Bond University
 Research Repository

Exercise for overweight or obesity

Shaw, K; Gennat, H; O'Rourke, P; Del Mar, C

Published in:
Cochrane Database of Systematic Reviews

DOI:
10.1002/14651858.CD003817.pub3

Published: 01/01/2006

Document Version:
Publisher's PDF, also known as Version of record

Link to publication in Bond University research repository.

Recommended citation(APA):
Shaw, K., Gennat, H., O'Rourke, P., \& Del Mar, C. (2006). Exercise for overweight or obesity. Cochrane Database of Systematic Reviews, (4), 1-112. [CD003817]. https://doi.org/10.1002/14651858.CD003817.pub3

[^0]For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository coordinator.

Bond University

ePublications@bond

Exercise for overweight or obesity (Review)

Kelly A. Shaw
University of Tasmania
Hani C. Gennat
University of Tasmania
Peter O'Rourke
University of Queensland
Chris Del Mar
Bond University, chris_del_mar@bond.edu.au

Follow this and additional works at: http:// epublications.bond.edu.au/hsm_pubs
Part of the Analytical, Diagnostic and Therapeutic Techniques and Equipment Commons

Recommended Citation

Kelly A. Shaw, Hani C. Gennat, Peter O'Rourke, and Chris Del Mar. (2006) "Exercise for overweight or obesity (Review)" Cochrane Database of Systematic Reviews, (4), Art No. CD003817.
http://epublications.bond.edu.au/hsm_pubs/50

Exercise for overweight or obesity (Review)

Shaw K, Gennat H, O'Rourke P, Del Mar C

THE COCHRANE COLLABORATION ${ }^{\circledR}$

This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2007, Issue 2

> http://www.thecochranelibrary.com

TABLEOFCONTENTS

ABSTRACT 1
PLAIN LANGUAGE SUMMARY 1
BACKGROUND 2
OBJECTIVES 2
CRITERIA FOR CONSIDERING STUDIES FOR THIS REVIEW 3
SEARCH METHODS FOR IDENTIFICATION OF STUDIES 3
METHODS OF THE REVIEW 3
DESCRIPTION OF STUDIES 4
METHODOLOGICAL QUALITY 6
RESULTS 6
DISCUSSION 8
AUTHORS' CONCLUSIONS 9
NOTES 9
POTENTIAL CONFLICT OF INTEREST 9
ACKNOWLEDGEMENTS 9
SOURCES OF SUPPORT 10
REFERENCES 10
TABLES 16
Characteristics of included studies 16
Characteristics of excluded studies 38
ADDITIONAL TABLES 40
Table 01. Search Strategy 40
Table 02. Original data for all outcomes 43
Table 03. Summary of Main Findings from Comparisons for Each Outcome 60
ANALYSES 63
Comparison 01. Exercise versus no treatment control 63
Comparison 02. Exercise versus diet 63
Comparison 03. Exercise + diet versus diet alone 63
Comparison 04 . High versus low intensity exercise with dietary change 64
Comparison 05 . High versus low intensity exercise without dietary change 64
INDEX TERMS 64
COVER SHEET 65
GRAPHS AND OTHER TABLES 66
Figure 01. 66
Analysis 01.01. Comparison 01 Exercise versus no treatment control, Outcome 01 Weight change in kilograms 67
Analysis 01.02 . Comparison 01 Exercise versus no treatment control, Outcome 02 Change in body mass index (BMI) 67
Analysis 01.03 . Comparison 01 Exercise versus no treatment control, Outcome 03 Change in systolic blood pressure 67(mmHg)
Analysis 01.04 . Comparison 01 Exercise versus no treatment control, Outcome 04 Change in diastolic blood pressure 68
(mmHg)
Analysis 01.05 . Comparison 01 Exercise versus no treatment control, Outcome 05 Change in total serum cholesterol 68
($\mathrm{mmol} / \mathrm{l}$)
Analysis 01.06. Comparison 01 Exercise versus no treatment control, Outcome 06 Change in serum triglycerides 69
($\mathrm{mmol} / \mathrm{l}$)
Analysis 01.07. Comparison 01 Exercise versus no treatment control, Outcome 07 Change in serum HDL ($\mathrm{mmol} / \mathrm{l}$) 69
Analysis 01.08 . Comparison 01 Exercise versus no treatment control, Outcome 08 Change in fasting serum glucose 70
($\mathrm{mmol} / \mathrm{l}$)
Analysis 02.01. Comparison 02 Exercise versus diet, Outcome 01 Weight change in kilograms 70
Analysis 02.02 . Comparison 02 Exercise versus diet, Outcome 02 Change in body mass index (BMI) 71
Analysis 02.03 . Comparison 02 Exercise versus diet, Outcome 03 Change in systolic blood pressure (mmHg) 71
Analysis 02.04 . Comparison 02 Exercise versus diet, Outcome 04 Change in diastolic blood pressure (mmHg) 72
Analysis 02.05 . Comparison 02 Exercise versus diet, Outcome 05 Change in total serum cholesterol ($\mathrm{mmol} / \mathrm{l}$) 72
Analysis 02.06 . Comparison 02 Exercise versus diet, Outcome 06 Change in serum triglycerides ($\mathrm{mmol} / \mathrm{l}$) 73
Analysis 02.07. Comparison 02 Exercise versus diet, Outcome 07 Change in serum HDL ($\mathrm{mmol} / \mathrm{l}$) 73
Analysis 02.08 . Comparison 02 Exercise versus diet, Outcome 08 Change in fasting serum glucose ($\mathrm{mmol} / \mathrm{l}$) 74
Analysis 03.01 . Comparison 03 Exercise + diet versus diet alone, Outcome 01 Weight change in kilograms 74
Analysis 03.02. Comparison 03 Exercise + diet versus diet alone, Outcome 02 Change in body mass index (BMI) 76
Analysis 03.03. Comparison 03 Exercise + diet versus diet alone, Outcome 03 Change in systolic blood pressure (mmHg) 77
Analysis 03.04 . Comparison 03 Exercise + diet versus diet alone, Outcome 04 Change in diastolic blood pressure 77(mmHg)
Analysis 03.05 . Comparison 03 Exercise + diet versus diet alone, Outcome 05 Change in total serum cholesterol ($\mathrm{mmol} / \mathrm{l}$) 78
Analysis 03.06. Comparison 03 Exercise + diet versus diet alone, Outcome 06 Change in serum triglycerides ($\mathrm{mmol} / \mathrm{l}$) 78
Analysis 03.07. Comparison 03 Exercise + diet versus diet alone, Outcome 07 Change in serum HDL ($\mathrm{mmol} / \mathrm{l}$) 79
Analysis 03.08 . Comparison 03 Exercise + diet versus diet alone, Outcome 08 Change in fasting serum glucose ($\mathrm{mmol} / \mathrm{l}$) 79
Analysis 04.01 . Comparison 04 High versus low intensity exercise with dietary change, Outcome 01 Weight change in 80kilograms
Analysis 04.02 . Comparison 04 High versus low intensity exercise with dietary change, Outcome 02 Change in body 80
mass index (BMI)
Analysis 04.03 . Comparison 04 High versus low intensity exercise with dietary change, Outcome 03 Change in systolic 81blood pressure (mmHg)
Analysis 04.04 . Comparison 04 High versus low intensity exercise with dietary change, Outcome 04 Change in diastolic 81blood pressure (mmHg)
Analysis 04.05 . Comparison 04 High versus low intensity exercise with dietary change, Outcome 05 Change in serum 81cholesterol ($\mathrm{mmol} / \mathrm{l}$)
Analysis 04.06 . Comparison 04 High versus low intensity exercise with dietary change, Outcome 06 Change in serum 82triglycerides ($\mathrm{mmol} / \mathrm{l}$)
Analysis 04.07 . Comparison 04 High versus low intensity exercise with dietary change, Outcome 07 Change in serum 82
HDL ($\mathrm{mmol} / \mathrm{l}$)
Analysis 04.08 . Comparison 04 High versus low intensity exercise with dietary change, Outcome 08 Change in serum 83glucose ($\mathrm{mmol} / \mathrm{l}$)Analysis 05.01 . Comparison 05 High versus low intensity exercise without dietary change, Outcome 01 Weight change83
in kilograms
Analysis 05.02 . Comparison 05 High versus low intensity exercise without dietary change, Outcome 02 Change in 83
systolic blood pressure (mmHg)
Analysis 05.03 . Comparison 05 High versus low intensity exercise without dietary change, Outcome 03 Change in 84
diastolic blood pressure
Analysis 05.04 . Comparison 05 High versus low intensity exercise without dietary change, Outcome 04 Change in serum 84triglycerides ($\mathrm{mmol} / \mathrm{l}$)
Analysis 05.05 . Comparison 05 High versus low intensity exercise without dietary change, Outcome 05 Change in serum 84HDL ($\mathrm{mmol} / \mathrm{l}$)Analysis 05.06 . Comparison 05 High versus low intensity exercise without dietary change, Outcome 06 Change in serum85glucose ($\mathrm{mmol} / \mathrm{l}$)

Exercise for overweight or obesity (Review)

Shaw K, Gennat H, O’Rourke P, Del Mar C

This record should be cited as:

Shaw K, Gennat H, O’Rourke P, Del Mar C. Exercise for overweight or obesity. Cochrane Database of Systematic Reviews 2006, Issue 4. Art. No.: CD003817. DOI: 10.1002/14651858.CD003817.pub3.

This version first published online: 18 October 2006 in Issue 4, 2006.
Date of most recent substantive amendment: 23 August 2006

ABSTRACT

Background

Clinical trials have shown that exercise in adults with overweight or obesity can reduce bodyweight. There has been no quantitative systematic review of this in The Cochrane Library.

Objectives

To assess exercise as a means of achieving weight loss in people with overweight or obesity, using randomised controlled clinical trials.

Search strategy

Studies were obtained from computerised searches of multiple electronic bibliographic databases. The last search was conducted in January 2006.

Selection criteria

Studies were included if they were randomised controlled trials that examined body weight change using one or more physical activity intervention in adults with overweight or obesity at baseline and loss to follow-up of participants of less than 15%.

Data collection and analysis

Two authors independently assessed trial quality and extracted data.

Main results

The 43 studies included 3476 participants. Although significant heterogeneity in some of the main effects' analyses limited ability to pool effect sizes across some studies, a number of pooled effect sizes were calculated. When compared with no treatment, exercise resulted in small weight losses across studies. Exercise combined with diet resulted in a greater weight reduction than diet alone (WMD $-1.1 \mathrm{~kg} ; 95 \%$ confidence interval (CI) -1.5 to -0.6). Increasing exercise intensity increased the magnitude of weight loss (WMD 1.5 kg ; 95% CI -2.3 to -0.7). There were significant differences in other outcome measures such as serum lipids, blood pressure and fasting plasma glucose. Exercise as a sole weight loss intervention resulted in significant reductions in diastolic blood pressure (WMD $2 \mathrm{mmHg} ; 95 \% \mathrm{CI}-4$ to -1), triglycerides (WMD - $0.2 \mathrm{mmol} / \mathrm{L} ; 95 \% \mathrm{CI}-0.3$ to -0.1) and fasting glucose (WMD - $0.2 \mathrm{mmol} / \mathrm{L}$; 95\% CI -0.3 to -0.1). Higher intensity exercise resulted in greater reduction in fasting serum glucose than lower intensity exercise (WMD $0.3 \mathrm{mmol} / \mathrm{L} ; 95 \% \mathrm{CI}-0.5$ to -0.2). No data were identified on adverse events, quality of life, morbidity, costs or on mortality.

Authors' conclusions

The results of this review support the use of exercise as a weight loss intervention, particularly when combined with dietary change. Exercise is associated with improved cardiovascular disease risk factors even if no weight is lost.

PLAINLANGUAGESUMMARY

Exercise and diet produce weight loss in people with overweight or obesity
Overweight and obesity are important public health problems and are associated with many serious health conditions. The risk of developing overweight and obesity depends on lifestyle factors such as food intake and physical activity levels. Treatment for overweight

Exercise for overweight or obesity (Review)
Copyright © 2007 The Cochrane Collaboration. Published by John Wiley \& Sons, Ltd
and obesity therefore commonly involves diet and exercise. We found that exercise has a positive effect on body weight and cardiovascular disease risk factors in people with overweight or obesity, particularly when combined with diet, and that exercise improves health even if no weight is lost. No data were identified on adverse events, quality of life, morbidity, costs or mortality.

BACKGROUND

Description of the condition

Overweight and obesity are conditions of excess body fat (NHMRC 1997). The World Health Organisation (WHO) defines weight status according to body mass index (BMI), the ratio of weight (in kilograms) divided by height (in metres squared). A BMI of 20 to 25.9 defines normal weight, 25 to 29.9 defines overweight and equal to or greater than 30 defines obesity (WHO 2003). Overweight and obesity are a major public health problem with more than one billion adults overweight globally, 300 million of which have obesity (WHO 2006). Increased consumption of more energy-dense, nutrient-poor foods with high levels of sugar and saturated fats, combined with reduced physical activity, have led to the increase in prevalence (WHO 2003). Overweight and obesity pose a major risk for serious chronic diseases, including type 2 diabetes, cardiovascular disease, hypertension and stroke, and certain forms of cancer. Effective weight management for individuals and groups with overweight and obesity involves a range of strategies including reducing energy intake through dietary change and increasing energy expenditure by increasing physical activity levels (WHO 2003).

Description of the intervention

Although evidence supporting the efficacy of exercise to achieve weight loss is disappointing, studies do support the efficacy of exercise to prevent weight gain. A number of large studies, including the Reno diet-heart study, the "First National Health Nutrition and Examination Survey" (NHANES-1) and the Canada Fitness survey have found a negative association between physical activity and weight gain (Foreyt 1995; Williamson 1993; Tremblay 1986; Tremblay 1990). These studies were large-scale cross-sectional and longitudinal studies. The impact of a number of vigorous and nonvigorous leisure activities on weight was examined. People who were habitually more active were found to be less obese. Therefore increasing physical activity, both exercise and habitual activity, may have a role in preventing obesity, preventing worsening of already established obesity, and reducing body mass in obese people.

How the intervention might work

Even if exercise does not result in weight loss, it confers significant health benefits to people with overweight and obesity. Blood lipid profiles associated with increased risk of coronary heart disease are a common metabolic feature of obesity. Since the early 1980s there has been increasing evidence that central fat accumulation has an adverse action on lipids, resulting in elevated triglycerides and very-low-density lipoproteins and low levels of high-density
lipoproteins (Despres 1994). Exercise, with or without weight loss, improves plasma lipoprotein status, in particular, increasing highdensity lipoproteins therefore may be of particular benefit to people who are abdominally obese even if no weight is lost by exercising. Similarly, large cross-sectional studies demonstrate reduction in blood pressure in those who regularly exercise, compared with sedentary persons, irrespective of weight (Montoye 1972; Sandvik 1993). The large cohort Harvard alumni study, showed that those who engaged in regular vigorous leisure activities had a 33 percent lower risk (relative risk reduction) of developing hypertension and 41 percent reduction (relative risk reduction) in mortality from coronary heart disease over 20 years (Paffenbarger 1983).

Exercise interventions ideally should be used in the context of a multi-component weight loss program to gain their maximum benefit. Diet and exercise combined with psychological interventions comprise an intuitively powerful weight loss program (NHLBI 1998). However, in spite of the increased comprehensiveness of weight loss programs and improvements in patient education, understanding of the role of diet and exercise in weight loss, psychological interventions, and improved pharmacotherapies for weight reduction, results of weight loss trials have continued to remain disappointing (Liao 2000). There are still major gaps in our understanding of the roles of diet, exercise, and psychological therapies in weight reduction. Also, achieving longterm modification of food intake and food type by the obese individual without creating decreases in energy expenditure associated with dieting, and dealing with relapse to pre-intervention diet and exercise behaviours are ongoing challenges (Brownell 1986).

Studies examining the magnitude of weight loss achievable with exercise have shown disappointing results. Garrow and Summerbell, in a meta-analysis of 28 studies of exercise and weight loss, concluded that weight lost in exercise programs without caloric restriction is small and usually ranges from 2 to 7 kg (Garrow 1995). Ballor and Keesey, in an earlier meta-analysis, also found that weight loss associated with exercise was modest (Ballor 1991). However, considerable research has been performed in the area since these meta-analyses were performed. This review aimed to clarify the effect of exercise on body weight and health in people with overweight and obesity, using high quality criteria to assess and summarise the evidence.

OBJECTIVES

To assess the efficacy of exercise as a means of achieving weight loss in people with overweight and obesity.

CRITERIA FOR CONSIDERING STUDIES FOR THIS REVIEW

Types of studies

All randomised controlled clinical trials of exercise in people with overweight or obesity, with a duration of at least three months and loss to follow-up of less than 15%, were considered for inclusion.

Types of participants

Studies were limited to adult participants (aged over 18 years). Studies included adults with overweight or obesity according to body mass index, waist circumference or waist-to-hip ratio, irrespective of health status.

Types of intervention

The studies included had an exercise prescription. Exercise is defined as any form of physical activity performed on a repeated basis for an defined period of time (exercise training). Exercise prescriptions include specific recommendations for the type, intensity, frequency and duration of any physical activity with a specific objective (e.g. increase fitness, lose weight) (Bouchard 1994). Studies stating that they simply recommended increasing physical activity were not included within the analyses unless it was possible to quantify the exercise stimulus by some means. Studies that combined exercise and medication associated with weight loss as an intervention were excluded.

Types of outcome measures

Primary outcomes

1. Weight or another indicator of body mass (e.g. body mass index, waist measurement, waist-to-hip ratio);
2. Morbidity and mortality;
3. Well-being and quality of life.

Secondary outcomes

1. Serum lipids;
2. Serum glucose;
3. Systolic and diastolic blood pressure;
4. Adverse effects.

We planned on examining the following effect modifiers if there were sufficient data: sex, age, adherence to treatment, initial weight and co-morbidities.

Timing of outcome assessment

Studies with a duration including follow-up period of three months or greater were included in this review.

SEARCH METHODS FOR IDENTIFICATION OF STUDIES

See: Cochrane Metabolic and Endocrine Disorders Group methods used in reviews.

(1) Electronic databases used included The Cochrane Library, MEDLINE (1966 to 2005), SPORT Discus (1830 to 2005), and EMBASE (1974 to 2005).
(2) Databases of ongoing trials used included Current Controlled Trials (www.controlled-trials.com) and The National Research Register (www.update-software.com/National/nrr-frame.html).
(3) The reference lists of review articles and of all included studies were searched in order to find other potentially eligible studies.
(4) Potential missing, unpublished or ongoing studies were
planned to be sought by contacting experts in the field. This was not necessary.
(5) Publications in all languages were sought.

Please see under 'Additional tables' for a detailed search strategy (Table 01).

Additional key words of relevance were sought during the electronic or other searches. None were identified.

METHODS OF THE REVIEW

Selection of studies

Assessment of quality and results data was undertaken by two reviewers (KS and HCG). Full articles were retrieved for further assessment if the information given in the abstract obtained from the searches suggested that the study: 1. included people who were overweight or obese, 2 . compared exercise with placebo or another non-pharmacological weight loss intervention, 3 . assessed one or more relevant clinical outcome measures, 4. used random allocation to the comparison groups. When a title or abstract could not be rejected with certainty, the full text of the article was obtained for further evaluation. Interrater agreement for study selection was measured using the kappa statistic (Cohen 1960). Where differences in opinion existed, these were resolved by a third party (POR). Where duplicate publications and companion papers were located, information was maximised by using all versions of the study.

Data extraction and management

Data extracted included the following:
(1) General information: Published/unpublished, title, authors, source, contact address, country, language of publication, year of publication, duplicate publications.
(2) Trial characteristics: Design, duration, randomisation (and method), allocation concealment (and method), blinding (outcome assessors), check of blinding.
(3) Intervention: Exercise prescription, comparison interventions (method, timing).
(4) Patients: Sampling (random/convenience), exclusion criteria, total number and number in comparison groups, gender, age, diagnostic criteria of overweight or obesity, similarity of groups at baseline, assessment of compliance or relapse, withdrawals or losses to follow-up (reasons or description), subgroups.
(5) Outcomes: Outcomes specified above, what was the main outcome assessed in the study, other events, length of follow-up.
(6) Results: For outcomes and times of assessment, intention-totreat analysis.

A template data extraction form was developed and sent to the Metabolic and Endocrine Disorders Group Editorial Base for approval. Study authors were not contacted for further information.

Assessment of methodological quality of included studies

The quality of reporting each trial was assessed based largely on the quality criteria specified by Schulz and by Jadad (Schulz 1995; Jadad 1996). In particular, the following factors were studied:
(1) Minimisation of selection bias - a) was the randomisation procedure adequate? b) was the allocation concealment adequate?
(2) Minimisation of attrition bias - a) were withdrawals and dropouts completely described? b) was analysis by intention-totreat?
(3) Minimisation of detection bias - were outcome assessors blind to the intervention?

Based on these criteria, studies were subdivided into the following three categories (see Cochrane Handbook):
A - all quality criteria met: low risk of bias.
B - one or more of the quality criteria only partly met: moderate risk of bias.
C - one or more criteria not met: high risk of bias.
This classification was planned to be used as the basis of a sensitivity analysis.

Each trial was assessed for quality assessment independently by two reviewers (KS, HCG). Interrater agreement was calculated using the kappa statistic (Cohen 1960).

Data synthesis (meta-analysis)

Where data were available which were sufficiently similar with respect to interventions and outcomes, pooled estimates of effect were obtained using Review Manager (RevMan) 4.2. Data were entered into RevMan and analysed using RevMan Analyses, the statistical component of RevMan. Fixed-effect models were used to pool data where appropriate.

Assessment of heterogeneity

Where heterogeneity existed a random effects model was used to explore results. Effect sized are presented as weighted mean differences with 95% confidence intervals. The chi-square method was used to assess heterogeneity with the significance set at $\mathrm{p}<0.1$. Heterogeneity was also examined with I^{2}. Where I^{2} values of greater than 50% were present, meta-analytic pooling was not performed (Higgins 2003).

Subgroup analyses and investigation of heterogeneity

Should the quantity of data have permitted, we planned to examine subgroups based on the following factors:
(1) Type, intensity and duration of the exercise intervention;
(2) Age;
(3) Gender;
(4) Smoking status;
(5) Different comparison interventions;
(6) Co-morbidities.

Sensitivity analyses

We compared the results of fixed-and random-effects models. We also planned to perform sensitivity analyses in order to explore the influence of the following factors on effect size:
(1) Repeating the analysis excluding unpublished studies (if there were any);
(2) Repeating the analysis taking account of study quality, as specified above;
(3) Repeating the analysis excluding any very long or large studies to establish how much they dominate the results;
(4) Repeating the analysis excluding studies using the following filters: diagnostic criteria, language of publication, source of funding (industry versus other), country.
Funnel plots were performed for assessment of small study bias.

DESCRIPTION OF STUDIES

Trials identified

The search strategy, last performed in January 2006, identified 4040 abstracts for perusal. On review of the abstracts, 271 articles were retrieved for perusal. Of these, 89 potentially relevant studies were located.

QUOROM (quality of reporting of meta-analyses) statement

 (Moher 1999)- potentially relevant abstracts identified and screened for retrieval ($\mathrm{n}=4040$);
- abstracts excluded ($\mathrm{n}=3769$);
- studies retrieved for more detailed evaluation ($\mathrm{n}=271$);
- studies excluded ($\mathrm{n}=182$);
- potentially appropriate studies to be included in the systematic review ($\mathrm{n}=89$);
- studies excluded from the systematic review, with reasons in 'Table of Excluded Studies' ($\mathrm{n}=46$);
- studies included in the systematic review ($\mathrm{n}=43$);
- duplicate publications ($\mathrm{n}=2$);
- RCTs included in the systematic review ($\mathrm{n}=41$).

Excluded studies

Following an evaluation of the methods and results section of the trials, 46 were excluded from the review. These studies and their reasons for exclusion are presented in the table: 'Characteristics of Excluded Studies'.

Exercise for overweight or obesity (Review)
Copyright © 2007 The Cochrane Collaboration. Published by John Wiley \& Sons, Ltd

Included studies

A total of 43 studies, reporting the results from 41 trials, met the inclusion criteria and were included in the review. The kappa statistic for trial selection was 0.73 ; 95% confidence interval (CI) 0.64 to 0.82 . The details of these studies are described in the table: 'Characteristics of Included Studies'. Two studies were duplicate publications of other studies included in the review. Data from these studies were included and were used to maximise available information about the primary studies (Pritchard 1997; Svendsen 1993). Two studies compared exercise and behaviour therapy with behaviour therapy alone (Jeffery 1998; Jeffery 2003). A number of trials did not present results in a manner that enabled variance data for change in outcome measures to be extracted. These studies, identified in the 'Notes' section of the 'Characteristics of Included Studies' table, are included in the results but are reported narratively (Aggel-Leijssen 2001b; Aggel-Leijssen 2002; Balkestein 1999; Gillett 1987; Manning 1991; Raz 1994; Stensel 1994; Utter 2000; Wing 1988; Wirth 1985). The data from these studies are not included in the analyses.

Studies

All included trials were randomised controlled clinical trials. Eight trials were factorial in design (Aggel-Leijssen 2001; Anderssen 1996; Cox 2004; Jeffery 1998; Neumark 1995; Nieman 1998; Stefanick 1998; Wood 1991). The remaining 33 were parallel in design.

Participants and settings

There were a total of 3476 participants in the 41 trials. All trials were conducted in adults. The weighted mean age of participants was 42.4 years for the 32 trials that reported age as a mean value. The remaining nine trials, which reported age as a range, included participants aged between 20 and 75 years. Of the 39 trials that reported gender distribution of participants, 17 included men only, 15 included women only, and 10 included both men and women. The duration of the included studies ranged from 3 to 12 months, including follow-up.

Twenty-four trials were conducted in the United States of America, four were conducted in The Netherlands (Aggel-Leijssen 2001; Aggel-Leijssen 2001b; Aggel-Leijssen 2002; Balkestein 1999), three in Canada (Janssen 2002; Ross 1996; Thong 2000) and Australia (Cox 2004; Cox 1996; Pritchard 1997), two in Israel (Raz 1994; Neumark 1995) and one in Norway (Anderssen 1996), the United Kingdom (Stensel 1994), Denmark (Svendsen 1993) and Germany (Wirth 1985), respectively. All trials were outpatient community studies. None were inpatient hospital studies. The range of outpatient settings in which trials were conducted included general medical clinics, hospital obesity outpatient clinics, primary care, university campuses and workplace settings. Most participants were recruited by local news media (e.g. local newspaper, radio announcements, bulletin boards). One study recruited their participants from a database of participants of a cohort study (Anderssen 1996), one from a group of people newly registered to
participate in a concurrent lifestyle intervention trial (Hellenius 1993), one from a database of respondents to a community survey questionnaire (Svendsen 1993), and one from the staff of a national business corporation (Pritchard 1997).

The exercise interventions that were evaluated are listed below. Eighteen trials evaluated multiple exercise interventions within their design, and 23 trials evaluated a single exercise intervention. Twenty-one trials evaluated a walking intervention, 10 evaluated cycle ergometry (exercise bicycle), eight evaluated jogging, eight evaluated weights training, five evaluated commercial aerobics, five evaluated treadmill exercise, two evaluated stair stepping, and one evaluated each of dancing, ball games, calisthenics, rowing, and aqua jogging, respectively. No trials evaluated swimming or water aerobics as weight loss interventions.

Thirteen trials contained groups that compared exercise with no treatment as a weight loss intervention in people with overweight or obesity. Eight trials evaluated walking / jogging, three evaluated cycle ergometry (Aggel-Leijssen 2001b; Cox 2004; Irwin 2003), two evaluated weights training (Irwin 2003; Manning 1991), and one each evaluated aerobics (Pritchard 1997) and ball games / calisthenics (Wirth 1985). The exercise intensity was high (greater than 60% maximal oxygen uptake (VO 2 max) / maximum heart rate) for nine trials, low (less than $60 \% \mathrm{VO} 2$ max / maximum heart rate) for one trial (Aggel-Leijssen 2001b), and not specified for two trials (Stensel 1994; Wing 1998). The exercise frequency was greater than five days a week for one trial (Thong 2000) and 3 to 5 days a week for 12 trials. Exercise duration ranged from 15 to 60 minutes with the median exercise duration per session of 45 minutes.

Eleven trials contained groups that compared exercise to diet as weight loss interventions in people with overweight or obesity. Seven trials evaluated walking or jogging, two evaluated aerobic exercise of the participants choice equivalent to brisk walking or jogging (Stefanick 1998; Pritchard 1997), one evaluated cycle ergometry (Cox 2004) and one evaluated aerobic exercise consisting of either walking, jogging, aerobics or circuit training (Anderssen 1996). The exercise intensity was high (greater than 60\% VO2 max / maximum heart rate) for ten trials and not specified for one trial (Wing 1998). The exercise frequency was greater than five days a week for one trial (Thong 2000), 3 to 5 days a week for nine trials and 2 to 3 days a week for one trial (Hellenius 1993). Exercise duration ranged from 30 to 60 minutes with the median exercise duration per session of 40 minutes. Four studies compared exercise with a low calorie diet (Cox 2004; Schwartz 1987; Schwartz 1990; Thong 2000), three compared exercise with a low fat diet (Stefanick 1998; Anderssen 1996; Pritchard 1997), and four compared exercise with a low fat or low calorie diet (Gordon 1997; Hellenius 1993; Wing 1998; Wood 1988).

Sixteen trials contained groups that compared exercise in combination with diet to diet alone as weight loss interventions in people with overweight or obesity. Seven trials evaluated walking or
jogging, two evaluated cycle ergometry (Cox 2004; Hays 2004), one evaluated step aerobics (Wadden 1997), one cycling/walking/ stair stepping (Ross 1996), one cycling or walking or aqua jogging (Janssen 2002), one treadmill exercise or cycling or stair stepping (Aggel-Leijssen 2001), one walking in combination with weights training (Whatley 1994), one walking or jogging or aerobics (Neumark 1995), one aerobic exercise in combination with weights training (Svendsen 1993) and one of exercise of the participants choice equivalent to brisk walking or jogging (Stefanick 1998). The exercise intensity was high (greater than $60 \% \mathrm{VO} 2$ max / maximum heart rate) for 12 trials, low (lower than $60 \% \mathrm{VO} 2$ max / maximum heart rate) for one trial (Janssen 2002) and not specified for three trials (Wing 1998; Wood 1991; Stefanick 1998). The exercise frequency was greater than five days a week for one trial (Neumark 1995) and 3 to 5 days a week for 15 trials. Exercise duration ranged from 30 to 90 minutes with the median exercise duration per session of 50 minutes. A low calorie diet was used for 10 trials, a low fat diet for three trials (Hays 2004; Kiernan 2001; Stefanick 1998) and a low fat or low calorie diet for three trials (Gordon 1997; Wood 1991; Wing 1998).

Eight trials contained groups that compared high with low intensity exercise stimuli as weight loss interventions in people with overweight or obesity. In seven of the eight trials subgroups of participants were also on low fat or low calorie diets. Exercise stimuli investigated included high versus low intensity walking (Jakicic 2003; Leutholtz 1995), step aerobics versus increasing incidental physical activity (Anderson 1999), cycling plus treadmill exercise plus weights training versus cycling plus treadmill exercise alone (Wallace 1997), high versus low intensity walking plus weights training (Whatley 1994), and treadmill exercise plus cycling plus stair stepping versus weights training (Janssen 2002; Ross 1996). The exercise frequency was 3 to 5 days a week for all trials. Exercise duration ranged from 20 to 60 minutes in the high intensity group and 10 to 60 minutes in the low intensity group.

Overall, trials did not differ markedly in the degree of overweight in the patient groups. Most reported weight change as kilograms lost. Only two trials reported weight change as change in BMI alone (Anderssen 1996; Hellenius 1993). Weight entry criteria for most trials included participants with overweight as well as participants with obesity. Twenty-two trials specified weight entry criteria according to BMI (in excess of 25 for all studies except Anderssen 1996 and Irwin 2003 which specified BMI equal or greater than 24 for inclusion). Eight trials specified weight entry criteria according to percentage overweight (all between 110% to 200% according to Metropolitan Life Insurance Tables) and five trials according to percentage body fat (all in excess of 24%). The remainder specified weight entry criteria according to waist-to-hip ratio (Stefanick 1998; Wallace 1997) and kilograms overweight (Anderson 1999; Jeffery 1998;Jeffery 2003).

METHODOLOGICAL QUALITY

The methodological quality of included studies is described in the table 'Characteristics of Included Studies'. All 43 included studies had some methodological weaknesses according to the quality criteria applied. Only four studies (Irwin 2003;Gillett 1987; Stefanick 1998; Wood 1988) reported the method of randomisation. For the remaining studies it was not possible to tell whether allocation to groups was concealed. All included studies had a loss to follow-up of less than 15% as specified in the inclusion criteria for the review. Blinded outcome assessment was carried out in three studies (Irwin 2003;Anderson 1999; Wing 1988), the others were not clear or not done. The duration of all included studies, including follow-up, was three months or more, as specified in the inclusion criteria for the review. Twenty-five of the 41 trials were four months or less in duration.

Four trials suffered from potential selection bias due to the population from which the sample was selected being biased in some way. Anderssen 1996 recruited the sample from a database of participants of a cohort study, Hellenius 1993 recruited from a group of people newly registered to participate in a concurrent lifestyle intervention trial, the details of which were not specified, Svendsen 1993 recruited from a database of respondents to a community survey questionnaire, the generalizability of which is unknown, and Pritchard 1997 recruited from the staff of a national business corporation, the nature of which is unknown.

Many trials had small sample sizes, meaning that it would have been difficult to detect small but potentially significant differences across groups. Two trials performed intention-to-treat analyses (Irwin 2003; Jakicic 2003). Allocation concealment for all trials was categorised as ' B ', indicating that one or more criteria were not met.

RESULTS

A summary table 'Summary of main findings from comparisons for each outcome', outlining the changes in outcome measures within each of the comparison groups, is provided in Table 03, original data for all outcomes in Table 02 in the additional tables section.

Primary outcomes

No data were identified on mortality, morbidity, adverse events or quality of life among the trials included in this review.

Weight

The effects of interventions on between-group change in weight and body mass index (BMI) are shown in 'Comparisons 01 and 02^{\prime}. Due to heterogeneity of interventions and comparisons, we believed it appropriate to obtain pooled estimates for only two groups of trials assessing weight: exercise and diet versus diet alone, and high versus low intensity exercise without dietary change; and

Exercise for overweight or obesity (Review)
Copyright © 2007 The Cochrane Collaboration. Published by John Wiley \& Sons, Ltd
one group of trials assessing BMI: exercise and diet versus diet alone.

In the group exercise plus diet versus diet alone fourteen trials involving 1049 participants included data regarding weight loss that were suitable for meta-analysis. Participants in both groups lost weight across trials. The pooled effect for interventions with a follow-up between 3 and 12 months was a reduction in weight of $1.1 \mathrm{~kg}(95 \%$ confidence interval (CI), 0.6 to 1.5$)$ in the exercise and diet group compared with the diet alone group. Five trials involving 452 participants included data regarding change in BMI that were suitable for meta-analysis. Participants in both groups reduced BMI. The pooled effect for interventions was a reduction in BMI of $0.4 \mathrm{~kg} / \mathrm{m}^{2}(95 \% \mathrm{CI}, 0.1$ to 0.7$)$ in the exercise and diet group compared with the diet alone group.

In the high versus low intensity exercise without dietary change group weight loss data from four trials involving 317 participants were pooled. All trials favoured high intensity exercise for weight loss. The pooled effect for interventions with a follow-up between 3.5 and 12 months was a reduction in weight of $1.5 \mathrm{~kg}(95 \% \mathrm{CI}$, 0.7 to 2.3) in the high intensity exercise group compared with the low intensity exercise group.

Secondary outcomes

Systolic blood pressure

Pooled estimates of between-group changes in systolic blood pressure could be estimated for two groups of trials: exercise versus diet and exercise and diet versus diet alone (Comparisons 02.03 and 03.03). Four trials involving 361 participants compared change in systolic blood pressure with exercise versus diet. All trials favoured diet over exercise for reduction in systolic blood pressure. Participants who dieted reduced systolic blood pressure $2 \mathrm{mmHg}(95 \%$ CI, 0.3 to 4) more than participants who exercised ($p=0.02$). Six trials involving 615 participants compared change in systolic blood pressure with exercise and diet versus diet alone. Both groups reduced systolic blood pressure and no statistically significant difference between groups was demonstrated ($\mathrm{p}=0.87$).

Diastolic blood pressure

Pooled estimates of between-group changes in diastolic blood pressure could be estimated for two groups of trials: exercise versus no treatment, and exercise versus diet (Comparisons 01.04 and 02.04). In the two trials that involved 259 participants and compared change in diastolic blood pressure with exercise versus no treatment, participants who exercised reduced diastolic blood pressure $2 \mathrm{mmHg}(95 \% \mathrm{CI}, 1$ to 4) more than no treatment ($\mathrm{p}=0.01$). In the four trials that involved 361 participants and compared diet and exercise for reducing diastolic blood pressure, there was no significant difference between interventions ($\mathrm{p}=0.19$). Both interventions resulted in clinically significant reductions in diastolic blood pressure.

Serum cholesterol

There was one group of trials where pooled estimates of betweengroup changes in serum cholesterol could be estimated: exercise versus no treatment (Comparison 01.05). Participants who exercised did not reduce their serum cholesterol significantly more than those with no treatment in the three trials, involving 348 participants, that compared the two groups ($\mathrm{p}=0.65$).

Serum triglycerides

There were three groups of trials where pooled estimates of be-tween-group changes in triglycerides could be estimated: exercise and diet versus diet alone, high versus low intensity exercise with dietary change, and exercise versus no treatment (Comparisons $01.06,03.06$ and 04.06). No statistically significant difference between interventions was observed for exercise and diet versus diet alone (six trials, 619 participants) ($\mathrm{p}=0.12$) or high versus low intensity exercise with dietary change (two trials, 65 participants) ($\mathrm{p}=0.98$). Serum triglycerides were reduced by each intervention and across trials. In the third group of three trials involving 348 participants, people who exercised reduced serum triglycerides by $0.2 \mathrm{mmol} / \mathrm{L}(95 \% \mathrm{CI}, 0.1$ to 0.3$)$ more than those with no treatment ($\mathrm{p}<0.01$).

Serum bigh-density lipoprotein (HDL)

There was one group of trials where pooled estimates of betweengroup changes in serum HDL were able to be estimated: high versus low intensity exercise with dietary change (Comparison 4.7: Comparisons and Data). Rather than increasing HDL, both high and low intensity exercise were associated with reduced HDL across trials. Low intensity exercise was associated with a greater reduction than high intensity exercise however this difference was not statistically significant (two trials, 65 participants) ($\mathrm{p}=0.48$).

Fasting serum glucose

There were four groups of trials where pooled estimates of be-tween-group changes in fasting serum glucose could be estimated: exercise and diet versus diet alone, high versus low intensity exercise without dietary change, exercise versus no treatment, and exercise versus diet (Comparisons 01.08, 02.08, 03.08 and 05.06). Exercise reduced fasting serum glucose by $0.2 \mathrm{mmol} / \mathrm{L}(95 \% \mathrm{CI}$, 0.1 to 0.3) compared with no treatment (two trials, 273 participants) ($\mathrm{p}=0.006$). High intensity exercise reduced fasting serum glucose by $0.3 \mathrm{mmol} / \mathrm{L}(95 \% \mathrm{CI}, 0.2$ to 0.5$)$ more than low intensity exercise (two trials, 46 participants) ($\mathrm{p}<0.01$). When diet and exercise were compared, diet resulted in an $0.1 \mathrm{mmol} / \mathrm{L}(95 \% \mathrm{CI}$, 0.0 to 0.2) greater reduction in fasting serum glucose than exercise (three trials, 354 participants). However, there was no statistically significant difference between diet and exercise versus diet in reducing fasting serum glucose ($\mathrm{p}=0.82$). Both interventions resulted in reduced fasting serum glucose.

Small study bias

Publication bias was examined with the use of a funnel plot. The funnel plot for weight change (14 studies) did not suggest the presence of small study bias (Funnel plot).

Subgroup analyses

The number of trials available for subgroup analysis was limited for most outcomes except for weight loss in the exercise and diet versus diet only group of trials. The pooled results from this group of trials demonstrated a small but statistically significant effect when the results of a large number of trials were pooled. Subgroup analysis by sex and age could performed. Analysis by sex did no show relevant changes in pooled estimates. Analysis by age demonstrated that the pooled effect for studies with a mean age of participants of less than 45 years was a reduction in weight of $1.6 \mathrm{~kg}(95 \% \mathrm{CI}$, 0.6 to 2.6) in the exercise and diet group compared with the diet alone group, and the pooled effect for studies with a mean age of participants of greater than 45 years was a reduction in weight of $1.0 \mathrm{~kg}(95 \% \mathrm{CI}, 1.3$ to 0.7$)$ in the exercise and diet group compared with the diet alone group.

Sensitivity analyses

Because most trials reported similar components of quality that were assessed (method of randomisation, allocation concealment, and blinding of the assessor), we could not examine the effects of these variables on outcomes.

DISCUSSION

Summary of findings

The findings of this study demonstrate that exercise has a positive effect on body weight in people with overweight and obesity. Although exercise alone improved weight loss only marginally compared with no treatment in this study, when combined with dietary interventions, the amount of weight loss achieved with exercise increased substantially. These findings are consistent with previous reviews (Miller 1997; McTigue 2003; Douketis 2005) that demonstrate only modest (less than five kg) weight loss with exercise alone as a weight loss intervention, and improved weight loss with diet and exercise compared with exercise alone.

An assessment of the effect of exercise intensity on weight loss was an important part of this study. Numerous trials have shown that an inverse association between body weight and physical activity exists (Coakley 1998; DiPietro 1998; King 2001; Swinburn 2004). However, most of these trials have assessed the effect of vigorous activity on body weight. The benefits of moderate and light intensity activity on body weight have been less extensively evaluated (Stewart 1997; Westerterp 2001; Dionne 2003). There is some evidence that moderate exercise such as walking, is no more effective than light exercise, such as calisthenics and stretching, as part of a weight loss programme (Jakicic 1995; Ross 1996). The results of this study support the hypothesis that vigorous activity is more effective than moderate or light intensity exercise in inducing weight loss. In this study high and low intensity exercise were associated with weight loss, both when combined with dietary weight loss methods and when undertaken without dietary change.

However, high intensity exercise was only significantly better than low intensity exercise at inducing weight loss when undertaken without dietary change. When diet was also modified, exercise intensity did not significantly affect the degree of weight loss. It is possible that this occurred because when exercise is combined with diet, the effect of exercise intensity on the magnitude of weight loss is outweighed by the effects of the dietary intervention.

Diet was demonstrated to be significantly more effective at facilitating weight loss than exercise in this meta-analysis. Both low calorie and low fat diets were used as comparison dietary interventions across clinical trials. Each was more effective at facilitating weight loss than exercise alone. This is consistent with the findings of other studies that also demonstrate dietary modification is superior to exercise in attaining weight loss in overweight and obese adults (Curioni 2005; Hansen 2005). It thus appears that dietary interventions are a more potent method for creating an energy imbalance than physical activity interventions.

A strength of this study compared with other systematic reviews and meta-analyses of exercise and weight loss is the inclusion of cardiovascular disease (CVD) risk factors as outcome measures for analyses (Miller 1997; McTigue 2003; Douketis 2005). Positive effects on CVD risk factors were demonstrated with exercise interventions in overweight and obese adults in this study. Those who participated in exercise interventions alone reduced systolic and diastolic blood pressure, cholesterol, triglycerides and fasting serum glucose. They also increased HDL levels. The changes that were statistically significant compared with no treatment were changes in diastolic blood pressure, triglycerides, HDL and glucose.

These changes were independent of significant weight loss. Weight loss does not appear to uniformly improve cardiovascular risk factors, particularly if 5% or less body weight reduction (Douketis 2005). However, RCTs have demonstrated that exercise improves risk factors for CVD in adult populations (Campbell 1997; Hu 1999; Hu 2000). The findings of this study indicate that the benefit of exercise on cardiovascular risk factors extends to adults with overweight and obesity.

Exercise combined with diet also has a positive effect on cardiovascular risk factors. Consistent with previous research, participants in this study who combined exercise with diet reduced systolic and diastolic blood pressure, serum cholesterol and triglycerides, and fasting serum glucose. However, when directly compared, exercise combined with diet was no more effective in reducing the above cardiovascular risk factors than diet alone.

The reason for this finding is uncertain. Both diet and physical activity are known to improve risk factors for CVD in adults (Rossner 2001; Schubert 2006). It was therefore hypothesized that the effects of each on CVD risk would be additive and that a combination of both interventions would have greater efficacy than diet alone. It is possible that participants in the diet only group also increased physical activity levels as a result of study participa-
tion. Alternatively, the study may have had insufficient power to demonstrate an additive effect. The effect of diet was greater than the effect of exercise on numerous CVD risk factors. Diet may have therefore masked the effect of exercise on CVD risk factors between comparison groups.

Both high and low intensity exercise resulted in reduced systolic blood pressure and serum triglycerides. However, high intensity exercise had a greater positive effect on fasting serum glucose than low intensity exercise, suggesting that exercise intensity affects the magnitude of the health benefit of the exercise undertaken. It has previously been proposed that a threshold of vigorous activity volume exists which has to be reached to affect CVD risk in adults (Cox 2003). Results of this study support this hypothesis and suggest that this threshold may also exist in overweight and obese adults.

Limitations of the review

A limitation of this systematic review is the paucity of long-term trials available for inclusion in the analyses. Most people lose weight initially and then regain it over time (Egger 1997). Thus, without longer term trials, the true effect of exercise on body weight is difficult to determine. Also, without long-term trials, the effects of exercise on mortality are difficult to determine. The results of this study demonstrated that exercise was associated with improvement in CVD risk factors. However, the effect of exercise on disease endpoints such as myocardial infarction, cerebrovascular accident and type 2 diabetes could not be demonstrated. Without long-term trials it is assumed, but not definite, that exercise will also have positive impacts on these end-points.

Also, a large number of studies were excluded from analysis due to the relatively large losses to follow-up. This was done because if studies with large losses to follow-up were included in the analyses, valid conclusions about the relative efficacy of exercise interventions could not be drawn. Although this is a valid justification to exclude studies with large losses to follow-up, the negative effect of doing so is to reduce the power of meta-analyses.

AUTHORS, CONCLUSIONS

Implications for practice

This review suggests that exercise is an effective weight loss intervention, particularly when combined with dietary interventions. Exercise is also an effective intervention for improving a range of secondary outcomes even when weight loss does not occur. While this review did not show any long-term morbidity and mortality benefits associated with exercise, exercise was shown to positively impact the intermediate outcomes that are commonly associated with cardiovascular disease.

Implications for research

A large amount of research has been undertaken to assess the effects of exercise on weight loss in people who are overweight or obese. Exercise stimuli that have been studied include walking, jogging, weights training, stationary cycling, aerobics, ball games, calisthenics and stair stepping. Further studies could assess alternative exercise stimuli such as increased incidental physical activity and water based activities. Every effort should be made to maintain high retention rates in trials, and reasons for withdrawal should be ascertained so that factors affecting exercise adherence can be further explored. Studies with longer duration of follow-up would provide further information regarding the long-term health effects of regular physical activity in people who are overweight or obese.

NOTES

CHANGES TO PUBLISHED PROTOCOL

OBJECTIVE: Changed from 'regular physical activity' to 'exercise'; add 'overweight' to 'obesity'

TYPES OF STUDIES: Add 'loss to follow-up of less than 15\%'; delete 'quasi-randomised trials'

TYPES OF OUTCOME MEASURES: Delete from additional outcome measures 'VO2max' and 'cost'; delete 'relapse'; timing of outcome assessment changed to 'duration including follow-up of three months or more were included'

METHODS OF THE REVIEW: Change second reviewer from CDM to HCG for quality assessment of trials, data extraction, data entry; change third reviewer from FT to POR for resolving differences of opinion

DATA ANALYSIS: Dichotomous data not identified therefore relative risk omitted; heterogeneity explored using I-squared in addition to chi-squared

POTENTIALCONFLICTOF INTEREST

None known.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the contribution of Ms Fiona Tito from the Cochrane Consumer Review Group for her invaluable assistance in preparation of the protocol of this review. We also wish to acknowledge the assistance of Dr Sandi Pirozzo and Professor Paul Glasziou in providing advice regarding analysis of results.

External sources of support

- National Health and Medical Research Council AUSTRALIA

Internal sources of support

- Royal Australian College of General Practitioners AUSTRALIA

REFERENCES

References to studies included in this review

Aggel-Leijssen 2001 \{published data only\}
van Aggel-Leijssen D, Saris W, Hul G, van Baak M. Short-term effects of weight loss with or without low-intensity exercise training on fat metabolism in obese men. American Journal of Clinical Nutrition 2001;73:523-531.

Aggel-Leijssen 2001b \{published data only\} van Aggel-Leijssen D, Saris W, Wagenmakers A, Jul G, van Baak M. The effect of low-intensity exercise training on fat metabolism of obese women. Obesity Research 2001;9(2):86-96.

Aggel-Leijssen 2002 \{published data only\} Aggel-Leijssen D, Saris W, Wagenmakers A, Senden J, Van Baak M. Effect of exercise training at different intensities on fat metabolism of obese men. Journal of Applied Physiology 2002;92:1300-1309.

Anderson 1999 \{published data only\}
Anderson R, Wadden T, Bartlett S, Zemel B, et al. Effects of lifestyle activity vs structured aerobic exercise in obese women: A randomized trial. Journal of the American Medical Association 1999;281(4):335340.

Anderssen 1996 \{published data only\}
Anderssen S, Hjermann I, Urdal P, Torjesen P, Holme I. Improved carbohydrate metabolism after physical training and dietary intervention in individuals with the 'atherothrombogenic syndrome'. Oslo Diet and Exercise Study (ODES). A randomized trial. Journal of Internal Medicine 1996;240:203-209.

Balkestein 1999 \{published data only\}
Balkestein E, van Aggel-Leijssen D, van Baak M, Struijker-Boudier H, van Bortel L. The effect of weight loss with or without exercise training on large artery compliance in health obese men. Journal of Hypertension 1999;17:1831-1835.

Cox 1996 \{published data only\}
Cox K, Puddey I, Morton A, Burke V, Beilin L, McAleer M. Exercise and weight control in sedentary overweight men: effects on clinic and ambulatory blood pressure. Journal of Hypertension 1996;14:779790.

Cox 2004 \{published data only\}
Cox K, Burke V, Morton A, Beilin L, Puddey I. Independent and additive effects of energy restriction and exercise on glucose and insulin concentrations in sedentary overweight men. American Journal of Clinical Nutrition 2004;80:308-316.

Gillett 1987 \{published data only\}
Gillett P, Eisenman P. The effect of intensity controlled aerobic dance exercise on aerobic capacity of middle-aged, overweight women. Research in Nursing and Health 1987;10:383-390.

Gordon 1997 \{published data only\}
Gordon N, Scott C, Levine B. Comparison of single versus multiple lifestyle interventions: are the antihypertensive effects of exercise training and diet-induced weight loss additive?. American Journal of Cardiology 1997;79:763-767.

Hays 2004 \{published data only\}
Hays N, Starling R, Liu X, Sullivan D, Trappe T, Fluckey J, Evans W. Effects of an ad libitum low-fat, high-carbohydrate diet on body weight, body composition, and fat distribution in older men and women. Archives of Internal Medicine 2004;164:210-217.

Hellenius 1993 \{published data only\}
Hellenius M, Faire U, Berglund B, Hamsten A, Krakau I. Diet and exercise are equally effective in reducing risk for cardiovascular disease. Results of a randomized controlled study in men with slightly to moderately raised cardiovascular risk factors. Atherosclerosis 1993; 103:81-91.

Irwin 2003 \{published data only\}
Irwin M, Yasui Y, Ulrich C, Bowen D, Rudolph R, Schwartz R, Yukawa M, Aiello E, Potter J, McTiernan A. Effect of exercise on total and intra-abdominal body fat in postmenopausal women: a randomized controlled trial. Journal of the American Medical Association 2003;289(3):323-330.

Jakicic 1995 \{published data only\}
Jakicic J, Wing R, Butler B, Robertson R. Prescribing exercise in multiple short bouts versus one continuous bout: effects on adherence, cardiorespiratory fitness, and weight loss in overweight women. International Journal of Obesity 1995;19:893-901.

Jakicic 2003 \{published data only\}
Jakicic J, Marcus B, Gallagher K, Napolitano M, Lang W. Effect of exercise duration and intensity on weight loss in overweight, sedentary women: a randomized trial. Journal of the American Medical Association 2003;290(10):1323-1330.

Janssen 2002 \{published data only\}
Janssen I, Fortier A, Hudson R, Ross R. Effects of an energy-restrictive diet with or without exercise on abdominal fat, intermuscular fat, and metabolic risk factors in obese women. Diabetes Care 2002;25 (3):431-438.

Jeffery 1998 \{published data only\}
Jeffery R, Thorson C, Wing R, Burton L. Use of personal trainers and financial incentives to increase exercise in a behavioral weightloss program. Journal of Consulting and Clinical Psychology 1998;66 (5):777-783.

Jeffery 2003 \{published data only\}
Jeffery R, Wing R, Sherwood N, Tate D. Physical activity and weight loss: does prescribing higher physical activity goals improve outcome?. American Journal of Clinical Nutrition 2003;78:684-689.

Kiernan 2001 \{published data only\}
Kiernan M, King A, Stefanick M, Killen J. Men gain additional psychological benefits by adding exercise to a weight loss program. Obesity Research 2001;9(12):770-777.

Leutholtz 1995 \{published data only\}
Leutholtz B, Keyser R, Heusner W, Wendt V, Rosen L. Exercise training and severe caloric restriction: Effect on lean body mass in the obese. Archives of Physical Medicine and Rehabilitation 1995;76: 65-70.

Manning 1991 \{published data only\}
Manning J, Dooly-Manning C, White K, Kampa I, Silas S, Kesselhaut M, Ruoff M. Effects of a resistive training program on lipopro-tein-lipid levels in obese women. Medicine and Science in Sports and Exercise 1991;23(11):1222-1226.

Neumark 1995 \{published data only\}
Neumark-Sztainer D, Kaufmann N, Berry E. Physical activity within a community-based weight control program: Program evaluation and predictors of success. Public Health Reviews 1995;23:237-251.

Nieman 1998 \{published data only\}
Nieman D, Nehlsen-Cannarella S, Henson D, Koch A, Butterworth D, Fagoaga O, Utter A. Immune response to exercise training and / or energy restriction in obese women. Medicine and Science in Sports and Exercise 1998;30(5):679-686.

Pritchard 1997 \{published data only\}

* Pritchard J, Nowson C, Wark J. A worksite program for overweight middle-aged men achieves lesser weight loss with exercise than with dietary change. Journal of the American Dietetic Association 1997;97 (1):37-42.

Pritchard J, Nowson C, Wark J. Bone loss accompanying diet-induced or exercise-induced weight loss: a randomised controlled study. International Journal of Obesity 1996;20:513-520.
$\operatorname{Raz} 1994$ \{published data only\}
Raz I, Hauser E, Bursztyn M. Moderate exercise improves glucose metabolism in uncontrolled elderly patients with non-insulin-dependent diabetes mellitus. Israel Journal of Medical Science 1994;30:766770.

Ross 1996 \{published data only\} Ross R, Rissanen J, Pedwell H, Clifford J, Shragge P. Influence of diet and exercise on skeletal muscle and visceral adipose tissue in men. Journal of Applied Physiology 1996;81(6):2445-2455.

Schwartz 1987 \{published data only\}
Schwartz R. The independent effects of dietary weight loss and aerobic training on high density lipoproteins and apolipoprotein A-I concentrations in obese men. Metabolism 1987;36(2):165-171.

Schwartz 1990 \{published data only\}

Schwartz R, Jaeger L, Veith R, Lakshminarayan S. The effect of diet or exercise on plasma norepinephrine kinetics in moderately obese young men. International Journal of Obesity 1990;14:1-11.
Stefanick 1998 \{published data only\}
Stefanick M, Mackey S, Sheehan M, Ellsworth N, Haskell W, Wood P. Effects of diet and exercise in men and postmenopausal women with low levels of HDL cholesterol and high levels of LDL cholesterol. The New England Journal of Medicine 1998;339(1):12-20.

Stensel 1994 \{published data only\}
Stensel D, Brooke-Wavell K, Hardman A, Jones P, Norgan N. The influence of a 1-year programme of brisk walking on endurance fitness and body composition in previously sedentary men aged 42-59 years. European Journal of Applied Physiology 1994;68:531-537.

Svendsen 1993 \{published data only\}

* Svendsen O, Hassager C, Christiansen C. Effect of an energyrestrictive diet, with or without exercise, on lean tissue mass, resting metabolic rate, cardiovascular risk factors, and bone in overweight postmenopausal women. The American Journal of Medicine 1993;95: 131-140.

Svendsen O, Krotkiewski M, Hassager C, Christiansen C. Effects on muscles of dieting with or without exercise in overweight postmenopausal women. Journal of Applied Physiology 1996;80:13651370.

Thong 2000 \{published data only\}
Thong F, Hudson R, Ross R, Janssen I, Graham T. Plasma leptin in moderately obese men: independent effects of weight loss and aerobic exercise. American Journal of Physiology, Endocrinology and Metabolism 2000;279:307-313.

Utter 2000 \{published data only\}
Utter A, Whitcomb D, Nieman D, Butterworth D, Vermillion S. Effects of exercise training on gallbladder function in an obese female population. Medicine and Science in Sports and Exercise 2000;32(1): 41-49.
Wadden 1997 \{published data only\}
Wadden T, Vogt R, Andersen R, Bartlett S, Foster G, Wilk J, Kuehnel R, Weinstock R, Buckenmeyer P, Berkowitz R, Steen S. Exercise in the treatment of obesity: effects of four interventions on body composition, resting energy expenditure, appetite and mood. Journal of Consulting and Clinical Psychology 1997;65(2):269-277.
Wallace 1997 \{published data only\}
Wallace M, Mills B, Browning C. Effects of cross-training on markers of insulin resistance / hyperinsulinemia. Medicine and Science in Sports and Exercise 1997;29(9):1170-1175.
Whatley 1994 \{published data only\}
Whatley J, Gillespie W, Honig J, Walsh M, Blackburn A, Blackburn G. Does the amount of endurance exercise in combination with weight training and a very-low-energy diet affect resting metabolic rate and body composition?. American Journal of Clinical Nutrition 1994;59:1088-1092.
Wing 1988 \{published data only\}
Wing R, Epstein L, Paternostro-Bayles M, Kriska A, Nowalk M, Gooding W. Exercise in a behavioural weight control programme for obese patients with Type 2 (non-insulin-dependent) diabetes. Diabetologia 1988;31:902-909.

Wing 1998 \{published data only\}
Wing R, Venditti E, Jakicic J, Polley B, Lang W. Lifestyle intervention in overweight individuals with a family history of diabetes. Diabetes Care 1998;21(3):350-360.

Wirth 1985 \{published data only\}
Wirth A, Diehm C, Hanel W, Welte J, Vogel I. Training-induced changes in serum lipids, fat tolerance, and adipose tissue metabolism in patients with hypertriglyceridemia. Atherosclerosis 1985;54:263271.

Wood 1988 \{published data only\}
Wood P, Stefanick M, Dreon D, Frey-Hewitt B, Garay S, Williams P, Superko R, Fortmann S, Albers J, Vranizan K, Ellsworth N, Terry R, Haskell W. Changes in plasma lipids and lipoproteins in overweight men during weight loss through dieting as compared with exercise. The New England Journal of Medicine 1988;319(18):1173-1179.

Wood 1991 \{published data only\}
Wood P, Stefanick M, Williams P, Haskell W. The effects on plasma lipoproteins of a prudent weight-reducing diet, with or without exercise, in overweight men and women. The New England Journal of Medicine 1991;325(7):461-466.

References to studies excluded from this review

Ades 2003

Ades P, Savage P, Cress E, Brochu M, Lee M, Poehlman E. Resistance training on physical performance in disables older female cardiac patients. Medicine and Science in Sports and Exercise 2003;35(8):12651270.

Aiello 2004

Aiello E, Yutaka Y, Tworoger S, Ulrich C, Irwin M, Bowen D, Schwartz R, Kumai C, Potter J, McTiernan A. Effect of a year long, moderate-intensity exercise intervention on the occurrence and severity of menopause symptoms in postmenopausal women. Menopause 2004;11(4):382-388.

Aldred 1995

Aldred H, Hardman A, Taylor S. Influence of 12 weeks of training by brisk walking on postprandial lipemia and insulinemia in sedentary middle-aged women. Metabolism 1995;44(3):390-397.

Asikainen 2002

Asikainen T, Miilunpalo S, Oja P, Rinne M, Pasanen M, Vuori I. Walking trials in postmenopausal women: effect of one vs two daily bouts on aerobic fitness. Scandinavian Journal of Medicine and Science in Sports.

Blumenthal 2000

Blumenthal J, Sherwood A, Gullette E, Babyak M, Waugh R, Georgiades A, Craighead L, et al. Exercise and weight loss reduce blood pressure in men and women with mild hypertension. Archives of Internal Medicine 2000;160:1947-1958.

Cox 2003

Cox K, Burke V, Morton A, Beilin L, Puddey I. The independent and combined effects of 16 weeks of vigorous exercise and energy restriction on men - a randomized controlled trial. Metabolism 2003; 52(1):107-115.

Cuff 2003

Cuff D, Meneilly G, Martin A, Ignaszewski A, Tildesley H, Frohlich J. Effective exercise modality to reduce insulin resistance in women with type 2 diabetes. Diabetes Care 2003;26(11):2977-2982.

Donnelly 2003

Donnelly J, Kirk E, Jacobsen D, Hill J, Sullivan D, Johnson S. Effects of 16 months of verified, supervised aerobic exercise on macronutrient intake in overweight men and women: the Midwest Exercise Trial. American Journal of Clinical Nutrition 2003;78:950-956.

Dunn 1999

Dunn A, Marcus B, Kampert J, Garcia M, et al. Comparison of lifestyle and structured interventions to increase physical activity and cardiorespiratory fitness: a randomized trial. Journal of the American Medical Association 1999;281:327-334.

Dzator 2004

Dzator J, Hendrie D, Burke V, Gianguilio N, Gillam H, Beilin L, Houghton S. A randomized trial of interactive group sessions achieved greater improvements in nutrition and physical activity at a tiny increase in cost. Journal of Clinical Epidemiology 2004;57:610619.

Esposito 2003

* Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, Marfella R, Giugliano D. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women. Journal of the American Medical Association 2003;289(14):1799-1804.

Esposito 2004

Esposito K, Giugliano F, DiPalo C, Giugliano G, Marfella R, D'Andrea F, D'Armiento M, Giugliano D. Effect of lifestyle changes on erectile dysfunction in obese men: A randomized controlled trial. Journal of the American Medical Association 2004;291(24):29782984.

Figueroa 2003
Figueroa A, Going S, Milliken L, Blew R, Sharp S, Teixeira P, Lohman T. Effects of exercise training and hormone replacement therapy on lean and fat mass in postmenopausal women. The Journals of Gerontology 2003;58A(3):266-270.

Fogelholm 2001

Fogelholm G, Sievanen H, Kukkonen-Harjula T, Pasanen M. Bone mineral density during reduction, maintenance and regain of body weight in premenopausal, obese women. Osteoporosis International 2001;12:199-206.

Grant 2004

Grant S, Todd K, Aitchison T, Kelly P, Stoddart D. The effects of a 12week group exercise programme on physiological and psychological variables and function in overweight women. Public Health 2004; 118:31-42.

Hartwell 1986

Hartwell S, Kaplan R, Wallace J. Comparison of behavioral interventions for control of type II diabetes mellitus. Behavior Therapy 1986; 17:447-461.

Hinderliter 2002

Hinderliter A, Sherwood A, Gullette E, Babyak M, et al. Reduction of left ventricular hypertrophy after exercise and weight loss in overweight patients with mild hypertension. Archives of Internal Medicine 2002;162(12):1333-1340.

Houmard 2003

Houmard J, Tanner C, Slentz C, Duscha B, McCartney J, Kraus W. Effect of the volume and intensity of exercise training on insulin sensitivity. Journal of Applied Physiology 2004;96:101-106.

Huttunen 1979

Huttunen J, Lansimies E, Voutilainen E, Ehnholm C, Hietanen E, Penttila I, et al. Effect of moderate physical exercise on serum lipoproteins. Circulation 1979;60(6):1220-1229.

Jakicic 1998

Jakicic J, Polley B, Wing R. Accuracy of self-reported exercise and the relationship with weight loss in overweight women. Medicine and Science in Sports and Exercise 1998;30(4):634-638.

Kirk 2003

Kirk E, Jacobsen D, Gibson C, Hill J, Donnelly J. Time course for changes in aerobic capacity and body composition in overweight men and women in response to long-term exercise: the Midwest Exercise Trial. International Journal of Obesity 2003;27:912-919.

Kraemer 1997

Kraemer W, Volek J, Clark K, Gordon S, Incledon T, Puhl S, et al. Physiological adaptations to a weight-loss dietary regimen and exercise programs in women. Journal of Applied Physiology 1997;83: 270-279.

Kraemer 1999

Kraemer W, Jeff V, Clark K, Scott G, Puhl S, Koziris P, et al. Influence of exercise training on physiological and performance changes with weight loss in men. Medicine and Science in Sports and Exercise 1999; 31 (9):1320-1329.

Lehmann 1995

Lehmann R, Vokac A, Miedermann K, Agosti K, Spinas G. Loss of abdominal fat and improvement of the cardiovascular risk profile by regular moderate exercise training in patients with NIDDM. Diabetologia 1995;38:1313-1319.

Lejeune 2003

Lejeune M, van Aggel-Leijssen D, van Baak M, Westerterp-Plantenga M. Effects of dietary restraint vs exercise during weight maintenance in obese men. European Journal of Clinical Nutrition 2003;57:13381344.

Levesque 1997
Levesque M, Boulay M, Bouchard C, Simoneau J. Time course of training-induced changes in maximal exercise of short duration in men and women. International Journal of Sports Medicine 1997;18: 464-469.

Lindstrom 2003

Lindstrom J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, Uusitupa M, Tuomilehto J. The Finnish diabetes prevention study: Lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care 2003;26(12):3230-3236.

Loreto 2003

Loreto C, Fanelli C, Lucidi P, Murdolo G, de Cicco A, Parlanti N, Santeusanio F, Brunetti P, de Feo P. Validation of a counseling stategy to promote the adoption and the maintenance of physical activity by type 2 diabetic subjects. Diabetes Care 2003;26(2):404-408.

Mensink 2003

Mensink M, Blaak E, Corpeleijn E, Saris W, deBruin T, Feskens E. Lifestyle intervention according to general recommendations improves glucose tolerance. Obesity Research 2003;11(12):1588-1596.

Messier 2000

Messier S, Loeser R, Mitchell M, Valle G, Morgan T, Rejeski W, et al.
Exercise and weight loss in obese older adults with knee osteoarthritis:
a preliminary study. Journal of the American Geriatric Society 2000; 48:1062-1072.

Nicklas 2004

Nicklas B, Ambrosius W, Messier S, Miller G, Penninx B, Loeser R, Palla S, Bleecker E, Pahor M. Diet-induced weight loss, exercise and chronic inflammation in older, obese adults: a randomized controlled clinical trial. American Journal of Clinical Nutrition 2004;79:544551.

Okura 2003

Okura T, Nakata Y, Tanaka K. Effects of exercise intensity on physical fitness and risk factors for coronary heart disease. Obesity Research 2003;11(9):1131-1139.

Potteiger 2003

Potteiger J, Jacobsen D, Donnelly J, Hill J. Glucose and insulin responses following 16 months of exercise training in overweight adults: The Midwest Exercise Trial. Metabolism 2003;52(9):1175-1181.

Probart 1991

Probart C, Notelovitz M, Martin D, Khan F, Fields C. The effect of moderate aerobic exercise on physical fitness among women 70 years and older. Maturitas 1991;14:49-56.

Proper 2003

Proper K, Hildebrandt V, Ban der Beek A, Twisk J, Van Mechelen W. Effect of individual counseling on physical activity fitness and health: A randomized controlled trial in a workplace setting. American Journal of Preventive Medicine 2003;24(3):218-226.

Racette 1995

Racette S, Schoeller D, Kushner R, Neil K, Herling-Iaffaldano K. Effects of aerobic exercise and dietary carbohydrate on energy expenditure and body composition during weight reduction in obese women. American Journal of Clinical Nutrition 1995;61:486-494.

Ribeiro 1984

Ribeiro G, Hartley H, Sherwood J, Herd J. The effectiveness of a low lipid diet and exercise in the management of coronary artery disease. American Heart Journal 1984;108(5).

Samaras 1997

Samaras K, Ashwell S, Mackintosh A, Fleury A, Campbell L, Chisholm D. Will older sedentary people with non-insulin-dependent diabetes mellitus start exercising? A health promotion model. Diabetes Research and Clinical Practice 1997;37:121-128.

Schmitz 2003

Schmitz K, Jensen M, Kugler K, Jeffery R, Leon A. Strength training for obesity prevention in midlife women. International Journal of Obesity 2003;27:326-333.

Schuler 1991

Schuler G, Hambrecht R, Schlierf G, Niebauer J, Hauer K, Neumann J, et al. Regular physical exercise and low-fat diet. Circulation 1991; 86(1):1-11.

Slentz 2004

Slentz C, Duscha B, Johnson J, Ketchum K, Aiken L, Samsa G, Houmard J, Bales C, Kraus W. Effects of the amount of exercise on body weight, body composition and measures of central obesity. Archives of Internal Medicine 2004;164(1):31-39.

Stahle 2000

Stahle A, Lindquist I, Mattsson E. Important factors for physical activity among elderly patients one year after an acute myocardial
infarction. Scandanavian Journal of Rehabilitation Medicine 2000;32: 111-116.

Teixeira 2003

Teixeira P, Going S, Houtkooper L, Metcalfe L, Blew R, Flint-Wagner H, Cussler E, Sardinha L, Lohman T. Resistance training in postmenopausal women with and without hormone therapy. Medicine and Science in Sports and Exercise 2003;35(4):555-562.

Watkins 2003

Watkins L, Sherwood A, Feinglos M, Hinderliter A, Babyak M, Gullette E, Waugh R, Blumenthal J. Effects of exercise and weight loss on cardiac risk factors associated with syndrome X. Archives of Internal Medicine 2003;163(16):1889-1895.

Weinstock 1998

Weinstock R, Dai H, Wadden T. Diet and exercise in the treatment of obesity: effects of 3 interventions on insulin resistance. Archives of Internal Medicine 1998;158(22):2477-2485.

Yamanouchi 1995

Yamanouchi K, Shinozaki T, Chikada K, Nishikawa T, Ito K, Shimizu S, et al. Daily walking combined with diet therapy is a useful means for obese NIDDM patients not only to reduce body weight but also to improve insulin sensitivity. Diabetes Care 1995;18(6):775-778.

Additional references

Ballor 1991

Ballor D, Keesey R. A meta-analysis of the factors affecting exerciseinduced changes in body mass, fat mass and fat-free mass in males and females. International Journal of Obesity 1991;15:717-26.

Bouchard 1994

Bouchard C, Shephard RJ, Stephens TE. Physical activity fitness, and health: international proceedings and consensus statement. Champaign, Ill, Human Kinetics Publishers, 1994.

Brownell 1986

Brownell K, Marlatt G, Lichtenstein E, Wilson G. Understanding and preventing relapse. American Psychologist 1986;41(7):765-82.

Campbell 1997

Campbell A, Robertson M, Gardner M, Norton R, Tilyard M, Buchner D. Randomised controlled trial of a general practice programme of home-based exercise to prevent falls in elderly women. $B M J$ 1997; 315:1065-9.

Coakley 1998

Coakley E, Kawachi I, Manson J, Speizer F, Willet W, Colditz G. Lower levels of physical functioning are associated with higher body weight among middle-aged and older women. International Journal of Obesity and Related Metabolic Disorders 1998;22:958-65.

Cohen 1960
Cohen J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement 1960;20:37-46.

Cox 2003

Cox K, Burke V, Morton A, Beilin L, Puddey I. The independent and combined effects of 16 weeks of vigorous exercise and energy restriction on body mass and composition in free-living overweight men--a randomized controlled trial. Metabolism: clinical and experimental 2003;52:107-15.

Curioni 2005

Curioni C, Lourenco P. Long-term weight loss after diet and exercise: a systematic review. International Journal of Obesity 2005;29:116874.

Despres 1994

Despres J. Dyslipidaemia and obesity. Ballieres Clinical Endocrinology and Metabolism 1994;8:629-36.

Dionne 2003

Dionne I, Ades P, Poehlman E. Impact of cardiovascular fitness and physical activity level on health outcomes in older persons. Mechanisms of Ageing and Development 2003;124:259-67.

DiPietro 1998

DiPietro L, Kohl H, Barlow C, Blair S. Improvements in cardiorespiratory fitness attenuate age-related weight gain in healthy men and women: The Aerobics Center Longitudinal Study. International Journal of Obesity 1998;22:55-62.

Douketis 2005

Douketis J, Macie C, Thabane L, Williamson D. Systematic review of long-term weight loss studies in obese adults: clinical significance and applicability to clinical practice. International Journal of Obesity 2005;29:1153-67.

Egger 1997

Egger G, Swinburne B. An "ecological" approach to the obesity pandemic. BMJ 1997;315(7106):477-80.

Foreyt 1995

Foreyt J, Brunner R, Goodrich G, St Jeor S, Miller G. Psychological correlates of reported physical activity in normal-weight and obese adults: the Reno diet-heart study. International Journal of Obesity and Related Metabolic Disorders 1995;19 (suppl 4):S69-72.

Garrow 1995

Garrow J, Summerbell C. Meta-analysis: effect of exercise, with or without dieting, on the body composition of overweight subjects. European Journal of Clinical Nutrition 1995;49:1-10.

Hansen 2005

Hansen K, Shriver T, Schoeller D. The effects of exercise on the storage and oxidation of dietary fat. Sports Medicine 2005;35:36373.

Higgins 2003

Higgins J, Thompson S, Deeks J, Altman D. Measuring inconsistency in meta-analysis. BMJ 2003;327:556-60.

Hu 1999
Hu F, Sigal R, Rich-Edwards J. Walking compared with vigorous physical activity and risk of type 2 diabetes in women. JAMA 1999; 182:1433-39.

Hu 2000

Hu F, Stampfer M, Colditz G. Physical activity and risk of stroke in women. JAMA 2000;283:2961-7.
Jadad 1996
Jadad A, Moore A, Carroll D, Jenkinson C, Reynolds DJM, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary?. Controlled Clinical Trials 1996;17: 1-12.

King 2001

King G, Fitzhugh E, Basset D, McLaughlin J, Strath S, Swartz A. Relationship of leisure-time physical activity and occupational activity
to the prevalence of obesity. International Journal of Obesity 2001;25: 606-12.

Liao 2000

Liao K. Cognitive-behavioural approaches and weight management: an overview. Journal of the Royal Society of Health 2000;120(1):2730.

McTigue 2003

McTigue K, Harris R, Hemphill B, Lux L, Sutton S, Bunton A. Screening and interventions for obesity in adults: summary of the evidence for the US preventive services taskforce. Annals of Internal Medicine 2003;139:933-49.

Miller 1997

Miller W, Koceja D, Hamilton E. A meta-analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention. International Journal of Obesity and Related Metabolic Disorders 1997;21:941-7.

Moher 1999

Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF. Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Quality of Reporting of Meta-analyses. Lancet 1999;354(9193):1896-900.

Montoye 1972

Montoye H, Metzner H, Keller J, Johnson B, Epstein F. Habitual physical activity and blood pressure. Medicine Science Sports and Exercise 1972;4:175-81.

NHLBI 1998

National Heart Lung and Blood Institute. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: The evidence report. National Institute of Health, 1998.

NHMRC 1997

National Health and Medical Research Council. Acting on Australia's weight: a strategic plan for the prevention of overweight and obesity. Springfield: Australian Government Publishing Services, 1997.

Paffenbarger 1983

Paffenbarger R, Wing A, Hyde R, Jung D. Physical activity and incidence of hypertension in college alumni. American Journal of Epidemiology 1983;117:245-57.

Rossner 2001

Rossner S. Obesity in the elderly - a future matter of concern?. Obesity Reviews 2001;2:183-188.

Sandvik 1993

Sandvik L, Erikssen J, Thaulow E, Erikssen G, Mundal R, Rodahl K. Physical fitness as a predictor of mortality among healthy middle aged Norwegian men. New England Journal of Medicine 1993;328: 533-7.

Schubert 2006

Schubert C, Rogers N, Remsberg K, Sun S, Chumlea W, Demerath E. Lipids, lipoproteins, lifestyle, adiposity and fat-free mass during middle age: the Fels Longitudinal Study. International Journal of Obesity 2006;30:251-60.

Schulz 1995

Schultz KF, Chalmers I, Hayes RJ, Altman DG. Empirical evidence of bias: dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA 1995;273:408-12.

Stewart 1997

Stewart A, Hays R. Conceptual, measurement, and analytical issues in assessing health status of older populations. In: HickeyT, SpeersM, ProhaskaT editor(s). Public Health and Aging. Baltimore: Johns Hopkins University Press, 1997:163-89.

Swinburn 2004

Swinburn B, Caterson I, Seidell J, James W. Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutrition 2004;7:123-246.

Tremblay 1986

Tremblay A, Fontaine E, Poehlman E. The effect of exercise-training on resting metabolic rate in lean and moderately obese individuals. International Journal of Obestiy 1986;10:511-7.

Tremblay 1990

Tremblay A, Despres J, Leblanc C, et al. Effect of intensity of physical activity on body fatness and fat distribution. American Journal of Clinical Nutrition 1990;51:153-7.

Westerterp 2001

Westerterp K, Meijer E. Physical activity and parameters of aging: a physiological perspective. Journals of Gerontology 2001;56:7-12.

WHO 2003
WHO. Report of a Joint WHO/FAO Expert Consultation Report of a Joint WHO/FAO Expert Consultation Joint WHO / FAO Expert Report on Diet, Nutrition and the Prevention of Chronic Disease. Diet, Nutrition and the Prevention of Chronic Disease. Geneva: World Health Organization, 2003.

WHO 2006

World Health Organisation. Obesity and Overweight. Global Strategy on Diet, Physical Activity and Health. http://www.who.int/dietphysicalactivity/publications/facts/obesity/en/ 2006.

Williamson 1993

Williamson D, Madans J, Anda R, Kleinman J, Kahn H, Byers T. Recreational physical activity and ten-year weight change in a US national cohort. International Journal of Obesity and Related Metabolic Disorders 1993;17:279-86.
*Indicates the major publication for the study

TABLES

Characteristics of included studies

Study	Aggel-Leijssen 2001
Methods	DESIGN: Factorial; Randomisation method not stated
	BLINDING:
patients - not stated	
caregivers - not stated	
	outcome assessors - not stated
	DURATION OF INTERVENTION: 12 weeks
	DROPOUTS: 7.5\%
	Analysis by treatment received

Characteristics of included studies (Continued)

Outcomes	BODY MEASURES: weight loss (kg), hydrostatic weighing, WHR, waist circumference OTHER: VO2 max, indirect calorimetry, U-13C palmitate infusion, 1,2-13C acetate infusion, free fatty acids, glucose, glycerol, triglycerides, insulin, catecholamines
Notes	All upper body obese. Lower body obese participants were not part of a randomised controlled trial. Variance for change in weight with interventions not reported therefore results reported narratively only.
Allocation concealment	B - Unclear
Study	Aggel-Leijssen 2002
Methods	DESIGN: Parallel; Randomisation method not stated BLINDING: patients - not stated caregivers - not stated outcome assessors - not stated DURATION OF INTERVENTION: 12 weeks DROPOUTS: 10\% Analysis by treatment received
Participants	COUNTRY: Netherlands $\text { n: } 24$ AGE: $\mathrm{N}=43.4$ years MALES=all WEIGHT ENTRY CRITERIA: BMI > 27 EXCLUSION CRITERIA: poor physical health, use of medication known to influence the variables measured, $>3 \mathrm{~kg}$ body weight change during 2 months before selection, >2 hours a week in sports activities, physically demanding job
Interventions	INTERVENTION 1 ($\mathrm{n}=8$): cycle ergometry 3 days a week for 33 minutes at $70 \% \mathrm{VO} 2$ max INTERVENTION 2 ($\mathrm{n}=8$): cycle ergometry 3 days a week for 57 minutes at $40 \% \mathrm{VO} 2$ max CONTROL ($\mathrm{n}=8$): no intervention FOLLOW-UP: 12 weeks
Outcomes	BODY MEASURES: weight loss (kg), BMI, hydrostatic weighing OTHER: VO2 max, U-13C palmitate infusion, 1,2-13C acetate infusion, free fatty acids, glucose, glycerol, triglycerides
Notes	Variance for change in weight with interventions not reported therefore results reported narratively only.
Allocation concealment	B - Unclear
Study	Anderson 1999
Methods	DESIGN: Parallel; Randomisation method not stated BLINDING: patients - not stated caregivers - not stated outcome assessors - yes DURATION OF INTERVENTION: 16 weeks DROPOUTS: 2\% Analysis by treatment received
Participants	COUNTRY: USA n: 40 AGE: $\mathrm{N}=42.9$ years MALES=none WEIGHT ENTRY CRITERIA: minimum of 15 kg overweight (Metropolitan Life Insurance tables) EXCLUSION CRITERIA: subjects with bulimia nervosa, binge eating disorder, significant depression, and other psychiatric disturbances, identified contra indications to diet, exercise or both, including recent

Characteristics of included studies (Continued)

	myocardial infarction, a history of cerebrovascular, kidney, or liver disease, cancer type 1 diabetes mellitus, pregnancy or use of medications known to affect weight or energy expenditure
Interventions	INTERVENTION $1(\mathrm{n}=20)$: low fat, low calorie diet of 1200 kcal a day + structured aerobic exercise by step aerobics 3 days a week for 45 minutes a session at intensity of 7 - 8.5 METS with bursts to 10.5-11 METS INTERVENTION 2 ($\mathrm{n}=20$): low fat, low calorie diet as above + instruction to increase levels of moderate intensity physical activity in their daily life by 30 minutes per day most days of the week FOLLOW-UP: 16 weeks
Outcomes	BODY MEASURES: weight loss (kg), DXA body composition OTHER: treadmill testing, lipids, lipoproteins, mood
Notes	
Allocation concealment	B - Unclear
Study	Anderssen 1996
Methods	DESIGN: Factorial; Randomisation method not stated BLINDING: patients - not stated caregivers - not stated outcome assessors - not stated DURATION OF INTERVENTION: 52 weeks DROPOUTS: 1\% Analysis by treatment received
Participants	COUNTRY: Norway n: 219 AGE: all over 40 years MALES=not stated WEIGHT ENTRY CRITERIA: BMI > 24 EXCLUSION CRITERIA: >1 workout per week, diastolic blood pressure outside $86-99 \mathrm{~mm} \mathrm{Hg}$, cholesterol outside 5.2-7.74 mmol / L, HDL > 1.2, fasting triglycerides <1.4
Interventions	INTERVENTION 1 ($\mathrm{n}=54$):walk / jog, aerobics or circuit training for 3 days a week at $60-80 \%$ maximum heart rate INTERVENTION 2 ($\mathrm{n}=55$): low fat diet INTERVENTION 3 ($\mathrm{n}=67$): low fat diet + exercise regimen as outlined above CONTROL ($\mathrm{n}=43$): no intervention FOLLOW-UP: 52 weeks
Outcomes	BODY MEASURES: BMI OTHER: BP, cholesterol, triglycerides, insulin, glucose, VO2 max, factor VII, total energy intake
Notes	No raw scores for weight loss in kilograms provided.
Allocation concealment	B - Unclear
Study	Balkestein 1999
Methods	DESIGN: Parallel; Randomisation method not stated BLINDING: patients - not stated caregivers - not stated outcome assessors - not stated DURATION OF INTERVENTION: 12 weeks DROPOUTS: 11\% Analysis by treatment received

Characteristics of included studies (Continued)

Participants	COUNTRY: The Netherlands n: 37 AGE: $\mathrm{N}=37$ years MALES=all WEIGHT ENTRY CRITERIA: BMI between 27 and 40 EXCLUSION CRITERIA: levels of physical activity more than 2 hours a week in sports or physically demanding labour, diabetes, respiratory disease, cardiovascular disorders other than mild hypertension, medication use, diet, psychiatric disorders and impairment of ability to exert physical activity
Interventions	INTERVENTION 1 ($\mathrm{n}=18$): low calorie liquid formula diet INTERVENTION 2 ($\mathrm{n}=19$): low calorie liquid formula diet + exercise 4 days a week for 60 minutes a session at 40% of maximum heart rate FOLLOW-UP: 12 weeks
Outcomes	BODY MEASURES: weight loss (kg), BMI OTHER: blood pressure, resting heart rate, vascular compliance
Notes	Variance for change in weight with interventions not reported therefore results reported narratively only.
Allocation concealment	B - Unclear
Study	Cox 1996
Methods	DESIGN: Parallel; Randomisation method not stated BLINDING: patients - not stated caregivers - not stated outcome assessors - not stated DURATION OF INTERVENTION: 16 weeks DROPOUTS: 15\% Analysis by treatment received
Participants	COUNTRY: Australia n: 60 AGE: 20-50 years MALES=all WEIGHT ENTRY CRITERIA: 120-160 \% of ideal body weight EXCLUSION CRITERIA: cigarette smoking, alcohol consumption $>210 \mathrm{ml} /$ week, weight loss of $>10 \mathrm{~kg}$ in the preceding 12 months, hypertension, history of myocardial infarction, stroke, coronary bypass surgery, renal or hepatic disease, diabetes mellitus, asthma, musculoskeletal exercise that precludes exercise
Interventions	INTERVENTION 1 ($\mathrm{n}=13$): vigorous intensity stationary cycling exercise 3 days a week for 30 minutes at $60-70 \%$ maximum heart rate INTERVENTION 2 ($\mathrm{n}=17$): light exercise by flexibility stretching once a week and stationary cycling against zero resistance twice a week or slow walking ($<2 \mathrm{~km}$ in 30 minutes) FOLLOW-UP: 16 weeks
Outcomes	BODY MEASURES: weight loss (kg) OTHER: dietary compliance, physical fitness assessment, BP, alcohol, biochemistry
Notes	
Allocation concealment	B - Unclear
Study	Cox 2004
Methods	DESIGN: Factorial; Randomisation method not stated BLINDING: patients - not stated caregivers - not stated outcome assessors - not stated

Characteristics of included studies (Continued)

DURATION OF INTERVENTION: 16 weeks
DROPOUTS: 15\%
Analysis by treatment received

Participants	COUNTRY: Australia n: 51 AGE: 20-50 years MALES=all WEIGHT ENTRY CRITERIA: 120-160\% of ideal weight for height EXCLUSION CRITERIA: Weight loss of $>10 \mathrm{~kg}$ in the preceding 12 months, greater than two 30 -minute sessions of vigorous exercise per week in the previous 6 months, musculoskeletal injury that precluded exercise, non-steroidal anti-inflammatory drugs, history of diabetes, asthma or heart, renal or hepatic disease, blood pressure not 130-160 systolic and 80-100 diastolic, taking antihypertensive medication, alcohol consumption > $210 \mathrm{~mL} / \mathrm{wk}$.
Interventions	INTERVENTION 1 ($\mathrm{n}=17$): normal energy intake + light exercise (flexibility exercises once a week and stationary cycling against zero resistance twice a week for 30 mins. Every second week subjects substituted one cycling session for a slow walking session of $<=2 \mathrm{~km}$ in 30 mins) INTERVENTION 2 ($\mathrm{n}=13$): normal energy intake + vigorous exercise (stationary cycling for 30 mins at $60-70 \%$ maximum workload 3 times a week) INTERVENTION $3(\mathrm{n}=14)$: low energy intake + light exercise (reduced daily intake by $1000-1500 \mathrm{kcal} / \mathrm{d}$) INTERVENTION 4 ($\mathrm{n}=15$): low energy intake + vigorous exercise FOLLOW-UP: 16 weeks
Outcomes	BODY MEASURES: weight loss (kg), WHR, BMI OTHER: HbA1c, insulin, glucose, VO2 max, total energy intake, dietary components
Notes	
Allocation con	B - Unclear

Study	Gillett 1987
Methods	DESIGN: Parallel; Randomisation method by random number table
	BLINDING:
patients - not stated	
caregivers - not stated	
outcome assessors - not stated	
	DURATION OF INTERVENTION: 16 weeks
	DROPOUTS: 6\%
	Analysis by treatment received

Characteristics of included studies (Continued)

Allocation concealment B - Unclear

Study	Gordon 1997
Methods	DESIGN: Parallel; Randomisation method not stated BLINDING: patients - not stated caregivers - not stated outcome assessors - not stated DURATION OF INTERVENTION: 12 weeks DROPOUTS: 13\% Analysis by treatment received
Participants	COUNTRY: USA n: 55 AGE: $\mathrm{N}=48$ years MALES=31\% WEIGHT ENTRY CRITERIA: percentage body fat $>27 \%$ EXCLUSION CRITERIA: known cardiovascular disease apart from hypertension, >15 minutes of continuous aerobic exercise >2 days a week during the previous 3 months, contraindications to maximal exercise testing, participation in dietary program aimed at weight reduction, consumption of >3 alcoholic drinks a day, pregnancy, lactation, current use of antihypertensive medication
Interventions	INTERVENTION 1 ($\mathrm{n}=15$):low fat, low calorie diet INTERVENTION 2 ($\mathrm{n}=14$): aerobic exercise (predominantly walking) 3 to 5 days a week for 30 to 45 minutes at $60-85 \%$ of maximum heart rate INTERVENTION 3 ($\mathrm{n}=19$): diet and exercise as described above FOLLOW-UP: 12 weeks
Outcomes	BODY MEASURES: weight loss (kg), skinfold thickness OTHER: food diary, heart rate monitoring, BP, treadmill testing, maximal oxygen uptake
Notes	All subjects had hypertension.
Allocation concealment	B - Unclear
Study	Hays 2004
Methods	DESIGN: Parallel; Randomisation method not stated BLINDING: patients - not stated caregivers - not stated outcome assessors - not stated DURATION OF INTERVENTION: 12 weeks DROPOUTS: 5\% Analysis by treatment received
Participants	COUNTRY: USA $\text { n: } 34$ AGE: $\mathrm{N}=66$ years MALES:N = 14 WEIGHT ENTRY CRITERIA: participants stated as overweight (method not stated but BMI, \% body fat and body weight reported) EXCLUSION CRITERIA: current smoker, $>2 \mathrm{~d} /$ wk of structured physical activity, weight unstable in past 6 months ($+/->5 \mathrm{~kg}$), normal OGTT, taking medication known to affect glucose metabolism
Interventions	INTERVENTION 1 ($\mathrm{n}=11$):low fat, high carbohydrate diet (providing 150% of predicted energy requirements) + exercise training 4 days a week on cycle ergometer at 80% to 85% of maximal heart rate for 45 mins

Characteristics of included studies (Continued)

	INTERVENTION 2 ($\mathrm{n}=11$): low fat, high carbohydrate diet INTERVENTION 3 ($\mathrm{n}=12$): control FOLLOW-UP: 14 weeks
Outcomes	BODY MEASURES: weight loss (kg), BMI, \% body fat (BOD POD) OTHER: macronutrient intake, reported physical activity, maximal aerobic capacity, resting energy expenditure, resting respiratory exchange ratio, change in fat and lean tissue cross-sectional area of the thigh
Notes	
Allocation concealment	B - Unclear
Study	Hellenius 1993
Methods	DESIGN: Parallel; Randomisation method not stated BLINDING: patients - not stated caregivers - not stated outcome assessors - not stated DURATION OF INTERVENTION: 26 weeks DROPOUTS: 1\% Analysis by treatment received
Participants	COUNTRY: USA $\text { n: } 157$ AGE: $\mathrm{N}=46.2$ years MALES = all WEIGHT ENTRY CRITERIA: mean BMI $=25.3$ EXCLUSION CRITERIA: poor general health, history of cardiovascular disease, diabetes, regular use of medications, serum cholesterol not between $5.2-7.8 \mathrm{mmol} / \mathrm{L}$, fasting triglycerides $>5.6 \mathrm{mmol} / \mathrm{L}$, fasting blood glucose $>6.7 \mathrm{mmol} / \mathrm{L}$, diastolic blood pressure $>100 \mathrm{mmHg}$
Interventions	INTERVENTION 1 ($\mathrm{n}=40$): low fat, low calorie diet INTERVENTION 2 ($\mathrm{n}=39$): walk / jog 2-3 days a week at $60-80 \%$ of maximum heart rate for 30-45 minutes INTERVENTION 3 ($\mathrm{n}=39$): diet and exercise as described above CONTROL ($\mathrm{n}=39$): no intervention FOLLOW-UP: 26 weeks
Outcomes	BODY MEASURES: BMI, waist circumference, WHR OTHER: food diary, blood pressure, serum cholesterol and triglycerides
Notes	
Allocation concealment	B - Unclear
Study	Irwin 2003
Methods	DESIGN: Parallel; Randomisation method by random number generation BLINDING: patients - not stated caregivers - not stated outcome assessors - for DXA scans DURATION OF INTERVENTION: 52 weeks DROPOUTS: 2\% Analysis by intention to treat
Participants	$\begin{aligned} & \text { COUNTRY: USA } \\ & \text { n: } 173 \\ & \text { AGE: } 50-75 \text { years } \\ & \text { MALES = none } \end{aligned}$

Characteristics of included studies (Continued)

\(\left.\begin{array}{ll} \& WEIGHT ENTRY CRITERIA: BMI >= 24 and>33 \% body fat

\& EXCLUSION CRITERIA: non- postmenopausal, non-sedentary (>60 \mathrm{mins} / \mathrm{wk} of moderate and vigorous

intensity recreational activity and maximal oxygen consumption>25 \mathrm{~mL} / \mathrm{kg} / \mathrm{min} , taking hormone replace-

\& ment therapy, diabetes, smokers\end{array}\right]\)| | INTERVENTION (n=87): 45 mins of moderate intensity exercise $5 \mathrm{~d} / \mathrm{wk}$ for 12 months (aim 60 - 75% |
| :--- | :--- |
| | MHR for 45 mins per session). |
| | CONTROL (n=86): weekly 45-minute stretching sessions for 1 year |
| FOLLOW-UP: 52 weeks | |

Characteristics of included studies (Continued)

	DROPOUTS: 6\% Analysis by intention to treat
Participants	COUNTRY: USA n: 201 AGE: $\mathrm{N}=37$ years MALES=none WEIGHT ENTRY CRITERIA: BMI 27 to 40 EXCLUSION CRITERIA: exercise > 3 days per week for $>20 \mathrm{mins} / \mathrm{d}$ in the previous 6 months, history of myocardial infarction, taking medication that would alter heart rate response during exercise or affect metabolism or weight loss, treatment for psychological conditions, currently pregnant, pregnant within the previous 6 months, planning to become pregnant during the intervention period, any medical condition that could affect metabolism or body weight or limit exercise participation
Interventions	INTERVENTION 1 ($\mathrm{n}=50$): vigorous intensity high duration exercise (5 days a week of brisk walking to expend $2000 \mathrm{kcal} /$ week) INTERVENTION 2 ($\mathrm{n}=50$): moderate intensity high duration exercise (5 days a week of slower walking to expend $2000 \mathrm{kcal} /$ week) INTERVENTION 3 ($\mathrm{n}=50$): moderate intensity moderate duration exercise (5 days a week of slower walking to expend $1000 \mathrm{kcal} /$ week) INTERVENTION 4 ($\mathrm{n}=51$): vigorous intensity moderate duration exercise (5 days a week of brisk walking to expend $1000 \mathrm{kcal} /$ week) FOLLOW-UP: 52 weeks
Outcomes	BODY MEASURES: weight loss (kg), BMI OTHER: exercise participation, food frequency questionnaires, cardiorespiratory fitness, heart rate per exercise session, exercise duration, time to achieve 85% of maximal heart rate
Notes	
Allocation concealment	B - Unclear
Study	Janssen 2002
Methods	DESIGN: Parallel; Randomisation method not stated BLINDING: patients - not stated caregivers - not stated outcome assessors - not stated DURATION OF INTERVENTION: 16 weeks DROPOUTS: none Analysis by treatment received
Participants	COUNTRY: Canada n: 38 AGE: $\mathrm{N}=40.1$ years MALES=none WEIGHT ENTRY CRITERIA: BMI >27 and WHR >0.85 EXCLUSION CRITERIA: unstable weight in the 6 months prior to the study, taking medications, consuming greater than 2 standard alcoholic drinks a day, not premenopausal, irregular menstrual cycle
Interventions	INTERVENTION 1 ($\mathrm{n}=11$): low calorie diet + aerobic exercise (treadmill walking, exercise bicycle or stair stepper) 5 days a week for 60 minutes to $50-85 \%$ of maximum heart rate INTERVENTION $2(\mathrm{n}=14)$: low calorie diet + resistance training (weights machine 3 days a week for 30 minutes a session until 120 kcal expended) INTERVENTION 3 ($\mathrm{n}=13$): low calorie diet only FOLLOW-UP: 16 weeks
Outcomes	BODY MEASURES: weight loss (kg), \% body fat, MRI body fat, WHR, waist circumference

Characteristics of included studies (Continued)

	OTHER: glucose, insulin, glucose tolerance test, serum cholesterol, diet record
Notes	
Allocation concealment	B - Unclear
Study	Jeffery 1998
Methods	DESIGN: Factorial; Randomisation method not stated
	BLINDING:
	patients - not stated
	caregivers - not stated
	outcome assessors - not stated
	DURATION OF INTERVENTION: 26 weeks
	DROPOUTS: 13\%
	Analysis by treatment received

Characteristics of included studies (Continued)

Interventions	INTERVENTION 1 (n=82): standard behaviour therapy
	INTERVENTION 2 (n=100): standard behaviour therapy + physical activity (energy expenditure equivalent
of 2500 kcal/wk)	
	FOLLOW-UP: 26 weeks (dropout rate > 15\% at 52 and 78 weeks)
Outcomes	BODY MEASURES: weight loss (kg), BMI OTHER: Paffenbarger Physical Activity Questionnaire, Block diet questionnaire
Notes	
Allocation concealment	B - Unclear
Study	
Kiernan 2001	

Characteristics of included studies (Continued)

	EXCLUSION CRITERIA: coronary or peripheral atherosclerosis, ketosis prone diabetes mellitus, chronic use of steroids, bleeding peptic ulcer, history of suicide attempts, active thrombophlebitis, alcohol abuse, pregnancy, lactation, inability to exercise, use of beta blockers or other exercise limiting medications
Interventions	INTERVENTION 1 ($\mathrm{n}=20$): liquid formula Optifast diet ($420 \mathrm{kcal} /$ day) + exercise by walking at a target heart rate of 60% of maximum heart rate to a distance that expended 300 kcal of energy INTERVENTION $2(\mathrm{n}=20)$: liquid formula Optifast diet ($420 \mathrm{kcal} /$ day) + exercise by walking at a target heart rate of 40% of maximum heart rate to a distance that expended 300 kcal of energy FOLLOW-UP: 12 weeks
Outcomes	BODY MEASURES: weight loss (kg), lean body mass, fat mass OTHER: resting heart rate, $\mathrm{BP}, \mathrm{VO} 2$ max
Notes	
Allocation concealment	B - Unclear
Study	Manning 1991
Methods	DESIGN: Parallel; Randomisation method not stated BLINDING: patients - not stated caregivers - not stated outcome assessors - not stated DURATION OF INTERVENTION: 12 weeks DROPOUTS: 9\% Analysis by treatment received
Participants	COUNTRY: USA $\text { n: } 24$ AGE: 22-57 years MALES=none WEIGHT ENTRY CRITERIA: BMI > 30 EXCLUSION CRITERIA: physical activity in the previous 6 months, unstable weight in the previous 6 months
Interventions	INTERVENTION ($\mathrm{n}=40$): strength training with weights 3 days a week for 12 weeks to $60-70 \%$ of maximum heart rate CONTROL ($\mathrm{n}=6$): no intervention FOLLOW-UP: 12 weeks
Outcomes	BODY MEASURES: weight loss (kg), BMI OTHER: dietary record, LDL, HDL, cholesterol, triglycerides, apolipoproteins
Notes	Variance for change in weight with interventions not reported therefore results reported narratively only.
Allocation concealment	B - Unclear
Study	Neumark 1995
Methods	DESIGN: Factorial; Randomisation method not stated BLINDING: patients - not stated caregivers - not stated outcome assessors - not stated DURATION OF INTERVENTION: 12 weeks DROPOUTS: 5\% Analysis by treatment received
Participants	COUNTRY: Israel n: 42

Characteristics of included studies (Continued)

Characteristics of included studies (Continued)

	DROPOUTS: 12% Analysis by treatment received
Participants	COUNTRY: Australia $\text { n: } 39$ AGE: $\mathrm{N}=43.4$ years MALES=all WEIGHT ENTRY CRITERIA: mean BMI $29+/-2.6$ EXCLUSION CRITERIA: inability to satisfactorily complete standardized fitness test
Interventions	INTERVENTION 1 ($\mathrm{n}=21$): 3 sessions of 30 minutes a week of aerobic exercise of the participants choice to an intensity of $65-75 \%$ of maximum heart rate INTERVENTION 2 ($\mathrm{n}=18$): low fat diet FOLLOW-UP: 52 weeks
Outcomes	MEASURES: weight loss (kg), waist circumference, WHR, body composition (DXA) OTHER: 24 hour food recall, 3 day food diary, activity log
Notes	
Allocation concealment	B - Unclear
Study	Raz 1994
Methods	DESIGN: Parallel; Randomisation method not stated BLINDING: patients - not stated caregivers - not stated outcome assessors - not stated DURATION OF INTERVENTION: 12 weeks DROPOUTS: none Analysis by treatment received
Participants	COUNTRY: Israel n: 40 AGE: $\mathrm{N}=56.6$ years MALES=35\% WEIGHT ENTRY CRITERIA: BMI > 25 EXCLUSION CRITERIA: Ischaemic heart disease, systolic hypertension, inability to use a bicycle ergometer, unwillingness to accept control group treatment assignment
Interventions	INTERVENTION ($\mathrm{n}=19$): 45 mins of cycle ergometry, treadmill and or rowing machine to 65% of VO2 max for 3 days a week CONTROL ($\mathrm{n}=19$): no change to lifestyle FOLLOW-UP: 12 weeks
Outcomes	BODY MEASURES: weight loss (kg) OTHER: glucose, fructosamine, HbA1c, cholesterol, HDL, triglycerides, resting heart rate, maximal work capacity
Notes	Variance for change in weight with interventions not reported therefore results reported narratively only.
Allocation concealment	B - Unclear
Study	Ross 1996
Methods	DESIGN: Parallel; Randomisation method not stated BLINDING: patients - not stated caregivers - not stated outcome assessors - not stated

Characteristics of included studies (Continued)

	DURATION OF INTERVENTION: 16 weeks DROPOUTS: none Analysis by treatment received
Participants	COUNTRY: Canada $\text { n: } 33$ AGE: $\mathrm{N}=44.5$ years MALES=all WEIGHT ENTRY CRITERIA: BMI > 27 EXCLUSION CRITERIA: change in weight of more than 2 kg in the previous 6 months, taking medication known to affect the study variables, consumption of >2 alcoholic beverages daily
Interventions	INTERVENTION 1 ($\mathrm{n}=11$): low calorie diet ($1000 \mathrm{kcal} / \mathrm{d}$) INTERVENTION 2 ($\mathrm{n}=11$): low calorie diet as above + aerobic exercise by bicycling / walking / stair stepping 5 days a week for 60 minutes a session INTERVENTION 3 ($\mathrm{n}=11$): low calorie diet as outlined above + resistance exercise using a weights machine 3 days a week with 8-12 repetitions per session to a calculated energy expenditure of 120 kcal per session FOLLOW-UP: 16 weeks
Outcomes	BODYMEASURES: weight loss (kg), waist circumference, WHR, regional adipose tissue distribution (MRI) OTHER: VO2 max, strength-training performance, dietary records
Notes	All subjects had upper body obesity
Allocation concealment	B - Unclear
Study	Schwartz 1987
Methods	DESIGN: Parallel; Randomisation method not stated BLINDING: patients - not stated caregivers - not stated outcome assessors - not stated DURATION OF INTERVENTION: 12 weeks DROPOUTS: none Analysis by treatment received
Participants	COUNTRY: USA $\text { n: } 26$ AGE: $\mathrm{N}=31.4$ years MALES=all WEIGHT ENTRY CRITERIA: 110-185\% of ideal body weight (Metropolitan Life Insurance tables) EXCLUSION CRITERIA: poor health, unstable weight, cigarette smoking, use of prescription or over the counter medications, participation in regular exercise
Interventions	INTERVENTION 1 ($\mathrm{n}=12$): low calorie diet ($1200 \mathrm{kcal} / \mathrm{d}$) INTERVENTION 2 ($\mathrm{n}=14$): brisk walking / jogging 3 days a week for 40 minutes a session at $70-85 \%$ maximum heart rate FOLLOW-UP: 12 weeks
Outcomes	BODY MEASURES: weight loss (kg), body fat \% OTHER: lipoproteins, total and fractionated cholesterol, VO2 max
Notes	
Allocation concealment	B - Unclear
Study	Schwartz 1990
Methods	DESIGN: Parallel; Randomisation method not stated BLINDING:

Characteristics of included studies (Continued)

Study	Stensel 1994			
Methods	DESIGN: Parallel; Randomisation method not stated			
	BLINDING:			
	patients - no			
caregivers - no				
outcome assessors - not stated				
	DURATION OF INTERVENTION: 52 weeks			
	DROPOUTS: 10\%			
	Analysis by treatment received	\quad		COUNTRY: UK
:---	:---			
	n: 72			
	AGE: 42-59 years			
	MALES=all			
	WEIGHT ENTRY CRITERIA: not stated - BMI was > 25.2 for participants			
	EXCLUSION CRITERIA: non-sedentary, employed in a strenuous job			

Characteristics of included studies (Continued)

OTHER: blood pressure, pulse, food diaries, HDL, cholesterol, triglycerides, alkaline phosphatase
\(\left.\begin{array}{ll}\hline Notes \&

\hline Allocation concealment \& B - Unclear

\hline Study \& Thong 2000

\hline Methods \& DESIGN: Parallel; Randomisation method not stated

\& BLINDING:

\& patients - not stated

caregivers - not stated

\& outcome assessors - not stated

\& DURATION OF INTERVENTION: 12 weeks

\& DROPOUTS: none

\& Analysis by treatment received\end{array}\right]\)| | COUNTRY: Canada |
| :--- | :--- |
| | n: 52 |
| | AGE: N=44.4 years |
| | MALES=all |
| | Warticipants |
| | EXCLUSION CRITERIA: none stated |

Characteristics of included studies (Continued)

\(\left.\begin{array}{ll} \& FOLLOW-UP: 12 weeks

\hline Outcomes \& BODY MEASURES: weight loss (kg), BMI, body fat \%

\& OTHER: gallbladder emptying, VO2 max, energy intake, treadmill time, BP, VO2 max\end{array}\right]\)| Notes | Variance for change in weight with interventions not reported therefore results reported narratively only. |
| :--- | :--- |
| Allocation concealment | B - Unclear |
| Study | Wadden 1997 |
| Methods | DESIGN: Parallel; Randomisation method not stated |
| | BLINDING: |
| | patients - not stated |
| | caregivers - not stated |
| | outcome assessors - not stated |
| | DURATION OF INTERVENTION: 24 weeks |
| | DROPOUTS: 12\% |
| | Analysis by treatment received |

Characteristics of included studies (Continued)

	WEIGHT ENTRY CRITERIA: WHR>1.02 EXCLUSION CRITERIA: non- hyper insulinaemic, non-sedentary, non- dyslipidaemic, normotensive
Interventions	INTERVENTION 1 ($\mathrm{n}=8$): 60 mins of aerobic exercise (30 minutes each of cycle ergometry and treadmill walking) at 60-70 \% maximum heart rate for 3 days a week INTERVENTION $2(\mathrm{n}=8)$: endurance training as above + resistance weights for $8-12$ sets at intensity of 75\% 1RM FOLLOW-UP: 14 weeks
Outcomes	BODY MEASURES: weight loss (kg), \% body fat, WHR, body composition OTHER: electrolytes strength testing
Notes	
Allocation concealment	B - Unclear
Study	Whatley 1994
Methods	DESIGN: Parallel; Randomisation method not stated BLINDING: patients - not stated caregivers - not stated outcome assessors - not stated DURATION OF INTERVENTION: 12 weeks DROPOUTS: none Analysis by treatment received
Participants	COUNTRY: USA n: 23 AGE: $\mathrm{N}=38.5$ years MALES=none WEIGHT ENTRY CRITERIA: BMI between 30 and 42 EXCLUSION CRITERIA: significant medical illness, unstable weight or participation in weight loss activities in the previous 6 months
Interventions	INTERVENTION 1 ($\mathrm{n}=7$): very low energy liquid formula diet INTERVENTION $2(\mathrm{n}=8)$: very low energy liquid formula diet + walking and weights training 3 days a week at $50-65 \%$ of maximum heart rate INTERVENTION $3(\mathrm{n}=8)$: very low energy liquid formula diet + walking 5 days a week and weights training 3 days a week at $50-65 \%$ of maximum heart rate FOLLOW-UP: 12 weeks
Outcomes	BODY MEASURES: weight loss (kg), \% body fat, WHR OTHER: VO2 max, resting metabolic rate
Notes	
Allocation concealment	B - Unclear
Study	Wing 1988
Methods	DESIGN: Parallel; Randomisation method not stated BLINDING: patients - no caregivers - no outcome assessors - yes DURATION OF INTERVENTION: 52 weeks DROPOUTS: 7\% Analysis by treatment received
Participants	COUNTRY: USA $\text { n: } 30$
Exercise for overweight or obesity (Review) 35	

Characteristics of included studies (Continued)

	AGE: $\mathrm{N}=55.6$ years MALES=not stated WEIGHT ENTRY CRITERIA: >120 \% of ideal body weight EXCLUSION CRITERIA: non- diabetic, not aged between 30 and 65 years, history of coronary heart disease, taking medications which could interfere with weight loss or heart rate during exercise, orthopaedic problems that would limit walking
Interventions	INTERVENTION 1 ($\mathrm{n}=15$): walking 3 miles four days a week + low calorie diet calculated to produce 1 kg / wk weight loss INTERVENTION 2 ($\mathrm{n}=15$): low calorie diet only FOLLOW-UP: 52 weeks
Outcomes	BODY MEASURES: weight loss (kg), BMI OTHER: HbA1c, cholesterol, triglycerides, BP, glucose, insulin
Notes	All type 2 diabetes. Variance for change in weight with interventions not reported therefore results reported narratively only.
Allocation concealment	B - Unclear
Study	Wing 1998
Methods	DESIGN: Parallel; Randomisation method not stated BLINDING: patients - not stated caregivers - not stated outcome assessors - not stated DURATION OF INTERVENTION: 26 weeks DROPOUTS: 15% Analysis by treatment received
Participants	COUNTRY: USA n: 154 AGE: $\mathrm{N}=45.7$ years MALES=21\% WEIGHT ENTRY CRITERIA: 130-200\% of ideal body weight EXCLUSION CRITERIA: diabetics, no family history of diabetes
Interventions	INTERVENTION 1 ($\mathrm{n}=37$): walking for 50-60 minutes up to 5 days a week to expend 1500 kcal a week INTERVENTION 2 ($\mathrm{n}=37$): low calorie, low fat diet INTERVENTION 3 ($\mathrm{n}=40$): low fat, low calorie diet + aerobic exercise as outlined above CONTROL ($n=40$): given self-help behavioral manual with information on healthy eating, exercise and behavioral strategies for weight control FOLLOW-UP: 26 weeks
Outcomes	BODY MEASURES: weight loss (kg), waist circumference, WHR OTHER: glucose tolerance test, insulin, fasting glucose, HbA1c, cholesterol and triglycerides, HDL, blood pressure, physical activity assessment, food frequency measures
Notes	All subjects had a family history of non-insulin dependent diabetes mellitus.
Allocation concealment	B - Unclear
Study	Wirth 1985
Methods	DESIGN: Parallel; Randomisation method not stated BLINDING: patients - not stated caregivers - not stated outcome assessors - not stated

Characteristics of included studies (Continued)

\(\left.\left.$$
\begin{array}{ll} & \text { DURATION OF INTERVENTION: } 16 \text { weeks } \\
& \text { DROPOUTS: 7\% } \\
& \text { Analysis by treatment received }\end{array}
$$\right] \begin{array}{ll} \& COUNTRY: Germany

\& n: 21

\& AGE: N=43 years

\& MALES=all

\& WEIGHT ENTRY CRITERIA: not stated - mean body fat \% = 24

\& EXCLUSION CRITERIA: no hyper triglyceridaemia\end{array}\right]\)| | INTERVENTION 1 (n=10): jogging, ball games and calisthenics 3 times a week for 1 hour to achieve a |
| :--- | :--- |
| | pulse between 120 and 150 beats per minute |
| Interventions | CONTROL (n=11): no treatment |
| | FOLLOW-UP: 16 weeks |

	patients - not stated caregivers - not stated outcome assessors - not stated DURATION OF INTERVENTION: 52 weeks AROPOUTS: 12.5%
Analysis by treatment received	

Characteristics of excluded studies

Study	Reason for exclusion
Ades 2003	Participants not overweight or obese
Aiello 2004	No weight loss data for controls
Aldred 1995	Participants not overweight or obese
Asikainen 2002	Participants not overweight or obese
Blumenthal 2000	Loss to follow-up of greater than 15\%
Cox 2003	Loss to follow-up of greater than 15\%
Cuff 2003	Initial sample size not specified - only the number who completed the study
Donnelly 2003	Loss to follow-up of greater than 15\%
Dunn 1999	Loss to follow-up of greater than 15\%
Dzator 2004	Loss to follow-up of greater than 15\%
Esposito 2003	Loss to follow-up of greater than 15\%
Esposito 2004	Diet + exercise versus no treatment control
Figueroa 2003	Participants not all overweight or obese
Fogelholm 2001	Weight maintenance study
Grant 2004	Loss to follow-up of greater than 15\%
Exercise for overweight or obesity (Review)	
Copyright © 2007 The Cochrane Collaboration. Published by John Wiley \& Sons, Ltd	

Characteristics of excluded studies (Continued)

Hartwell 1986	Numbers in each intervention group not given	
Hinderliter 2002	Loss to follow-up of greater than 15\%	
Houmard 2003	Loss to follow-up of greater than 15\%	
Huttunen 1979	Weight loss discouraged whilst dieting and exercising	
Jakicic 1998	Unable to extract mean and standard deviation data for primary or secondary outcomes	
Kirk 2003	Loss to follow-up of greater than 15\%	
Kraemer 1997	Unable to extract mean and standard deviation data for primary or secondary outcomes	
Kraemer 1999	Loss to follow-up of greater than 15\%	
Lehmann 1995	Not randomized controlled clinical trial	
Lejeune 2003	Loss to follow-up of greater than 15\%	
Levesque 1997	Participants not overweight or obese	
Lindstrom 2003	Loss to follow-up of greater than 15\%	
Loreto 2003	Participants not all overweight or obese	
Mensink 2003	Loss to follow-up of greater than 15%	
Messier 2000	Unable to extract mean and standard deviation data for primary or secondary outcomes	
Nicklas 2004	Loss to follow-up of greater than 15\%	
Okura 2003	Non-random allocation to groups	
Potteiger 2003	Loss to follow-up of greater than 15\%	
Probart 1991	Participants not overweight or obese	
Proper 2003	Loss to follow-up of greater than 15%	
Racette 1995	Loss to follow-up of greater than 15\%	
Ribeiro 1984	Not randomized controlled clinical trial or pretest-intervention-post test design	
Samaras 1997	No exercise prescription	
Schmitz 2003	Participants not all overweight or obese	
Schuler 1991	Participants not overweight or obese	
Slentz 2004	Loss to follow-up of greater than 15\%	
Stahle 2000	Participants not overweight or obese	
Teixeira 2003	Participants not overweight or obese	
Watkins 2003	Loss to follow-up of greater than 15\%	
Weinstock 1998	Unable to extract mean and standard deviation data for primary or secondary outcomes	
Yamanouchi 1995	Intervention < 12 weeks duration	
RCT = randomised c	ntrolled trial	
Exercise for overwe Copyright © 2007 T	ght or obesity (Review) e Cochrane Collaboration. Published by John Wiley \& Sons, Ltd	39

ADDITIONAL TABLES

Table 01. Search Strategy

Search terms

The following Medline search strategy was used and adapted for use with the other databases.
NOTES: unless stated otherwise, search terms are free text terms; MeSH: Medical subject heading (Medline medical index term); an asterisk (*) stands for 'any character(s)', a question mark stands for 'one or no character'.
OBESITY OR WEIGHT LOSS
1 Obesity/ [MeSH term, all sub trees and subheadings included]
2 Bulimia/ [MeSH term, all subheadings included]
3 Hyperphagia/ [MeSH term, all subheadings included]
4 Anti-Obesity-Agents/ [MeSH term, all subheadings included]
5 Pickwickian syndrome (and) Prader-Willi-syndrome/[MeSH term, all subheadings included]
6 (obes* or adipos* or overweight* or over weight*) [in abstract or title]
7 (overeat* or overfeed*) [in abstract or title]
8 (binge eating disorder* or fat overload syndrom*) [in abstract or title]
9 Weight-gain/ [MeSH term, all subheadings included]
10 Weight-loss/ [MeSH term, all subheadings included]
11 Body-Mass-Index/ [MeSH term]
12 weight gain [in abstract or title]
13 weight cycling [in abstract or title]
14 (weight near (reduc* or loss losing or maint* or decreas* or watch* or diet * or control ${ }^{*}$)) [in abstract or title]
15 or/1-14
This was combined with the following search strategy:
EXERCISE

1. exercis* OR (physic* activ*) OR exert* OR (physic* fit*) OR sports (text words)
2. walk* or jog* or swim* (text words)
3. (weight lift*) OR (strength train*) OR (resistance train*) OR (circuit weight train*) OR (aerob* train*) (text words)
4. exercise/ [MeSH term, all subheadings and categories included]
5. exertion/ [MeSH term, all subheadings and categories included]
6. physical education/ [MeSH term, all subheadings and categories included]
7. training/ [MeSH term, all subheadings and categories included]
8. physical-fitness/ [MeSH term, all subheadings and categories included]
9. sports/ [MeSH term, all subheadings and categories included]
10. OR/ 1-9

This was combined with the following search strategy:
RANDOMISED CONTROLLED TRIALS
1 RANDOMISED-CONTROLLED-TRIAL in PT
2 "RANDOMISED-CONTROLLED-TRIALS"/ all subheadings
3 "RANDOM-ALLOCATION" in MIME, MJME
4 random* or alloc* or assign*
5 (\#4 in TI) or (\#4 in AB)
6 \#1 or \#2 or \#3 or \#5
7 CONTROLLED-CLINICAL-TRIAL in PT
8 CLINICAL-TRIAL in PT
9 explode "CLINICAL-TRIALS"/ all subheadings
10 (CLIN* near TRIAL*)
11 (\#10 in TI) or (\#10 in AB)
12 "CROSS-OVER-STUDIES" in MIME, MJME
13 cross-over near (stud* or trial* or design*)

Table 01. Search Strategy (Continued)

Search terms

14 crossover near (stud ${ }^{*}$ or trial* or design*)
15 \#7 or \#8 or \#9 or \#11 or \#12 or \#13 or 14
16 "DOUBLE-BLIND-METHOD" in MIME, MJME
17 "SINGLE-BLIND-METHOD" in MIME, MJME
18 (singl* or doubl* or trebl* or tripl*) near (blind* or mask*)
19 (\#18 in TI) or (\#18 in AB)
20 \#16 or \#17 or \#19
21 "PLACEBOS"/ all subheadings
22 placebo* in TI
23 placebo* in AB
24 \#21 or \#22 or \#23
25 explode "RESEARCH-DESIGN"/ all subheadings
26 TG=COMPARATIVE-STUDY
27 explode "EVALUATION-STUDIES"/ all subheadings
28 "FOLLOW-UP-STUDIES" in MIME, MJME
29 "PROSPECTIVE-STUDIES" in MIME, MJME
30 control* or prospectiv* or volunteer*
31 (\#30 in TI) or (\#30 in AB)
32 \#25 or \#26 or \#27 or \#28 or \#29 or \#31
33 \#6 or \#15 or \#20 or \#24 or \#32
34 (TG=ANIMAL) not ((TG=HUMAN) and (TG=ANIMAL))
35 \#33 not \#34
This was combined with the following search strategy:
SYSTEMATIC REVIEWS AND META-ANALYSES
1 "META-ANALYSIS" in MIME,MJME
2 explode "REVIEW-LITERATURE"/ all subheadings
3 META-ANALYSIS in PT
4 REVIEW in PT
5 REVIEW-ACADEMIC in PT
6 REVIEW-LITERATURE in PT
7 REVIEW-TUTORIAL in PT
8 GUIDELINE in PT
9 PRACTICE-GUIDELINE in PT
10 \#1 or \#2 or \#3 or \#4 or \#5 or \#6 or \#7 or \#8 or \#9
11 REVIEW-OF-REPORTED-CASES in PT
12 REVIEW-MULTICASE in PT
13 LETTER in PT
14 COMMENT in PT
15 EDITORIAL in PT
16 HISTORICAL-ARTICLE in PT
17 \#11 or \#12 or \#13 or \#14 or \#15 or \#16
18 \#10 not \#17
19 ((systematic* or quantitativ* or methodologic*) near (review* or overview*)) in TI,AB
20 (meta anal* or metaanal*) in TI,AB
21 (integrativ* research review* or research integration) in TI, AB
22 (quantitativ* synthes*) in TI, AB
23 (pooling* or (pooled analys*) or (mantel* haenszel*)) in TI,AB
24 (peto* or der simonian* or dersimonian* or fixed effect* or random effect*) in TI,AB
25 \#19 or \#20 or \#21 or \#22 or \#23 or \#24

Table 01. Search Strategy (Continued)

Search terms
26 \#18 or \#25
27 (TG=ANIMAL) not ((TG=HUMAN) and (TG=ANIMAL))
28 \#26 not \#27

$\stackrel{\rightharpoonup}{\square} \stackrel{\rightharpoonup}{+}$	Study ID	Outcome 1	Outcome 2	Outcome 3	Outcome 4	Outcome 5	Outcome 6	Outcome 7	Outcome 8	Outcome 9
	Aggel-Leijssen 2001		ight change) at 12 eks (mean SD): diet $14.8+/-$ kg , diet xercise $=$ $5.2+/-6.3$							
	Aggel-Leijssen 2001b	Weight change (kg) at 12 weeks (mean +/- SD): exercise $=86.5$ +/- 10.2 kg (pre) to 87.1 +/- 10.1 kg (post), control $=94.7+/$ 14.0 kg (pre) to $94.5+/-$ 14.5 kg (post)	Change in BMI at 12 weeks (mean +/-SD): exercise $=32.1$ + /- 2.9 (pre) to $32.4+$ /- 3.0 (post), control $=33.3+/-3.8$ (pre) to 33.1 +/- 3.9 (post)	Change in \% body fat at 12 weeks (mean $+/-\mathrm{SD}$): exercise $=42.6$ +/- 3.1 (pre) to 42.8 +/- 2.4 (post), control $=44.4+/-3.0$ (pre) to 44.9 +/- 3.2 (post)	Change in WHR at 12 weeks (mean +/-SD): exercise $=0.89$ +/- 0.04 (pre) to 0.89 +/0.05 (post), control $=0.90$ $+/-0.03$ (pre) to $0.88+/-$ 0.03 (post)	Change in VO2 max (ml/min) at 12 weeks (mean +/SD): exercise $=$ $2126+/-168$ (pre) to 2188 +/- 291 (post), control $=1913$ + / -460 (pre) to $1966+/-$ 359 (post)				
↔	$\begin{aligned} & \text { Aggel-Leijssen } \\ & 002 \end{aligned}$	Weight change (kg) at 12 weeks (mean +/SE): vigorous exercise = $105.5+/-6.6$ kg (pre) to $105.1+/-6.2$ kg (post), moderate exercise = $102.7+/$ -	Change in BMI at 12 weeks (mean +/- SE): vigorous exercise = $32.2+/-1.6$ (pre) to 32.1 +/- 1.3 (post), moderate exercise $=31.6$ + / - 3.1 (pre) to $31.7+$ /- 3.1	Change in \% body fat at 12 weeks (mean +/SE): vigorous exercise = $31.3+/-4.3$ (pre) to 31.8 +/- 4.4 (post), moderate exercise $=31.9$ + / - 2.4 (pre) to $31.5+/-2.2$	Change in VO 2 max (ml/min) at 12 weeks (mean +/SE): vigorous exercise = $3312+/-448$ (pre) to 3820 +/- 453 (post), moderate exercise = $3191+/-532$					

$\stackrel{\text { ® }}{\substack{\text { o }}}$	Study ID	Outcome 1	Outcome 2	Outcome 3	Outcome 4	Outcome 5	Outcome 6	Outcome 7	Outcome 8	Outcome 9
		$\begin{aligned} & 10.8 \mathrm{~kg} \text { (pre) } \\ & \text { to } 103.1+/- \\ & 11.4 \mathrm{~kg} \text { (post), } \\ & \text { control }=96.5 \\ & +/-10.3 \mathrm{~kg} \\ & \text { (pre) to } 95.9 \\ & +/-9.6 \mathrm{~kg} \\ & \text { (post) } \end{aligned}$	$\begin{aligned} & \text { (post), control } \\ & =31.5+/-2.4 \\ & \text { (pre) to } 31.4 \\ & +/-2.5 \text { (post) } \end{aligned}$	(post), control $=31.6+/-5.1$ (pre) to 31.7 +/- 5.0 (post)	(pre) to 3556 +/- 542 (post), control $=2944$ +/- 443 (pre) to 3019 +/- 557 (post)					
	Anderson 1999	Weight change (kg) at 16 weeks (mean +/-SD): diet + exercise $=-8.3$ $+/-3.8 \mathrm{~kg}$, diet $=-7.9+/-4.2$ kg	Triglyceride change (\%) at 16 weeks (mean +/-SD): diet + exercise $=-17.9+/-$ 18.2%, diet $=$ -14.6 +/- 32.4 \%	Cholesterol change (\%) at 16 weeks (mean $+/-\mathrm{SD}$): diet + exercise $=-10.9+/-8.0$ $\%$, diet $=-9.3$ +/-12.4 \%	Systolic blood pressure change (\%) at 16 weeks (mean $+/-$ SD): diet + exercise $=-7.0+/-7.1$ $\%$, diet $=-7.9$ +/-11.6 \%					
든	Anderssen 1996	BMI change at 12 months: exercise = -0.65 (SE= 1.5), diet = -1.6 (SE=1.8), diet + exercise $=-2.2(\mathrm{SE}=$ 1.8), control = 0.4 (SE=0.8)	Fasting serum glucose change at 12 months: exercise $=$ -0.09 (SE= 0.4), diet = -0.2 (SE=0.5), diet + exercise $=-0.3(\mathrm{SE}=$ $0.6)$, control $=$ 0.07 ($\mathrm{SE}=0.5$)	VO 2 max change at 12 months: exercise $=4.0$ ($\mathrm{SE}=0.1$), diet $=1.7$ (SE= $0.1)$, diet + exercise $=6.7$ ($\mathrm{SE}=0.1$)	Change in total energy intake at 12 months: exercise $=92$ ($\mathrm{SE}=602$), diet $=-1679$ ($\mathrm{SE}=450$), diet + exercise = - 1414 (SE= 574)					
\pm	Balkestein 1999	Weight change (kg) at 12 weeks: diet + exercise $=102$ +/- 3 (SEM) (pre) to 87	Change in BMI at 12 weeks: diet + exercise $=33$ +/- 1 (SEM) (pre) to 28	Change in systolic blood pressure (mmHg) at 12 weeks: diet + exercise $=130$	Change in diastolic blood pressure (mmHg) at 12 weeks: diet + exercise $=82$					

Table 02. Original data for all outcomes (Continued)

Study ID

Outcome 1
Outcome 2 Outcome 3
+/- 2 (SEM) (post), diet +/- 1 (SEM) (post), diet
+/- 2 (SEM) (pre) to 122 +/- 2 (SEM) (post), diet (SEM) (pre) to $88+/-2$ (SEM) (pre) $=127+/-3$ (SEM) (pre) to $117+/-2$ (SEM) (post)

Outcome 4
+/- 2 (SEM)
(pre) to 77 +/- 2 (SEM) (post), diet $=80+/-2$ (SEM) (pre) to $72+/-2$ (SEM) (post)

Outcome 5

Weight change (kg)	Systolic blood pressure change	Diastolic blood pressure change
at weeks:		
Vigorous	(mmHg) at	(mmHg) at exercise $=$
-16 weeks:	16 weeks:	
-1.43 kg	vigorous	vigorous
$(\mathrm{SEM=0.3})$,	exercise $=$	exercise $=$
light exercise	-3.2 mmHg	-2.9 mmHg
$=-0.35 \mathrm{~kg}$	$(95 \% \mathrm{CI},-5.6$	$(95 \% \mathrm{CI},-4.2$
$(\mathrm{SEM}=0.3)$	to -0.7$), \mathrm{light}$	to -1.6$),$ light
	exercise $=$	exercise $=$
	-3.6 mmHg	-3.1 mmHg
	$(95 \% \mathrm{CI},-5.6$	$(95 \% \mathrm{CI},-4.9$
	to -1.6$)$	to -1.3$)$

Weight change (kg) at 16	Waist-to-hip ratio change
weeks: exercise	
$=-1.55 \mathrm{~kg}$	at 16 weeks: $(95 \% \mathrm{CI},-0.25$
$(95 \% \mathrm{CI},-0.02$	
to -2.84$),$ diet	to 0.02$)$, diet
$=-10.88 \mathrm{~kg}$	$=-0.02(95 \%$
$(95 \% \mathrm{CI},-8.53$	$\mathrm{CI},-0.01$ to
to -13.23$),$	$-0.03)$, diet
diet + exercise	+ exercise $=$
$=-11.66 \mathrm{~kg}$	$-0.03(95 \%$
$(95 \% \mathrm{CI},-8.32$	$\mathrm{CI},-0.01$ to
to -15.01$),$	$-0.05)$, control

BMI change
at 16 weeks:
exercise $=-0.1$
$(95 \% \mathrm{CI},-0.6$
to 0.3$),$ diet $=$
$-3.1(95 \% \mathrm{CI}$,
-4.0 to -2.3$),$
diet + exercise
$=-2.9(95 \%$
$\mathrm{CI},-4.0$ to
$-1.7)$, control $=$
$0.1(95 \% \mathrm{CI}$,
-0.2 to 0.4$)$

Fasting serum
glucose change
$(\mathrm{mmol} / \mathrm{L})$ at

16 weeks:
exercise $=$
$-0.01(95 \%$
$\mathrm{CI},-0.3$ to
$0.26)$, diet $=$
$0.03(95 \% \mathrm{CI}$,
-0.19 to 0.26$),$
diet + exercise
$=-0.09(95 \%$
$\mathrm{CI},-0.37$ to

Glycated haemoglobin	$\mathrm{VO} 2 \max$ change	Change in energy intake
(\%)	(L/min)	(kj/d) at 16
6 weeks:	weeks: exercise	weeks: exerc
$=0.1$	$=0.59$ (95\%	-
\%	CI, 0.67 to	C
6),	0.	23
$\mathrm{t}=0.14$	0.01 (95\% C	-4023 (95\%
CI, 0.01	0.08 to 0.12),	CI, -5015 to
to 0.26), diet	diet + exercise	-3032), diet
+ exercise = -	$=0.65$ (95\%	+ exerci
0.03 (95\%	CI, 0.49	4804 (95\%
0.26 to 0.20),	$0.79)$, control	CI, -6402

Table 02. Original data for all outcomes (Continued)

Study ID

Outcome 1 Outcome 2 Outcome 3

control $=-0.44$	$=0.01(95 \%$
$\mathrm{kg}(95 \% \mathrm{CI}$,	$\mathrm{CI}, 0.01$ to
0.4 to -1.3$)$	$-0.01)$

Outcome $4 \quad$ Outcome 5

$0.19)$, control
$=0.51(95 \%$
CI, 0.04 to
control $=0.21$
Outcome 6

95\% CI, -0.1 CI, -0.01 to
Cl, -0.01 to
to -3205),
control $=-802$
(95\% CI,
-3383 to 1780)

Gillett 1987

Weight change (lb)

Change in
Change in
at 16 weeks
(mean +/-
SD): exercise at 16 weeks cholesterol (mean +/-SD): ($\mathrm{mg} \%$) at $=165.3+/-$ exercise $=42.3$ 16 weeks 16.9 lb (pre) $+/-6.7$ (pre) to (mean + /to 159.8 +/-$40.6+/-4.9$ SD): exercise 15.9 lb (post), $=42.8+/-6.0 \quad 45.6$ (pre) to control $=\quad$ (pre) to $38.8 \quad 209.7+/-45.4$ $166.3+/-\quad+/-6.6$ (post) 17.7 lb (pre) to
$160.4+/-17.7$
lb (post)

Gordon 1997

Weight change	Body fat (\%) change at 12
$(\mathrm{~kg})$ at 12	weeks (mean
weeks (mean	(/-SD):
+/- SD):	+/-SD):

Maximal oxygen uptake change $(\mathrm{ml} / \mathrm{min})$ at 12 weeks exercise $=-1.0 \quad$ exercise $=-0.5$ +/- 1.8 kg , diet +/- 1.0%, diet

$$
=-5.8+/-=-1.6+/-
$$

(mean +/-
SD): exercise =
$-1.0+/-1.8 \mathrm{~kg}$, diet $=-5.8+/-$

Change in
total serum
triglycerides

$(\mathrm{mg} \%)$ at
16 weeks
$($ mean $+/-$
SD): exercis
$=116.3+/-$

Change in glucose ($\mathrm{mg} \%$) at 16 weeks

Change in
systolic blood
Change in
diastolic
blood pressure
(mean $+/-\mathrm{SD}$):
exercise $=94.3$
+/- 10.0 (pre)
to 91.3 SD): exercise
16 weeks
(mean $+/-\mathrm{SD}$):
exercise $=79.2$
to $91.3+/-7.6=115.0+/-$
+/- 12.2 (pre)
(post), control
13.3 (pre) to
to $72.1+/-8.7$
$=88.5+/-6.2$
$\begin{array}{ll}110.8+/-11.2 & \text { (post), control } \\ \text { (post), control } & =70.6+/-8.3\end{array}$
$=109.8+/-\quad$ (pre) to 66.5
8.1 (pre) to $\quad+-6.2$ (post)
$103.5+/-5.9$
(post)
Outcome 8
Outcome 9
(pre) to 86.2
+/- 5.7 (post)

$$
\begin{array}{ll}
=-5.8+/- & =-1.6+/- \\
3.9 \mathrm{~kg}, \text { diet }+ & 1.3 \%, \text { diet }+
\end{array}
$$

$$
\text { exercise }=-7.1 \quad \text { exercise }=-2.4
$$

Table 02. Original data for all outcomes (Continued)

Study ID

Outcome 1

Outcome Outcome 3
(kg) at 1 weeks (mean $+/-\mathrm{SD})$: diet = $-3.2+/-1.2 \mathrm{~kg}$, diet + exercise $=-4.8+/-0.9$ kg , control $=$ $-0.1+/-0.6 \mathrm{~kg}$
g
change at 14

O

 Outcome 4Outcome Outcome 6

BMI at 6 months:	Waist circumference	WHR at exercise $=-0.3$ $(\mathrm{~cm})$ at 6
$(95 \% \mathrm{CI},-0.5$	months:	
exercise $=$		
to -0.01$),$ diet	exercise $=-2.2$	$-0.06(95 \%$
$=-0.3(95 \%$	$(95 \% \mathrm{CI},-0.08$ to	
CI, -0.6 to	to -1.3$),$ diet $=$	$-0.05)$, diet $=$
$0.03)$, diet +	$-1.3(95 \% \mathrm{CI}$,	$\mathrm{CI},-0.07$ to
exercise $=-$	-2.5 to -0.1$),$	$-0.02)$, diet
$0.6(95 \% \mathrm{CI}$,	diet + exercise	+ exercise $=$

Systolic blood pressure (mmHg) at	Diastolic blood pressure (mmHg) at
6 months:	6 months:
exercise $=-5$	exercise $=-4$ $(95 \% \mathrm{CI},-9$ to $(95 \% \mathrm{CI},-7$ to $-0.3)$, diet $=-7$
$(95 \%$ CI, -10	$(95 \% \mathrm{diet}=-6$
(9 -3$),-8$	
to diet +	to -4$),$ diet +
exercise $=-4$	exercise $=-2$

Total serum
cholesterol
$(\mathrm{mmol} / \mathrm{L})$ at

6 months:
exercise $=$
$-0.12(95 \%$
$\mathrm{CI},-0.35$ to
$0.11)$, diet $=$
$-0.19(95 \%$
$\mathrm{CI},-0.49$ to

Total serum triglycerides $(\mathrm{mmol} / \mathrm{L})$ at	Change in energy intake $(\mathrm{kj} / \mathrm{d})$ at	Change in number of exercise
6 months:	6 months:	sessions per
exercise $=$	exercise $=8928$	month at
$-0.10(95 \% \mathrm{CI}$,	$(\mathrm{SD=1522)} \mathrm{pre} 6$	6 months:
-0.34 to 0.13$),$	to $8564(\mathrm{SD}=$	exercise $=5.1$
diet $=0.03$	$1494)$ post,	$(\mathrm{SD=7.3)} \mathrm{pre}$
$(95 \% \mathrm{CI},-0.09$	diet $=8160$	to $11.7(\mathrm{SD}=$
to 0.15$),$ diet	$(\mathrm{SD=1751)} \mathrm{pre} 6$	$6.7)$ post, diet

Table 02. Original data for all outcomes (Continued)

Study ID

Outcome 1

-0.9 to -0.3),

Outcome 2
-0.9 to -0.3$),$
control $=0.3$ $=-3.0(95 \%$ (95\% CI, 0.1 to 0.5)

CI, -3.9 to $-2.0)$, control $=$ 0.3 (95\% CI, -0.5 to 1.1) -0.03), control $=-0.05(95 \%$ CI, -0.07 to -0.04)

Outcome 4
(95\% CI, -7 to
$-1)$, control =

Outcome 5

(95\% CI, -4 to
0.11), diet + exercise $=-$ 0.45 (95\%

CI, -0.77 to -0.13), control $=-0.13(95 \%$ CI, -0.33 to

0.07)

DXA total
Hip
circumference
body fat change (kg) at 12 months:
Intervention $=-1.2 \%$
$=-1.4 \mathrm{~kg} \quad(95 \% \mathrm{CI}$,
($95 \% \mathrm{CI},-2$ to
-0.8), control
$=-0.1 \mathrm{~kg}$
(95\%CI, -0.6
to 0.6)
to 0.9); Hip
circumference
change at

Jakicic 1995 Weight change

Intervention
$=-1.3 \mathrm{~kg}$
($95 \% \mathrm{CI},-2$ to
-0.5), control
$=0.1 \mathrm{~kg}$
(95% CI, -0.6
to 0.8)
(kg) at 20 weeks (mean

VO 2 ma change by 20 weeks

Weight change
(kg) at 3 months: Intervention $=-0.5 \mathrm{~kg}$ (95\%CI, -1 to 0.1), control $=0 \mathrm{~kg}$ ($95 \% \mathrm{CI},-0.6$ to 0.5); Weight 12 months: Intervention = -0.3 (95\%CI,
-0.6 to -0.1), control $=0.3$ (95\%CI, 0 to 0.6)
.6)

Table 02. Original data for all outcomes (Continued)

| Study ID | Outcome 1 | Outcome 2 | Outcome 3 | Outcome 4 | Outcome 5 | Outcome 6 | Outcome 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Outcome 8 Outcome 9

$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned} .$	Leutholtz 1995	Weight change (kg) at 12 weeks (mean +/-SD): vigorous exercise = -15.7 +/5.3 kg , light exercise $=-$ $15.0+/-8.4 \mathrm{~kg}$	Body fat (\%) change at 12 weeks (mean +/SD): vigorous exercise $=-9.6$ +/- 3.2 \%, light exercise $=$ $-8.3+/-2.9 \%$					
$\begin{aligned} & \text { view) } \\ & \text { boration. Published by John Wiley \& Sons, Ltd } \end{aligned}$	Manning 1991	Weight change (kg) at 12 weeks (mean +/- SEM): exercise $=84.1$ +/- 3.5 kg (pre) to 85.5 +/- 3.6 kg (post), control $=87.0$ $+/-4.2 \mathrm{~kg}$ (pre) to $87.3+/-4.3$ kg (post)	Change in BMI at 12 weeks (mean +/- SEM): exercise $=31.4$ $+/-1.3$ (pre) to $32.0+/-1.4$ (post), control $=32.8+/-1.4$ (pre) to 33.0 +/- 1.4 (post)	Change in energy intake (kcal/day) at 12 weeks (mean +/SEM): exercise $=1618+/-135$ kcal/day (pre) to 1675 +/$96 \mathrm{kcal} /$ day (post), control $=1658+/-144$ $\mathrm{kcal} /$ day (pre) to $1728+/-$ $102 \mathrm{kcal} /$ day (post)	Change in total serum cholesterol $(\mathrm{mg} / \mathrm{dl})$ at 12 weeks (mean +/- SEM): exercise $=200$ $+/-10$ (pre) to $198+/-11$ (post), control $=197+/-15$ (pre) to 205 +/- 15 (post)	Change in total serum triglycerides $(\mathrm{mg} / \mathrm{dl})$ at 12 weeks (mean +/- SEM): exercise $=111$ +/- 10 (pre) to 126 +/- 12 (post), control $=106+/-20$ (pre) to 114 +/-30 (post)		
	$\begin{aligned} & \text { Neumark } \\ & 1995 \end{aligned}$	Weight change (kg) at 3 months (mean +/-SD): exercise $=-3.6$ $+/-2.6 \mathrm{~kg}$, control $=-3.8$ $+/-2.0 \mathrm{~kg}$	Change in waist circumference (cm) at 3 months (mean +/-SD): exercise $=-7.4$ $+/-7.0 \mathrm{~cm}$, control $=-8.5$ $+/-8.9 \mathrm{~cm}$					
N	Nieman 1998	Weight change (kg) at 3	Change in BMI at 3	Change in \% body fat at 3	Change in VO 2 max	Change in serum	Change in serum	Change in serum glucose

Table 02. Original data for all outcomes (Continued)

Study ID

Outcome 1
months (mean
Outcome 2

Outcome 3

 +/- SEM): exercise $=88.4$ +/- 2.9 (pre) to months (me+ /- SEM): $87.4+$ /- 2.8 (post), diet = $90.6+/-3.8$ (pre) to 82.8 +/- 3.7 (post), diet+ exercise (pre) to $81.8 \quad$ (pre) to 29.7 +/- 2.3 (post), +/- 0.9 (post), control $=90.5$ control $=32.8$ $+/-2.4$ (pre) to $+/-1.0$ (pre) to $89.7+/-2.5 \quad 32.5+/-1.0$
(post)
(post)
months (mean
$(\mathrm{ml} / \mathrm{min})$ at 3 months (mean

Outcome 5
cholesterol $(\mathrm{mmol} / \mathrm{L})$ at 3 months (mean +/- SEM): exercise $=5.6$ +/- 0.2 (pre) to $5.7+/-0.2$ (post), diet = $5.4+/-0.2$ (pre) to 4.8 +/- 0.2 (post), diet+ exercise $=5.3+/-0.2$ (pre) to 4.7 +/- 0.2 (post), control $=5.1$ $+/-0.2$ (pre) (post)

Outcome 6
triglycerides
$(\mathrm{mmol} / \mathrm{L})$ at 3 months (mean +/- SEM): exercise $=1.6$ +/- 0.2 (pre) to $1.8+/-0.2$ (post), diet = (post), diet $=\quad 5.2+/-0.2$ $1.6+/-0.2$ (pre) to 4.8 (pre) to $1.4 \quad+/-0.1$ (post), $+/-0.1$ (post), diet+ exercise diet+ exercise $=1.5+/-0.1$ (pre) to 1.3 $\begin{array}{ll}\text { (pre) to } 1.3 & +/-0.1 \text { (post), } \\ +/-0.1 \text { (post), } & \text { control }=5.1\end{array}$ control $=1.5 \quad+/-0.2$ (pre) $+/-0.1$ (pre) to $5.4+/-0.2$ to $1.8+/-0.2$ (post) (post)

Outcome 7
$(\mathrm{mmol} / \mathrm{L})$ at 3
months (mean +/- SEM):
exercise $=5.1$
+/- 0.2 (pre)
to $4.9+/-0.1$
$=5.3+/-0.2$ (pre) to 4.9 control $=5.1$
$+/-0.2$ (pre) to 5.4
(post)

Outcome 8

Outcome 9

$\stackrel{\rightharpoonup}{9} \stackrel{\rightharpoonup}{+}$	Study ID	Outcome 1	Outcome 2	Outcome 3	Outcome 4	Outcome 5	Outcome 6	Outcome 7	Outcome 8	Outcome 9
		$31.5+/-4.3$	＋／－2．3（pre）to	exercise $=5.7$	＋／－0．7（pre）					
言宮宮		（post），control	$10.2+/-3.3$	＋／－1．0（pre）	to $1.9+/-0.7$					
$\bigcirc \stackrel{+}{\circ}$		$=30.2+1-4.7$	（post），control	to $5.6+$＋ 1.0	（post），control					
产		（pre）to 30.6	$=11.8+/-4.6$	（post），control	$=2.1+/-0.6$					
${ }^{\circ}$		＋／－4．2（post）	（pre）to 12.3	$=6.0+/-1.1$	（pre）to $2.2+/-$					
			＋／－4．4（post）	$\begin{aligned} & \text { (pre) to } 6.0+/- \\ & 1.0 \text { (post) } \end{aligned}$	0.1 （post）					
	Ross 1996	Weight change （kg）at 16 weeks（mean ＋／－SD）：diet $=-11.4+/-$ 3.5 kg ，diet + aerobic exercise $=$ －11．6＋／－ 3.7 kg ，diet ＋resistance exercise $=$ $-13.2+/-4.1$ kg	Waist circumference change（cm） at 16 weeks （mean $+/-\mathrm{SD}$ ）： diet $=-8.5$ ＋／－ 4.0 cm ， diet + aerobic exercise＝ －12．9＋／－ 4.0 cm ，diet ＋resistance exercise＝ $-11.9+/-4.0$ cm	WHR change at 16 weeks （mean＋／－ SD）：diet＝ $-0.03+/-0.03$ ， diet＋aerobic exercise $=$ $-0.05+/$－ 0.05 ，diet ＋resistance exercise $=$ $-0.05+/-0.02$						
	Schwartz 1987	Weight change （kg）at 3 months（mean ＋／－SD）： exercise $=-2.8$ $+/-3.6 \mathrm{~kg}$ ，diet $=-13.1+/-$ 6.1 kg	Change in calorie intake （kcal／day）at 3 months （mean＋／－SD）： exercise $=174$ $+/-187$ ，diet＝ $-199+/-256$	Change in triglycerides （ $\mathrm{mg} / \mathrm{dL}$ ）at 3 months （mean $+/-\mathrm{SD}$ ）： exercise $=-2$ $+/-35$ ，diet＝－ $54+/-67$	Change in cholesterol $(\mathrm{mg} / \mathrm{dL})$ at 3 months （mean＋／－SD）： exercise $=7+/-$ 17 ，diet $=-29$ ＋／－27					
¢	Schwartz 1990	Weight change （kg）at 3 months（mean ＋／－SD）：	Change in $\%$ body fat at 3 months （mean $+/-\mathrm{SD}$ ）：	Change in calorie intake （kcal／day）at 3 months						

Table 02. Original data for all outcomes (Continued)

Study I

Outcome 1

Outcome
Outcome 3
Outcome 4
Outcome 5
Outcome 6
Out
exercise $=-2.3 \quad$ exercise $=-2.3 \quad($ mean $+/-S D)$:
$+/-3.4 \mathrm{~kg}$, diet $\quad+/-2.3 \%$, diet \quad exercise $=202$
$=-13.6+/-=-5.9+/-3.5+/-176 \mathrm{kcal} / \mathrm{d}$,
$6.7 \mathrm{~kg} \quad \%$
diet $=-247+/-$
$275 \mathrm{kcal} / \mathrm{d}$

Weight change
(kg) at 12
Change
months (mean
in serum
+/- SD):
ch
exercise $=-0.5$
$+/-2.8 \mathrm{~kg}$, diet
$=-2.8+/-$
3.5 kg , diet
mean $+/-\mathrm{SD}$):
Change
in serum triglycerides ($\mathrm{mmol} / \mathrm{L}$) at 12 months

+ exercise $=-$
3.7 +/- 4.0 kg , control $=0.7$
$+/-3.5 \mathrm{~kg}$
$=-19.1+/$
4.5 , control =
$-2.5+/-4.5$
(mean +/-
SD): exercise $=$
-12.9 +/- 6.9,
Change serum glucose

Change in systolic blood ($\mathrm{mmol} / \mathrm{L}$) at 12 months (mean +/-SD):
pressure (mmHg) at

Change in diastolic blood pressure exercise $=-6.7$
$+/-3.0$, diet =
$-7.7+$ + 2.8 ,
12 months
(mmHg) at exercise $=-0.8 \quad$ exercise $=-1.2$ $+/-2.8$, diet $=\quad+/-2.6$, diet $=$ $-2.6+/-2.8, \quad-1.1+/-2.3$, diet + exercise \quad diet + exercise +/- 7.9, diet +
diet + exerch + exercise $\begin{array}{ll}=-3.1+/-2.7, & =-2.9+/-2.4 \\ \text { control }=-1.0 & \text { control }=0.6\end{array}$ +/- 2.8 +/- 2.4

Change	Change in
in serum	energy intake
triglycerides	$(\mathrm{kj} / \mathrm{d})$ at 12

Change in
systolic blood
pressure

[^1]

Table 02. Original data for all outcomes (Continued)

Study ID	Outcome 1	Outcome 2	Outcome 3	Outcome 4	Outcome 5	Outcome 6	Outcome 7	Outcome 8	Outcome 9
	$\begin{aligned} & \mathrm{kg} \text {, diet }=- \\ & 16.7+/-5.5 \mathrm{~kg} \end{aligned}$								
Wallace 1997	Weight change (kg) at 14 weeks (mean +/-SD): vigorous exercise $=$ $-4.2+/-4.1$ kg , moderate exercise $=-1.9$ $+/-5.1 \mathrm{~kg}$	Change in \% body fat at 14 weeks (mean +/SD): vigorous exercise = $-6.9+/-1.3$ $\%$, moderate exercise $=-1.4$ +/-1.4 \%	WHR change at 14 weeks (mean +/SD): vigorous exercise = $-0.06+/-0.01$, moderate exercise $=-$ $0.04+/-0.01$	Change in serum triglycerides ($\mathrm{mg} / \mathrm{dL}$) at 14 weeks (mean +/SD): vigorous exercise = $-43.8+/-13.6$, moderate exercise $=-$ $31.9+/-12.2$	Change in blood pressure (mmHg) at 14 weeks (mean +/SD): vigorous exercise = $-14.6+/-5.5$, moderate exercise $=-8.3$ +/- 6.8	Change in serum glucose ($\mathrm{mg} / \mathrm{dL}$) at 14 weeks (mean +/SD): vigorous exercise = $-11.1+/-2.9$, moderate exercise $=-5.9$ +/- 2.6			
Whatley 1994	Weight change (kg) at 3 months (mean +/SD): vigorous exercise = $-19.6+/-4.2$ kg , moderate exercise $=-$ $15.8+/-4.2 \mathrm{~kg}$	Change in WHR at 3 months (mean +/SD): vigorous exercise $=$ $-0.02+/-0.03$, moderate exercise $=-$ $0.04+/-0.06$	Change in VO2 max ($\mathrm{L} / \mathrm{min}$) at 3 months (mean +/SD): vigorous exercise $=-$ $0.05+/-0.02$, moderate exercise $=-$ $0.08+/-0.18$						
Wing 1988	Weight change (kg) at 12 months (mean +/- SD): diet + exercise = $104.1+/-6.0$ kg (pre) to $96.2+/-6.5$ kg (post), diet	BMI change at 12 months (mean +/-SD): diet + exercise $=37.5+/-1.9$ (pre) to 34.6 +/- 2.1 (post), diet $=37.9+/-$ 1.7 (pre) to	Change in HbAlc at 12 months (mean +/-SD): diet + exercise $=10.6$ +/- 0.5 (pre) to $9.2+/-0.5$ (post), diet = $10.9+/-0.5$	Change in serum cholesterol ($\mathrm{mmol} / \mathrm{l}$) at 12 months (mean +/- SD): diet + exercise $=4.9$ +/- 0.3 (pre) to $5.2+/-0.3$	Change in serum triglycerides ($\mathrm{mmol} / \mathrm{l}$) at 12 months (mean +/- SD): diet + exercise $=2.5$ +/- 0.6 (pre) to $1.9+/-0.3$	Change in serum glucose $(\mathrm{mmol} / \mathrm{l})$ at 12 months (mean +/-SD): diet + exercise $=11.6$ +/- 0.6 (pre) to $9.9+/-0.8$ $($ post $)$, diet $=$			

Table 02. Original data for all outcomes (Continued)

Study
Outcome 1 Outcome 2
$=102.0+/-\quad 36.6+/-1.8$ 5.0 kg (pre) to (post)
$98.2+/-4.9 \mathrm{~kg}$
(post)
Wing 1998
Weight change
Change in
(kg) at 6
months:
exercise $=-2.1$ months:
$+/-4.2 \mathrm{~kg}$, diet
exercise $=-0.8$
$=-9.1$ +/-
$+/-1.5$, diet $=$
6.4 kg , diet diet + exercise

+ exercise $=-\quad=-3.7+/-2.6$,
$10.3+/-7.7 \quad$ control $=-0.6$
kg , control $=\quad+/-1.0$
$-1.5+/-2.7 \mathrm{~kg}$

Wirth 1985
Weight change
Change in
\% body fat
months (mean
at 4 months
+/- SD):
exercise $=81.9$
(pre) to $81.6 \quad 22.1+3.1$ (pre) to $+/-10.7 \mathrm{~kg}$ (post), control $\begin{array}{ll}=86.6+/-12.9 & \text { (pre) to } 25.6 \\ \mathrm{~kg}(\text { pre to } & +/-2.5 \text { (post) }\end{array}$ kg (pre) to $88.2+/-14.5$ kg (post)

Wood 1988

Outcome 3

Change in

Outcome 4
 Outcome 5
 Outcome 6

(pre) to 10.1 +/- 0.4 (post)
Change
in fasting
plasma glucose
$(\mathrm{mmol} / \mathrm{l})$ at
6 months:
exercise $=0.0$
$+/-0.7$, diet $=$
$-0.2+/-0.4$,
diet + exercise
$=-0.2+/-0.4$, control $=0.1$
+/- 0.5
resting systolic
blood pressure
(mmHg) at
4 months
):

4
$($ mean $+/-S D): \quad($ mean $+/-S D)$:
exercise $=137$
exercise $=273$
+/- 5.1 (pre) to
+/-57 (pre)
$123+/-5.1$ to $260+/-52$
$\begin{array}{ll}\text { (post), control } & \text { (post), control } \\ =132+1-5.6 & =299+1-61\end{array}$
$=132+/-5.6$
= $299+/-61$
(pre) to 132 (pre) to 294
+/- 4.9 (post)
+/- 58 (post)
(kg) at 12 months (mean
+/-SD): exercise $=-4.0$

Change in energy intake (kj/day) at
12 months
(mean $+/$ -

Change in
VO 2 max
($\mathrm{ml} / \mathrm{kg} / \mathrm{min}$)
at 12 months
(mean +/-SD):

Outcome 7
Outcome 8
Outcome 9

Table 02. Original data for all outcomes (Continued)

Study ID	Outcome 1	Outcome 2	Outcome 3	Outcome 4	Outcome 5	Outcome 6	Outcome 7	Outcome 8	Outcome 9
	$+/-3.9 \mathrm{~kg}$, diet $=-7.2+/-3.7$ kg , control = $0.6+/-3.7 \mathrm{~kg}$	SD): exercise = -873 +/- 2558 kj/day, diet $=-1429+/-$ $1887 \mathrm{kj} /$ day, control $=$ $-433+/-2071$ kj/day	$\begin{aligned} & \text { exercise = } 4.1 \\ & +/-5.9 \text {, diet }= \\ & 0.0+/-3.2, \\ & \text { control }=-2.4 \\ & +/-3.2 \end{aligned}$						
Wood 1991	Weight change (kg) at 12 months (mean +/- SD): diet + exercise $=-3.4$ $+/-4.9 \mathrm{~kg}$, diet $=-2.3+/-6.0$ kg	Change in serum triglycerides ($\mathrm{mmol} / \mathrm{L}$) at 12 months (mean +/-SD): diet + exercise $=-0.2+/-0.6$, diet $=-0.03$ +/- 0.5	Change in serum cholesterol ($\mathrm{mmol} / \mathrm{L}$) at 12 months (mean +/-SD): diet + exercise $=-0.32+/-$ 0.70 , diet $=-$ $0.4+/-0.6$	Change in systolic blood pressure (mmHg) at 12 months (mean +/-SD): diet + exercise $=-4.5$ $+/-8$, diet $=-$ $4.1+/-7.3$	Change in diastolic blood pressure (mmHg) at 12 months (mean +/- SD): diet + exercise $=-3.5$ $+/-4.9$, diet = - 2.3 +/- 5.9				

$\mathrm{SD}=$ standard deviation; $\mathrm{SE}=$ standard error; $\mathrm{SEM}=$ standard error of the mean; $\mathrm{CI}=$ confidence interval; $\mathrm{kg}=\mathrm{kilograms}$; $\mathrm{lb}=$ pounds; $\mathrm{BMI}=$ body mass index; WHR=waist-hip ratio; DXA=dual-energy x-ray absorptiometry; $\mathrm{mmHg}=$ millimetres of mercury; kcal=kilocalories; VO2max=maximal oxygen uptake; HDL=high-density lipoprotein; LDL=low-density lipoprotein; mmol/L=millimoles per litre

Table 03. Summary of Main Findings from Comparisons for Each Outcome

Intervention	Body Weight	BMI	Systolic BP	Diastolic BP	Cholesterol	Triglycerides	HDL	Glucose
Exercise versus No Treatment	Exercise increased weight loss compared with no treatment. Exercisers lost 0.5 to 7.6 kg . No treatment changed weight from 0.1 kg loss to 0.7 kg gain.	Exercise reduced BMI more than no treatment. Exercisers lost between 0.3 and $2.4 \mathrm{~kg} / \mathrm{m} 2$. No treatment changed BMI from 0.03 loss to $0.4 \mathrm{~kg} / \mathrm{m} 2$ gain.	Exercise did not reduce SBP significantly more than no treatment. Exercisers reduced SBP by 0.8 to 5.0 mmHg . No treatment reduced SBP by 1.0 mmHg .	Exercise reduced DBP 2.1 mmHg more than no treatment. Exercisers reduced DBP 0.8 to 5.0 mmHg . No treatment changed DBP from 1.0 loss to 0.6 mmHg gain.	Exercise did not reduce cholesterol significantly more than no treatment. Exercisers reduced cholesterol 0.1 to $0.3 \mathrm{mmol} / \mathrm{L}$. No treatment reduced cholesterol 0.1 to $0.2 \mathrm{mmol} / \mathrm{L}$.	Exercise reduced TG $0.2 \mathrm{mmol} / \mathrm{L}$ more than no treatment. Exercisers reduced TG 0.1 to $0.2 \mathrm{mmol} / \mathrm{L}$. No treatment changed TG from no change to $0.1 \mathrm{mmol} / \mathrm{L}$ gain.	Exercise increased HDL more than no treatment. Exercisers increased HDL 0.01 to 0.1 $\mathrm{mmol} / \mathrm{L}$. No treatment changed HDL from 0.02 loss to $0.01 \mathrm{mmol} / \mathrm{L}$ gain.	Exercise reduced glucose 0.2 $\mathrm{mmol} / \mathrm{L}$ more than no treatment. Exercisers reduced glucose 0.1 to 0.4 $\mathrm{mmol} / \mathrm{L}$. No treatment changed glucose from 0.2 loss to $0.1 \mathrm{mmol} / \mathrm{L}$ gain.
High versus Low Intensity Exercise	Increasing the intensity increased the weight loss if participants were not on a diet. High intensity exercisers lost 1.5 kg more than low intensity exercisers. Range of weight change for high intensity exercisers was from 1.3 kg to 8.9 kg loss. Range for low intensity exercisers was from 6.3 kg loss to 0.1 kg gain.	Insufficient data for analysis.	SBP was reduced with both high and low intensity exercise. Increased exercise intensity did not reduce SBP significantly more than low intensity.	No consistent effect of exercise on DBP was seen. Increased exercise intensity did not reduce DBP significantly more than low intensity.	Insufficient data for analysis.	TG was reduced by both high and low intensity exercise. Increased exercise intensity did not reduce TG significantly more than low intensity.	HDL was increased by both high and low intensity exercise. Increased exercise intensity increased HDL $0.1 \mathrm{mmol} / \mathrm{L}$ more than low intensity.	Glucose was reduced with both high and low intensity exercise. High intensity reduced glucose $0.3 \mathrm{mmol} / \mathrm{L}$ more than low intensity. Range was 0.01 to 0.6 reduction with high intensity and 0.3 reduction to 0.5 gain with low intensity.

Table 03. Summary of Main Findings from Comparisons for Each Outcome (Continued)

Table 03. Summary of Main Findings from Comparisons for Each Outcome (Continued)

$\mathrm{kg}=$ kilograms; BMI=body mass index; HDL=high-density lipoprotein; LDL=low-density lipoprotein; $\mathrm{BP}=$ blood pressure; HbA1c= glycosylated haemoglobin; WHR=waist--hip ratio
$\mathrm{kg}=$ kilograms; $\mathrm{m}=$ metres; $\mathrm{BMI}=$ body mass index; $\mathrm{BP}=$ blood pressure; $\mathrm{HDL}=$ high-density lipoprotein; LDL=low-density lipoprotein;
TG=triglycerides; $\mathrm{HbA1c}=$ glycosylated haemoglobin; $\mathrm{mmHg}=$ millimetres of mercury; mmol/L=millimoles per litre
n=number of subjects; $\mathrm{N}=$ mean;kg=kilograms;BMI=body mass index;HDL=high-density lipoprotein;LDL=low-density lipoprotein; $\mathrm{BP}=$ blood pressure; $\mathrm{HbA} 1 \mathrm{c}=$ glycosylated haemoglobin;WHR=waist--hip ratio
n=number of subjects; $\mathrm{N}=$ mean;kg=kilograms;BMI=body mass index;HDL=high-density lipoprotein;LDL=low-density lipoprotein; $\mathrm{BP}=$ blood pressure; $\mathrm{HbA1c}=$ glycosylated haemoglobin;WHR=waist--hip ratio

Comparison 01. Exercise versus no treatment control

Outcome title	No. of studies	No. of participants	Statistical method	Effect size
01 Weight change in kilograms			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
02 Change in body mass index (BMI)			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
03 Change in systolic blood pressure (mmHg)			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
04 Change in diastolic blood pressure (mmHg)	2	259	Weighted Mean Difference (Fixed) 95\% CI	-2.09 [-3.68, -0.51]
05 Change in total serum cholesterol ($\mathrm{mmol} / \mathrm{l}$)	3	348	Weighted Mean Difference (Fixed) 95\% CI	0.03 [-0.09, 0.15]
06 Change in serum triglycerides ($\mathrm{mmol} / \mathrm{l}$)	3	348	Weighted Mean Difference (Fixed) 95\% CI	-0.18 [-0.31, -0.05]
07 Change in serum HDL ($\mathrm{mmol} / \mathrm{l}$)			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
08 Change in fasting serum glucose ($\mathrm{mmol} / \mathrm{l}$)	2	273	Weighted Mean Difference (Fixed) 95\% CI	-0.17 [-0.30, -0.05]

Comparison 02. Exercise versus diet

Outcome title	No. of studies	No. of participants	Statistical method	Effect size
01 Weight change in kilograms			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
02 Change in body mass index (BMI)			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
03 Change in systolic blood pressure (mmHg)	4	361	Weighted Mean Difference (Fixed) 95\% CI	2.24 [0.29, 4.20]
04 Change in diastolic blood pressure (mmHg)	4	361	Weighted Mean Difference (Fixed) 95\% CI	0.87 [-0.44, 2.18]
05 Change in total serum cholesterol ($\mathrm{mmol} / \mathrm{l}$)			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
06 Change in serum triglycerides ($\mathrm{mmol} / \mathrm{l}$)			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
07 Change in serum HDL ($\mathrm{mmol} / \mathrm{l}$)			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
08 Change in fasting serum glucose ($\mathrm{mmol} / \mathrm{l}$)	3	354	Weighted Mean Difference (Fixed) 95\% CI	0.10 [-0.00, 0.20]

Comparison 03. Exercise + diet versus diet alone

Outcome title	No. of studies	No. of participants	Statistical method	Effect size
01 Weight change in kilograms	33	2157	Weighted Mean Difference (Fixed) $95 \% \mathrm{CI}$	$-1.02[-1.32,-0.72]$
02 Change in body mass index	5	452	Weighted Mean Difference (Fixed) $95 \% \mathrm{CI}$	$-0.43[-0.71,-0.14]$
(BMI)	6	615	Weighted Mean Difference (Fixed) $95 \% \mathrm{CI}$	$-0.11[-1.48,1.25]$
03 Change in systolic blood pressure (mmHg)	6			

Exercise for overweight or obesity (Review)

04 Change in diastolic blood pressure (mmHg)			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
05 Change in total serum cholesterol ($\mathrm{mmol} / \mathrm{l}$)			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
06 Change in serum triglycerides ($\mathrm{mmol} / \mathrm{l}$)	6	619	Weighted Mean Difference (Fixed) 95\% CI	-0.08 [-0.18, 0.02]
07 Change in serum HDL ($\mathrm{mmol} / \mathrm{l}$)			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
08 Change in fasting serum glucose (mmol/l)	4	407	Weighted Mean Difference (Fixed) 95\% CI	-0.01 [-0.10, 0.08]

Comparison 04. High versus low intensity exercise with dietary change

Outcome title	No. of studies	No. of participants	Statistical method	Effect size
01 Weight change in kilograms	7	224	Weighted Mean Difference (Fixed) 95\% CI	-0.08 [-1.20, 1.04]
02 Change in body mass index (BMI)			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
03 Change in systolic blood pressure (mmHg)			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
04 Change in diastolic blood pressure (mmHg)			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
05 Change in serum cholesterol ($\mathrm{mmol} / \mathrm{l}$)			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
06 Change in serum triglycerides ($\mathrm{mmol} / \mathrm{l}$)	2	65	Weighted Mean Difference (Fixed) 95\% CI	0.00 [-0.18, 0.19]
07 Change in serum HDL ($\mathrm{mmol} / \mathrm{l}$)	2	65	Weighted Mean Difference (Fixed) 95\% CI	0.03 [-0.05, 0.11]
08 Change in serum glucose ($\mathrm{mmol} / \mathrm{l}$)			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected

Comparison 05. High versus low intensity exercise without dietary change

Outcome title	No. of studies	No. of participants	Statistical method	Effect size
01 Weight change in kilograms	4	317	Weighted Mean Difference (Fixed) 95\% CI	-1.47 [-2.28, -0.66]
02 Change in systolic blood pressure (mmHg)			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
03 Change in diastolic blood pressure			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
04 Change in serum triglycerides ($\mathrm{mmol} / \mathrm{l}$)			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
05 Change in serum HDL ($\mathrm{mmol} / \mathrm{l}$)			Weighted Mean Difference (Fixed) 95\% CI	Totals not selected
06 Change in serum glucose ($\mathrm{mmol} / \mathrm{l}$)	2	46	Weighted Mean Difference (Fixed) 95\% CI	-0.31 [-0.45, -0.16]

INDEX TERMS

Medical Subject Headings (MeSH)

*Diet, Reducing; *Exercise; Obesity [*therapy]; Overweight; Randomized Controlled Trials; Weight Loss
Exercise for overweight or obesity (Review)
Copyright © 2007 The Cochrane Collaboration. Published by John Wiley \& Sons, Ltd

MeSH check words
Adult; Humans

COVERSHEET

Title	Exercise for overweight or obesity
Authors	Shaw K, Gennat H, O'Rourke P, Del Mar C
Contribution of author(s)	KELLY SHAW: Protocol development, literature search, assessment of trials and data extraction. Was also the principal reviewer performing the analysis and interpretation of data, as well as the development of the final review. HANNI GENNAT: Assessment of trials, data extraction, data entry, quality scoring of trials. PETER O'ROURKE: Resolution of differences of opinion between reviewers, statistical analysis, assistance in interpretation of data and development of the final review. CHRISTOPHER DEL MAR: Assessment of trials and data extraction, assistance in development of the final review.
Issue protocol first published	2006/4
Review first published	1
Date of most recent amendment	22 August 2006
Date of most recent SUBSTANTIVE amendment	23 August 2006
What's New	Information not supplied by author
Date new studies sought but none found	Information not supplied by author
Date new studies found but not yet included/excluded	Information not supplied by author
Date new studies found and included/excluded	Information not supplied by author
Date authors' conclusions section amended	Information not supplied by author
Contact address	Dr Kelly Shaw Public Health Physician Public and Environmental Health Unit Department of Health and Human Services Public Health Unit 152 Macquarie Street Hobart Tasmania 7000 AUSTRALIA E-mail: kelly.shaw@dhhs.tas.gov.au Tel: +1110362227678
DOI	10.1002/14651858.CD003817.pub3
Cochrane Library number	CD003817
Editorial group	Cochrane Metabolic and Endocrine Disorders Group

GRAPHS AND OTHER TABLES

Figure 01.

Analysis 01.01. Comparison 01 Exercise versus no treatment control, Outcome 01 Weight change in kilograms

Review: Exercise for overweight or obesity								
Comparison: 01 Exercise versus no treatment control								
Outcome: 01 Weight change in kilograms								
Study	Exercise		No treatment		Weighted Mean Difference (Fixed)			Weighted Mean Difference (Fixed)
	N	Mean(SD)	N	Mean(SD)	95\% Cl			95\% Cl
Stefanick 1998	90	-0.50 (2.80)	91	0.65 (3.50)	+	+		-1.15 [-2.07, -0.23]
Thong 2000	16	-7.60 (0.40)	8	-0.10 (0.80)				-7.50 [-8.09, -6.91]
Wood 1988	47	-4.00 (3.90)	42	0.60 (3.70)				-4.60 [-6.18, -3.02]
					-10.0	-5.0 0	$5.0 \quad 10.0$	
					Favours e	xercise	avours no treatme	

Analysis $\mathbf{0 1 . 0 2}$. Comparison 01 Exercise versus no treatment control, Outcome $\mathbf{0 2}$ Change in body mass index (BMI)

Review: Exercise for overweight or obesity
Comparison: OI Exercise versus no treatment control
Outcome: 02 Change in body mass index (BMI)

Analysis 01.03 . Comparison 01 Exercise versus no treatment control, Outcome 03 Change in systolic blood pressure ($\mathbf{m m H g}$)
Review: Exercise for overweight or obesity
Comparison: OI Exercise versus no treatment control
Outcome: 03 Change in systolic blood pressure (mmHg)

Exercise for overweight or obesity (Review)

Analysis 01.04 . Comparison 01 Exercise versus no treatment control, Outcome 04 Change in diastolic blood pressure (mmHg)

Review: Exercise for overweight or obesity
Comparison: OI Exercise versus no treatment control
Outcome: 04 Change in diastolic blood pressure (mmHg)

Analysis 01.05 . Comparison 01 Exercise versus no treatment control, Outcome 05 Change in total serum cholesterol (mmol/l)
Review: Exercise for overweight or obesity
Comparison: 01 Exercise versus no treatment control
Outcome: 05 Change in total serum cholesterol ($\mathrm{mmol} / \mathrm{I}$)

Analysis 01.06 . Comparison 01 Exercise versus no treatment control, Outcome 06 Change in serum triglycerides (mmol/l)

Review: Exercise for overweight or obesity
Comparison: OI Exercise versus no treatment control
Outcome: 06 Change in serum triglycerides ($\mathrm{mmol} / \mathrm{l}$)

Analysis 01.07. Comparison 01 Exercise versus no treatment control, Outcome 07 Change in serum HDL ($\mathrm{mmol} / \mathrm{l}$)

Review: Exercise for overweight or obesity
Comparison: OI Exercise versus no treatment control
Outcome: 07 Change in serum HDL ($\mathrm{mmol} / \mathrm{l}$)

Analysis $\mathbf{0 1 . 0 8}$. Comparison 01 Exercise versus no treatment control, Outcome 08 Change in fasting serum glucose ($\mathrm{mmol} / \mathrm{l}$)

Review: Exercise for overweight or obesity
Comparison: OI Exercise versus no treatment control
Outcome: 08 Change in fasting serum glucose ($\mathrm{mmol} / \mathrm{l}$)

Analysis 02.01. Comparison 02 Exercise versus diet, Outcome 01 Weight change in kilograms

Review: Exercise for overweight or obesity
Comparison: 02 Exercise versus diet
Outcome: 01 Weight change in kilograms

Analysis 02.02. Comparison 02 Exercise versus diet, Outcome $\mathbf{0 2}$ Change in body mass index (BMI)
Review: Exercise for overweight or obesity
Comparison: 02 Exercise versus diet
Outcome: 02 Change in body mass index (BMI)

Analysis 02.03. Comparison 02 Exercise versus diet, Outcome 03 Change in systolic blood pressure ($\mathbf{m m H g}$)
Review: Exercise for overweight or obesity
Comparison: 02 Exercise versus diet
Outcome: 03 Change in systolic blood pressure (mmHg)

Analysis 02.04. Comparison 02 Exercise versus diet, Outcome $\mathbf{0 4}$ Change in diastolic blood pressure ($\mathbf{m m H g}$)
Review: Exercise for overweight or obesity
Comparison: 02 Exercise versus diet
Outcome: 04 Change in diastolic blood pressure (mmHg)

Analysis 02.05. Comparison 02 Exercise versus diet, Outcome 05 Change in total serum cholesterol (mmol/l)
Review: Exercise for overweight or obesity
Comparison: 02 Exercise versus diet
Outcome: 05 Change in total serum cholesterol ($\mathrm{mmol} / \mathrm{I}$)

Analysis 02.06. Comparison 02 Exercise versus diet, Outcome 06 Change in serum triglycerides (mmol/l)
Review: Exercise for overweight or obesity
Comparison: 02 Exercise versus diet
Outcome: 06 Change in serum triglycerides $(\mathrm{mmol} / \mathrm{l})$

Analysis 02.07. Comparison 02 Exercise versus diet, Outcome 07 Change in serum HDL (mmol/l)
Review: Exercise for overweight or obesity
Comparison: 02 Exercise versus diet
Outcome: 07 Change in serum HDL ($\mathrm{mmol} / \mathrm{l}$)

Analysis 02.08. Comparison 02 Exercise versus diet, Outcome 08 Change in fasting serum glucose (mmol/l)

Review: Exercise for overweight or obesity
Comparison: 02 Exercise versus diet
Outcome: 08 Change in fasting serum glucose ($\mathrm{mmol} / \mathrm{l}$)

Analysis 03.01. Comparison 03 Exercise + diet versus diet alone, Outcome 01 Weight change in kilograms

Review: Exercise for overweight or obesity
Comparison: 03 Exercise + diet versus diet alone
Outcome: 01 Weight change in kilograms

Study	Diet + exercise		Diet alone		Weighted Mean Difference (Fixed)					Weight (\%)	Weighted Mean Difference (Fixed)
	N	Mean(SD)	N	Mean(SD)			95\%				95\%
Wing 1998	31	- 10.30 (7.70)	35	-9.10 (6.40)						0.8	$-1.20[-4.64,2.24]$
Subtotal (95\% Cl)	131		137			-				23.5	$-1.12[-1.75,-0.50]$
Test for heterogeneity chi-square $=3.46 \mathrm{df}=4 \mathrm{p}=0.48 \mathrm{I}^{2}=0.0 \%$											
Test for overall effect $z=3.55 \quad p=0.0004$											
Total ($95 \% \mathrm{Cl}$)	1230		927			-				100.0	$-1.02[-1.32,-0.72]$
Test for heterogeneity chi-square $=43.21 \mathrm{df}=32 \mathrm{p}=0.09 \mathrm{I}^{2}=25.9 \%$											
Test for overall effect z=6.66 $\quad \mathrm{p}<0.0000$ I											
					- 10.0	-5.0	0	5.0	10.0		
					Diet + exercise Diet alone						

Analysis 03.02. Comparison 03 Exercise + diet versus diet alone, Outcome $\mathbf{0 2}$ Change in body mass index (BMI)

Review: Exercise for overweight or obesity
Comparison: 03 Exercise + diet versus diet alone
Outcome: 02 Change in body mass index (BMI)

Analysis 03.03. Comparison 03 Exercise + diet versus diet alone, Outcome 03 Change in systolic blood pressure (mmHg)

Analysis 03.04. Comparison 03 Exercise + diet versus diet alone, Outcome 04 Change in diastolic blood pressure (mmHg)

Review: Exercise for overweight or obesity
Comparison: 03 Exercise + diet versus diet alone
Outcome: 04 Change in diastolic blood pressure (mmHg)

Study	Diet + exercise		Diet alone		Weighted Mean Difference (Fixed)			Weighted Mean Difference (Fixed) 95\% Cl
	N	Mean(SD)	N	Mean(SD)			95\% Cl	
Gordon 1997	19	-7.90 (4.30)	15	-7.50 (4.30)				-0.40 [-3.31, 2.51]
Hellenius 1993	39	-2.00 (8.00)	40	-6.00 (6.50)			-	4.00 [0.78, 7.22]
Stefanick 1998	91	-2.90 (5.60)	95	- 1.10 (5.10)		\square		-1.80[-3.34, -0.26]
Svendsen 1993	48	-9.00 (8.00)	50	-7.00 (8.00)				$-2.00[-5.17,1.17]$
Wing 1998	31	-6.90 (10.40)	35	-6.20 (6.90)				$-0.70[-5.02,3.62]$
Wood 1991	81	-3.50 (4.90)	71	-2.30 (5.90)				$-1.20[-2.94,0.54]$
					-10.0	-5.0	$\begin{array}{lll}0 & 5.0 & 10.0\end{array}$	
					Diet + exercise Diet alone			

Analysis 03.05. Comparison 03 Exercise + diet versus diet alone, Outcome 05 Change in total serum cholesterol (mmol/l)

Review: Exercise for overweight or obesity							
Comparison: 03 Exercise + diet versus diet alone							
Outcome: 05 Change in total serum cholesterol ($\mathrm{mmol} / \mathrm{l}$)							
Study	Diet + exercise		Diet alone		Weighted Mean Difference (Fixed)		Weighted Mean Difference (Fixed)
	N	Mean(SD)	N	Mean(SD)	95\% Cl		$95 \% \mathrm{Cl}$
Hellenius 1993	39	-0.45 (1.02)	40	-0.19 (0.97)	,		-0.26 [-0.70, 0.18]
Janssen 2002	25	-0.15 (0.48)	13	-0.83 (0.36)			0.68 [$0.41,0.95$]
Stefanick 1998	91	-0.49 (0.53)	95	-0.27 (0.50)	\square		-0.22 [-0.37, -0.07]
Svendsen 1993	48	- 1.23 (0.70)	50	- I. 40 (0.80)			0.17 [-0.13, 0.47]
Wing 1998	31	-0.33 (0.61)	35	-0.49 (0.71)			0.16 [-0.16, 0.48]
Wood 1991	81	-0.32 (0.70)	71	-0.40 (0.60)			0.08 [-0.13, 0.29]
					-1.0 -0.5	$0.5 \quad 1.0$	
					iet + exercise	iet alone	

Analysis 03.06. Comparison 03 Exercise + diet versus diet alone, Outcome 06 Change in serum triglycerides (mmol/l)

Review: Exercise for overweight or obesity
Comparison: 03 Exercise + diet versus diet alone
Outcome: 06 Change in serum triglycerides ($\mathrm{mmol} / \mathrm{l}$)

| -1.0 | -0.5 | 0 | $0.5 \quad 1.0$ |
| :---: | :---: | :---: | :---: | :---: |
| Diet + exercise | Diet alone | | |

Analysis 03.07. Comparison 03 Exercise + diet versus diet alone, Outcome 07 Change in serum HDL (mmol/l)
Review: Exercise for overweight or obesity
Comparison: 03 Exercise + diet versus diet alone
Outcome: 07 Change in serum HDL ($\mathrm{mmol} / \mathrm{l}$)

Analysis 03.08. Comparison 03 Exercise + diet versus diet alone, Outcome 08 Change in fasting serum glucose (mmol/l)
Review: Exercise for overweight or obesity
Comparison: 03 Exercise + diet versus diet alone
Outcome: 08 Change in fasting serum glucose ($\mathrm{mmol} / \mathrm{l}$)

Analysis 04.01. Comparison 04 High versus low intensity exercise with dietary change, Outcome 01 Weight change in kilograms

Review: Exercise for overweight or obesity
Comparison: 04 High versus low intensity exercise with dietary change
Outcome: 01 Weight change in kilograms

Analysis 04.02. Comparison 04 High versus low intensity exercise with dietary change, Outcome $\mathbf{0 2}$ Change in body mass index (BMI)

Review: Exercise for overweight or obesity
Comparison: 04 High versus low intensity exercise with dietary change
Outcome: 02 Change in body mass index (BMI)

Study	High intensity		Low intensity		Weighted Mean Difference (Fixed)				Weighted Mean Difference (Fixed)
	N	Mean(SD)	N	Mean(SD)			95\%		95\% Cl
Janssen 2002	11	-4.20 (1.20)	14	-3.90 (1.00)	\cdots				$-0.30[-1.18,0.58$]
					-4.0	-2.0		$2.0 \quad 4.0$	
					High	itensity		ow intensity	

Analysis 04.03. Comparison 04 High versus low intensity exercise with dietary change, Outcome 03 Change in systolic blood pressure ($\mathbf{m m H g}$)

Review: Exercise for overweight or obesity
Comparison: 04 High versus low intensity exercise with dietary change
Outcome: 03 Change in systolic blood pressure (mmHg)

Analysis 04.04. Comparison 04 High versus low intensity exercise with dietary change, Outcome 04 Change in diastolic blood pressure ($\mathbf{m m H g}$)

Review: Exercise for overweight or obesity
Comparison: 04 High versus low intensity exercise with dietary change
Outcome: 04 Change in diastolic blood pressure (mmHg)

Analysis 04.05. Comparison 04 High versus low intensity exercise with dietary change, Outcome 05 Change in serum cholesterol ($\mathbf{m m o l} / \mathrm{l}$)

Review: Exercise for overweight or obesity
Comparison: 04 High versus low intensity exercise with dietary change
Outcome: 05 Change in serum cholesterol ($\mathrm{mmol} / \mathrm{I}$)

Analysis 04.06. Comparison 04 High versus low intensity exercise with dietary change, Outcome 06 Change in serum triglycerides ($\mathbf{m m o l} / \mathrm{l}$)

Review: Exercise for overweight or obesity
Comparison: 04 High versus low intensity exercise with dietary change
Outcome: 06 Change in serum triglycerides ($\mathrm{mmol} / \mathrm{l}$)

Analysis 04.07. Comparison 04 High versus low intensity exercise with dietary change, Outcome 07 Change in serum HDL ($\mathrm{mmol} / \mathrm{l}$)
Review: Exercise for overweight or obesity
Comparison: 04 High versus low intensity exercise with dietary change
Outcome: 07 Change in serum HDL ($\mathrm{mmol} / \mathrm{l}$)

Analysis 04.08. Comparison 04 High versus low intensity exercise with dietary change, Outcome 08 Change in serum glucose ($\mathrm{mmol} / \mathrm{l}$)
Review: Exercise for overweight or obesity
Comparison: 04 High versus low intensity exercise with dietary change
Outcome: 08 Change in serum glucose (mmol/l)
Study
Janssen 2002

Analysis 05.01. Comparison 05 High versus low intensity exercise without dietary change, Outcome 01 Weight change in kilograms

Review: Exercise for overweight or obesity
Comparison: 05 High versus low intensity exercise without dietary change
Outcome: 01 Weight change in kilograms

Study	High intensity		Low intensity		Weighted Mean Difference (Fixed)$95 \% \mathrm{Cl}$	Weight (\%)	Weighted Mean Difference (Fixed)$95 \% \mathrm{Cl}$
	N	Mean(SD)	N	Mean(SD)			
Cox 2004	13	-1.55 (2.40)	17	-0.44 (1.80)	-	26.9	-1.11 [-2.67, 0.45]
Irwin 2003	87	-1.30 (3.60)	86	0.10 (3.40)	ㅌ	60.1	-1.40[-2.44, -0.36]
Jakicic 2003	49	-8.90 (7.30)	49	-6.30 (5.60)	-	9.9	$-2.60[-5.18,-0.02]$
Wallace 1997	8	-4.20 (4.10)	8	- 1.90 (5.10)	-	3.2	$-2.30[-6.83,2.23]$
Total (95\% CI)	157		160		-	100.0	-1.47[-2.28, -0.66]
Test for heterogeneity chi-square $=1.09 \mathrm{df}=3 \mathrm{p}=0.78 \mathrm{l}^{2}=0.0 \%$							
Test for overall effect $z=3.56 \quad p=0.0004$							

Analysis 05.02. Comparison 05 High versus low intensity exercise without dietary change, Outcome 02 Change in systolic blood pressure $(\mathbf{m m H g})$
Review: Exercise for overweight or obesity
Comparison: 05 High versus low intensity exercise without dietary change
Outcome: 02 Change in systolic blood pressure (mmHg)

Analysis 05.03. Comparison 05 High versus low intensity exercise without dietary change, Outcome 03 Change in diastolic blood pressure

Analysis 05.04. Comparison 05 High versus low intensity exercise without dietary change, Outcome 04 Change in serum triglycerides ($\mathbf{m m o l} / \mathrm{l}$)
Review: Exercise for overweight or obesity
Comparison: 05 High versus low intensity exercise without dietary change
Outcome: 04 Change in serum triglycerides ($\mathrm{mmol} / \mathrm{l}$)

Analysis 05.05. Comparison 05 High versus low intensity exercise without dietary change, Outcome 05 Change in serum HDL (mmol/l)
Review: Exercise for overweight or obesity
Comparison: 05 High versus low intensity exercise without dietary change
Outcome: 05 Change in serum HDL ($\mathrm{mmol} / \mathrm{l}$)

Analysis 05.06. Comparison 05 High versus low intensity exercise without dietary change, Outcome 06 Change in serum glucose ($\mathrm{mmol} / \mathrm{l}$)
Review: Exercise for overweight or obesity
Comparison: 05 High versus low intensity exercise without dietary change
Outcome: 06 Change in serum glucose ($\mathrm{mmol} / \mathrm{l}$)

[^0]: General rights
 Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

[^1]: Change in
 diastolic
 blood pressur

