply an explicit diversification strategy to the selection of parameter values to
counter any premature convergence, particularly for TSPs.

4 Conclusions

Parameter tuning for meta-heuristic search algorithms can be a time consuming
and inexact way to find appropriate parameter values to suit various classes of
problems. An alternative approach has been explored in this paper in which
the algorithmic mechanics of ACS are used to produce and constantly refine
suitable values while problems are being solved. The results for the TSP and
QAP instances used to test this notion suggest that its performance, in terms
of solution costs and runtimes, is comparable to a standard implementation in
which values from Dorigo and Gambardella [5] are used. In fact the performance,
in terms of objective cost, is often an improvement over the control strategy.
This may be attributed to the new solver’s ability to tailor parameter values
to the problem instance being solved. It is important to note, however, that
the parameter values produced by the solver often resemble those of Dorigo
and Gambardella [5]. An interesting exercise would be to compare evolveparam
with a normal ACS that uses optimised parameters for each problem instance
to further test its performance.

A concern remains that, at times, the parameter values converge rapidly. This
was particularly so for the large TSPs. However, parameter values tended to vary
more considerably on the QAPs. This coincided with an increased performance
of evolveparam strategy over control. An extension to this work will be to apply
some form of intensification/diversification strategy so that a greater range of
values can be explored and/or limiting the pheromone trail values (as done in
MAX — MIN Ant System [15]). After these extensions are carried out, a more
quantitative analysis of the parameter values (and the way in which they change
throughout the search process) can be sensibly undertaken. Additionally, the
issue of dynamic colony sizes (i.e., varying the value of m, the number of ants)
is in the process of being investigated.
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