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Evolutionary Population Dynamics and Multi-Objective 
Optimisation Problems 

 
 

Abstract 
Problems for which many objective functions are to be simultaneously optimised are widely 
encountered in science and industry. These multiobjective problems have also been the 
subject of intensive investigation and development recently for metaheuristic search 
algorithms such as ant colony optimisation, particle swarm optimisation and extremal 
optimisation. In this chapter, a unifying framework called evolutionary programming 
dynamics (EPD) is examined. Using underlying concepts of self organised criticality and 
evolutionary programming, it can be applied to many optimisation algorithms as a controlling 
metaheuristic, to improve performance and results. We show this to be effective for both 
continuous and combinatorial problems. 
 
 
Keywords: Algorithms, Heuristics, Optimization Methods. 



INTRODUCTION  
 
Due to the large number of applications in science and industry, Multiobjective Optimisation 
using Evolutionary Algorithms (MOEAs) have been increasingly studied during the last 
decade (Coello Coello, Van Veldhuizen & Lamont, 2002; Deb, 2001; Zitzler, 1999). There 
are many issues to be resolved for effective use of MOEAs, such as developing new 
algorithms to obtain solutions with good diversity and convergence, designing metrics for 
measuring the quality of the achieved solutions, producing test functions in static and 
dynamic environments etc. Any new development in these areas is valuable for scientific and 
industrial applications. However, solving large scale problems with a large number of 
objectives is still a major challenge (Purshouse & Flemming, 2003; Deb, 2001).  
 
In this chapter, we outline the development and use of evolutionary population dynamics 
(EPD) as a metaheuristic for population-based optimisation algorithms. These include, but are 
not limited to, ant colony optimisation (ACO) (Dorigo, 1999), Extremal Optimisation (EO) 
(Boettcher & Percus, 2000) and Particle Swarm Optimisation (PSO) (Eberhart & Kennedy, 
1995). This approach can be applied to both continuous and combinatorial problems for 
single-valued and multiobjective problems. 
 
 

MULTIOBJECTIVE ORIENTED METAHEURISTICS 
 
As preliminary background, we describe three well-known metaheuristics: particle swarm 
optimisation, ant colony optimisation and extremal optimisation. The general mechanics of 
each method is briefly outlined along with how they have been applied to multiobjective 
optimisation.  
 

2.1 Particle Swarm Optimisation  
PSO is motivated from the simulation of social behaviour of animals (Eberhart & Kennedy, 
1995; Kennedy & Eberhart, 1995; Englebrecht, 2005). PSO is a population based technique, 
similar in some respects to evolutionary algorithms, except that potential solutions (particles) 
move, rather than evolve, through the search space. The rules, or particle dynamics, which 
govern this movement, are inspired by models of swarming and flocking. Each particle has a 
position and a velocity, and experiences linear spring-like attractions towards two guides: 
 

1. The best position attained by that particle so far (local guide), and  
2. The best position found by the swarm as a whole (global guide),  

 
where “best” is in relation to evaluation of an objective function at that position. The global 
guide therefore enables information sharing between particles, whilst the local guides serve as 
individual particle memories.  
 
The optimisation process is iterative.  At each iteration, the acceleration vectors of all the 
particles are calculated based on the positions of the corresponding guides. Then, this 
acceleration is added to the velocity vector, the updated velocity is constricted so that the 
particles progressively slow down, and this new velocity is used to move the individual from 
the current to the new position.  



 
Due to the success of particle swarm optimisation in single objective optimisation, in recent 
years more and more attempts have been made to extend PSO to the domain of multiobjective 
problems, see for example (Mostaghim & Teich, 2003; Alvarez-Benitez, Everson & Fieldsend, 
2005; Parsopoulos & Vrahatis, 2002; Mostaghim, 2005). The main challenge in 
multiobjective particle swarm optimisation (MOPSO) is to select the global and local guides 
such that the swarm is guided towards the Pareto optimal front and maintains sufficient 
diversity. In MOPSO, the set of non-dominated solutions must be used to determine the 
global guide for each particle. Selecting, or constructing, the guide from this set for each 
particle of the population is a very difficult yet important problem for attaining convergence 
and diversity of solutions. Several methodologies in MOPSO for selecting the global guide 
and their influences on the convergence and diversity of solutions are being explored 
(Fieldsend & Singh, 2002; Reyes-Sierra & Coello Coello, 2006; Mostaghim, 2005; Alvarez-
Benitez et al., 2005; Ireland, Lewis, Mostaghim & Lu, 2006).  
 
In the early stage of developing MOPSO algorithms, Parsopulos and Vrahatis (2002) 
modified the idea of VEGA - Vector Evaluated Genetic Algorithm - to MOPSO. Their 
algorithm was based on an aggregated objective function, changing the multiobjective 
problem to that of a single objective. Hu and Eberhart (2002) proposed a method in which 
only one objective was optimised at a time. Their method is efficient for problems with a low 
number of objectives and problems which are not sensitive to the order of objectives. 
Recently, most research in the area of MOPSO has concentrated on the selection of the global 
guide for each individual. Mostaghim and Teich (2003) introduced the Sigma method for 
guiding particles towards the Pareto-front, Ireland et al. (2006) have suggested an artificial, 
constructed guide, and Fieldsend and Singh (2002) use an elite archive. Coello Coello and 
Lechuga (2002) suggest using a random selection and a repository for saving the non-
dominated solutions. Alvarez-Benitez et al. (2005) have introduced a selection schema for 
solutions that dominate many particles for use as global guides. In recent work, the task of 
selecting the local guide has been demonstrated by Branke and Mostaghim (2006) to be as 
important as selecting the global guide.  
 
Practical application of MOPSO is in its early stages. There are a number of hybrid-MOPSO 
algorithms for solving real-world problems, for example Mostaghim and Halter (2006), and 
Parallel MOPSO has been proposed recently by Mostaghim, Branke and Schmeck (2006). For 
a more extensive treatment of MOPSO and PSO techniques in general, the reader is referred 
to Reyes-Sierra and Coello Coello (2006). 
 

2.2 Ant Colony Optimisation  
Ant Colony Optimisation (ACO) (Dorigo, 1999) is a population optimisation paradigm 
encompassing a range of metaheuristics based on the evolutionary mechanics of natural ant 
colonies. These techniques have been applied extensively to benchmark problems such as the 
travelling salesman problem (TSP), the job sequencing problem and the quadratic assignment 
problem (QAP). Work on more complex problems, that have difficult constraints in such 
areas as transportation and telecommunications, has also been undertaken (Dorigo, 1999). 
Like other evolutionary algorithms, populations of solutions evolve over time. The major 
difference is that ACO represents a set of constructive techniques, i.e., each ant at each step of 
the generalised algorithm adds a component (such as the next city for the TSP) to its solution. 
Using simulated chemical or pheromone markers as a collective form of self adaptation, 
populations produce increasingly better solutions.  



 
In terms of multiobjective optimisation, an illustrative sample of work will be surveyed here. 
A good overview of this topic is found in Garcia-Martinez, Cordon and Herrera (2007). In the 
main, ACO has been used to solve specific instances of multiobjective problems. These 
problems are from diverse areas, ranging from multi-dimensional TSPs and vehicle routing 
problems to sharemarket portfolio selection and planning water irrigation channels. While 
they have been tailored to these problems, the main theme has been the use of different 
colonies to optimise each objective function.  
 
Garcia-Martinez, Cordon and Herrera (2004, 2007) compare a number of published 
multiobjective ant colony optimisation (MOACO) methods on a single set of bi-criteria TSPs. 
These methods are from Mariano and Morales (1999), Iredi, Merkle and Middendorf (2001), 
Gambardella, Taillard and Agazzi (1999) and Doerner, Gutjahr, Hartl and Strauss (2004). For 
the first of these (named MOAQ), families of ants are used to optimise each objective. Each 
ant of the family learns from its same number in the preceding family. Additionally, infeasible 
solutions are penalised. Iredi et al. (2001) propose two methods they call BicriterionAnt and 
BicriterionMC. Both use different pheromone repositories for the two objective functions. 
The main difference is that the former allows its ants to update both repositories while the 
latter will update one or the other (at each step of an iteration). Doerner et al. (2004) use a 
variation on the idea of separate colonies in a scheme called COMPETants. After each 
iteration of the algorithm, the better performing colony gets a greater number of ants for the 
next generation. In contrast, the multiple ant colony system of Gambardella et al. (1999) uses 
a single pheromone matrix for the each colony, but uses multiple visibility heuristics.  
 
The results of Garcia-Martinez et al. (2004) indicate the MOACOs could return better sets of 
solutions (in terms of the Pareto-front) than other more specialised algorithms (specifically 
NSGA-II and SPEA2). Apart from COMPETants and MOAQ, the MOACOs performed 
equally well.  
 
Population ACO (PACO)i has also been used to solve multiple objective optimisation 
problems (Guntsch & Middendorf, 2003).  Rather than keeping separate colonies of ants for 
each objective function, PACO creates different sub-populations to update each of the 
pheromone matrices (one for each objective). A variation of this is Crowding PACO (CPACO) 
(Angus, 2006) in which a population, without sub-populations, is maintained. Each solution 
of the current population of ants is compared (in terms of solution quality) to a subset of the 
population.  Given that two solutions are approximately similar, the old population member 
will be replaced if the other dominates it. Using a set of bi-criteria TSPs, it was shown that 
that CPACO was able to outperform PACO. 
 
 

2.3 Extremal Optimisation  
EO is a relatively new metaphor for solving functional and combinatorial optimisation 
problems. It is based on the Bak-Sneppen model for self organising criticality (Bak & Tang, 
1987; Bak & Sneppen, 1993). To date only a limited number of combinatorial problems have 
been solved with this method. As it is relatively new in the field, compared to other 
techniques such as ACO, genetic algorithms (Goldberg, 1989) and PSO there exists wide 
scope to apply and extend this heuristic.  
 



Boettcher and Percus (1999, 2000, 2003) describe the general tenets of EO. Nature can be 
seen as an optimising system in which the aim is to allow competitive species to populate 
environments. In the course of the evolutionary process, successful species will have the 
ability to adapt to changing conditions while the less successful will suffer and may become 
extinct. This notion extends to the genetic level as well. Poorly performing genes are replaced 
using random mutation. Over time, if the species does not become extinct, its overall fitness 
will increase.  
 
As EO is an emerging metaheuristic, relatively little has been done on it in connection with 
multiobjective optimisation. Galski, de Sousa, Ramos and Muraoka (2007) present an EO 
algorithm to find the optimal design of a simplified configuration of a thermal control system 
for a spacecraft platform. The objectives are to minimise the difference between target and 
actual temperatures on radiation panels as well as to minimise battery heater power 
dissipation. Using EO, two possible solutions were found. As the authors combined both 
objectives into a single function, the designs were really only able to satisfy the first objective. 
Future designs will optimise both objectives using a Pareto-front approach. 
 
 

EVOLUTIONARY POPULATION DYNAMICS  
 
The optimisation process is, at its core, a process of gradual improvement. Some trial solution 
to a problem is proposed, measured against some objective scale, and algorithmic means 
applied to transform the solution to some ideal solution. It is a simple, but insightful, 
observation that the trial solution evolves. Early optimisation methods drew on a foundation 
of mathematical and geometric methods to search for particular solutions to systems of 
equations: the classical methods of gradient descent and direct search. In recent years 
practitioners have sought inspiration from nature, giving rise to such methods as genetic 
algorithms, evolutionary programming methods, swarm intelligence, ant colony algorithms 
and immune system simulation. Some of the most powerful heuristics are modelled on direct 
observation of the processes of evolution of species. Populations of solutions are manipulated 
to mimic evolutionary adaptation, in which species gradually become more suited to their 
environment or, to put it in optimisation terms, alter their characteristics (parameters) to 
become better adapted to the environmental pressures (objectives) imposed upon them.  
The evolutionary programming methods of Fogel (1962) are a simple, robust and highly 
parallel approach to implementing these concepts. This class of methods in evolutionary 
computation apply a random mutation to each member of a population, generating a single 
offspring. However, unlike several other approaches, no recombination operators are applied. 
Some form of selection takes place, and half the combined population of parents and 
offspring enter the next generation. It is important to note that this is a phylogenetically-
oriented approach: population members are considered as representative of species, not 
individual members within those species; hence the lack of recombination operators which 
mimic sexual reproduction.  
 
The theory of self-organised criticality can give additional insight into emergent complexity 
in nature. Bak (1996) contends that the critical state is “the most efficient state that can 
actually be reached dynamically”. Understanding “efficient” to mean “well-adapted”, this 
holds promise of another means to improve population fitness. In this state, a population in an 
apparent equilibrium evolves episodically in spurts, a phenomenon known as punctuated 



equilibrium. Local change may affect any other element in the system, and this delicate 
balance arises without any external, organising force.  
 
Key to understanding the mechanics of the method is the observation that evolution 
progresses by selecting against the few most poorly adapted species rather than by expressly 
breeding those species best adapted to their environment. So the algorithms derived by 
reference to Bak’s work do not have as their main aim the direct improvement of individual 
solutions, but the improvement of the population, as a whole, by removing poor solutions 
from it.  
 
Using these concepts, an algorithm has been developed: Evolutionary Programming using 
Self Organising Criticality (EPSOC). This proved to be quite successful when applied to a 
range of real-world optimisation problems (Lewis, Abramson & Peachey, 2003). Since 
EPSOC’s operation is basically to apply evolutionary population dynamics (EPD) to some 
population of solutions, and several contemporary multiobjective optimisation methods are 
based on manipulation of populations, potentially EPD could be applied as a controlling 
metaheuristic to improve their performance. In this work its application to ACO, EO and PSO 
is described, but it should be evident that it is equally applicable to a wide range of 
population-based algorithms.  
 
We first describe the mechanics of EPSOC, and then how the integration with other 
optimisation algorithms is achieved. 
 

3.1 EPSOC  
EPSOC (Lewis et al., 2003) is a relatively new metaheuristic that follows the method of Fogel 
(1962) but with an additional selection operator from the Bak-Sneppen model. The steps of 
the algorithm are given in Algorithm 1.  
 
Each set of values defining a trial solution is independent of all others. Therefore, the 
evaluation of trial solutions can be performed concurrently. Since the evaluation of the 
objective function generally dominates the execution time, extremely high parallel efficiency 
can be achieved.  
 
EPSOC is a straightforward implementation of the nearest-neighbour, punctuated equilibrium 
model as an optimisation algorithm. It is novel in that, by considering the trial solution 
vectors as defining a location in an n-dimensional space, the spatial behaviour of the model is 
realised naturally. The algorithm has a high degree of greediness as it maintains a large elite 
(in EPSOC, half the total population). This can be viewed as a constructive operator. It 
encourages gradual improvement in the better half of the population. Over time, the mutated 
population members move into the protected half of the population. Thus the median of the 
population moves toward better objective function values. 
 



Algorithm 1: The EPSOC algorithm  
1: Initialise a random, uniformly-distributed population, and evaluate each trial solution  
2: for a preset number of iterations do  
3:      Sort the population by objective function value  
4:      Select a set, B, of the worst members of the population. For each member of B, add to 

the set its two nearest neighbours in solution space that are not already members of the 
set, or from the best half of the sorted population  

5:      Reinitialise the solutions of the selected set, B. For all other members of the population, 
apply some (generally small) random, uniformly distributed mutation.  

6:      Evaluate each new trial solution.  
7:      For each of the trial solutions, if it has a better objective function value than its original, 

retain it.  
8: end for  
9: end 
 

3.2 Applying EPD  
The development of EPSOC allows us to investigate the use of standard metaheuristics (such 
as ACO, EO and PSO) as subservient heuristics to it. We aim to demonstrate that this hybrid 
approach may be used on a range of real-world problems.  
 
A large component of this work is the determination of the allocation of sufficient parallel 
computing resources to the hybrid components.  
 
To apply EPD it is, of course, necessary to have a subject population. For optimisation 
algorithms that are inherently population-based, such as ACOii and PSO, EPD can be directly 
applied to their internal population. This is conceptually illustrated in Figure 1. The 
algorithmic power of the subservient heuristic acts on the population and gradually improves 
it. It can be expected that the median of the population will tend to move toward generally 
“better” solutions. Simultaneously, EPD acts to remove the least fit solutions. By this means 
the motion of the population median, as a measure of the overall population fitness, will be 
accelerated, leading to faster convergence rates.  
 
However, if the method is not population-based, as with EO, a population on which EPD can 
act must be constructed. This is achieved by initiating a collection of several, independent 
searches using the sub-heuristic. The resulting “population” is subject to EPSOC’s 
evolutionary population dynamics and, at each iteration, each member of the population 
carries out a metaheuristic algorithm search for some number of internal iterations to deliver 
an improved solution. This hybrid approach is effectively a nested loop of the two individual 
methods. For the example considered here, using EO, both components of the hybrid use a 
user-specified, maximum iteration count for their termination criterion. The hybrid algorithm 
is thus simple, robust and easy to control. The conceptual operation of the hybrid (using EO 
as the example subservient heuristic) is illustrated in Figure 2. 
 



 
Figure 1: Functional structure of EPD applied to population-based methods  
 
 
EPD has been used to good effect in combination with EO (Randall & Lewis, 2006), applied 
to a single-objective problem. To extend this approach for application to multiobjective 
problems presents a further complication. EPD assumes the population is ranked by fitness – 
the least fit solutions will be replaced. However, in multiobjective optimisation, as previously 
stated, there are no single best and worst solutions. Correctly selecting poor solutions for 
elimination has a great impact on the convergence of algorithms and quality of solutions 
obtained. Here, we examine several techniques for applying EPD to multiobjective problems 
and therefore develop a new methodology to solve large scale multiobjective optimisation 
problems. 
 

 
Figure 2: Functional structure of EPSOC and EO hybrid (© 2006 IEEE) 
 
 

3.3 MOPSO and EPD  
One possible combination of MOPSO and EPD is shown in Algorithm 2. In order to find the 
poor particles in the population, a hypervolume metric can be used. This metric can, in fact, 
be any quantitative measurement for convergence and diversity of solutions. Hypervolume is 
the volume between a particle and a reference point in the objective space (Figure 3). For 
finding the poor solutions, the total hypervolume of the population is calculated by TotalHV = 
ComputeHyperVolume(Pt). Then the hypervolume of every single particle is computed as 
HVi and being compared to a threshold value called TH. This value can be set by using the 



TotalHV like one third of the total hypervolume. If a solution is categorised as poor that 
solution must be renewed (Step 3 in the Algorithm 2). The way a particle is renewed has a 
large impact on the solutions obtained. The two simple ways are:  
 

1. find a random new position for the particle. This is like adding a turbulence factor to 
the poor solutions.  

2. find a new position close to the particles in the Archive. 
 
 
Algorithm 2: MOPSO+EPD Algorithm  
1. Initialisation: Initialise population Pt, t = 0: 
2. Evaluation: Evaluate(Pt)  
3. Renew Poor Solutions: 
TotalHV = ComputeHyperVolume(Pt)  
for i = 1 to N do  
   HVi = ComputeHyperVolume ( )itx  
   if  HVi < TH then  
      Renew ( )itx   
   end if  
end for  
4. Update:  At+1 = Update(Pt, At)  
5. Move: Pt+1 = Move(Pt, At)  
6. Termination: Unless a termination criterion is met t = t + 1 and goto Step 2 
 
 

 
 
Figure 3: Total Hypervolume (totalHV) of the population and the Hypervolume of the 
particle i (HVi). “ref” indicates the reference point  
 
 
An alternative approach might be to use the Euclidian distance of the solution point from the 
Pareto-front. In Figure 4 point “A” can be considered to be a distance from the Pareto-front 
defined by the vector shown. If, for example, a weighted centroid guide particle method had 



been used in a MOPSO algorithm (Ireland et al., 2006), these distances would also be readily 
available for determining ranking, those points furthest from the Pareto-front being 
considered the “worst”.  
 
Finally, it may be possible to rank solutions by comparing them using some aggregated 
objective function (AOF) that provides a single measure of fitness. The use of simple, 
weighted-sum AOFs has been shown to have significant difficulties finding all Pareto-
dominant solutions, particularly for non-convex Pareto-fronts (Koski, 1985) and their use has 
been widely deprecated. However, since the solutions of particular interest are not the “best”, 
approximating the Pareto-front, but the “worst” these considerations should not have 
significant effect. Care should be taken to use an AOF of the form:  
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where αi are the solution variables, ωi are the preference weights, and s is a compensation 
factor allowing specification of the degree to which compromise solutions are preferred over 
those in which one objective excels to the exclusion of others (Scott & Antonsson, 2005), 
protecting such solutions from premature removal.  
 
Which of these various methods to use for specific problems remains an open question.  
 
There also remains the issue of what constitutes a “nearest neighbour” to the points selected 
for removal in step 4 of the EPSOC algorithm. Current practice has dictated that these 
neighbouring points be selected on the basis of Euclidian distance in parameter space, with 
the caveat that members of a large “archive” of preserved solutions – not the archive storing 
the approximation to the Pareto-front but a large set, often half the population, chosen by rank 
to make the algorithm greedy – not be removed. For application to multiobjective problems, 
this latter condition can be altered to protect the archive members only. Use of distance in 
objective space may also be worthy of consideration. 
 

 
Figure 4: Distance from Pareto-front to determine ranking 
 
 



COMPUTATIONAL EXAMPLE  
 
EPD has been successfully applied to EO solving combinatorial problems in single objectives 
(Randall & Lewis, 2006). In this experiment, multi-dimensional knapsack problem (MKP) an 
extension of the classical knapsack problem, was used as a test case. In it, a mix of items must 
be chosen that satisfy a series of weighting constraints whilst maximising the collective utility 
of the items. Equations 2-4 show the 0-1 ILP model.  
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ii xP
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  (2) 
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 { } Niixi ≤≤∀∈ 11,0  (4) 
 
where: xi is 1 if item i is included in the knapsack, 0 otherwise, Pi is the profit of including 
item i in the knapsack, N is the total number of items, wij  is the weight of item j in constraint i, 
M is the number of constraints, and bi is the total allowable weight according to constraint i.  
 
A number of standard MKP problem instances from the World OR-Library (Beasley, 2007) 
were used as test cases. The problem instance descriptions are given in Table 1.  
 

Problem Name  N  M  Optimal Value  
mknap1  6  10  3800  
mknap2  20  10  6120  
mknap3  28  10  12400  
mknap4  39  5  10618  
mknap5  50  5  6339  
mknap6  60  5  6954  

 
Table 1: MKP problem instance descriptions (© 2006 IEEE) 
 
These problem instances have been used in previous tests of Ant Colony Optimisation (ACO) 
algorithms (Randall, 2005). In those tests, the ACO algorithm was able to find the global 
optimum in 4 of the 6 cases, only achieving results of 12380 on mknap3 (0.2%) and 10137 on 
mknap4 (-4.5%). EO was used by itself, and allowed to run for 500,000 iterations, to ensure 
achieving the best solution of which the algorithm was capable. Best and median results 
obtained over a number of trials, and the average actual number of iterations required to 
obtain the results, are shown in Table 2. 
 



Problem Name Best result Iterations taken Median result Iterations taken 
mknap1  3800 9140  3800  9140 
mknap2  6040 166304 5980  7080 
mknap3  12180 161089 12180  161089 
mknap4  9083  287120 9022  197651 
mknap5  6097 172585 6003  31215 
mknap6  6650 119523 6583  169988 

 
Table 2: Test results for EO only (© 2006 IEEE) 
 
Using EO with EPD, loop counts for the nested loop were determined empirically, from 
preliminary experiments, and then set the same for all tests.  There is, perhaps, potential for 
tuning these parameters using self-adaptation (Meyer-Nieberg & Beyer, 2007). However, 
observation of the convergence history of the hybrid algorithm tends to suggest that the gains 
from this may not be great. A typical convergence profile (for mknap6) for 100 iterations of 
EPSOC using 1000, 5000 and 50,000 iterations of EO is shown in Figure 5. The overall shape 
of each trace is determined by the EPSOC component and shows generally rapid initial 
convergence, followed by stagnation. Tests of EEO using 1000 iterations of the EPSOC 
component showed no benefit from allowing it larger numbers of iterations. The effect of 
changing the number of iterations for the inner, EO, component is primarily apparent in the 
lower starting values for the traces - by allowing EO to search further, even the first iteration 
of the hybrid algorithm is improved. 
 

 
 
Figure 5: Convergence histories of EO with EPD for mknap6 (© 2006 IEEE) 
 
 
From Figure 5 it may be observed that the final result is obtained in less than 100 outer loop 
iterations for any number of inner loop iterations tested, i.e., using at most 100 iterations for 
the outer and at least 1000 for the inner loop would be adequate to achieve good results in 
minimal time. For this reason these limits were chosen for use for each of the test cases. The 
EPSOC component was given a population of 10 to manipulate, i.e., 10 simultaneous EO 
searches were executed on parallel computing resources at each iteration of the outer loop of 
the algorithm. The results achieved by the EO algorithm with EPD are given in Table 3. 
 



Problem Name  Value obtained  
mknap1  3800  
mknap2  6040  
mknap3  12210  
mknap4  10052  
mknap5  6107  
mknap6  6570  

 
Table 3: Test results of EO with EPD (© 2006 IEEE) 
 
Comparison of results showed that EO with EPD achieved equal or better results than EO 
alone on almost all tests cases (in one case it was slightly worse, with a difference of only 
1%). On all test cases EO with EPD also achieved its results in less time. On average, EO 
required 80% more time to obtain generally poorer results. The results using EO with EPD 
were also compared tests using unmodified ACO. EO with EPD was been found to deliver 
near-optimal results faster than the existing ACO algorithm, and the relative speed of the 
algorithm could be expected to improve for larger problem sizes. Further results of these 
experiments are given elsewhere (Randall & Lewis, 2006).  
 
The experiment described, using EPD with EO on the multi-dimensional knapsack problem, 
is analogous to applying EPD to a single-objective optimisation algorithm to solve a 
multiobjective problem using an aggregated objective function. As such, it may prove 
instructive for this approach to the solution of multiobjective optimisation problems. 
To illustrate the use of EPD with Pareto-dominance algorithms for the solution of multi-
dimensional problems a standard test problem (Zitzler, Deb & Thiele, 1999) was chosen. The 
objective functions were of the form: 
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where the choice of the h and g functions dictate the shape of the Pareto-front. For the 
experiment shown here:  
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which yields a convex Pareto-front. 
 
The dimension of parameter space, N, was 30. A swarm size of 100 was used and the Sigma 
selection method to determine the guide points. At each iteration of the MOPSO algorithm, 
points removed from the population by EPD were reinitialised by selecting a member from 
the archive and initialising a point randomly distributed in a region surrounding the location 
of the chosen archive member in parameter space.  
 
As the population evolves, non-dominated solutions accumulate in the archive. In a sense, the 
number of unique solutions in the archive, the “best” solutions found to date, is a measure of 



the quality of the algorithm’s output. This was found, in this case, to be the chief difference 
between a standard MOPSO algorithm run with identical conditions, and the MOPSO 
algorithm with EPD. Traces of the archive size for standard MOPSO and MOPSO with EPD 
are shown in Figure 6.  
 
When individual solutions in the archives of each algorithm were compared, their locations 
and objective function values were quite similar. As can be seen in Figure 5, in the early 
stages there is little to distinguish the performance of the two algorithms. However, MOPSO 
with EPD gradually starts to accumulate more archive members - more “good” solutions. As 
more and more points are transferred from “poor” areas closer to the evolving approximation 
to the Pareto-front, an increasing number find better solutions, enter the non-dominated set – 
the approximation to the Pareto-front – and are captured in the archive. Toward the end of the 
program’s execution, this trend rapidly accelerates, as MOPSO with EPD fills in more and 
more of the Pareto-front, yielding a more detailed description of its shape. 
 

 
 
Figure 6: History of archive size for standard MOPSO and MOPSO + EPD  
 
 
The previous examples show the use of EPD with the EO and MOPSO algorithms. Despite 
references to the “EPSOC algorithm” it should be noted that EPD is not a new algorithm, 
competing with other, state-of-the-art algorithms. It is, instead a novel, complementary 
technique that can be applied to these algorithms. To emphasise this point, the following 
example demonstrates application of EPD to the widely-used Non-dominated Sorting Genetic 
Algorithm, NSGA-II (Deb, Agrawal, Pratab & Meyarivan, 2000). 
 
NSGA-II sorts a population of solutions according to their degree of non-domination. That is, 
all non-dominated solutions in the population are given rank 1. Removing the rank 1 
individuals from consideration, those individuals that are non-dominated in the remainder of 
the population are given rank 2, and so on. Elitism is introduced by comparing the current 
population at each iteration with the previously-found, best, non-dominated solutions. 
Conventional processes of tournament selection, recombination and mutation are used to 
evolve the population. 
 



Since NSGA-II is a population-based algorithm, EPD can be applied directly to the subject 
population, as in the previous, MOPSO example. At each iteration, nbad of the lowest ranked 
population members are removed, along with their nearest neighbour in solution space. 
Nearest neighbours are avoided if they fall in the upper half of the ranked population, 
preserving the elitism of the parent algorithm. The removed individuals are replaced by new 
individuals initialised close to randomly chosen rank 1 individuals. 
 
This modified algorithm was compared with the un-modified code using five standard, 
multiobjective test problems (Deb et al., 2000). Details of the problem formulations are given 
in Table 4. All test case parameters were real-valued.  Each problem was run for 10 different, 
random seeds for both modified and original code. The number of iterations was limited to 50.  
 
Often plots showing several runs are confusing and misleading.  Sometimes it is impossible to 
pick out points from specific run in those plots. In order to illustrate the results of 10 runs, the 
best (first) and the median (fifth) attainment surfaces (Knowles, 2005) have been plotted. The 
results of multiple runs build up a set of points that can approximately represent the union of 
all goals achieved (independently) in the multiple runs. The best attainment surface is a 
collection of points which build a non-dominated set. The second attainment surface is a set 
of points which are weakly dominated by the first one. The median surface illustrates an 
average summary of the obtained results in 10 runs.  These attainment surfaces have been 
produced by diagonal sampling as in Knowles (2005). The attainment surfaces for the best 
results and median results obtained are plotted in Figures 7a-e and 8a-e, respectively.  
 
 

Name n Variable Bounds Objective Functions Type 
ZDT1 30 [0,1] 

€ 

f1(x) = x1  Convex 
    

€ 

f2(x) = g(x)[1− x1 /g(x)]  
    

€ 

g(x) =1+ 9( xi) /(n −1)
i= 2

n

∑  
 

     
ZDT2 30 [0,1]  

€ 

f1(x) = x1  non-convex 
    

€ 

f2(x) = g(x)[1− (x1 /g(x))
2]  

    
∑
=

−+=
n

i
i nxg

2
)1/()(91)(x  

 

     
ZDT3 30 [0,1] 

€ 

f1(x) = x1   
    

)]10sin(
)(

)(/1)[()(

1
1

2

x
g
x

gxgf i

π
x

xxx

−

−=
 

 

    

€ 

g(x) =1+ 9( xi) /(n −1)
i= 2

n

∑  
 

     
ZDT4 10  ]1,0[1 ∈x  

€ 

f1(x) = x1  non-convex 
  ]5,5[−∈ix  

€ 

f2(x) = g(x)[1− xi /g(x)]  



Name n Variable Bounds Objective Functions Type 
   ni ,...,2=  

)]4cos(10[

)1(101)(

2

2
i

n

i
i xx

ng

π−

+−+=

∑
=

x
 

 

      
ZDT6 10 [0,1] 

€ 

f1(x) =1− exp(−4x1)sin
6(4πx1) non-convex 

    

€ 

f2(x) = g(x)[1− ( f1(x) /g(x))
2] non-uniform 

   

€ 

g(x) =1+ 9[( xi ) /(n −1)]
0.25

i= 2

n

∑  
 

 
 
Table 4: The test problems used. All objective functions are to be minimised 
 
From the figures, it may be seen that the algorithm using EPD uniformly delivers better 
results than the un-modified algorithm. This is, however, for a limited number of iterations. If 
the two algorithms were allowed to run further, they were found to converge to essentially the 
same set of Pareto-optimal solutions. EPD appears to confer an advantage in that the set of 
solutions approximating the Pareto front more rapidly converge toward “reasonably good” 
solutions.  Thereafter, the unmodified algorithm catches up, as the algorithm with EPD does 
not refine the obtained solutions any more effectively. 
 
These results are similar to those found in previous applications of the EPSOC algorithm, for 
example, to a bin-packing problem (Mathieu, 2005). They suggest that hybridisation of 
algorithms using EPD with local search techniques may be quite profitable, though this 
remains a topic for future investigation. 



 

 
Figures 7a and 7b: Best results for ZDT1 and ZDT2 respectively 
 

 
Figures 7c and 7d: Best results for ZDT3 and ZDT4 respectively 
 

 
Figures 7e: Best results for ZDT6 
 



 
 
Figures 8a and 8b: Median results for ZDT1 and ZDT2 respectively 
 
 

 
Figures 8c and 8d: Median results for ZDT3 and ZDT4 respectively 
 

 
 
Figures 8e: Median results for ZDT6 
 



 

CONCLUDING REMARKS AND FUTURE RESEARCH DIRECTIONS 
 
The use of evolutionary population dynamics (EPD) as a controlling metaheuristic for 
population-based optimisation algorithms is a recent development. As briefly outlined in this 
chapter, there are a number of open questions regarding the most effective means for its 
application. This work has sought to describe some of the fundamental concepts underpinning 
this novel paradigm, the rationale behind its use, and some practical suggestions for its 
implementation. Some of the potential benefits of its use – better solutions derived more 
rapidly – have been demonstrated from preliminary experimental results. As has been shown, 
this concept can be applied to both continuous and combinatorial problems for single-valued 
and multiobjective problems. While designed for use with population-based algorithms, a 
suggested methodology for applying the concept to other types of algorithms has also been 
described, and its efficacy demonstrated.  
 
This is a newly emerging approach and, while early results have been very encouraging, 
considerable work remains to examine and understand the performance, emergent behaviour 
and expected outcomes of its use in an expanding range of applications. EPD therefore has a 
great scope for further improvement and refinement.  We believe that the following lines of 
investigation could prove profitable: 
 

• Methods of selection of “poor” solutions for removal – As outlined in the body of the 
chapter, three alternatives can be envisaged: 
1. Comparison using hypervolume metrics 
2. Measurement of Euclidean distance to the Pareto-front (or some “Utopia Point”, as 

utilised in several performance metrics) 
3. Ranking of solutions by use of an Aggregated Objective Function (AOF) 
In addition to these three, the ranking methods of the algorithms themselves can be 
used. For example, NSGA-II sorts individuals in its population by means of degree of 
domination. This ranking was implicitly used in the computational experiments 
applying EPD to NSGA-II described. 

• Methods for determination of “nearest neighbours” – during selection of solutions for 
removal - At present a large (half the entire population) subset of solutions is protected 
from removal as part of the greedy elitism. The effect of reducing this to members of 
the archive approximating the Pareto optimal set, across a range of algorithms and test 
problems, has yet to be determined. 

• Methods of re-initialisation of points removed from the population at each iteration by 
the application of EPD – The experiments described here use simple methods of 
random re-initialisation of trial solutions in regions “close” to known, good solutions. 
These approaches were chosen on the basis of limited, empirical comparison with 
uniformly random re-initialisation. More sophisticated approaches, and a more 
systematic comparison of emergent behaviour, may prove beneficial. 

• The possible benefits of the use of self-adaptation – Self adaptation is when an 
algorithm optimises its own control parameters while it is solving a problem.  In the 
case of EPD, the possible parameters for include the number of iterations of inner and 
outer loops; number of nbad trial solutions to be removed (where appropriate); and the 
number of neighbouring points. 



• The hybridisation of EPD-manipulated algorithms with techniques of local search –   
This promises significant advantages in a number of areas, particularly in achieving 
computational efficiency. 
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i PACO uses a population of solutions to derive its pheromone matrix, rather than directly from the solution 
components. 
ii In terms of ACO, PACO and its variants are the most suitable for EPD. This is because we can apply its 
mechanisms to the population of pheromone deriving solutions. 


