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Systematic review automation technologies
Guy Tsafnat1*, Paul Glasziou2, Miew Keen Choong1, Adam Dunn1, Filippo Galgani1 and Enrico Coiera1
Abstract

Systematic reviews, a cornerstone of evidence-based medicine, are not produced quickly enough to support clinical
practice. The cost of production, availability of the requisite expertise and timeliness are often quoted as major
contributors for the delay. This detailed survey of the state of the art of information systems designed to support or
automate individual tasks in the systematic review, and in particular systematic reviews of randomized controlled
clinical trials, reveals trends that see the convergence of several parallel research projects.
We surveyed literature describing informatics systems that support or automate the processes of systematic review
or each of the tasks of the systematic review. Several projects focus on automating, simplifying and/or streamlining
specific tasks of the systematic review. Some tasks are already fully automated while others are still largely manual.
In this review, we describe each task and the effect that its automation would have on the entire systematic review
process, summarize the existing information system support for each task, and highlight where further research is
needed for realizing automation for the task. Integration of the systems that automate systematic review tasks may
lead to a revised systematic review workflow. We envisage the optimized workflow will lead to system in which
each systematic review is described as a computer program that automatically retrieves relevant trials, appraises
them, extracts and synthesizes data, evaluates the risk of bias, performs meta-analysis calculations, and produces a
report in real time.

Keywords: Systematic reviews, Process automation, Information retrieval, Information extraction
Background
Evidence-based medicine stipulates that all relevant evi-
dence be used to make clinical decisions regardless of the
implied resource demands [1]. Systematic reviews were
invented as a means to enable clinicians to use evidence-
based medicine [2]. However, even the conduct and upkeep
of updated systematic reviews required to answer a signifi-
cant proportion of clinical questions, is beyond our means
without automation [3-9].
Systematic reviews are conducted through a robust but

slow and resource-intensive process. The result is that
undertaking a systematic review may require a large
amount of resources and can take years [10]. Proposed de-
cision support systems for systematic reviewers include
ones that help the basic tasks of systematic reviews
[6,12,13]. The full automation of systematic reviews that
will deliver the best evidence at the right time to the point
of care is the logical next step [14]. Indeed, research into
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automatic systematic review systems is distinct from - and
related to - research on systematic reviews [5].
The process of creating a systematic review can be

broken down into between four and 15 tasks depending
on resolution [5,10,13,15]. Figure 1 shows both high-
level phases and high-resolution tasks encompassed by
the phases. The process is not as linear and compart-
mentalized as is suggested by only the high-level view.
In this article, we review each task, and its role in auto-
matic systematic reviews. We have focused on system-
atic reviews of randomized controlled trials but most of
the tasks will apply to other systematic reviews. Some
tasks are not amenable to automation, or have not been
examined for the potential to be automated; decision
support tools for these tasks are considered instead. In
the last section of this paper, we describe a systematic
review development environment in which all manual
tasks are performed as part of a definition stage of the
review, and then a software agent automatically creates
and checks the review according to these definitions
when needed and at a push of a button.
Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
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Figure 1 Existing methods for systematic reviews follow these steps with some variations. Not all systematic reviews follow all steps. This
process typically takes between 12 and 24 months. Adapted from the Cochrane [10] and CREBP [11] Manuals for systematic reviews. SR
systematic review, SD standard deviation.
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Discussion
What should and should not be automated
The process of designing a systematic review is in part
creative and part technical. We note that systematic re-
view protocols have a natural dichotomy for tasks: cre-
ative tasks are done during the development of the
question and protocol and technical tasks can be per-
formed automatically and exactly according to the
protocol. Thus, the development of the review question
(s) is where creativity, experience, and judgment are to
be used. Often, the protocol is peer-reviewed to ensure
its objectivity and fulfillment of the review question [10].
Conducting the review should then be a matter of fol-
lowing the review protocol as accurately and objectively
as possible.
In this scenario, the review protocol is developed much

like a recipe that can then be executed by machine [5].
Tasks are reordered so that necessarily manual tasks are
shifted to the start of the review, and automatic tasks fol-
low. As an example, consider risk of bias assessment which
sometimes requires judgment depending on the outcome
measures, the intervention and the research question. Dur-
ing the review protocol preparation, a reviewer would train
the system to make the required specific judgment heuris-
tics for that systematic review. A classification engine will
use these judgments later in the review to appraise papers.
Updating a review becomes a matter of executing the re-
view at the time that it is needed. This frees systematic re-
viewers to shift their focus from the tedious tasks which are
automatable, to the creative tasks of developing the review
protocol where human intuition, expertise, and common
sense are needed and providing intelligent interpretations
of the collected studies. In addition, the reviewers will
monitor and assure the quality of the execution to ensure
the overall standard of the review.
The automation of some tasks may seem impossible

and fantastic. However, tools dedicated to the automa-
tion of evidence synthesis tasks serve as evidence that
what seemed fantastic only a few decades ago is now a
reality. The development of such tools is incremental
and inevitably, limitations are, and will remain, part of
the process. A few examples are given in Table 1.



Table 1 Examples of tools used for the automation of evidence synthesis tasks

Step Example application Description Limitations

Search Quick Clinical Federated meta-search engine Limited source databases not optimized for systematic
reviews

Search Sherlock Search engine for trial registries Limited to clinicaltrials.gov

Search Metta Federated meta-search engine for SR Not available publicly

Snowballing ParsCit Reference string extraction from published
papers

Does not fetch nor recursively pursue citations

Screen titles and
abstracts

Abstrackr Machine learning -based abstract screening
tool

May reduce review recall by up to 5%

Extract data ExaCT PICO and other information element
extraction from abstracts

No association (e.g. of outcome with trial arm), results
only available in HTML

Extract data WebPlotDigitizer Re-digitization of data from graphs and
plots.

No support for survival curves, no optical character
recognition

Meta-analyze Meta-analyst Create a meta-analysis from extracted data Limited integration with data-extraction and conversion
programs

Write-up RevMan-HAL Automatic summary write-up from extracted
data.

Only works with RevMan files

Write-up PRISMA Flow Diagram
Generator

Automatic generation of PRISMA diagrams Does not support some complex diagrams
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Finding decision support tools for systematic reviewers
We have searched PubMed, Scopus, and Google Scholar
for papers that describe informatics systems that support
the process of systematic reviews, meta-analysis, other
related evidence surveying process, automation of each
of the tasks of the systematic review. We have used a
broad definition of automation that includes software
that streamline processes by automating even only the
trivial parts of a task such as automatically populating
database fields with manually extracted data. We ex-
cluded manually constructed databases even if an appli-
cation programming interface is provided, although we
did not necessarily exclude automatic tools that make
use of such databases. We searched for each systematic
review task names, synonymous terms as well as names
of the algorithms used in papers on automation and sys-
tematic reviews. We tracked citations both forward and
backward and included a representative set of papers
that describe the state of the art.

How individual tasks are supported
This section describes each of the systematic review tasks
in Figure 1 in detail. Each task is described along with the
potential benefits from its automation. State-of-the-art sys-
tems that automate or support the task are listed and the
next stages of research are highlighted.

Task 1: formulate the review question

Task description There is no single correct way to formu-
late review questions [16]; although, it is desirable to
prioritize review questions by burden of disease for which
there is a lack of review in the area. While choosing a
review topic is not constrained, factors such as expertise in
the area and personal interest are common [16]. All re-
search questions need to be presented with sufficient detail
so as to reduce ambiguity and help with the critical ap-
praisal of trials that will be included or excluded from the
review. The population, intervention, control, and outcome
(PICO) were recommended as elements that should be in-
cluded in any question [1,17]. A well-written review ques-
tion provides logical and unambiguous criteria for inclusion
or exclusion of trials.

Automation potential Automatic systems can help
identify missing evidence, support creative processes,
and support the creative processes of identifying ques-
tions of personal interest and expertise. Prioritization of
questions can save effort that would otherwise be spent
on unimportant, irrelevant or uninteresting questions
and duplication. Decision support for question formula-
tion can ensure questions are fully and unambiguously
specified before the review is started.

Current systems Global evidence maps [18,19] and
scoping studies [20] are both literature review methods
designed to complement systematic review and identify
research gaps. Both differ from systematic review in that
they seek to address broader questions about particular
areas rather than answer specific questions answered by
a narrow set of clinical trials. Scoping studies are rela-
tively quick reviews of the area. Global evidence maps
are conducted in a formal process, similar to systematic
reviews, and thus may take in excess of 2 years [21].
Broad reviews direct reviewers towards questions for
which there is a gap in the evidence. Algorithms that
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can extract the evidence gaps identified in such reviews
can provide decision support to systematic reviewers
choosing a research question.

Future research Research for additional decision support
tools should focus on identification of new problems. Work
in the field of artificial intelligence on hypothesis generation
and finding [22-24] may provide an automatic means of
suggesting novel review questions. Economic modeling
tools and databases that can automatically assess burden of
disease according to established standards [25] can help
prioritize potential review questions.
Question prioritization might not be required when

systematic reviews can be conducted quickly and eco-
nomically. An exhaustive set of research questions can
be asked about the suitability of any treatment for any
population. While the number of combinations of ques-
tions and answers poses its own challenges, automatic
synthesis will quickly determine that most condition-
treatment pairs have no evidence (e.g. because they are
nonsensical) and will not dedicate much time to them.

Task 2: find previous systematic reviews

Task description The resources and time required to
produce a systematic review are so great that independ-
ently creating a duplicate of an existing review is both
wasteful and avoidable [26]. Therefore, if the reviewer
can find a systematic review that answers the same ques-
tion, the potential savings might be substantial. However,
finding a previous systematic review is not trivial and
could be improved.

Automation potential An accurate and automatic system
that finds previous systematic reviews given a clinical ques-
tion will directly reduce the effort needed to establish
whether a previous review exists. Indirectly, such a system
can also reduce the number of redundant reviews. Even if
an out-of-date systematic review is identified, updating it
according to an established protocol is preferable to con-
ducting a new review.

Current systems Databases of systematic reviews include
the Cochrane Database of Systematic Reviews [6], Database
of Abstracts of Reviews of Effects (DARE), the International
Register of Prospective Systematic Review (PROSPERO)
[27], SysBank [28], and PubMed Health. These should be
searched before a new review is started.
Search strategies and filters have been suggested to im-

prove recall (the proportion of relevant documents re-
trieved out of all relevant documents) and precision (the
proportion of relevant documents retrieved out of all re-
trieved documents) respectively of search queries [29-34].
Specific search filters designed to find systematic reviews
have been proposed [29,35]. PubMed's Clinical Queries fea-
ture adds a filter [32] that restricts searches to clinical trials
and systematic reviews. PubMed Health provides a search
filter that works well for finding systematic reviews but is
limited to PubMed and DARE currently [36].
Automation of this task is to find systematic reviews

that answer the research question without manually
translating research questions into search queries. Ques-
tion answering systems have been in development since
the 1960s [37]. For this task, a form of an automatic
web-based question-answering system [38,39] in which
the answer to the review question is a systematic review,
is most suitable.
Future research Research is needed on the design and
evaluation of specialized question-answering systems
that accept the nuances of systematic review questions,
use search filters and strategies to search multiple data-
bases to find the relevant systematic review or system-
atic review protocol.
Task 3: write the protocol

Task description Writing the systematic review proto-
col is the first step in planning the review once it is
established that the review is needed and does not
already exist. This task requires specialized expertise in
medicine, library science, clinical standards and statis-
tics. This task also requires creativity and close familiar-
ity with the literature in the topic because reviewers
must imagine the outcomes in order to design the ques-
tions and aims. As there are currently no methods to
formally review the consistency of the protocol, peer-
review is used to ensure that the proposed protocol is
complete, has the potential to answer the review ques-
tion, and is unbiased.
Automation potential Writing the review protocol
formally will allow it to be automatically checked for
consistency and logical integrity. This would ensure that
the protocol is consistent, unbiased, and appropriate for the
research question. Verified protocols can thus reduce or re-
move the need for protocol peer review altogether.
Current systems Systems that are used to support the
writing of systematic review protocols include templates
and macros. Cochrane's Review Manager [40] uses a
protocol template: it has standard fields that remind the
reviewer to cover all aspects of a Cochrane protocol, in-
cluding inclusion criteria, search methods, appraisal, ex-
traction, and statistical analysis plan. Improvement of
the templates is subject to ongoing research [40,41].
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Future research Automation and support for protocol
writing can include reasoning logic that checks the com-
pleteness of the inclusion criteria (e.g., by checking that
the population, intervention, and outcome are all speci-
fied), warns of potential biases in the inclusion criteria
(e.g., that the disease being researched is more prevalent
in different age groups but the protocol does not ac-
count for age), and tests the consistency and feasibility
of the inclusion criteria (e.g., warns that a population of
women with prostate cancer is probably wrong).
This sort of consistency verification is a type of com-

putational reasoning task that requires models of the
problem to be created through knowledge representa-
tion, simulation, and/or constraint resolution [42]. Such
models for clinical trials were proposed in the 1980s
[43], are still evolving [44], and similar models should
also be possible for other clinical questions.
Language bias remains an unanswered problem with

little existing systems available to address it [45]. Auto-
matic information systems present an opportunity to
mitigate such bias. NLP algorithms for non-English lan-
guages, including optical character recognition (OCR) of
languages not using a Latin alphabet, are required for
such systems.

Task 4: devise the search strategy

Task description Devising the search is distinct from
conducting the search. The correct search strategy is
critical to ensure that the review is not biased by the
easily accessible studies. The search strategy describes
what keywords will be used in searches, which databases
will be searched [10], if and how citations will be tracked
[46,47], and what and how evidence will be identified in
non-database sources (such as reference checking and
expert contacts) [48]. All Cochrane systematic review
protocols, and many others, undergo peer review before
the search is conducted.

Automation potential Automatic search strategy creation
by using the PICO of the planned question could form part
of a decision support tool that ensures the strategy is con-
sistent with the review question, includes both general and
specific databases as needed, and that tested citation track-
ing methodologies are used.

Future research Decision support tools for search strat-
egy derivation could also suggest data sources, keywords
(e.g., MeSH terms [49]) and search strategies [30,34,50]
most suitable for the research question. It could also
warn against search strategies that are too tailored to a
particular database and that would thus be ineffective in
others. This may involve understanding of the indexing
terms (e.g., MeSH versus EMTREE) and structures of
different databases (e.g., PubMed versus EMBASE).
Research into natural language processing is needed for

algorithms that can understand a clinical question in a rich
sense: extract its context, classify it into a type of clinical
question, and/or identify pertinent keywords from the re-
search question. An up-to-date database of clinical papers
classified by type is needed to help decision support sys-
tems find, identify, and suggest the most suitable databases
for the task.

Task 5: search

Task description The biomedical literature is the main
source of evidence for systematic reviews; however, some
research studies can only be found outside of literature da-
tabases - the so called grey literature - and sometimes not
at all [51,52]. For reviews to be systematic, the search task
has to ensure all relevant literature is retrieved (perfect re-
call), even at the cost of retrieving up to tens of thousands
of irrelevant documents [52] (precision as low as 0.3%
[52]). It also implies that multiple databases have to be
searched. Therefore, reviewers require specific knowledge
of dozens of literary and non-literary databases, each with
its own search engine, metadata, and vocabulary [53-55].
Interoperability among databases is rare [56]. Variation
among search engines is large. Some have specialized query
languages that may include logical operators such as OR,
AND, and NOT, syntax for querying specific fields such as
‘authors’ and ‘year’, operators such as ADJ (adjacent to) and
NEAR, and controlled keyword vocabularies such as Med-
ical Subject Heading (MeSH) [49] for PubMed, and
EMTREE for EMBASE.
Studies that investigated the efficacy of trial registration

found that only about half of the clinical trials are published
[57] and not all published trials are registered [58]. This in-
dicates that registries and the literature should both be
searched.
The most commonly used databases in systematic re-

views are the general databases MEDLINE, Cochrane
Library, and EMBASE [55] but hundreds of specialty data-
bases also exists, e.g., CINAHL for nursing. The main non-
literary sources are the American clinicaltrials.gov, the
World Health Organization's International Clinical Trials
Registration Platform [59], and the European clinicaltrials-
register.eu.
Studies that measured overlap between PubMed (which

covers MEDLINE) and EMBASE found only a small num-
ber of articles that appeared in both [60-62]. These studies
show why searching multiple databases is important. A
study that measured overlap between Google Scholar and
PubMed found Google Scholar to lead to the retrieval of
twice as many relevant articles as well as twice as many ir-
relevant ones [63]. This study indicates that simply merging
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all databases into one large database improves recall with-
out requiring searching multiple databases, but does not ac-
celerate the systematic review.

Automation potential Automation of the search task
will reduce the time it takes to conduct the search and
ensure that the translation of the generic search strategy
into database-specific queries retains the integrity of the
protocol. More comprehensive search (i.e., increased re-
call) will see to the inclusion of more evidence in the re-
view. Better targeted search (i.e., increased precision)
can reduce the number of papers that need critical ap-
praisal in later stages.

Current systems Decisions support for searching can
utilize algorithms of at least one of the following: (i) al-
gorithms that increase the utility (in terms of precision
and recall) of user-entered queries and (ii) algorithms
that help users write better search queries. Some web
search engines already use a combination of both classes
(e.g., Google).
Searching for clinical trials can be supported by specif-

ically crafted filters and strategies [29-34]. Automatic
Query Expansion (AQE) is the collective name for algo-
rithms that modify the user's query before it is processed
by the search engine [64]. Typically, AQE algorithms are
implemented in the search engine itself but can also be
provided by third parties. For example, HubMed (www.
HubMed.org) provides alternative AQE algorithms unre-
lated to those offered by PubMed and without associ-
ation with the National Library of Medicine which hosts
MEDLINE. Examples of AQE algorithms include the
following:

� Synonym expansion - automatically adding syn-
onymous keywords to the search query to ensure
that papers that use the synonym, and not the key-
word used by the user, are retrieved in the search
results;

� Word sense disambiguation - understanding key-
words in the context of the search, replacing them
with more suitable synonyms and dictionary defini-
tions and removing unhelpful keywords; and

� Correct spelling mistakes and replace contractions,
abbreviations, etc., with expanded terms more likely
to be used in published work.

Document clustering algorithms group similar docu-
ments in a database. Search results are then computed
by the database as document clusters that partially
match the search query (i.e., only some of the clusters'
members match the query) [65]. Clustering algorithms
differ in the manner in which they identify documents
as similar (i.e., by their similarity functions). Examples of
document similarity measures include ones based on the
terms that appear in the documents [66], and ones based
on papers they cite [67].
A limited number of search engines help the user

come up with better search queries. Google, and now
many other web search engines, use keyword suggestion
as soon as the user begins to type a search query, usually
by suggesting terms that other users suggested previ-
ously. It may be more appropriate in the medical do-
main, to use a medical dictionary rather than previous
searches, for example, to reduce spelling mistakes.
Meta-search engines are systems that amalgamate

searches from several source databases. An automatic
systematic review system that queries multiple databases
would thus be a kind of meta-search engine by defin-
ition. An example of a basic type of meta-search engine
is QUOSA (Quosa Inc. 2012). It lets the user query sev-
eral source databases individually, and collects the re-
sults into a single list.
Federated search engines are meta-search engines that

allow one to query multiple databases in parallel with a
single query. Federated search engines need to translate
the reviewer's query into the source databases' specific
query languages and combine the results [68-70].
Quick Clinical [70] is a federated search engine with a

specialized user interface for querying clinical evidence.
The interface prompts the user for a query class, and
then for specific fields suitable for the chosen query class
(Figure 2). This interface not only prompts users to elab-
orate on their questions, it also guides inexpert users on
how to ask clinical questions that will provide them with
meaningful results [71]. Quick Clinical's AQE algorithm
enriches keywords differently depending on which field
they were typed in [70].
The Turning Research Into Practice (TRIP) [72] data-

base uses multiple query fields including to search
PubMed. The query fields for population, intervention,
comparison, and outcome (PICO) to enrich the query
with terms that improve precision. In this way, TRIP
uses knowledge about evidence-based medicine to im-
prove evidence searches. TRIP is designed to provide
quick access to evidence in lieu of a systematic review
and its usefulness to systematic reviewers is yet to be
demonstrated.

Future research Expert searchers use iterative refine-
ment of their search queries by a quick examination of
the search results. As opposed to federated search en-
gines which, in parallel, query each database once, expert
searchers use a strategy of a series of queries to one
database at a time. The automation of such a sequential
searching is not yet explored.
The automatic translation of search queries between

literature databases is not trivial. While general technical

http://www.HubMed.org
http://www.HubMed.org


Figure 2 A screen capture of the Quick Clinical query screen
from the smartphone app version. The Profile pull-down menu
lets one select the class of question being asked (e.g. medication,
diagnosis, patient education). The query fields are chosen to suit the
question class. The four query fields shown (Disease, Drug, Symptom
and Other) are taken from the Therapy question class.
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approaches exist and can convert the standard Boolean
operators [70], these have yet to be demonstrated on
translations that include database-specific vocabularies
such as MeSH and EMTREE. BioPortal [73] is an ontol-
ogy that maps vocabularies and includes MeSH but still
lacks mappings to EMTREE or other literary database
vocabularies.
A recent push to register all trials [74] has led to the

creation of trial registries by governments [75-77] and
health organizations [78,79]. The feasibility for future
evidence search engines making use of such registries to
find linked trial results and/or contact information for
trial administrators, should yet be investigated.

Task 6: de-duplicate

Task description Whenever citations are obtained from
multiple sources, combining the results requires remov-
ing duplicate citations from the result lists [80]. Chal-
lenges in citation de-duplication arise due to variation in
indexed metadata (e.g., DOI, ISBN, and page numbers
are not always included), misspelling (e.g., in article title,
journal name), abbreviation formats and legitimately du-
plicate information (e.g., identical author lists, different
authors with the same name).
If the same study has more than one report - possibly

with different author lists, different titles, and in differ-
ent journals - both papers should often be cited, but
they should only be included in meta-analysis as one
trial [81]. Citation information alone cannot resolve this
type of duplication which is also called ‘studification’.
Characteristics needed to detect duplicated trials are
only present in the text of the articles. This type of de-
duplication is called study de-duplications as it aims to
identify two distinct reports of the same study.

Automation potential Both types of de-duplication are
largely manual and time-consuming tasks and their
automation has the potential to save many days that
clinical librarians routinely spent on them. Study de-
duplication, although the rarer of the two, is only usually
detected after data have been extracted from both pa-
pers, after the authors have been contacted or some-
times not at all. Automatic de-duplication of the study
can thus save precious time and free reviewers and clin-
ical librarians to pursue other tasks.

Current systems Current technologies focus on citation
de-duplication [80]. Many citation managers (e.g., End-
Note [82], ProCite [83]) already have automatic search
for duplicate records to semi-automate citation de-
duplication quite accurately [78,79]. Heuristic [84], ma-
chine learning (ML) algorithms and probabilistic string
matching are used to compare author names, journal,
conference or book names (known as venue) and titles
of citations. This task can thus depend on our ability to
accurately extract field information from citation strings
which is also subject to ongoing research [85-89].

Future research Future research should focus on study
de-duplication which is distinct from citation de-
duplication. Study de-duplication is trivial after infor-
mation is extracted from the trial paper; however, the
aim is to prevent unnecessary information extraction.
Study de-duplication could be the result of studies being
presented in different ways, in different formats or at
different stages of the study and therefore requires so-
phisticated NLP algorithms that can infer a relationship
between such papers. Many plagiarism detection algo-
rithms have mechanisms to understand paper structure
and find similarities between papers [90-92]. Such algo-
rithms may guide development of algorithms that ex-
tract relationships between trial papers. Trial registries
with multiple associated papers, and databases of ex-
tracted trial data could be used for automatic study de-
duplication. Databases of manually extracted trial data
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are already maintained by some Cochrane group editors
for specific domains but are not yet available for exploit-
ation by automatic systems.

Task 7: screen abstracts

Task description As the main aim of the retrieval task
is to retrieve all relevant literature (perfect recall), the
aim of the appraisal tasks is to exclude all irrelevant lit-
erature inadvertently retrieved with it. When appraising
scientific papers' relevance to a systematic review, the
vast majority of documents are excluded [10]. Exclusion
is based on the relevance of the evidence to the research
question and often an evaluation of the risk of bias in
the trial.
Appraisal is normally conducted in two phases. First,

titles and abstracts are used to quickly screen citations
to exclude the thousands of papers that do not report
trials or are trials not in the target population, interven-
tion or do not measure the right outcome. This saves
the reviewers from the lengthy process of retrieving the
full text of many irrelevant papers.

Automation potential Despite the apparent brevity of
the screening of title and abstract, due to the large num-
ber to be screened, this is an error-prone and time-
consuming task. Decision support systems can highlight
information for reviewers to simplify the cognitive re-
quirements of the task and save time.
A second reviewer is usually needed to screen the

same abstracts. The two reviewers may meet to resolve
any disagreements. Automatic screening systems could
thus be used as a tie-breaker to resolve disagreements,
and/or replace one or both screeners.

Current systems Decision support systems use NLP to
automatically highlight sentences and phrases that
reviewers are likely to use for appraisal [93,94]. Often,
information highlighting algorithms focus on PICO el-
ements reported in the trial [95-97] but may also focus
on the size of the trial [97,98], and its randomization
procedure [95,97].
Existing commercial decision support systems are fo-

cused on helping reviewers manage inclusion and exclu-
sion decisions, flag disagreements between reviewers
and resolve them sometimes automatically [99-101].
Automation approaches are to use ML to infer exclu-

sion and inclusion rules by observing a human screener
[102-106], a class of algorithms called supervised ML.
The Abstrackr system [103,104] observes inclusion and
exclusion decisions made by a human reviewer. The sys-
tem then extracts keywords from the abstracts and titles
of the screened documents and builds models that
mimic the user's decisions. When enough included as
well as excluded documents are observed by the system,
Abstrackr can automatically continue to screen the
remaining reports and thus halve the total workload that
the human reviewer would otherwise need to bear.
Current appraisal systems can reduce the number of

documents that need to be appraised manually by be-
tween 30% and 50%, usually at the cost of up to 5% re-
duction in recall [102-106]. Another demonstration of
an automatic screening algorithm alerts about new evi-
dence that should trigger a systematic review update
[106]. That system, however, did not achieve reliably
high precision and recall.

Future research A simple approach is to use the docu-
ment type associated with each document in PubMed to
remove all documents not classified as clinical trials.
However, this approach is not reliable because it only
works for PubMed and document labeled as randomized
controlled trials are not necessarily reports of trial out-
comes but could also be trial protocols, reviews of clin-
ical trials, etc. A more accurate approach is therefore to
use document classes together with specific keywords
[107]. An alternative approach, not yet tested in this do-
main, is to get experts to develop rule-based systems
using knowledge-acquisition systems.
Heuristic and ML systems can be complementary, and

combinations of these approaches have proven accurate
in other domains [108]. In future automated systematic
reviews, we are likely to see a combination of rule-based
and machine-learning algorithms.

Task 8: obtain full text articles

Task description Obtaining the full text of published
articles is technical, tedious and resource demanding. In
the current process (Figure 1), full-text fetching is mini-
mized by breaking the screening task into two parts.
Known obstacles to full text fetching are a lack of stan-
dardized access to literature, burdensome subscription
models and limited archival and electronic access. Full
text retrieval requires a navigation through a complex
network of links that spans multiple websites, paper-
based content and even email. The problems are more
pronounced for older studies.

Automation potential Automation of full text retrieval
has the potential to drastically change the systematic re-
view process. Some tasks, such as screening from ab-
stracts, would become redundant as screening of full
text is superior. Other tasks, such as de-duplication,
would be simplified as there would not be a need to rely
on meta-data. Citation tracking (see below) may lead to
systems that retrieve the required evidence primarily
through means other than search.
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Current systems OvidSP [109] and PubMed Central
[110] provide unified access to journal articles from
multiple databases and journals and thus support full
text retrieval. Some databases such as Google Scholar
[111] and Microsoft Academic Search [112] provide
multiple links for most documents that include the pri-
mary publisher's link, institutional copies and links to
other databases, which may offer additional access op-
tions. Some reference managers such as EndNote [82]
and ProCite [83] have full text retrieval functions.
Future research Research on intelligent software agents
that can autonomously navigate from search results to
full text articles along several possible routes is still
needed. Such systems could also extract corresponding
author name, if it is known, send e-mail requests, and
extract attachments from replies. Trial registries already
contain author information and may contain links to
full text papers could be used for this purpose.
Task 9: screen the full text articles

Task description In the second stage of appraisal, re-
viewers screen using full text describing the trials not previ-
ously excluded. In this phase, a more detailed look at the
trial allows the reviewer to exclude or include trials by
inspecting subtle details not found in the abstract. This task
is different from screening using abstracts in that a more
careful understanding of the trial is needed. Pertinent infor-
mation may be reported in sentences that have to be read
in context.
Automation potential Despite the smaller number of tri-
als to screen, each trial requires more time and attention. A
second reviewer is often used, and agreement by consensus
is sought which make the process even more resource and
time demanding. Computational systems could automatic-
ally resolve disagreements or replace one or both reviewers
to reduce resource demand.
Current systems Decision support systems that screen
abstracts may work on full-text screening unmodified. Ele-
ments that are not normally present in the abstract, such as
figures and tables, and that contain information pertinent
to appraisal, are not yet mined by current systems. Systems
that do make use of such information have been proposed
[94,113] but have not yet seen adoption in this domain.
Future research Research is required to evaluate such
systems for their reliability, and integrate them into sys-
tematic review support systems.
Task 10: ‘snowballing’ by forward and backward citation
search

Task description Limitations of keyword searching have
led to the development of secondary analysis of search re-
sults [114]. One such analysis method is called snowballing
[46], which recursively pursues relevant references cited in
retrieved papers (also called citation tracking) and adding
them to the search results. While this is a time-consuming
step, it has been shown to improve retrieval [115], and is a
recommended practice [46]. Unlike keywords search, snow-
balling does not require specific search terms but allows
the accumulation of multiple searches from different pub-
lishing authors [47].

Automation potential Automatic snowballing has the
potential to increase recall by following more citations
than a human reviewer would. A case study on forward
citation tracking on depression and coronary heart dis-
ease has shown to identify more eligible articles and re-
duce bias [47]. A review on checking reference lists to
find additional studies for systematic reviews also found
that citation tracking identify additional studies [115].
When combined with automatic appraisal and docu-

ment fetching, automatic snowballing can have a com-
pound effect by iteratively following select citations until
no new relevant citations are found. A recent study
[116] examined the potential for using citation networks
for document retrieval. That study shows that in most
reviews tested, forward and backward citation tracking
will lead to all relevant trials manually identified by sys-
tematic reviewers. Snowballing would benefit almost all
searches (>95%) but does not completely replace data-
base searches based on search terms.

Current systems Automatic citation extraction tools
[85-89] are core to snowballing systems. Some databases
such as Web of Science and Microsoft Academic Search
provide citation networks (for a fee) that can be tra-
versed to find related literature. Those networks are lim-
ited to papers indexed in the same database.

Future research The risk of an automatic snowballing
system is that it can get out of control, retrieving more
articles than it is feasible to appraise manually. Formal
definitions of robust stopping criteria are therefore piv-
otal research in this area. Integration with automatic ap-
praisal and fetching systems will help to improve the
practical application of snowballing systems.

Task 11: extract data

Task description Data extraction is the identification of
trial features, methods, and outcomes in the text of



Tsafnat et al. Systematic Reviews 2014, 3:74 Page 10 of 15
http://www.systematicreviewsjournal.com/content/3/1/74
relevant trials. In many trial papers, primary information
is only published in graphical form and primary data
needs to be extracted from these plots as accurately as
resolution permits. Usually two reviewers perform the
task independently and resolve disagreements by con-
sensus. Extracting data from text is one of the most
time-consuming tasks of the systematic review.

Automation potential A great deal of expertise, time,
and resources can be saved through partial and complete
automation of this time-consuming task. As two re-
viewers perform it in parallel, a computer extractor
could serve as an arbiter on disagreements, or replace
one or both reviewers. The identification, extraction of
the number of patients in each arm, and extraction and
association of outcome quantities with the same arms,
can be challenging even to experienced reviewers. The
information may be present in several sections of the
trial paper making the extraction a complex cognitive
task. Even partial automation may reduce the expertise
required to complete this task, reduce errors, and save
time.

Current systems The approach currently used to auto-
mate extraction of information from clinical trial papers
has two stages. The first sub-task is to reduce the
amount of text to be processed using information-
highlighting algorithms [95-97]. The second sub-task is
to associate extracted elements with experimental arms
and with outcomes [117-119].
ExaCT is an information-highlighting algorithm [95]. It

classifies sentences and sometimes phrases that contain
about 20 elements used in information extraction and
screening. The classes include PICO, randomization, and
subclasses of elements. For example, subclasses of interven-
tion elements include route of treatment, frequency of
treatment, and duration of treatment. ExaCT can often dis-
tinguish between sentences that describe the intervention
and from those that describe the control but does not asso-
ciate, e.g., measured outcomes with each arm.
To identify intervention sentences, a highlighting algo-

rithm may be used to identify drug names in the title of
the document. A template [118] or a statistical model
[119] is then used to associate the number of patients in
a particular arm in the study. Each outcome in each arm
can then be summarized by two numbers: number of
outcome events in the study arm and number of patients
in the same study arm. Extracting all outcomes for all
arms of the trial then gives a structured summary of the
trial.
Software tools for digitizing graphs use line recognition

algorithms to help a reviewer trace plots and extract raw
data from them. Graph digitization software are not specific
to systematic reviews and thus support the more common
graph types such as X-Y and polar plots [120-122], but not
survival curves, which are more common in clinical trials.

Future research Current methods are still limited to pro-
cessing one sentence at a time which severely limits the
number of trials they can process. Future research systems
will be required to create of summaries of trials based on
information extracted from multiple sentences in different
sections of the trial full text. For example, the trial may spe-
cify the number of patients randomized to each arm in one
sentence (e.g., ‘Five hundred and seventy-seven (377 Japa-
nese, 200 Chinese) patients treated with antihypertensive
therapy (73.5% [n = 424] received concomitant ACEI), were
given either once-daily olmesartan (10-40 mg) (n = 288) or
placebo (n = 289) over 3.2 ± 0.6 years (mean ± SD).’) [123]
and the number of events in each arm in another (‘In the
olmesartan group, 116 developed the primary outcome
(41.1%) compared with 129 (45.4%) in the placebo group
(HR 0.97, 95% CI 0.75, 1.24; p = 0.791)’) [123]. In another
example, the primary outcome is specified in the methods
section (e.g., ‘duration of the first stage of labor’) [124] and
only a reference to it can be found in the results section
(e.g., ‘the first stage’) [124]. New NLP methods are re-
quired to be able to computationally reason about data
from such texts.
Current methods all assume that trials can be modeled

using a simple branching model in which patients are ei-
ther assigned to one group or another or drop out [125].
While this model is suitable for a large proportion of
published trials, other study designs have not yet been
addressed.
As extraction methods develop, they will increasingly

understand more study designs such as cross-over stud-
ies. Computationally reasoning over trials with a differ-
ent number of arms and which are not controlled
against placebo or ‘standard care’ would require signifi-
cantly more elaborate computational reasoning [42].
Specific tools to extract survival curves will be benefi-

cial to systematic review research. Research is also re-
quired to use optical character recognition (OCR) to
digitize text (e.g., axes labels, data labels, plot legends)
and combine the information with data extracted from
the plot.
Databases of manually extracted trial data are already

maintained by some Cochrane group editors for specific
domains and collected in CRS [126]. Automatic extrac-
tion can populate such databases [43]. The feasibility of
using trial databases in automatic systems is yet to be
tested.

Task 12: convert and synthesize data

Task description Synthesis may first require the con-
version of numerical results to a common format, e.g., a
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common scale or a standardized mean difference, so
that trials can be compared. Normally, comparison of
continuous distributions is done according to the aver-
age and standard deviation (SD). Comparison of discrete
measures uses relative risk (RR) and later converted to
number needed to treat (NNT).

Automation potential Conversion between statistical
formats requires specific expertise in statistics. Automa-
tion of this task can thus reduce the requirement for
specific training in statistics and to reduce the chance of
the wrong conversion being used, e.g., confusing stand-
ard error and standard deviations.

Current systems It is standard practice to use statistical
packages for synthesis. However, much of the practice is
still manual, time consuming, and error prone. We have
identified only one study that attempted automatic ex-
traction and synthesis of discrete distributions to NTT
and RR formats [118].

Future research The automatic synthesis system will
have to automatically recognize the outcome format
(e.g., as a confidence interval, average effect size, p value,
etc.), select the statistical conversion, and translate the
outcome to its average and standard deviation. These
formulae may require extracted entities that may not be
reported as part of the outcome, such as the number of
patients randomized to that arm.

Task 13: re-check the literature

Task description Due to the time lag between the initial
search and the actual review (typically between 12 and
24 months), a secondary search may be conducted. The
secondary search is designed to find trials indexed since
the initial search. Often this task implies a repetition of
many previous tasks such as appraisal, extraction, and
synthesis making it potentially very expensive.

Automation potential In an automatic review system,
retrieval, appraisal, extraction, and synthesis would occur
in quick succession and in a short amount of time. This
would make this task altogether unnecessary. Conse-
quentially, an automatic review process will have the
compounded effect that will save much manual labor.

Task 14: meta-analyze

Task description For a systematic review to be useful to
a clinician, it needs to be presented in a clear, precise
and informative manner [127,128]. Systematic reviews
are often followed by a meta-analysis of the included
trial results. The most common way to summarize a
meta-analysis is using a forest plot [129] but other plots
exist, such as Galbraith diagrams (also called radial dia-
grams) and L'Abbé plots. Other plots are used for data
checking purposes, e.g., funnel plots [130] show whether
publication bias is likely to affect the conclusion of the
systematic review.

Automation potential Transferring quantities between
software packages is time consuming and error prone.
Thus, integration of synthesis and graphing software has
the potential to save time and reduce errors.

Current systems Much of the meta-analysis is already
automatic as software for combining, comparing, and
reporting the meta-analysis graphically, are already in
wide use [131-134].

Future research Plotting is routinely manual with the
aid of specialized software. Software for systematic
reviews are included in specific software packages in-
cluding Review Manager (RevMan) [40], Meta-Analyst
[131], MetaDiSc [132], and MetaWin [133], all of which
already produce Forest and other plots.

Task 15: write up the review

Task description Write-up of a scientific paper accord-
ing to reporting standards [135] is the major dissemin-
ation channel for systematic reviews. This process is
prolonged and subject to review, editing, and publication
delays [4,7]. It involves many menial sub-tasks that can
be automated, such as typesetting figures and laying out
the text. Other sub-tasks, such as interpreting the results
and writing the conclusion, may require more manual
interventions.

Automation potential The automatic creation of a report
from the protocol can save years in the production of each
systematic review. Rather than the protocol and the
written-up report requiring separate peer-review, only the
protocol would be reviewed as the report will be produced
directly from it. This will reduce the load on peer reviews
and reduce delays further.

Current systems The Cochrane Collaboration provides
templates for the production of the systematic review
protocol and text. These help reviewers ensure a complete
and consistent final product. RevMan-HAL [136] is a pro-
gram that provides templates and rules that generate the
results and conclusion sections of Cochrane reviews from
RevMan files that contain a meta-analysis. After the tem-
plate is filled in, the reviewer may edit the final report.
A well-written report includes graphical and textual

summaries. In addition to the forest plots and the other
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meta-analysis representations mentioned above, graph-
ical summaries include tables and PRISMA flow dia-
grams. Microsoft Office Excel is often used to enter data
into tables and copy them into the report. Tools exist
for creating relevant diagrams including forest plots and
PRISMA flow diagram [137].
Future research Natural Language Generation (NLG)
technology [138] can be used to write specific para-
graphs within the review such as descriptions of the
types of documents found, results of the appraisal and
summaries of the findings. Disparity in data formats
among tools mean that errors may be introduced when
manually transferring data between tools, or in format
incompatibilities. Better tool integration is needed.
Interpretation of meta-analysis results is not only done

by the systematic reviewer. Clinicians and other users of
the review may interpret the results and use their own
interpretation.
Systems approach to systematic review automation
A ‘living’ systematic review is updated at the time it is re-
quired to be used in practice [139]. It is no longer a docu-
ment that summarizes the evidence in the past. Rather, it is
designed and tested once, and is run at a push of a button
to execute a series of search, appraisal, information extrac-
tion, summarization, and report generation algorithms on
all the data available. Like other computer applications, the
systematic review protocol itself can be modified, updated,
and corrected and then redistributed so that such amend-
ments are reflected in new systematic reviews based on the
protocol.
Much research on integrated automatic review systems

is still needed. Examples of complex systems that have
evolved as combinations of simpler ones are abundant
and provide hope as well as valuable components in a
future system. In this survey, we found that systems de-
signed to perform many of the systematic review tasks
are already in wide use, in development, or in research.
Semi-automated decision support systems will advance
the end goal of completely autonomous systematic re-
view systems.
An enterprise to automate systematic review has many

stakeholders including clinicians, journal editors, registries,
clinical scientists, reviewers, and informaticians. Collabor-
ation between the stakeholders may include publication re-
quirements of registration of reviews by medical editor
committees, better adherence to CONSORT and PRISMA
statements, and explicit PICO reporting. Accommodation
in systematic review registries such as PROSPERO and
standard data exchanges such as HL7 [140] may assist in
the standardization and quality assurance of automatically
generated systematic reviews.
The path to a fully automated systematic review sys-
tem will continue to deliver a range of software applica-
tions that will benefit systematic reviewers directly as
well as some that will benefit the community less dir-
ectly. For example, imperfect applications that can ex-
tract data only from CONSORT-compliant abstracts can
help editors conduct pre-submission quality assurance.
Software that automatically differentiates citations to
published papers from grey literature can also be used to
create a new registry for grey literature. With small
modifications, search strategies from previous systematic
reviews can be used by guideline developers to find evi-
dence summaries and identify gaps in knowledge.

Conclusion
Synthesis for evidence based medicine is quickly becoming
unfeasible because of the exponential growth in evidence
production. Limited resources can be better utilized with
computational assistance and automation to dramatically
improve the process. Health informaticians are uniquely
positioned to take the lead on the endeavor to transform
evidence-based medicine through lessons learned from sys-
tems and software engineering. The limited resources dedi-
cated to evidence synthesis can be better utilized with
computational assistance and automation.
Conducting systematic reviews faster, with fewer re-

sources, will produce more reviews to answer more clinical
questions, keep them up to date, and require less training.
Together, advances in the automation of systematic reviews
will provide clinicians with more evidence-based answers
and thus allow them to provide higher quality care.
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