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Ant Colony Optimisation is a relatively new class of meta-heuristic search

techniques for optimisation problems. As it is a population based technique

that examines numerous solution options at each step step of the algorithm,

there are a variety of parallelisation opportunities. In this paper, several

parallel decomposition strategies are examined. These techniques are ap-

plied to a speci�c problem, namely the travelling salesman problem, with

encouraging speedup and eÆciency results.
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1. INTRODUCTION

Ant Colony Optimisation (ACO) is a constructive population based meta-heuristic

search technique. As it is a relatively recent addition to the meta-heuristic litera-

ture, its development as a standard optimisation tool is still in its infancy. Many

aspects require considerable research e�ort. One of these is the application of paral-

lelisation strategies in order to improve its eÆciency, especially for large real world

1The authors would like to acknowledge two organisations. The computational experiments

were performed on the IBM SP2 operated by the Queensland Parallel Supercomputing Foundation.

This research was funded by the Australian Research Council.
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problems. This paper classi�es some general parallelisation strategies for ACO and

describes the application of these to the travelling salesman problem (TSP).

This paper is organised as follows. Section 2 gives a brief overview of ACO

meta-heuristics. Section 3 describes some general purpose parallelisation strate-

gies suitable for ACO while Section 4 describes our parallel implementation that

solves the TSP. The results are outlined in Section 5 and conclusions are drawn in

Section 6.

2. OVERVIEW OF ACO

There are numerous ACO meta-heuristics including Ant System,MAX �MIN

Ant System and Ant Colony System (ACS) [3]. The ACS search technique is used

to implement our test programs as it is representative of these di�erent approaches.

ACS can best be described by using the TSP metaphor. Consider a set of cities,

with known distances between each pair of cities. The aim of the TSP is to �nd the

shortest path to traverse all cities exactly once and return to the starting city. The

ACS paradigm is applied to this problem in the following way. Consider a TSP with

N cities. Cities i and j are separated by distance d(i; j). Scatter m virtual ants

randomly on these cities (m � N). In discrete time steps, allow each virtual ant

to traverse one edge until all cities are visited. Ants deposit a substance known as

pheromone to communicate with the colony about the utility of the edges. Denote

the accumulated strength of pheromone on edge (i; j) by �(i; j).

At the commencement of each time step, Equations 1 and 2 are used to select

the next city s for ant k currently at city r. Note: q 2 [0; 1] is a uniform random

number and q0 is a parameter. To maintain the restriction of unique visitation, ant

k is prohibited from selecting a city which it has already visited. The cities which

have not yet been visited by ant k are indexed by Jk(r).

s =

�
argmaxu2Jk(r)

�
�(r; s) � [d(r; s)]�

	
if q � q0

Equation 2 otherwise
(1)

pk(r; s) =

8<
:

�(r;s)[d(r;s)]�P
u2Jk(r)

�(r;u)[d(r;u)]�
if s 2 Jk(r)

0 otherwise
(2)

It is typical that the parameter � is negative so that shorter edges are favoured.

�(r; s) ensures preference is given to links that are well traversed (i.e. have a high

pheromone level). Equation 1 is a highly greedy selection technique favouring cities

which possess the best combination of short distance and large pheromone levels.

Equation 2 balances this by allowing a probabilistic selection of the next city.

The pheromone level on the selected edge is updated according to the local up-

dating rule in Equation 3.

�(r; s)  (1� �) � �(r; s) + � � �0 (3)

Where:
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� is the local pheromone decay parameter, 0 < � < 1.

�0 is the initial amount of pheromone deposited on each of the edges. According

to Dorigo and Gambardella [4], a good initial pheromone is �0 = (NLnn)
�1 where

Lnn is the cost produced by the nearest neighbour heuristic.

Upon conclusion of an iteration (i.e. all ants have constructed a tour), global

updating of the pheromone takes place. The edges that compose the best solution

to date2 are rewarded with an increase in their pheromone level. This is expressed

in Equation 4.

�(r; s)  (1� 
) � �(r; s) + 
 ���(r; s) (4)

Where:

��(r; s) is used to enforce the pheromone on the edges of the solution (see

Equation 5). L is the length of the best (shortest) tour to date while Q is a

constant that is usually set to 100 [5].

��(r; s) =

�
Q

L
if (r; s) 2 globally best tour

0 otherwise.
(5)


 is the global pheromone decay parameter, 0 < 
 < 1.

The basic operation of ACS is described by the pseudocode in Figure 1.

3. GENERAL PARALLELISATION STRATEGIES

Despite the fact that ACO is an inherently parallelisable search technique on

a number of levels, little research has been conducted on this aspect apart from

Bulnheimer, Kotsis and Strau� [2], St�utzle [14] and Michel and Middendorf [9].

The former work is a preliminary investigation of parallelism at the ant (agent)

level. However, the authors did not implement their system on a parallel archi-

tecture. Hence, it is diÆcult to determine the eÆciency of their parallelisation

scheme. St�utzle [14] describes the simplest case of parallelisation, that of parallel

independent ACO searches that do not interact. Michel and Middendorf [9] de-

scribe an island model (adapted from genetic algorithms) in which separate ant

colonies exchange trail information.

In this section, �ve possible parallelisation strategies for ACO meta-heuristics

are described. All of these, except for Parallel Independent Ant Colonies, are based

on the well-known master/slave approach [6] and are hence appropriate for the

widely popular MIMD (Multiple Input, Multiple Data) machine architectures [8]. In

addition, a standard tool such as the MPI (Message Passing Interface) library can be

used to program the ACO engine, ensuring cross platform compatibility. Methods

2, 4 and 5 are new for ACO. In considering di�erent parallel techniques, it must be

2This is known as the global-best [4] scheme. An iteration-best scheme, where the edges of the

best solution in the current colony of ants is used, is also possible.
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Initialise pheromone on all edges;

While (stopping criterion is not met)

Deposit each ant on a random city such that no two

ants are placed on the same city;

For(the number of cities)

For(each ant)

Choose the next city to visit according to

Equation 1;

End For;

For(each ant)

Update the pheromone on each edge according

to Equation 3;

End For;

End For;

If the best tour from this iteration is better than the

glabally best tour Then set this is the globally best

tour;

Reinforce the pheromone of the edges belonging to the

globally best tour according to Equation 4;

End While;

Output the globally best tour and cost;

FIG. 1. Pseudocode of ACS applied to the TSP.
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noted that parallel performance can be degraded when there is large communication

overhead between processors. All of the methods assume a distributed rather than

shared memory system, as these architectures are more common [6]. However,

as ACO systems typically use global memory structures (such as the pheromone

matrix), a shared memory machine would mean a lot less communication and a

corresponding increase in parallel performance.

3.1. Parallel Independent Ant Colonies

For this approach, a number of sequential ACO searches are run across available

processors. Each colony is di�erentiated on the values of key parameters. While any

of the parameters can be varied across the processors, random seed would be the

clear choice. The advantage of this method is that no communication is required

between the processors. This is a naive approach that can be run as a number of

sequential programs on an MIMD machine/cluster of workstations.

3.2. Parallel Interacting Ant Colonies

This approach is similar to the method above, except that at given iterations, an

exchange of information between the colonies occurs. The pheromone structure of

the `best' performing colony is copied to the other colonies. The question becomes

one of de�ning the best performing colony, as a number of di�erent measures could

be used. The communication cost for this method can be quite high due to the

necessity of broadcasting entire pheromone structures, which can be large for many

problems.

3.3. Parallel Ants

In this approach, each ant (slave) is assigned a separate processor with which

to build its solution. In the case that m > P , clustering a number of ants on

each processor is required. The master processor is responsible for receiving user

input, placing the ants at random solution starting points, performing the global

pheromone update and producing the output. It may also act as a slave in order

to ensure a more eÆcient implementation.

This technique has a moderate communication overhead. The largest component

is the maintenance of the separate pheromone structures. After the completion of

each step of the algorithm, each ant must send an update to each copy of � in order

to satisfy the local pheromone updating rule.

3.4. Parallel Evaluation of Solution Elements

At each step of the algorithm, each ant examines all of the available solution

elements before selecting one. This can be quite a computationally expensive oper-

ation especially if constraints need to be assessed. As each of the solution elements

are independent of one another, they can be evaluated in parallel. Therefore, each

slave processor is assigned an equal number of solution elements to evaluate. This

is suitable for highly constrained problems.

This approach has been used extensively in the parallelisation of tabu search, see

Randall and Abramson [11].
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3.5. Parallel Combination of Ants and Evaluation of Solution

Elements

Given that enough processors are available, a combination of the previous two

strategies is possible. In this case, each ant is assigned an equal number of processors

(a group). Within each group, a group master is responsible for constructing the

ant's tour and delegating the evaluation of the solution elements to each of the

group's slaves. For instance, given ten ants (as commonly used in ACS [4]) and

two processors per ant group, this equates to 20 processors. For modern parallel

machines, this is not an unreasonable requirement.

4. APPLICATION TO THE TSP

In this paper, one of the aforementioned parallelisation schemes on TSP, namely

the Parallel Ants scheme is empirically evaluated. Only this scheme is used be-

cause of the following reasons. It is believed that the communication overhead for

Parallel Interacting Ant Colonies will be too large for the TSP. However, for other

problems such as the network synthesis problem (see Randall and Tonkes [12]),

that have much smaller pheromone structures, this technique would be more ap-

propriate. The Parallel Evaluation of Solution Elements technique (and hence the

Parallel Combination of Ants and Evaluation of Solution Elements technique) is

only e�ective if the cost of the evaluation of an element is high (i.e. the computa-

tion is expensive and/or there are numerous and diÆcult constraints to evaluate),

which is not the case for the TSP. Again, the network synthesis problem would

bene�t from this approach.

Figures 2 and 3 describe the master's and the slaves' activities and communication

using pseudocode respectively for the Parallel Ants scheme. Note, the terms `ant'

and `slave' are used interchangably throughout the remainder of this paper. In

this algorithm, each processor simulates one ant and maintains its own copy of

the pheromone matrix which is incrementally updated throughout the run. This

is done to ensure a minimal amount of communication. However, it is anticipated

that the bulk of the communication overhead will be in the pheromone updates.

5. COMPUTATIONAL EXPERIENCE

A number of TSP problem instances have been selected with which to test the

ACS engine. These problems are from TSPLIB [13] and are given in Table 1.

These problems are run using the set of parameters given in Table 2 as these

have been found to give good performance in Dorigo and Gambardella [4] and

Dorigo, Maniezzo and Colorni [5]. The computer platform used to perform the

experiments is an IBM SP2 consisting of 18 RS6000 model 590 processors with a

peak performance of 266 MFLOPS per node. At most eight dedicated processors

are available for parallel computation on this machine.

The guidelines for reporting parallel experiments as outlined in Barr and Hick-

man [1] are followed. The most common measure of e�ectiveness of a parallel

algorithm is given by speedup. Speedup is de�ned by Equation 6.
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Get user parameters(�; q0; 
; �; seed);

Broadcast (�; q0; 
; �; seed) to each ant;

Lnn =Calculate the nearest neighbour cost;

�0 = (NLnn)
�1;

Broadcast �0 to each ant;

Broadcast the d matrix and N to each ant;

While (termination condition not met)

Deposit each ant on a random city such that no two

ants are placed on the same city;

Send each initial city to each ant;

For (each city)

Receive each ant's next city and add to the colony solution;

Update the pheromone matrix using the local update rule;

Broadcast m pheromone updates (i; j; �i;j) to each ant;

End For;

Receive the cost of each ant's solution;

iteration best cost =Determine the best solution

cost from each the current colony;

If (iteration best cost < best cost)

best cost = iteration best cost;

End If;

Update the pheromone matrix using the global update rule;

Broadcast N pheromone updates to each ant;

Determine if the termination condition is met and broadcast

to each ant;

End While;

End.

FIG. 2. The pseudocode for the master processor applied to the TSP for the Parallel Ants

strategy.
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Receive (�; q0; 
; �; seed) from the master;

Receive �0 from the master;

Receive the d matrix and N from the master;

Initialise the pheromone matrix with �0;

While (termination condition is not met)

initial city = city =receive the initial city

from the master;

For (each city)

next city =choose the next city according to

Equation 1;

Send next city to the master;

cost = cost+ dcity;next city;

city = next city;

End For;

cost = cost+ dnext city;initial city;

Send cost to the master;

Receive the pheromone update from the master;

Receive the termination information signal from

the master;

End While;

End.

FIG. 3. The pseudocode for the slave processors applied to the TSP for the Parallel Ants

strategy.
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TABLE 1

Problem instances used in this study.

Name Size (cities) Best-Known Cost

gr24 24 1272

st70 70 675

kroA100 100 21282

kroA200 200 29368

lin318 318 42029

pcb442 442 50778

rat575 575 6773

d657 657 48912

TABLE 2

Parameter settings used in this study.

Parameter Value

� -2


 0.1

� 0.1

m 2 . . . 8

q0 0.9

iterations 1000

speedup =

Time to solve a problem with the fastest serial

code on a speci�c parallel computer

Time to solve the same problem with the parallel

code using P processors on the same computer

(6)

According to Barr and Hickman, average values should not be used in Equation 6

and would require a new de�nition of speedup. As a result, only one seed per prob-

lem instance (and processor grouping for Method 4 and 5) is used. The numerator

of Equation 6 is measured by CPU time whereas the denominator is measured by

wall clock time. The eÆciency of the parallel code is computed by Equation 7.

efficiency =
speedup

P
(7)

The results are outlined in Table 3. For the small problems, parallelisation is

ine�ective and counterproductive as the amount of communication means that the

real time spent by the parallel code far exceeds the serial code. However, there is

a steady (near linear) increase in the parallel eÆciency when more processors are
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added and the problem size is increased. Problems having over 200 cities receive

bene�t from the parallelisation scheme.

TABLE 3

Parallel speedup and eÆciency results. The �rst entry in each

cell is speedup while the second is eÆciency.

Problem P

2 3 4 5 6 7 8

gr24 0.08 0.06 0.07 0.07 0.07 0.06 0.06

0.04 0.02 0.02 0.01 0.01 0.01 0.01

st70 0.27 0.21 0.23 0.24 0.23 0.21 0.21

0.13 0.07 0.06 0.05 0.04 0.03 0.03

kroA100 0.41 0.32 0.37 0.38 0.37 0.34 0.33

0.2 0.11 0.09 0.08 0.06 0.05 0.04

kroA200 0.82 0.84 0.85 0.92 0.92 0.91 0.9

0.41 0.28 0.21 0.18 0.15 0.13 0.11

lin318 1.2 1.44 1.44 1.59 1.61 1.53 1.58

0.6 0.48 0.36 0.32 0.27 0.22 0.2

pcb442 1.42 1.62 1.93 2.18 2.31 2.31 2.35

0.71 0.54 0.48 0.44 0.38 0.33 0.29

rat575 1.56 1.78 2.1 2.55 2.77 3.02 3.08

0.78 0.59 0.52 0.51 0.46 0.43 0.38

d657 1.67 1.95 2.32 2.89 3.25 3.29 3.3

0.83 0.65 0.58 0.58 0.54 0.47 0.41

Figure 4 graphically shows the speedup using six processors. While by many

measures speedup is rather poor, the graph and Table 3 show that speedup > 1 is

achieved for problems lin318 and above, with a maximum speedup of 3.3. Speedup

and eÆciency increase as problem size increases. Hence for large problems, this

parallelisation strategy could be used to decrease the amount of real time required.

6. CONCLUSIONS

The most appropriate parallelisation technique is ultimately dependent upon the

nature of the problem being solved. For problems in which most computational

e�ort is concentrated in the evaluation of the solution elements, methods 3,4 and 5

are appropriate. Problems like the TSP in which each of the solution elements may

be easy to compute, yet each solution contains many such elements, method 3 would

be suitable. For those problem having a small pheromone structure, method 2 is a

viable alternative. The above rules are only a guide to the parallelisation of ACO

meta-heuristics and as such, a more formal and generic set should be investigated.

In this paper, the Parallel Ants scheme in which ants construct tours in parallel

has been evaluated. A master ant is used to co-ordinate the activities of the colony.

This scheme is conceptually simple and suitable for the popular MPI model on

MIMD architectures. The results showed that acceptable speedup and eÆciency

can be achieved for larger problems (N > 200). However, one of the disadvantages
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FIG. 4. Speedup on each problem using six processors.

to this scheme is the large amount of communication required to maintain the

pheromone matrix.

Parallel eÆciency would improve if the algorithm incorporated a larger parallelis-

able component. For instance, each ant could add a local search phase at the end of

the construction of their tour. Another way is to use a shared memory computer.

Our future work will concentrate on minimising (both absolutely and relatively) the

amount and frequency of this communication. We are also investigating candidate

list strategies [10] in order to reduce the number of solution elements examined

by each ant at each step. Candidate list combined with e�ective parallelisation

strategies should yield e�ective ACO problem solvers.

At the present time, our parallel code only allows for one ant per processor.

In future versions, the number of ants will be scaled to the number of available

processors. For instance, if there are ten ants but only �ve available processors,

each processor will simulate two ants.
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