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Abstract 

The World Urban Database and Access Portal Tools (WUDAPT) project has adopted the Local 
Climate Zone (LCZ) scheme as a basic and consistent description of form and function of 
cities at neighbourhood scale. LCZs are classified using crowdsourced training samples, open 
data and open source software but the quality of the maps still needs improvement. The aim 
of this paper is to investigate the use of data from OpenStreetMap (OSM) to enhance the 
development of LCZs, complement the existing data sources, and improve the accuracy of 
the maps. Various features were derived from the OSM database and combined with seasonal 
LCZ maps. Therefore a methodology was developed and tested for Hamburg, Germany, using 
a fuzzy approach and then a weighted combination method was applied to combine the inputs 
from OSM with each of the seasonal LCZ maps. The results showed that improvements can 
be achieved for certain classes, either in terms of accuracy, e.g. rectifying the misclassification 
of agricultural areas as heavy industry, or representation on the map, e.g. a more detailed 
water network. The approach developed is flexible and allows for knowledge about which data 
sources are more reliable as inputs to the combination and weighting process.  
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1. Introduction  

Cities are particularly vulnerable to increasing temperatures from climate change because of 
a phenomenon known as the Urban Heat Island (UHI) effect (Oke, 1967), which is the result 
of higher amounts of impervious surfaces, a lack of vegetation in urban areas and the 
presence of concentrated urban structures. UHIs occur in almost all urban areas, large or 
small, and in warm or cold climates (Stewart and Oke, 2012). A cause for concern is that UHIs 
can affect human health and well-being, and heat waves in urban areas have contributed to 
loss of life. For example, during the heat wave in 2003, more than 30,000 people in Europe 
died (UNEP, 2004). These events will be even more pronounced in the future as population 
continues to increase to 9.8 billion by 2050 and 11.2 billion by 2100 (UN Department of 
Economic and Social Affairs, 2017). Climate change will further exacerbate the heat risk. 
Future climate scenarios from the Intergovernmental Panel on Climate Change (IPCC) 
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indicate higher frequency and duration of heat waves in the coming decades, which will 
continue to increase health risks (Revi et al., 2014). Other negative effects include increases 
in air pollution and the general reduction in thermal comfort (Harlan and Ruddell, 2011).  

The UHI effect has been extensively studied in the literature; see e.g. the comprehensive 
literature review of more than 100 UHI studies in the USA, Asia, Africa, Australia and Europe, 
all of which show higher temperatures in urban versus rural areas (Tzavali et al., 2015). 
Different types of UHI need to be distinguished. The most commonly studied type is the canopy 
layer UHI, which is studied using air temperature records from weather stations or mobile 
sensors (see Santamouris (2014) for a comparison of about 75 studies). The second type is 
the surface UHI, which is investigated by the use of thermal infrared remote sensing (Ngie et 
al., 2014; Tomlinson et al., 2011), which provides comprehensive spatial coverage but also 
trade-offs between spatial and temporal coverage (Bechtel et al., 2012).    

The UHI effect is estimated by comparing urban and rural values or their background 
temperatures, which is the difference between the maximum urban temperature and the 
surrounding rural temperatures (Oke, 1982; Oke et al., 2017). Thus for decades, typical UHI 
measurement studies have been based on the comparison of "urban" and "rural" air 
temperatures. However, the terms urban and rural cannot be defined universally since they 
do not have a unique objective meaning, and hence no climatological relevance. Furthermore, 
what is defined as urban or rural in one city can be different when applied to another city 
(Stewart and Oke, 2012). Hence the relation between urban and rural should be more 
precisely represented as a continuum as opposed to a dichotomy (Gugler, 1996). Thus, to 
provide a universal system applicable to urban temperature studies, Stewart and Oke (2012) 
established the Local Climate Zone (LCZ) classification system, which is based on a number 
of factors that capture the physical characteristics of the region. LCZs are also associated with 
a range of values for a number of different urban parameters, which have been used in 
different urban climate models, e.g., the Weather and Research Forecasting (WRF) meso-
scale model (Brousse et al., 2016; Hammerberg et al., 2018), COSMO-CLM (Wouters et al., 
2016) and SUEWS (Alexander et al., 2016), all of which can be used to study the UHI 
phenomenon.  

The World Urban Database and Access Portal Tools (WUDAPT) project was initiated in 
2009 with a particular emphasis on providing data on urban areas globally, where urban 
climate modelling is one application. The aim of WUDAPT is to collect data on the form and 
function of cities around the world. It has adopted the LCZ classification scheme because it is 
culturally neutral, provides a standardized way of comparing cities around the world and can 
be generated using open source tools and open data. Moreover, WUDAPT encourages local 
experts around the world to participate in populating the WUDAPT database with information 
about their own cities (Ching et al., 2018).  

The WUDAPT methodology uses Landsat 8 satellite images, and a workflow based on 
Google Earth and SAGA GIS software, which is described in more detail in Bechtel et al. 
(2015) and on the WUDAPT web page (http://www.wudapt.org). The method involves creating 
training sites for each LCZ class present in the region of interest and then classifying the 
Landsat images using a random forest classifier. Much recent attention has been paid to 
finding ways to quality assure the resulting LCZ maps (Bechtel et al., 2017, 2019), which 
indicates that there is still room for improvement.  

Recently there have been various developments in trying to improve the methodology for 
the generation of LCZ maps, which in particular comprise new methods, upscaling and 
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transfer-learning, and new input data. The methodological development has focused on new 
and more sophisticated classifiers and post-processing techniques including context 
classifiers (Verdonck et al., 2017), residual convolutional neural networks (Qiu et al., 2018), 
and Markov random fields (Tuia et al., 2017b). Moreover, alternative approaches from 
supervised classification have been tested, in particular GIS-based methods (Gal et al., 2015; 
Geletič and Lehnert, 2016; Hidalgo et al., accepted; Lelovics et al., 2014; Unger et al., 2014; 
Zheng et al., 2018). A particular focus was set on transferring training labels between cities 
(Demuzere et al., 2019; Kaloustian et al., 2017; Xu et al., 2017) and developing robust and 
transferable classifiers, which was also the challenge of the 2017 Data Fusion Contest (Tuia 
et al., 2017a; Yokoya et al., 2018), organized by the Image Analysis and Data Fusion 
Technical Committee of the IEEE Geoscience and Remote Sensing Society. Further work has 
been done on the upscaling and generation of large area data sets (Demuzere et al., in review; 
Qiu et al., 2018). On the data side different sensors have been tested in the classic approach, 
including Sentinel 2 (Demuzere et al., 2019; Kaloustian et al., 2017; Qiu et al., 2018), ASTER 
(Yong Xu et al., 2017), SAR (Bechtel et al., 2016; Demuzere et al., 2019; Kaloustian et al., 
2017) and nighttime lights (Demuzere et al., 2019; Qiu et al., 2018), and various remote 
sensing derived parameters were used in Mitraka et al. (2015). 

One particular open data source that may benefit the generation of LCZ maps is 
OpenStreetMap (OSM), which was also used by some teams in the Data Fusion Contest 
(Sukhanov et al., 2017; Yokoya et al., 2018) and is an example of volunteered geographic 
information (VGI) (Goodchild, 2007) in which millions of citizens have contributed to creating 
an online vector map of the world (Jokar Arsanjani et al., 2015). OSM began in 2004, where 
the fundamental goal is to build an open and free database of geographic information (Coast, 
2005; Haklay and Weber, 2008; Jokar Arsanjani et al., 2015). OSM volunteers contribute and 
maintain data on roads, railways, buildings, land use and many other types of information 
around the world. OSM data are available under an Open Database (ODbL) license, which 
allows for commercial use of the data as long as a reference is made to the OSM project and 
the data, and any derivative products are released under the same license or another 
compatible one (https://www.openstreetmap.org/). OSM has been used in a number of 
different applications including generation of land cover and land use maps (Fonte et al., 
2017a; Schultz et al., 2017; Grippa et al., 2018), in a large number of quality assessment 
studies (Girres and Touya, 2010; Haklay et al., 2010; Fan et al., 2014; Mooney, 2015) and 
even in the generation of LCZs (Lopes et al., 2017; Samsonov and Trigub, 2017).  Hence the 
aim of this paper is to investigate how OSM can be used to enhance the LCZ classification 
process and improve the accuracy of the resulting maps. Since OSM is freely available, the 
use of this data source also aligns well with the goals of the WUDAPT project.  

 

2. The Local Climate Zone (LCZ) system 

The LCZ classification system divides the landscape into seventeen classes (see Table 1), 
which are defined as areas of “uniform surface cover, structure, material, and human activity 
that span from hundreds of meters to several kilometers in horizontal scale" (Stewart and Oke 
2012, p.1884). Ten classes are built-up types (from LCZs 1 to 10) while the remaining seven 
are land cover types (LCZs A to G), and there is an additional variable to denote seasonal 
properties, e.g. LCZ 1s would refer to LCZ 1 when the surface is covered by snow. 

All classes emerge from the logical division of the landscape according to different properties 
that influence the screen-height temperature, i.e. the temperature measured one to two meters 
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above the ground (Stewart et al., 2014), such as surface structure and surface cover. LCZ 
types can be distinguished by ranges of typical values of measurable physical properties, 
which characterize the geometry and surface cover, and the thermal, radiative and 
anthropogenic energy features of the surface. 

 
Table 1- Local Climate Zone classes and definitions as proposed by Stewart and Oke (2012). 

LCZ classes  Definition 

Bu
ilt

 ty
pe

s 

Compact high-rise 
(LCZ 1) 

Dense mix of tall buildings to tens of stories. Few or no trees. Land cover mostly 
paved. Concrete, steel, stone, and glass construction materials.  

Compact midrise 
(LCZ 2) 

Dense mix of midrise buildings (3–9 stories). Few or no trees. Land cover mostly 
paved. Stone, brick, tile, and concrete construction materials. 

Compact low-rise 
(LCZ 3) 

Dense mix of low-rise buildings (1–3 stories). Few or no trees. Land cover 
mostly paved. Stone, brick, tile, and concrete construction materials.  

Open high-rise  
(LCZ 4) 

Open arrangement of tall buildings to tens of stories. Abundance of pervious 
land cover (low plants, scattered trees). Concrete, steel, stone, and glass 
construction materials.  

Open midrise  
(LCZ 5) 

Open arrangement of midrise buildings (3–9 stories). Abundance of pervious 
land cover (low plants, scattered trees). Concrete, steel, stone, and glass 
construction materials. 

Open low-rise  
(LCZ 6) 

Open arrangement of low-rise buildings (1–3 stories). Abundance of pervious 
land cover (low plants, scattered trees). Wood, brick, stone, tile, and concrete 
construction materials.  

Lightweight low-rise 
(LCZ 7) 

Dense mix of single-story buildings. Few or no trees. Land cover mostly hard-
packed. Lightweight construction materials (e.g., wood, thatch, corrugated 
metal).  

Large low-rise  
(LCZ 8)  

Open arrangement of large low-rise buildings (1–3 stories). Few or no trees. 
Land cover mostly paved. Steel, concrete, metal, and stone construction 
materials. 

Sparsely built  
(LCZ 9) 

Sparse arrangement of small or medium-sized buildings in a natural setting. 
Abundance of pervious land cover (low plants, scattered trees). 

Heavy industry  
(LCZ 10) 

Low-rise and midrise industrial structures (towers, tanks, stacks). Few or no 
trees. Land cover mostly paved or hard-packed. Metal, steel, and concrete 
construction materials. 

La
nd

 c
ov

er
 ty

pe
s  

Dense trees  
(LCZ A) 

Heavily wooded landscape of deciduous and/or evergreen trees. Land cover 
mostly pervious (low plants). Zone function is natural forest, tree cultivation, or 
urban park. 

Scattered trees 
(LCZ B) 

Lightly wooded landscape of deciduous and/or evergreen trees. Land cover 
mostly pervious (low plants). Zone function is natural forest, tree cultivation, or 
urban park. 

Bush, scrub  
(LCZ C) 

Open arrangement of bushes, shrubs, and short, woody trees. Land cover 
mostly pervious (bare soil or sand). Zone function is natural scrubland or 
agriculture. 

Low plants  
(LCZ D) 

Featureless landscape of grass or herbaceous plants/crops. Few or 
no trees. Zone function is natural grassland, agriculture, or urban park. 

Bare rock or paved 
(LCZ E) 

Featureless landscape of rock or paved cover. Few or no trees or plants. Zone 
function is natural desert (rock) or urban transportation. 

Bare soil or sand 
(LCZ F) 

Featureless landscape of soil or sand cover. Few or no trees or plants. Zone 
function is natural desert or agriculture. 

Water  
(LCZ G) 

Large, open water bodies such as seas and lakes, or small bodies such as 
rivers, reservoirs, and lagoons.   

Va
ria

bl
e 

la
nd

 c
ov

er
 

pr
op

er
tie

s  Bare trees (b) Leafless deciduous trees (e.g., winter). Increased sky view factor. Reduced 
albedo. 

Snow cover (s) Snow cover >10 cm in depth. Low admittance. High albedo. 
Dry ground (d) Parched soil. Low admittance. Large Bowen ratio. Increased albedo. 
Wet ground (w) Waterlogged soil. High admittance. Small Bowen ratio. Reduced albedo.  
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3. Data and methodology 

The methodology developed here consists of the following four steps: 1) Creation of four LCZ 
maps for the study area using the methodology proposed by the WUDAPT project, using four 
images corresponding to different astronomical seasons (winter, spring, summer and autumn); 
2) conversion of OSM features into LCZ classes; 3) integration of the data obtained from the 
previous two steps; and 4) an accuracy assessment. These steps are described in more detail 
below. 

3.1 Study area and data 

The study area used to test the methodology proposed in this paper is a section from the city 
of Hamburg in Germany. Hamburg is located in the North German Plain on the lower slopes 
of the Elbe River, 80 km upstream of the Elbe estuary. It is the second largest city in Germany 
after Berlin, with 755.3 km2 and a population of 1,814,597 inhabitants (Rose and Wilke, 2015; 
Statistical Office of Hamburg and Schleswig-Holstein, 2014). Figure 1Erro! A origem da 
referência não foi encontrada. shows the four Landsat 8 satellite images of the area that 
were used to create the LCZ maps as outlined in sections 3.2 to 3.4. These images were 
downloaded from the USGS Earth Explorer website. 

 
Figure 1 - Landsat 8 true color imagery of Hamburg in a) winter - 2017, January 3rd, b) autumn - 2014, December 
6th, c) summer - 2015, August 21st and d) spring - 2016, April 30th. 

 

This area was chosen because it has good coverage of OSM data (see Figure 2Erro! A 
origem da referência não foi encontrada.). The information available in OSM is in vector 
format and each element has an associated spatial dimension (i.e. geometry) and attribute 
data. When an OSM contributor creates an object that represents a real-world feature, the 
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volunteer is able to use three types of primitives: nodes (points), ways (polylines, closed ways 
or areas/polygons) and relations (logical collections of two or more nodes, ways, areas or 
other relations) (Neis and Zielstra, 2014). Each of these primitives are associated with one or 
more attributes, also referred to as tags. Tags are used to describe information such as the 
type of object (e.g. restaurant, street, etc.) and their most relevant details (e.g. address, if 
access is restricted, etc.). Each tag is formed by a key and a value; e.g. to identify a wood, the 
tag "natural=wood" may be used, where "natural" is the key and "wood" is the value. OSM 
contributors can use their own tags, although there is a suggested list of tags that have been 
established and agreed by the OSM community, which includes explanations and examples 
of their use (OpenStreetMap Wiki contributors, 2018). 

 
Figure 2 – Data available from OpenStreetMap (OSM) for the study area of Hamburg, Germany. Copyright: OSM 

contributors. 

 

3.2 Creation of LCZ maps using WUDAPT 

The first step in the methodology consists of generating the LCZ maps using the approach 
suggested by the WUDAPT project (Bechtel et al., 2015). Unlike the standard WUDAPT 
approach, no multi-seasonal input data were used to generate an all-year static LCZ map. 
Instead, separate LCZ maps were created using images from four different dates, 
corresponding to autumn, winter, spring and summer as shown in Figure 1. This was done for 
two reasons. First, this study aims to develop a fuzzy scheme in order to test the added value 
of OSM data, which means several input data sets of varying quality are needed to introduce 
some noise into the procedure. Secondly, this allows the influence of seasonally differing land 
cover to be studied, which is a known problem related to WUDAPT level 0 data (Bechtel et al., 
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2019) and causes problems in some applications such as surface urban heat island modelling 
(Bechtel et al., in review). A cell size of 120m was used for the classification, as suggested by 
guidance provided by the WUDAPT project in 2016 although a cell size of 100m is now being 
routinely used. The application of a post classification 200m to 300m majority filter is also 
recommended. Therefore, as the cell size used here was 120m, a majority filter of 5x5 cells 
(corresponding to 25 neighbouring cells) was applied. 

3.3 Conversion of OSM data into LCZs 

The conversion of the OSM data into LCZ classes, or data that can assist in the LCZ 
classification process, is performed in two phases: namely data pre-processing and data 
processing. Some of this procedure has been documented previously in Lopes et al. (2017) 
while other parts of the methodology are introduced here. 

3.3.1 Data pre-processing phase 

The data pre-processing phase includes: the download of OSM data, identification of the 
key/value combinations that can be used to identify LCZ classes, the transformation of 
reference systems, and the creation of a vector grid corresponding to the pixels obtained from 
the application of the WUDAPT methodology. The latter operation is undertaken so that the 
outputs of the conversion of OSM data into the LCZ classes can be compared with the results 
from the satellite image classification.  

To associate the OSM data with the LCZ classes, the key/value combinations and their 
descriptions, which were established by the OSM community (OpenStreetMap Wiki 
contributors, 2018), must be associated with the most relevant LCZ classes as part of a pre-
processing step. It should be noted that, in some cases, the data available in OSM do not 
allow for a differentiation between LCZ classes. For example, the OSM features that 
correspond to regions with trees do not allow for differentiation between dense or scattered 
trees, and therefore it is not possible to choose between class A (dense trees) or B (scattered 
trees). Therefore, in cases such as this, the conversion process simply identifies the most 
likely classes to which these regions in OSM may be associated.  

As volunteers can create new values for the available keys on a continuous basis, the initial 
association of key/value combinations with LCZ classes may be insufficient, as new pairs of 
keys/values may exist for the region of interest. Moreover, even for the same region, since 
OSM is constantly being edited by volunteers, data may differ if obtained at different dates. 
Thus, this pre-processing step must be repeated over time.  

The OSM data were downloaded from the Geofabrik portal (http://www.geofabrik.de) in 
shapefile format. Table 2 shows the associations considered for the study area, corresponding 
to the tags found in the data downloaded. 

The next step in the pre-processing phase is to re-project the LCZ maps to the same reference 
system as OSM so that they can be compared and integrated. A vector grid (referred to from 
now on as GRID) is then created in such a way that each vector cell corresponds to a pixel in 
the LCZ map. 
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Table 2. Correspondence between LCZ classes and OSM keys and values. 

LCZ class OSM key Key values 
LCZ A or B Natural Wood, trees, grass, tree_row, forest 

landuse Forest, nature_reserve 
LCZ C natural Scrub 

landuse Heath, orchard, scrubs, vineyard, scrub, scrubs,plant_nursery 
LCZ D natural Grass 

landuse Farm, farmland, farmyard, meadow, greenfield, grass 
LCZ G natural Water 

landuse river, stream, canal, drain, brook, ditch, riverbank 
LCZ 1 to 10 roads Bus_guideway, living_street, primary, primary_link, residential, raceway, road, 

secondary link, tertiary, tertiary link, trunk, trunk link 
railways funicular, miniature, monorail, light_rail, narrow gauge, rail, tram, transfer table, 

mainline 
building apartments, hotel, house, detached, residential, dormitory, terrace, houseboat, 

static_caravan, commercial, industrial, retail, warehouse, bakehouse, cathedral, 
chapel, church, mosque, temple, synagogue, shrine, civic, hospital, school, 
stadium, train_station, transportation, university, barn, public, bridge, bunker, 
cabin, ruins, construction, farm_auxiliary, garage, garages, carport, hangar, roof, 
shed, stable, transformer tower, kiosk 

 

3.3.2 Data processing phase 

In the processing phase, the conversion of the OSM data into the LCZ classes is undertaken. 
This phase consists of several steps, as different features available in OSM require different 
processing approaches. Some OSM features have a direct association to LCZ classes, 
namely to the land cover classes such as LCZ A or B (dense trees and scattered trees), LCZ 
C (Bush or scrub) or LCZ D (low plants). The processing of these features requires the 
selection of the OSM polygons with a particular combination of key/value that satisfies the 
defined correspondences to the LCZ classes. Once all polygons corresponding to the LCZ 
classes are identified, they are merged into a single feature. Then an intersection of the 
resulting features with the GRID corresponding to the satellite image classification is 
undertaken, and the area occupied by the specified LCZ in each cell of the GRID is computed. 
Figure 3, shows the procedure used to derive LCZ A or B. Schemas of the methodology used 
to identify LCZ C and LCZ D are provided as supplementary materials to the article. 

Some of the features in OSM are represented by linear elements, such as roads, railways and 
waterways. To assign these features to classes in an LCZ map, they need to be converted 
into areas. This process was done by clipping these features within the study area and creating 
a buffer around them. To define the width of the buffers to use so that the resulting areas do 
not overlap other types of features in the surrounding areas, in particular the buildings along 
the streets, the lines are separated into segments (using available GIS tools, such as “Explode 
lines” in QGIS or “Split Line At Vertices” in ArcGIS), the distance of each segment to the OSM 
buildings is computed, and the result is assigned to each segment as an additional attribute 
(distance to buildings) (Fonte et al., 2017b). The process used to create the buffers is 
illustrated in Figure 4, where “d” represents the distance to the buildings and “t” represents a 
predefined value for each type of feature, which is used when distance “d” is too large to be 
considered. If the distance (d) of the feature to the buildings is greater than the user-defined 
threshold (t), then there are no buildings near the feature, and the value “t” is used to create 
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the buffer. If the distance to buildings (d) is below this threshold, then “d” is used to define the 
buffer. The threshold values need to be chosen according to the characteristics of the regions 
under analysis, as different types of features may have very different typical widths in different 
cities and different parts of the world. 

 
Figure 3 - Schematic of the methodology used for the conversion of OSM data into LCZ classes A (Dense trees) 
or B (Scattered trees). 

 

 
Figure 4 - Procedure for converting linear features into polygons 
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For LCZ G (Water), there are usually both linear features representing waterways and 
polygonal features corresponding to the regions with water (mainly in the features with the key 
“natural”) in OSM. Hence, it is necessary to convert these linear features to areas, and then 
merge them into polygonal features that also represent water. A schema illustrating the 
procedure used to extract the water layer from the OSM data is available as supplementary 
material to this article. As with the other classes, the merged results are then combined with 
the outputs obtained with the GRID previously created at a spatial resolution of 120 m. An 
intersection of the GRID with the data obtained is then made, and the percentage of the cell 
area occupied by each feature was computed for all cells. 

For the LCZ urban classes (LCZ 1 to LCZ 10), the data available in OSM can provide 
information on the presence of buildings and impervious surfaces, such as roads or railways. 
To associate these data with the LCZ classes, the values established by Stewart and Oke 
(2012) regarding the building surface fraction and the impervious surface were considered. 
Figure 5 illustrates the procedure used to extract the urban classes from the OSM data. 

 

 

Figure 5 - Schematic of the methodology used to convert OSM data into fuzzy classes LCZ 1 to 10 

 

The data resulting from the conversion of the road and railway features to areas was 
aggregated, which correspond to impervious regions. The buildings existing in OSM were 
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intersected with the GRID corresponding to the cells in the raster file resulting from the 
classification of the satellite images. The percentage of each cell occupied by the impervious 
layer and building was then computed, generating two layers: the Building Surface Fraction 
(BSF) and the Impervious Surface Fraction (ISF). 

Once the information about the BSF and ISF in each cell of the GRID is available, a degree of 
membership of each cell in each of the LCZ urban classes was computed, considering the 
data in Table 3, which shows the BSF and ISF corresponding to each LCZ class, as defined 
by Stewart and Oke (2012). 

 
Table 3 - Percentage of Building Surface Fraction (BSF) and Impervious Surface Fraction (ISF) for classes LCZ 1 
to 10 (in Stewart and Oke 2012). 

LCZ class BSF (%) ISF (%) 
LCZ 1 40–60 40–60 
LCZ 2 40–70 30–50 
LCZ 3 40–70 20–50 
LCZ 4 20–40 30–40 
LCZ 5 20–40 30–50 
LCZ 6 20–40 20–50 
LCZ 7 60–90 < 20 
LCZ 8 30–50 40–50 
LCZ 9 10–20 > 20 
LCZ 10 20–30 20–40 

 
The degrees of membership of the BSF and ISF in each LCZ class were computed considering 
trapezoidal membership functions (Klir and Yuan, 1995). This approach was used because 
there is uncertainty associated with the correctness of the area occupied by the buildings and 
impervious areas in each cell in OSM. There may be buildings or roads missing in OSM or 
polygons present in the buildings layer by mistake. Therefore, the fact that the BSF and ISF 
do not correspond to the intervals indicated in Table 3 does not mean that the class is not 
present at that location. This is simply considered as one piece of evidence that has an 
associated uncertainty. Figure 6 shows the membership functions of the BSF and ISF for class 
LCZ 2 according to the data presented in Table 3. 

 
Figure 6 – Degree of membership to LCZ2 of the Building Surface Fraction (BSF) and Impervious Surface 

Fraction (ISF) based on the data in Table 3. 

 

The degree of membership of a cell 𝑥 to an urban LCZ class will then be obtained with the 
fuzzy standard intersection operator (fuzzy “and” operator) of the memberships of the BSF 
and ISF values obtained for that cell from OSM data, as both conditions need to be met 
simultaneously. For example, the degree of membership of cell 𝑥 to LCZ 2 ( 𝜇#$%	'(𝑥) ) will be 

10040

1
!LCZ 2(BSF)

BSF0 70 10030

1

ISF0 50
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computed using equation (1), where 𝐵𝑆𝐹(𝑥) and 𝐼𝑆𝐹(𝑥) are, respectively, the BSF and ISF 
obtained for cell 𝑥 using the OSM data. 

 𝜇#$%	'(𝑥) = 𝑚𝑖𝑛[𝜇#$%	'(𝐵𝑆𝐹(𝑥)), 𝜇#$%	'(𝐼𝑆𝐹(𝑥))] (1) 

According to equation (1), a cell with 𝐵𝑆𝐹(𝑥) = 30% and 𝐼𝑆𝐹(𝑥) = 40% would have, according 
to Figure 6, 𝜇#$%	'(𝐵𝑆𝐹(𝑥)) = 0.75 and 𝜇#$%	'(𝐼𝑆𝐹(𝑥)) = 1, therefore 𝜇#$%	'(𝑥) =
min(0.75	, 1) = 0.75. The degrees of membership to all LCZ built classes were computed using 
the same approach.  

Degrees of membership to the land cover classes (LCZ classes A to G) are obtained 
considering the percentage of cell covered by the class for each LCZ class, as obtained using 
the procedures illustrated in Figure 3 and the corresponding approaches described for the 
other LCZ classes (available as supplementary materials), considering a linear membership 
function (Figure 7).  

 
Figure 7 - Degree of membership to LCZ X (where X may be A, B, C, D, E, F or G) obtained as a function of the 

percentage of area covered by the class obtained from OSM data. 

3.4 Integration and Combination of Data 

3.4.1 Integration of the LCZ maps and the OSM data converted to LCZs 

As outlined previously, four seasonal Landsat 8 images were classified using the WUDAPT 
methodology. As some physical characteristics of the territory such as vegetation change with 
the seasons, and this translates into different spectral responses for the same area at different 
times of the year, the classification of the four images produces different results for some 
locations, resulting in inconsistent results. To handle this inconsistency, all the data are now 
combined at the pixel level. For this combination, point features corresponding to the centroid 
of each pixel were created (see Figure 8). The classes obtained for each pixel with the 
classification of the winter, summer, autumn and spring images were then extracted and 
added as additional attributes to the table associated with these points. These data were then 
spatially joined to the GRID used in the conversion of the OSM data into LCZ classes. This 
operation enabled the aggregation of all the data available for each point feature to the 
polygons of the GRID that contained them. 

10040

1
!LCZ X

Percentage of area covered by class LCZ X0 70
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Figure 8 - Representation of the point features created and the vector GRID, overlaid with an LCZ map produced 
from the classification of one of the Landsat 8 images. 

3.4.2 Combination of the previous results 

To combine the evidence coming from all of the data associated with each point, a fuzzy logic 
approach is used, where 𝜇#$%	@𝑌(𝑥) represents the reliability that, according to data source Y, 
pixel x belongs to LCZ class X. As some data sources may be more reliable than others for a 
particular class, different weights may be assigned to each data source for each class. Hence, 
the degree of reliability associated with the assignment of pixel x to class LCZ X is computed 
in equation (2), where 𝑤C_@ is the weight associated with data source Y and class X and 
𝜇#$%	@𝑌(𝑥) is the degree of membership of pixel x in class X according to data source Y. As a 
hard classification was used in this case study, as recommended by the WUDAPT project, 
each pixel is assigned to only one class, and therefore the degrees of membership take on 
only values of one if the class is assigned to the pixel, or zero if not. However, a soft version 
of the classifier could be used, and the probabilities that are computed by the Random Forest 
classifier of assigning each pixel to the classes could be used instead. As outlined previously, 
four images were considered. Y is therefore expressed as Win, Spr, Sum and Aut, 
respectively, for the winter, spring, summer and autumn images, and OSM for the data 
extracted from OSM. 

	 𝑅𝑒𝑙#$%	@(𝑥) = 𝑤HIJ_@	𝜇#$%	@𝑊𝑖𝑛(𝑥) + 𝑤MNO_@	𝜇#$%	@𝑆𝑝𝑟(𝑥)
+ 𝑤MRS_@	𝜇#$%	@𝑆𝑢𝑚(𝑥) + 𝑤URV_@	𝜇#$%	@𝐴𝑢𝑡(𝑥)
+ 𝑤YMZ_@	𝜇#$%	@𝑂𝑆𝑀(𝑥) 

(2) 

The final class associated with each pixel can be obtained through equation (3), by choosing 
the class that scored the largest reliability value for that pixel:  

	 𝐹𝑖𝑛𝑎𝑙𝐶𝑙𝑎𝑠𝑠(𝑥) = max
bcO	dee	#$%	@

(𝑅𝑒𝑙#$%	@(𝑥)) (3) 

This methodology for data integration requires choosing and then assigning weights to each 
data source for each class, which will be the parameters of the procedure. If the same degree 
of reliability is expected to come from all data sources for all classes, equal weights can be 
assigned to all, which is the default. However, if some data source is expected to have better 
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results for a particular class, such as a spring image for vegetation or OSM for water classes, 
then different weights can be associated with these data sources for these classes. If a 
particular data source has very unreliable data for a particular class, a weight of zero can also 
be considered, basically excluding that data source from the results for that class. 

3.5 Accuracy Assessment  

To assess the accuracy of all the maps, a reference database was created. A stratified sample 
was used, selecting 200 points per class, and the strata were the classes obtained with the 
classification of the winter images. The reference data were created through photo-
interpretation of the images available in Google. Confusion matrices were created, computing 
estimations of the population true cell proportions �̂�Ig using the approach proposed by Card 
(1982) for stratified samples, shown in equation (4), where Ni+ is the number of pixels in class 
i in the map, N is the total number of pixels in the map, nij is the number of pixels in the 
reference database assigned to class i in the map and class j in the reference database, and 
ni+ is the number of pixels in the sample assigned to class i in the map. 

	 �̂�Ig = h
𝑁Ij
𝑁 k h

𝑛Ig
𝑛Ij

k (4) 

The user’s accuracy (UA) and producer’s accuracy (PA) per class as well as the overall 
accuracy (OA) were computed from the resulting confusion matrix using, respectively, 
formulas (5), (6) and (7), where c is the number of classes: 

	 𝑈𝐴I =
�̂�II

∑ �̂�Ign
gop

 (5) 

	
𝑃𝐴g =

�̂�gg
∑ �̂�Ign
Iop

 
(6) 

	
𝑂𝐴 =

∑ �̂�IIn
Iop

∑ ∑ �̂�Ign
gop

n
Iop

 
(7) 

4. Results 

4.1 Satellite image classification 

Figure 9 shows the classification results of the winter, autumn, summer and spring images. 
Considerable differences can be identified, mainly for the urban classes LCZ 8 (large low-
rise), LCZ 10 (heavy industry) and the land cover classes LCZ A (dense trees), LCZ B 
(scattered trees) and LCZ D (low plants). Figure 10 shows the regions that were assigned to 
the same class with the classification of all four images while Table 4 shows the area of these 
regions separated by class and by the total area of the region, the percentage of each of these 
regions relative to the total study area, as well as the percentage relative to the regions that 
were assigned to the class in at least one of the images. It can be seen that only 38.2% of the 
study area was classified in the same way when using the four images, and that these 
correspond to a percentage that varies between 3.0% and 44.1% of the regions that were 
assigned to the class at least once considering the four images, which shows the uncertainty 
in these results.  
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Figure 9 - LCZs maps for the city of Hamburg with a spatial resolution of 120 m, after applying a majority filter of 
twenty-five neighbouring cells for a) winter, b) autumn, c) summer and d) spring. 

 
Figure 10 – Regions assigned to the same class with the classification of all images (winter, autumn, summer and 
spring). 

 

a) b)

c) d)
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Table 4 – Area (in km²), percentage (relative to the study area) of the regions assigned to the same class with the 
classification of all images, and the percentage of the region assigned to the same class in at least one image 
(union per class of the four classifications).  

LCZ class 
Area (km2) Percentage of the study 

area 
Percentage of region 
assigned to the class by at 
least one image 

LCZ 1 - Compact high-rise 0.2 0.0 33.9 
LCZ 2 - Compact midrise 2.3 0.2 44.1 
LCZ 4 - Open high-rise  0.8 0.1 3.0 
LCZ 5 - Open midrise 16.9 1.3 23.3 
LCZ 6 - Open low-rise 53.1 3.9 19.4 
LCZ 8 - Large low-rise 17.3 1.3 13.0 
LCZ 10 - Heavy industry 87.9 6.5 12.1 
LCZ A - Dense trees 20.8 1.5 12.9 
LCZ B - Scattered trees 11.5 0.9 6.3 
LCZ D - Low plants 284.7 21.1 37.7 
LCZ G – Water 19.4 1.4 39.2 
Sum 514.9 38.2 - 
Region with different 
classifications 

833.1 61.8 - 

Total 1348.0 100.0 - 
 

The reference database (as explained in section 3.5) was used to assess the accuracy of the 
classified images. Table 5 shows the results, where it can be seen that the best results were 
obtained for the LCZ map created from the winter image, with an overall accuracy of 69%. 
The overall accuracy of the LCZ maps created from the other images was between 53% and 
58%, with the worst result obtained for the autumn image. Some classes were classified 
particularly poorly, e.g. LCZ 4 (Open high-rise) in the autumn image (5% for user’s accuracy 
and 8% for producer’s accuracy) and in the spring image (6% for user’s accuracy and 8% for 
producer’s accuracy), as well as LCZ 2 (Compact midrise) with a producer’s accuracy of 2% 
in the autumn image and 1% in the summer and spring images. 
Table 5 – User’s accuracy (UA), Producer’s Accuracy (PA) and Overall accuracy of the LCZ classification of the 
winter, autumn, summer and spring images. 

LCZ 
class 

Winter image Autumn image Summer image Spring image 
UA PA UA PA UA PA UA PA 

LCZ 1  79 31 84 63 79 87 76 77 
LCZ 2  78 8 74 2 62 1 65 1 
LCZ 4  82 28 5 8 5 100 6 8 
LCZ 5  77 67 51 19 51 9 53 18 
LCZ 6  45 60 45 28 48 46 37 44 
LCZ 8  80 41 63 72 56 86 55 70 
LCZ 10  67 60 77 18 78 12 68 12 
LCZ A  68 65 47 95 58 87 44 89 
LCZ B  51 47 48 12 29 15 39 15 
LCZ D  76 95 62 58 57 58 67 51 
LCZ G  72 69 52 100 64 100 60 100 
Overall 
accuracy 69 53 58 54 

 

4.2 Conversion of OSM data to LCZ classes 

The conversion of the data extracted from OSM to LCZ classes was performed as described 
in section 3.3. Figure 11 shows the BSF and ISF obtained for the study area using the data 
extracted from OSM. Figure 12 shows the degrees of membership obtained for classes LCZ 
4 (Open high-rise), LCZ 10 (Heavy industry), LCZ D (Low plants) and LCZ G (Water), which 
illustrate the results obtained for all classes. It can be seen that for these classes, most urban 
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areas have degrees of membership larger than zero for LCZ classes 4 and 10, as expected 
based on the methodology used. However, most regions in the centre of the city have higher 
degrees of membership to LCZ class 10 (Heavy industry). For LCZ D (Low plants) and LCZ G 
(Water), well-defined regions with high degrees of membership were obtained. In particular 
for LCZ G (Water), a very well-defined network of water bodies can be seen (Figure 12d).  

 
Figure 11 – a) Building Surface Fraction (BSF) and b) Impervious Surface Fraction (ISF) computed with OSM data. 

 
Figure 12 – Degrees of membership of each pixel to the classes a) LCZ 4 (Open high-rise), b) LCZ 10 (Heavy 
industry), c) LCZ D (Low plants) and d) LCZ G (Water) obtained by converting OSM data to LCZ classes. 

The data extracted from OSM will be associated to some pixels with more than one possible 
LCZ class because there may be overlapping data in OSM that will be assigned to different 
LCZ classes. However, this will occur mainly for the urban LCZ classes because using only 
the available BSF and ISF does not enable classes to be identified that are differentiated 
mainly by building height.  

a) b)

a) b)

c) d)
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The maximum degrees of membership to the LCZ classes may be considered for assigning 
the candidate classes to each pixel based on OSM data. However, there may still be pixels 
with more than one candidate class, as the maximum degree of membership computed as 
described in section 3.3.2 may be obtained for more than one class. Figure 13 shows the 
number of candidate classes for each pixel considering this approach. It can be seen that in 
the urban areas, there are mainly two candidate classes, which are classes LCZ 6 and LCZ 
10. Figure 14 a) to d) show, respectively, the obtained locations of cells with candidates in 
classes LCZ 4, 5, 6 and 10. It can be seen that the regions that are candidates to LCZ classes 
4 and 5 are also candidates to class LCZ 6. This happens because the ranges indicated in 
Table 3 for the BSF are the same for the three classes and the range defined for LCZ 6 
contains the intervals defined for both LCZ classes 4 and 5. Therefore, the degree of 
membership to LCZ 6 will always be larger or equal to the degrees of membership obtained 
for LCZ 4 or 5. Most of these pixels are also assigned to LCZ class 10 because their BSF is 
between 20% and 30%, and therefore the same maximum degree of membership will be 
obtained for the four classes. In the regions where only LCZ 6 and 10 classes are obtained, 
the value of the ISF is lower. Therefore, as the lower boundary of the ISF interval 
corresponding to LCZ classes 6 and 10 is 10% lower than the one corresponding to classes 
LCZ 4 and 5 (see Table 3), the degree of membership to these last classes will also be lower 
and they are therefore not considered as candidates. 

 
Figure 13 – Number of candidate LCZ classes that can be associated to each pixel considering the maximum 
degree of membership to each class obtained by converting OSM data to LCZ classes. 
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Figure 14 – Pixels that have candidate LCZ classes a) LCZ 4, b) LCZ 5, c) LCZ 6 and d) LCZ 10 considering the 
maximum degree of membership to each class obtained by converting OSM data to LCZ classes. 

4.3 Combination of the results 

To assess the influence of OSM data when combining the data using the approach described 
in section 3.4, several tests were made considering different weights per class and per data 
source. Table 6 shows the weights assigned to each class for each data source for five 
different tests undertaken as described below. 

In Test 1, the same weight was assigned to the classifications of the four images for all classes, 
and zero weights were applied to the OSM data. The aim of this test is to compare the results 
with and without the use of OSM data. In Test 2, the same weights were assigned to all data 
sources (the classification of the images and OSM-derived data) for all classes. Test 3 
considers only the classification of the winter image (the one with best classification results) 
and OSM, assigning equal weights to both data sources for all classes, except class LCZ G 
(Water), for which a weight of 60% was assigned to OSM data and 40% to the classification 
results, because the water class is usually well represented in OSM. Test 4 is similar to test 
3, but instead of the winter image, it considers the autumn image (the one with the poorest 
classification results). Finally, Test 5 considers equal weights for all data sources for the urban 
LCZ classes, except for LCZ 10, where a higher weight is assigned to the winter image. This 
is because it can be easily seen by visual analysis that the other classified images have many 
regions incorrectly classified as LCZ 10, and OSM data are not very reliable for the urban LCZ 
classes because it does not contain important information needed to identify them uniquely. 
For the natural classes, equal weights were assigned to all data sources for classes LCZ A 
and B, while for class LCZ D, a higher weight was assigned to the classification of the winter 
image, as it can be easily seen by a visual inspection that several regions that should have 

a) b)

c) d)
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been classified as class LCZ D in the other images were wrongly classified as belonging to 
other classes. The same was done for class LCZ G, but in this case a larger weight was 
assigned to the data coming from OSM. 
Table 6 – Weights assigned to each class and each data source in the tests made to assess the influence of OSM 
data in the accuracy of the final map. 

Test 1 
Classes 

Data LCZ 1 LCZ 2 LCZ 4 LCZ 5 LCZ 6 LCZ 8 LCZ10 LCZ A LCZ B LCZ D LCZ G 
Winter image 20 20 20 20 20 20 20 20 20 20 20 
Autumn image 20 20 20 20 20 20 20 20 20 20 20 
Summer image 20 20 20 20 20 20 20 20 20 20 20 
Spring image 20 20 20 20 20 20 20 20 20 20 20 
OSM data 0 0 0 0 0 0 0 0 0 0 0 

Test 2 
Classes 

Data LCZ 1 LCZ 2 LCZ 4 LCZ 5 LCZ 6 LCZ 8 LCZ10 LCZ A LCZ B LCZ D LCZ G 
Winter image 20 20 20 20 20 20 20 20 20 20 20 
Autumn image 20 20 20 20 20 20 20 20 20 20 20 
Summer image 20 20 20 20 20 20 20 20 20 20 20 
Spring image 20 20 20 20 20 20 20 20 20 20 20 
OSM data 20 20 20 20 20 20 20 20 20 20 20 

Test 3 
Classes 

Data LCZ 1 LCZ 2 LCZ 4 LCZ 5 LCZ 6 LCZ 8 LCZ10 LCZ A LCZ B LCZ D LCZ G 
Winter image 50 50 50 50 50 50 50 50 50 50 40 
Autumn image 0 0 0 0 0 0 0 0 0 0 0 
Summer image 0 0 0 0 0 0 0 0 0 0 0 
Spring image 0 0 0 0 0 0 0 0 0 0 0 
OSM data 50 50 50 50 50 50 50 50 50 50 60 

Test 4 
Classes 

Data LCZ 1 LCZ 2 LCZ 4 LCZ 5 LCZ 6 LCZ 8 LCZ10 LCZ A LCZ B LCZ D LCZ G 
Winter image 0 0 0 0 0 0 0 0 0 0 0 
Autumn image 50 50 50 50 50 50 50 50 50 50 40 
Summer image 0 0 0 0 0 0 0 0 0 0 0 
Spring image 0 0 0 0 0 0 0 0 0 0 0 
OSM data 50 50 50 50 50 50 50 50 50 50 60 

Test 5 
Classes 

Data LCZ 1 LCZ 2 LCZ 4 LCZ 5 LCZ 6 LCZ 8 LCZ10 LCZ A LCZ B LCZ D LCZ G 
Winter image 20 20 20 20 20 20 40 20 20 40 15 
Autumn image 20 20 20 20 20 20 15 20 20 15 15 
Summer image 20 20 20 20 20 20 15 20 20 15 15 
Spring image 20 20 20 20 20 20 15 20 20 15 15 
OSM data 20 20 20 20 20 20 15 20 20 15 40 

 

Figure 15 a) to e) shows the results of the data combination, respectively, for Tests 1 to 5. 
Differences can be seen mainly for LCZ 10 (Heavy industry), LCZ D (Low plants) and LCZ G 
(Water). Detailed results of regions with water are obtained when larger weights for this class 
are assigned to the data extracted from OSM and only one additional data source is 
considered (Tests 3 and 4, Figure 15 c and d). When additional data are considered, even if 
a larger weight is assigned to the water data extracted from OSM, its influence in the final 
result will be less, because the other sources of data did not classify most of the water regions 
as water, and therefore there is more evidence contradicting the assignment of water to many 
of these pixels. 
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Figure 15 – Combination results using the weights indicated in Table 6 where the figures correspond to a) Test 1, 
b) Test 2, c) Test 3, d) Test 4 and e) Test 5.  

The differences observed for class LCZ 10 and LCZ D show that using OSM data resulted in 
the correct classification of agricultural regions as LCZ D, which were previously classified 
incorrectly as LCZ 10 (Tests 1 and 2, Figure 15a and b). 

Table 7 shows the accuracy of the results of Tests 1 to 5, obtained with the same reference 
data used to assess the accuracy of the classified images (see Table 5).  

When comparing the results obtained with Tests 1 and 2 (combination of data with and without 
OSM data), it can be seen that OSM enabled an increase in the overall accuracy from 63% to 
68% and the user’s and producer’s accuracy improved for all the natural classes, except for 
the producer’s accuracy of LCZ G (Water), which decreased from 100% to 90%. However, the 
user’s and producer’s accuracy decreased slightly or was kept unchanged for most urban 
classes, except for LCZ 6 and 10, where both increased slightly in accuracy. This 
demonstrates that the OSM data were mainly useful in improving the classification of natural 
areas. Even though the classification of the autumn, summer and spring images had overall 
accuracies ranging between 53% and 58%, i.e. much lower than the overall accuracy of the 
classification of the winter image (69%), the combination of all results using OSM data resulted 
in an overall accuracy very close to that of the best classified image (68%). 

b)

c)

e)

a)

d)
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Table 7 –User’s Accuracy (UA), Producer’s Accuracy (PA) and overall accuracy of the results of the combinations 
corresponding to tests 1 to 5. 

LCZ 
class 

Test 1 Test 2 Test 3 Test 4 Test 5 
UA PA UA PA UA PA UA PA UA PA 

LCZ 1  80 41 80 40 79 43 84 44 80 37 
LCZ 2  75 63 65 61 76 9 73 52 75 57 
LCZ 4  12 6 6 3 82 28 5 6 7 4 
LCZ 5  64 69 55 66 77 67 51 56 61 71 
LCZ 6  51 71 53 75 45 60 45 65 49 73 
LCZ 8  71 25 63 25 79 43 61 32 71 30 
LCZ 10  72 54 78 56 59 56 68 53 75 56 
LCZ A  65 63 66 63 69 63 47 50 61 61 
LCZ B  36 35 38 35 51 46 48 51 53 43 
LCZ D  63 93 71 94 75 95 60 91 78 94 
LCZ G  60 100 71 90 88 65 84 56 75 84 
Overall 
accuracy 63 68 68 60 70 

 

Tests 3 and 4 showed that for the classification of the winter image, OSM data had little 
influence over the accuracy indices, even though it can be seen that due to the slightly larger 
weight given to water in OSM, the water regions are mapped in much more detail (e.g. 
compare Figure 9a with Figure 15c). A similar result can be observed for Test 4 made with the 
classification of the autumn image; however in this case, the overall accuracy increased from 
53% to 60%.  

Test 5, where the weights were assigned based on which data source provided better results 
for the different classes, showed an improvement in the overall accuracy, which reached 70%, 
even though LCZ 4 was still very poorly classified. However, as this class (Open high-rise) is 
only present in very small areas, it had less influence on the overall accuracy. 

4.4 Discussion 

The improvements by incorporating OSM data and the fuzzy approach were relatively minor 
(5% increase between Test 1 and Test 2, 1-17% higher OA of Test 5 compared to seasonal 
LCZ classifications), yet they are in the same order of magnitude of improvements that others 
have achieved by incorporating different data and methods. For instance, Xu et al. (2017) 
reported increases in OA of 3-4%, Tuia et al. (2017) increases of about 2 % in OA but almost 
5% in average accuracy, and Verdonck et al. (2017) increases in OA of 5-13% for different 
cities compared to the WUDAPT standard approach. However, these results are very difficult 
to compare, since different reference data and validation strategies were applied (cross-
validation or separate set, sampling on polygons, pixels, or cities), which are not directly 
comparable (Bechtel et al., 2019). Moreover, the OA does not indicate the climatic impact, 
which may be much higher when confusion occurs between fundamentally different classes, 
as was the case here between heavy industry (LCZ 10) and low plants (LCZ D). Therefore, 
the standard WUDAPT accuracy assessment also uses a weighted accuracy to account for 
the climatic differences (Bechtel et al. 2019).  

Despite the small increase in OA by incorporating OSM data in this study, the method yields 
a number of general advantages. First, it easily allows for the incorporation of data of different 
quality and from different sources, which is not limited to OSM. Secondly, the fuzzy approach 
could also take advantage of the probabilities derived from the Random Forest classifier and 
could, thus, be used for probabilistic post-processing. This could also include spatial 
information and replace the current majority filtering in the WUDAPT protocol. Moreover, it 
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allows a manual assessment of the relevance of different input data sets, since different 
weights and combinations can quickly be computed and compared. For this study different 
multi-seasonal maps were used as inputs in addition to OSM. This confirmed the relevance of 
multi-temporal data in the WUDAPT approach (Bechtel and Daneke, 2012; Demuzere et al., 
2019), since certain classes can be discriminated better in particular seasons due to plant 
phenology and crop status. Despite the clear added value of the OSM data, this study also 
confirmed the high relevance of multi-spectral and multi-seasonal data that is already used in 
LCZ mapping. 

5. Conclusions 

The WUDAPT project has adopted the LCZ classification scheme as a way of characterizing 
all cities globally. It recommends a methodology to create the LCZ maps using freely available 
satellite imagery and software. To date, LCZ maps have been developed for many cities 
around the world but the quality assurance of these maps indicates that there could still be 
further improvements in both the methodology and in the data used to create the maps. 
Moreover, it has been shown that both the choice of the image, i.e., which season, and human 
influence can have a large impact on the quality of the resulting maps. To address this issue, 
this paper examined the benefits of using data from OSM to enhance the resulting LCZ map 
representation and accuracy. A method was developed to convert OSM data to LCZ classes 
and combine the LCZ maps created through the WUDAPT methodology with the OSM derived 
LCZ classes using a fuzzy logic approach and a weighted combination method. We 
demonstrated that different weights can be assigned to the outputs of the classification from 
different seasonal satellite images as well as the OSM data, based on both those classes and 
images that may provide more reliable results for a given LCZ class. The confidence that can 
be associated with the data available in OSM was also calculated. We showed that there are 
accuracy gains to be had in improving certain classes, e.g., the misclassification of agricultural 
areas as heavy industry, but there were clear limitations in differentiating between classes that 
were separated by building heights, in particular LCZ 4. Although there is a tag associated 
with building height in OSM, this value is rarely filled in by the volunteers. However, with 
projects such as “OSM Buildings” (Marsch, 2018), which provides 3D views of buildings, the 
volunteers may become more interested in assigning the number of floors to the buildings, so 
that realistic and attractive 3D views become available. These data would be enough to extract 
additional valuable data for differentiating between LCZ urban classes. New sources of free 
building height data are also becoming available, e.g. through the Urban Atlas for capital cities, 
which may help to further differentiate between these urban classes in combination with OSM 
data in the future.  

The same reference data were used to assess the accuracy of all the results. Even though 
there were no major changes in the study area between the first and last date of the images 
used (2014 and 2017), this may, however, be a cause of small errors in the accuracy results 
although we consider these as minor.  

In this paper, OSM data were only used to identify a class after the LCZ maps were created 
from the satellite images. However, a clear avenue for future research is to use the data 
extracted from OSM directly in the training process, e.g. using some regions for training areas 
and/or merging satellite image classification with OSM extracted data before the 
recommended spatial filtering is applied. The approach developed here relies on good spatial 
coverage of data within OSM, which is not always the case for all cities around the world. 
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However, use of OSM for additional training data would not require the spatial coverage to be 
as comprehensive. 

Finally, the conversion from OSM data to LCZ classes needs to be automated and made 
available, e.g., as a service in the WUDAPT portal, so that the conversion can be made more 
easily and the data can be used to assist in the creation of LCZ maps for other cities of the 
world. Additional processing steps may also to be incorporated in a tool designed to implement 
this service, such as eliminating inconsistencies in OSM data prior to the conversion to LCZ 
classes (Fonte et al., 2017b; Samsonov and Trigub, 2017) or using additional OSM features 
to compute buffers around linear features. 
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Supplementary materials 
 
 

 
Schematic of the methodology used for the conversion of OSM data into LCZ class C (Bush, shrub). 

 
 
 

 
Schematic of the methodology used for the conversion of OSM data into LCZ class D (Low plants). 
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Schematic of the methodology used for converting OSM to class LCZ G (Water). 
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