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Abstract

In eddy current testing, the trajectory of the impedance data due to a defect is
presented as a Lissajous curve (LC) in the complex plane. This paper proposes
a novel analytical model for describing a LC. Further, a new feature extraction
method is implemented which automatically computes four geometric features
(amplitude, width, angle and symmetry) from Lissajous figures. In addition,
six machine learning-based classifiers are used for automatic defect identifica-
tion based on these features. High detection rates are achieved for both the
simulated and experimental data, which demonstrates the flexibility of the ana-
lytical model and the validity of the methodology.

Keywords: Eddy current testing, Lissajous figure, Feature extraction,
Machine learning

1. Introduction

Eddy current testing (ECT) is a low-cost non-destructive testing method
that has been widely applied to the detection of crack and defect in conductive
materials [20, 25]. Recent studies on automatically detecting defects by ECT
tend to rely on machine learning (ML) algorithms [32, 23, 22, 3, 1]. Many of
these ML-motivated studies entail a feature space as the input for the training of
ML models. The features can be extracted from the impedance signal obtained
by ECT sensors using various analytical methods.

Time-domain feature extraction methods analyse the impedance signal dir-
ectly. Commonly harnessed time-domain features in pulsed ECT (PECT) in-
clude the rising time, rise-to-peak time, slope, and peak amplitude, etc. [30]
which in general correlate to the size, depth and other properties of defect [6].
Moreover, principle component analysis (PCA) and its variations are extensively
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exploited to extract features from the time-domain signal [4]. For example, the
research in [11] employed PCA to the differential time response signal resulting
in defect-related features based on which surface and subsurface defects under
different interlayer gaps and lift-off effects were detected.

In terms of frequency-domain features, they are often obtained by conducting
a fast Fourier transform (FFT) to the response signal. In [10], PECT imaging
and frequency spectrum analysis were successfully applied to detect, classify,
and evaluate the sub-surface defects under the influence of edge effect of speci-
men. Furthermore, time-frequency analysis such as wavelet transform [29, 17]
and Rihaczek distribution [12], etc. have shown their effectiveness in recovering
defect-related features from time-domain signal and spectral response. Addi-
tionally, the feature space can be generated by fitting the response signal with
non-linear approximation functions. In [5], summed Gauss function was utilised
to approximate the spectrum of response signal, and features were extracted by
fitting the function to different defect responses.

In addition to the time and frequency domain methods, image recognition
is also an effective technique for feature extraction. In ECT, the trajectory of
impedance data due to a defect is presented as a Lissajous curve (LC) in the com-
plex plane. The shape of the LC is determined by the sensor geometry, relative
motion between the sensor probe and specimen, the electromagnetic properties
of the specimen, the profile of defect, and some other possible factors. The
excitation frequency is a key factor of the LC shape. As a consequence, the dis-
tinguishing profile of defect for the same ECT sensor system would be embedded
as the geometric features in the resultant LC [7]. These geometric features can
be extracted using image recognition algorithms and then be used as the inputs
of ML algorithms for further classification tasks. In [8], Content-Based Image
Retrieval (CBIR) technique was adopted to extract geometric features from LCs
for defects of aircraft specimen. Several features such as the perimeter, area,
centre of gravity, inclination angle, inertia principal axes, wideness, length, and
symmetry of the LC are generated using CBIR. The same method was latter
harnessed in another study [9], in which the geometric features were extracted
for a few measurements considering different orientations between the sensor
probe path and the defect. The advances of modern hardware capability enable
training a machine-learning model with data capturing various types of defects.
In the circumstance of limited resources, however, acquiring such a set of real
experimental data might be expensive which gives rise to the research of data
augmentation techniques.

In this paper, an analytical model is proposed for the description of LCs,
and by tuning the parameters of the model, an artificial dataset could be gen-
erated for training ML models. As long as the LC resulted from practical
measurement of defect belongs to the distribution of the simulated artificial fea-
ture space, the trained ML models would be able to make a discrimination of
the defect. Moreover, a clustering-based algorithm is proposed to extract the
geometric features of LC which is simple and easy to implement. Lastly, the
simulated feature space is fed to six ML algorithms, and the trained models
are tested with data of practical measurements of defect. High detection rates
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demonstrate the validity of the proposed analytical model and the clustering-
based feature extraction method. The remainder of the paper is organised as
follows. Section 2 introduces the analytical equations used to describe the LCs
on the complex impedance plane and shows how the parameters of the equa-
tions influence the geometrical features of the LC. The clustering-based feature
extraction algorithm is presented in Section 3. Section 4 describes the exper-
imental system including a customised sensor, 2-D motorised scanning stage,
field-programable gate array (FPGA) and host PC. Section 5 demonstrates the
detailed procedures of conducting machine learning algorithms, and the results
are presented and discussed in Section 6. The last section concludes the paper.

2. Analytical Model for Lissajous Curve

When an ECT probe crosses a defect in the test specimen, the resultant
impedance signal in the complex plane has a shape similar to the digit ‘8’. One
‘petal’ is developed as the probe approaches the centre of the defect from far
away. The paths of eddy currents are disturbed by the defect which hence
gives rise to a change of impedance. As the probe passes the defect centre
and moves away, the second ‘petal’ is developed which is generally symmetrical
to the first one. The shape of the trajectory is determined by the excitation
frequency, lift-off distance, probe structure, the electromagnetic properties of
the test specimen and the relative motion between the probe and defect. In
addition, the environmental noise in a practical scenario also affects the shape.
Therefore, the trajectory would have a plurality of different shapes in different
actual detection situations. However, in general, the shape of trajectory would
always share some similarities as an LC.

We define equations (1) and (2) for the coordinates (x, y) of the complex
impedance plane in which (s, t) takes discrete values as expressed in (3). These
equations generate l number of points which form a single ‘petal’. It is evident
that the parameter m controls the length and the parameter θ controls the
inclination angle of the ‘petal’ which are shown in Figure 1 and 2. As shown
in Figure 3, the width of the ‘petal’ is determined by the relative values of a
and b. For the sake of convenience, we may set a as unity and the value of b
can be determined empirically, for instance, as a value between 0.5 and 3.5. It
is noted that when a equals b, the trajectory is a straight line segment. The
other ‘petal’ can be generated by configuring the parameter θ as θ+ π which is
equivalent to rotating the first ‘petal’ by 180 degrees. Moreover, the parameters
m and b of the first ‘petal’ can be assigned as a different value from that of
the first ‘petal’ if asymmetry is desired. By alternating the values of these
parameters, different LCs could be generated analytically which could provide
a set of training samples. Finally, some generated LCs are illustrated in Figure
4, from which it is demonstrated that the shape of the curve can be adjusted
by manipulating the parameters.

x := m
(
cos θ sin (sa)− sin θ sin

(
tb
))

(1)
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Figure 1: Plots of trajectories with different m.

y := m
(
sin θ sin (sa) + cos θ sin

(
tb
))

(2)

s =
π

1
a

l
:
π

1
a

l
: π

1
a , t =

π
1
b

l
:
π

1
b

l
: π

1
b (3)

3. Clustering-Based Feature Extraction

In order to extract such geometric features of the LC as length, width, inclin-
ation angle and so on, we propose a clustering-based method taking advantage
of the impedance data directly without using image recognition technique. The
fundamental idea is that in order to extract the geometric features, we need
to find some anchor points first. Then it comes naturally to exploit clustering
algorithms to find some centres of the data. K-means algorithm is one of the
main clustering algorithms which attempts to group the data into clusters min-
imising the sum of squared Euclidian distances of each data points with respect
to their nearest cluster centre [13].

If we consider a typical LC as shown in Figure 5, after applying K-means
clustering algorithm, three centres C1, C2 and C3 can be found and the data
are grouped into three clusters accordingly. As can be expected, the centre
C2 is very close to the crossing point of the LC and the other centres C1 and
C2 extend to the two ‘petals’. Therefore, the length, width and inclination
angle of each ‘petal’ can be defined as shown in Figure 5, and they are easy to
compute. Additionally, symmetric indicator features d1

d2
, w1

w2
, and α1

α2
can also

be calculated.
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Figure 2: Plots of trajectories with different θ.
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Figure 3: Plots of trajectories with different b.
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Figure 4: Plots of some generated trajectories under different θ, m and b.

Figure 5: Clusters and geometric features of an LC.
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Now we have the tools to generate LCs and extract geometric features from
them using the proposed methods.

4. Experimental Setup

The entire experimental system is shown in Figure 6 which comprises a
scanning stage, stage controller, probe, host PC and electromagnetic (EM) in-
strument. The EM instrument operates in the spectrum from 5 kHz to 200 kHz
and is capable of digital demodulation at a rate of 100 k samples per second
and has an Ethernet link to a PC. It has been successfully applied to electro-
magnetic sensing system such as magnetic induction tomography [33, 27] and
workpiece recognition [28]. A system block diagram of the EM instrument is
shown in Figure 7. The main blocks are the Zynq 7020 system on a chip (SoC),
the Analog/Digital interface, the sensor front-end interface. The Zynq-7020
SoC integrates an ARM dual Cortex-A9 based processor with a Xilinx 7-series
FPGA. The receiving coil is connected to the signal amplification circuit and the
transmitting coil is connected to the excitation circuit. The instrument exploits
the chip capabilities by implementing the signal generation and I/Q demodula-
tion modules using the FPGA, which is typically referred as the programmable
logic (PL). The ARM processor is used for data transferring between the PL
and a host PC. A LabVIEW-based data acquisition and signal processing pro-
gramme runs on the host PC. The scanning stage is composed of two stepper
motors which drive a probe moving in two dimensions (X and Y). The automatic
stage is able to provide a maximum scanning speed of 100 mm/s with a 200 mm
travel length and 0.2 µm resolution. During the experiment, the electromagnetic
sensor is mounted onto a height adjustable gauge bar with a manually adjustable
sensor stand by which the lift-off and direction of sensor are changeable. The
resolution of the height adjustment of the gauge bar is 8 µm. The probe is a
differential probe composed of two identical excitation coils and a receiving coil.
The geometry and schematic of the probe are shown in Figure 8. The receiver
coil is located between the two exciting coils. The purpose of this design is to
reduce or eliminate background signals and increase the sensitivity to anomalies
[2, 18]. The system provides fast, reliable data transfer by taking advantage of
the Ethernet communication. The Parameters such as amplification gain, fre-
quency, and sampling rate provide good compatibility with varieties of sensor
designs and applications. The signal-to-noise ratio (SNR) of the output signal is
on average above 80 dB. The SNR is calculated using (4) where n is the number
of sampling points and zi is the ith measurement.

SNR = 10 log10

( ∑n
i=1 z

2
i∑n

i=1

(
zi − 1

n

∑n
i=1 zi

)2
)

(4)

A steel sample (40 mm × 20 mm × 2 mm) with 20 machined slots repres-
enting simulated defects is used as the test target. The operating frequency is
configured as 50 kHz. Every slot of the sample has the same length of 3 mm
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Figure 6: Experimental system.

Figure 7: Block diagram of the EM instrument.
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Figure 8: Probe schematic.

and width of 0.1 mm. The depth of the slot varies from 0.1 mm to 2 mm in a
step of 0.1 mm.

Two data acquiring experiments were carried out using the experimental
system in order to acquire practical scanning data of the slots and flawless area.
The first experiment aimed at acquiring a standard dataset using the automatic
scanning stage. In this experiment, we fixed the steel sample horizontally and
the surface of open slots faced upwards. The probe was mounted onto the sensor
stand and its bottom surface was parallel to the upper surface of the steel sample
with a lift-off of 0.1 mm. For every slot, the probe was programmed to scan
from one flawless spot to another flawless spot crossing the slot with different
angles. Such scan was carried out 50 times for every slot which resulted in 1000
LCs in total. One LC corresponding to a scan of the slot with 1.5 mm in depth
is shown in Figure 9 (a) in which the simulated curve is plotted together with
the real LC. It can be seen that in general the simulated curve aligns with the
real LC. However, some discrepencies can be seen which is due to the fact the
sample has a slightly different EM property even in a flat surface. Moreover,
the distance of the sample and the sensor (lift-off) has a very small variation in
scanning. In addition, the hardware system and sensor can be subject to EM
noise in the lab during the scanning. Besides the 1000 scans of the slots, we
conducted 1000 scans of the flawless area using the same setup. The flawless
area was chosen randomly on the surface of the steel sample and was away from
the slots and sample edges. An example of the scan of flawless area is shown in
Figure 9 (b) which presents as a straight line segment. This is mainly as a result
of the imperfect nilling of the differential probe signal and the unevenness of the
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steel in terms of geometry and EM properties. In total we had 2000 scans and
we refer to this dataset as a standard dataset. The second experiment aimed at
introducing some perturbations where the probe was held by hand and scan was
carried out by hand. We tried to keep the lift-off close to 0.1 mm by attaching
the probe to the surface of the steel sample, but perturbations existed during
the experiment due to varying lift-offs and the tilt of the probe. Ten scans
were carried out for every slot and 200 scans were conducted for flawless area
which gave rise to a dataset containing 400 scans. Examples of the scan of
the slot with 1.5 mm in depth and flawless area are shown in Figure 9 (c) and
(d), respectively. We refer to this dataset as a perturbation dataset. Different
machine learning experiments were conducted based on these two datasets.

5. Machine Learning Process

5.1. Generation of artificial dataset
Although we have the models and algorithms in Section 2 and 3 to generate

an artificial dataset, there still remains such parameters as m, θ and b to be
determined. These parameters are obtained through calibration with an im-
pedance plot from practical measurement. The calibration process is as follows.
Firstly, an LC corresponding to a real measurement is plotted in the impedance
plane, e.g. the blue points in Figure 9. Secondly, we generate points using (1),
(2) and (3), and plot them on the same figure, e.g. the orange points in Figure 9.
It is noted that as the differential signal is not perfectly zero, we need to add an
offset, which is the mean value of the signal, to the simulated points. Thirdly,
we adjust the parameters m, θ and b sequentially to align the simulated LC
with the real LC. Lastly, the parameters m, θ and b are perturbed by adding a
random value within ±10% of their values obtained from the third step in order
to generate an artificial LC. Applying this calibration process to every LC in
the standard and perturbation dataset, artificial datasets are obtained.

5.2. ML algorithms and Bayesian optimisation on hyper-parameters
In this paper, six prevailing supervised-learning classifiers are adopted and

they are the Classification Trees (CT) [16], Discriminant Analysis (DA) [14],
Naive Bayes (NB) [15], K-Nearest Neighbours (KNN) [31], Support Vector Ma-
chine (SVM) [19], and Classification Ensemble (CE) [21]. These algorithms are
representatives of different classification strategies. In terms of the CT classifier,
decisions are made following a tree structure from a root node to leaf nodes.
Training a CT classifier is equivalent to growing a tree minimising the sum of
classification errors over each training sample. While the DA algorithm takes
a different point of view that the feature data of different classes are generated
from different Gaussian distributions. Therefore, to train a DA classifier, the
fitting function estimates the parameters of a multivariate Gaussian distribu-
tion for each class. In contrast, the NB algorithm assumes that the features
are conditionally independent and therefore individual density distributions are
calculated for each feature based on training samples. With respect to the KNN

10
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Figure 9: Trajectory of real and simulated data in the complex plane: (a) scan of the slot with
1.5 mm in depth in the standard dataset; (b) scan of flawless area in the standard dataset; (c)
scan of the slot with 1.5 mm in depth in the perturbation dataset; (d) scan of flawless area in
the perturbation dataset .
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model, distance is adopted as a metric to find K neighbours for a sample point
and classification is made based upon the labels of the neighbours. In terms of
the SVM algorithm, a hyper-plane is pursuit that maximises the margin sep-
arating the two class points. The CE is constructed by a combination of the
previous multiple classification models with different weights. In addition to the
ML classifiers, choosing proper hyper-parameters for these models is an import-
ant factor that affects the performance of the classifiers. Bayesian optimisation
[24] is carried out for the training of each classifier which minimises the five-fold
cross-validation error of the training set.

5.3. Error analysis
Based on the confusion matrix, different error quantities are available in the

evaluation of the performance of ML models. In this paper, we adopt the classi-
fication error [26], which is defined as the number of incorrect classifications di-
vided by the total number of samples, as the metric to choose hyper-parameters
and evaluate the accuracy of training and prediction.

6. Result and Discussion

Using the LC generating methods proposed in Section 2 and applying the
data augmentation process in Section 5.1, ten simulated LCs were generated for
every LC in the standard dataset which gave rise to an artificial standard set
containing 20000 samples. These simulated and empirical data were fed into
the K-means clustering algorithm discussed in Section 3, after which geometric
features were extracted. Then two experiments were conducted in order to
validate the proposed analytic model and feature extraction method.

The first experiment harnessed the real and artificial standard set. The
fundamental idea was that one group of ML models presented in Section 5.2 were
trained using the real dataset, and another group of ML models were trained
using the artificial dataset, and then we evaluated the two groups of trained ML
models using the data in the real dataset that were not used in the training of
ML models. By comparing the classification accuracies of these two groups of
ML models with respect to the real test data, a conclusion could be drawn that
whether the artificial dataset was able to represent the real dataset. Detailed
division of the standard datasets were as follow. In terms of the real dataset, we
randomly selected 40 scans of every slot as positive samples of the real training
set and hence there were 800 positive samples. In addition, 800 scans of flawless
area in the real dataset were randomly chosen as negative samples. In total, we
had 1600 samples in the real training set. The remaining 400 samples in the real
dataset were utilised as a test set. With respect to the artificial training set, we
selected 16000 samples corresponding to the 1600 samples of the real training
set. It is noted that the remaining 4000 artificial samples corresponding to the
400 real test samples were not used in this experiment.

The classification accuracies of the six trained ML models in terms of the
real and artificial training set are listed in Table 1 and 2, respectively. From
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Classification ML Algorithm

Accuracy CT DA NB NN SVM CE

0.1 mm 50% 50% 45% 45% 50% 50%

0.2 mm 50% 55% 50% 50% 50% 55%

0.3 mm 55% 50% 60% 60% 55% 65%

0.4 mm 65% 60% 60% 70% 65% 65%

Slot 0.5 mm 75% 70% 65% 70% 70% 70%

Depth 0.6 mm 80% 75% 80% 80% 80% 75%

0.7 mm 85% 85% 90% 85% 90% 90%

0.8 mm 90% 90% 90% 90% 90% 90%

0.9 mm 90% 90% 95% 95% 95% 95%

1.0 mm 95% 100% 95% 95% 90% 95%

1.1 mm - 2.0 mm 100% 100% 100% 100% 100% 100%

Overall 86.75% 86.25% 86.50% 87.00% 86.75% 87.50%

Table 1: Classification accuracies of the ML algorithms in terms of the real training set.

Table 1 it can be seen that as the depth of the slot increases, the classification
accuracy becomes higher. This trend applies to all the six ML algorithms in
general. When the depth of slot is small, e.g. 0.2 mm, the detection rate is
low and concretely many test samples are predicted as flawless. In contrast,
100% classification accuracies are achieved for the slots of depth from 1.1 mm
to 2.0 mm. The six ML models have achieved similar classification accuracies
in terms of the overall performance. If we compare Table 1 and 2, we can
find that the classifications accuracies are very similar. This result implies that
on the one hand, the artificial dataset highly approximates the real dataset
as the ML models trained based on them give close predictions of the test
samples, which proves the validity of the proposed analytical model and feature
extraction method. One the other hand, the artificial dataset does not improve
the classification accuracy although it has more data than the real dataset. This
can be as a result of the fact that the calibration process for the generation
of the artificial dataset relies on the real dataset and the perturbation of the
parameters of the analytical model fails to introduce new variance of the feature
space that targets the test set.

In the second experiment, we would like to evaluate the trained ML models
obtained in the first experiment with the perturbation dataset as explained in
Section 4. By conducting this experiment, we can examine the robustness of
the models to perturbations such as inconsistent lift-off and probe tilt. The
classification accuracies of the test samples of perturbation set in terms of the
ML models trained using the real standard set and the artificial standard set

13
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Classification ML Algorithm

Accuracy CT DA NB NN SVM CE

0.1 mm 50% 50% 50% 50% 50% 50%

0.2 mm 50% 55% 50% 50% 50% 55%

0.3 mm 60% 55% 55% 55% 60% 65%

0.4 mm 70% 65% 65% 65% 60% 65%

Slot 0.5 mm 70% 75% 70% 70% 65% 70%

Depth 0.6 mm 80% 80% 80% 80% 80% 75%

0.7 mm 90% 90% 90% 85% 90% 90%

0.8 mm 90% 90% 90% 90% 95% 90%

0.9 mm 95% 90% 100% 90% 95% 95%

1.0 mm 95% 95% 95% 100% 95% 95%

1.1 mm - 2.0 mm 100% 100% 100% 100% 100% 100%

Overall 87.50% 87.25% 87.25% 86.75% 87.00% 87.75%

Table 2: Classification accuracies of the ML algorithms in terms of the artificial training set.

Classification Accuracy ML Algorithm

CT DA NB NN SVM CE

Real Training Set 70.50% 68.50% 69.00% 67.00% 71.25% 71.50%

Artificial Training Set 75.50% 73.25% 74.50% 76.00% 77.50% 76.50%

Table 3: Classification accuracies of the ML algorithms testing the perturbation dataset.

are listed in Table 3. From the table, it is observed that lower detection rates
are obtained for both groups of ML models compared to the detection rates
of the standard test set. However, in general, the ML models trained using
the artificial standard set have higher accuracies in predicting the labels of the
samples of the perturbation set. This phenomenon indicates that augmenting
the training set by harnessing the analytical model and perturbing the model
parameters can be useful in introducing some robustness to the dataset.

7. Conclusion

Recent ECT studies tend to take advantage of the fast developing machine
learning techniques. Data augmentation is an interesting topic when there
are limited resources to acquire data. This paper has proposed an analyt-
ical method to generate Lissajous curves which would give rise to an artificial
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dataset. Moreover, since feature extraction is an important procedure for train-
ing ML models, a clustering-based method has been proposed to extract the
geometric feature of LCs. Further, six machine learning-based classifiers are
used for automatic defect identification based on these generated training data.
High detection rates are achieved for both the simulated and experimental data,
which demonstrates the flexibility of the analytical model and the validity of
the methodology.
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