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Abstract  

Normal bone maintains its ability to resist failure by adapting to the strain environment 

experienced by habitual activity. This adaptive process begins failing with advancing age, 

and subsequently bone loss occurs despite ongoing activity. This thesis reports 

experiments designed to investigate the effect of altering the context within which 

mechanical loading is applied on the adaptive loading response in old mice. These 

contextual changes include treatment with pharmaceuticals and changes in the level of 

background activity. 

Although there is evidence that RANKL produced by osteocytes is essential for the bone 

loss associated with disuse, we were unable to identify any changes in the level of 

expression of RANKL in cortical bone osteocytes, using either qPCR or 

immunohistochemistry following either increased mechanical loading, or disuse. 

Studies exploring the effect of altered context within which loading is applied found that 

preceding loading with a short period of disuse was sufficient to “rescue” the adaptive 

response to loading in old (19-months) female mice. Administration of the anti-resorptive 

risedronate (RIS) did not impair the loading response in old female mice, suggesting that 

loading, like in young mice is primarily mediated through bone modelling. Furthermore, 

the disuse-associated “rescue” was not affected by the concurrent administration of 

risedronate, suggesting that the mechanism involved is probably related to alterations in 

the strain environment, rather than being associated with any enhancement of bone 

remodelling following disuse.  

Finally, the potent anabolic treatment, parathyroid hormone (PTH) was able to promote 

a strong anabolic response in very old (22-months) mice, which was not impaired by 

concurrent treatment with RIS, and resulted in additive gains in bone mass compared to 

vehicle treated mice. The loading response in 22-month-old mice was further impaired 

when compared to 19-month-old mice. This loading response was essentially unaffected 

by concurrent treatment with PTH and/or RIS.  
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Chapter 1: General Introduction 

A prerequisite for the active life lived by most vertebrates is that they have a skeleton 

sufficiently rigid to provide the struts and levers for muscles to work against and 

sufficiently strong to withstand the loads involved without either monotonic failure or 

irreparable degrees of microdamage, yet light enough to allow ease of movement. The 

evolutionary solution to this problem in large animals appears to be that the overall form 

of each skeletal element, femur, tibia etc., is genetically determined but that the detailed 

structure, on which load bearing competence depends, is achieved through local 

adaptation to the effects of loading itself. Thus mechanical loading is the principal 

functional determinant of bone mass and architecture; an influence that is achieved 

through functional strains in bone tissue influencing, and potentially controlling, the bone 

forming and resorbing activity of populations of osteoblasts and osteoclasts [10] to 

achieve “target” levels of functional strain and strain distributions. Higher than target 

strain magnitudes, or novel strain distributions, result in osteogenesis which increases 

bone mass and this subsequently reduces strain to re-establish the target. Sub-target 

strain results in bone loss and a consequent increase in the strain experienced at a given 

site to restore the target [11]. This negative feedback homeostatic mechanism of bone 

structure, engendered through response to changes in strain within the bone, has been 

called the “mechanostat” [12-14].  

In humans the commonest failure of the mechanostat is osteoporosis, a disorder 

characterised by a loss of bone mass most commonly associated with aging and loss of 

oestrogen following menopause [15]. Bone mass in people peaks as early as 20 years old, 

from which time it gradually decreases, with the fastest loss following menopause in 

women, associated with loss of oestrogen [16]. Most fractures in people with osteoporosis 

occur in the vertebrae, the femoral neck, the distal radius and less commonly the distal 

tibia. The lifetime risk of a fragility fracture past 50 years of age in women is 53.2% and in 

men is 20.7% [17].  
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Generally, the primary goal of most osteoporosis therapies is to reduce the risk/incidence 

of fragility fracture, and they are generally classed as either anti-resorptive, or anabolic. 

However, most medications are often administered long after significant bone loss has 

occurred, and as such, anti-resorptives, such as bisphosphonates, tend to only achieve 

maintenance of, or at best modest increases in bone mass. Available anabolic therapies 

are at present limited, with the only currently licensed treatments based on parathyroid 

hormone (PTH) or truncated analogues of the hormone, such as teriparatide and 

abaloparatide. These have all been demonstrated to have a significant positive effect on 

bone mass when given, although treatment is expensive and is often used only as a 

second-choice treatment, reserved for the most severe cases of low bone mass, or those 

at greatest risk of fracture. Combined treatment with anti-resorptive drugs and anabolic 

drugs appears a logical approach to simultaneously increase formation and decrease 

resorption of bone. There is, however, some evidence that following treatment by anti-

resorptive bisphosphonates with the anabolic drug PTH may inhibit the magnitude of the 

anabolic response of PTH. This may be in part because a proportion of the bone formation 

stimulated by PTH treatment is a result of bone remodelling.  

Bone is the end result of many pathways including those of growth and development in 

addition to mechanical loading. In adults these include systemic changes in parathyroid 

hormone and sex hormone levels as well as local control of coupling of resorption and 

formation associated with homeostasis. Bone remodelling involves the coordinated 

activity of both osteoclasts and osteoblasts in a sequence which initially removes old or 

damaged bone through osteoclasts, then subsequently replaces the removed bone 

through activity of osteoblasts. Hence if osteoclast activity is reduced, then the 

subsequent bone formation response can also be affected. This spatially and temporally 

linked activity of osteoblasts with osteoclasts is referred to as bone cell coupling. The 

coupling of resorption and formation is essential for the maintenance of skeletal integrity 

and health in the adult. Without continual renewal of old/damaged skeletal tissue through 

bone remodelling, the accumulation of microdamage and senescent cells results in greater 

risk of bone failure and fractures. Bone modelling, on the other hand, is the primary 

activity of osteoblasts which does not require the prior activity of osteoclasts to mediate 
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formation activity and is primarily associated with the growth of the skeleton in youth and 

the adaptive response seen following mechanical loading.  

The precise mechanisms associated with adaptive modelling and remodelling 

(henceforward referred to as (re)modelling) are still frustratingly obscure but must involve 

certain components. For a strain-related feedback control to operate strains must initially 

be “measured” by some strain-related response in a population of cells. This response 

leads eventually to structurally appropriate adjustment of bone mass and architecture. 

The current appreciation is that the cells involved in strain “measurement” are the 

osteocytes [18, 19]. These cells transduce strain change into a cascade of stimuli to 

promote or suppress bone formation or resorption, by altering the activity of osteoblasts 

and/or osteoclasts respectively.  

The cellular pathways controlling these methods of bone adaptation are complex and at 

present remain undefined. However, there are several key molecules which have been 

identified in the past two decades which have been shown to be particularly important, 

especially with regards to the response to loading. For example, the expression of the Wnt 

antagonist, sclerostin, has been demonstrated to decrease with increased loading, and 

increase with decreased loading [8, 20], consequently altering the activity of the 

downstream Wnt targets, including osteoblasts. The control of osteoclasts has also 

recently been demonstrated to be mediated by signalling molecules produced by 

osteocytes. Receptor Activator of Nuclear Factor κB ligand (RANKL) is a key differentiation 

and activation signal for osteoclasts. Two paradigm-shifting studies published at the time 

the experiments for this thesis were being conceived demonstrated for the first time that 

it is osteocytes, and not only osteoblasts as once thought, that produce the RANKL 

essential for bone loss associated with disuse [21, 22]. At the time the first experiments 

for this thesis were undertaken, although the expression of sclerostin had previously been 

linked to changes in mechanical loading [8], to the author’s knowledge, no studies had 

ever linked changes in RANKL expression with alterations in the mechanical loading 

environment, and particularly if RANKL was involved in the age-related impairment of the 

adaptive loading response. 
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When the skeleton ages, the ability of the body to maintain appropriate bone mass 

becomes impaired after an imbalance occurs between bone formation and bone 

resorption, subsequently resulting in osteoporosis. This systemic failure of the 

remodelling process due to aging effectively uncouples the resorptive and formative 

processes of remodelling with many remodelling events not being followed by adequate 

amounts of bone formation. This bone loss results in decreased bone mass, and 

subsequent strength, which generally results in an increase in the strain experienced in 

affected bone. Despite this systemic failure of remodelling, if the mechanostat were still 

fully functional in the elderly, then any stimulus which resulted in a reduction in bone 

mass, would cause a subsequent decrease in stiffness and increase in strain, which should 

stimulate an anabolic response, mostly via bone modelling, to correct the bone mass lost. 

It has been hypothesised this age-related osteoporosis is due to a primary and inherent 

failure of the mechanostat in the elderly [23].  

There are many studies demonstrating that the adaptive response to mechanical loading 

in humans and animal models is impaired with age [24-31], however, there is little known 

about the specific mechanisms which underlie this deterioration. Meakin et al [29] in our 

laboratory were able to demonstrate that old mice do not appear to have a deficiency in 

their ability to “sense” strain and produce appropriate early responses to loading, but did 

demonstrate an impaired ability of osteoblasts to proliferate in response to loading. The 

molecular pathways affected in old mice with deficiencies in the mechanostat are yet to 

be fully delineated.  

Most of the currently licensed pharmaceutical options in common use for treatment of 

osteoporosis have a systemic effect which is not necessarily selective for the “at risk” sites 

commonly affected by fragility fracture, although there is some evidence that their use 

may affect the magnitude of the adaptive response to loading [32, 33]. Mechanical loading 

normally involves a structurally appropriate adaptive response with bone formed at the 

areas where it is most needed. Finding treatments or management strategies which 

improve the adaptive response to mechanical loading should permit a structurally 

appropriate adaptive response to help “rescue” a deficient loading response and allow a 
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more selective improvement in bone mass in sites that are at greater risk of injury. The 

potential for changing the site-specific adaptive loading response through alteration of 

the context within which mechanical loading is applied provides an intriguing and 

potentially useful strategy with which to treat conditions of low bone mass in people. 

Although osteoporosis is primarily a disease associated with old age, most experimental 

work exploring the effect on the response to increased loading of altering the context 

within which loading is applied is reported in young animals. The bisphosphonate, 

risedronate had no effect on the anabolic response to loading in young mice, suggesting 

that increases in mechanical loading stimulate an increase in bone formation, primarily via 

bone modelling, as impairment of osteoclast activity did not affect adaptive loading 

response [34]. Parathyroid hormone (PTH) generates an increase in both bone modelling 

and remodelling. In young mice, the loading response was actually synergistically 

improved following treatment with PTH, suggesting that PTH may actually improve the 

response to mechanical loading in young mice [32]. The magnitude of the loading 

response was also increased following loading preceded by a short period of disuse in 

young mice, suggesting that altering the mechanical context on which loading is applied 

to bone is sufficient to modulate the response to applied loads [35]. 

Interestingly, pilot work performed by our laboratory has suggested that the impaired 

response to mechanical loading in old female mice can be “rescued” by preceding the 

loading with a short period of disuse [4]. Meakin hypothesised that the habitual strain 

environment modulates the subsequent cellular response to contemporaneous loads 

experienced. Therefore, in the situation of decreased habitual loading, that modulatory 

effect on the cells responsible for adaptive bone formation is reduced, and subsequently, 

the magnitude of the formation response stimulated by loading is greater. A simple 

analogy to this is the apparent intensity/brightness of a camera flash when seen in daylight 

compared with the same flash seen at night.  

Establishing the mechanisms involved in the impairment of the mechanostat has the 

potential to better direct the development of treatments for disorders involving 

inappropriate, usually insufficient, bone mass. Increased mechanical loading alone, 



Chapter 1: General Introduction 

 

35 
 

through exercise or resistance training is typically not as efficient at improving bone mass 

and architecture in old people as it is in young people [36]. As the normally functioning 

mechanostat directs bone formation to areas where it is most needed (ie. areas under the 

greatest load), identification of mechanisms which modulate the mechanostat’s activity 

should provide avenues to identify and direct “smart” treatments which could help the 

skeleton respond with structurally appropriate bone mass changes in regions of high strain 

and high risk of fragility fracture. Improvement of the mechanostat function prior to 

significant bone loss could even abrogate the onset of low bone mass seen with age-

related osteoporosis in the first place.  

The aim of the experiments included in this thesis is to use the external bone loading in 

vivo model in mice to characterise the response to altered mechanical loading and how 

detrimental changes in the response to loading seen with aging are affected by altering 

the context within which mechanical loading is applied. This aims to inform the hypothesis 

that altering the context within which mechanical loading is applied, either physically or 

pharmacologically, may affect the magnitude of the adaptive response to mechanical 

loading in the aged skeleton, to provide a site-specific and structurally appropriate effect 

on bone mass in old animals. 

The objectives of the experiments described in this thesis were to establish a number of 

parameters in the regulatory pathways between functional loading and changes in bone 

architecture. Specifically, these experiments, were designed to establish:- 

1. The optimal loading duration to elicit a measurable osteogenic response for use 

in subsequent experiments and the effect of contralateral sham surgery on the 

pattern of bone loss in the tibia following unilateral sciatic neurectomy. (Chapter 

3) 

2. Is RANKL involved in bone (re)modelling associated with altered mechanical 

loading? (Chapter 4) 

3. The effect of disuse on the adaptive response of bone in old mice. (Chapter 5) 
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4. The effect of the antiresorptive bisphosphonate risedronate on the osteogenic 

response to loading in ambulatory and sciatic neurectomised old mice (Chapter 

6) 

5. The effect of risedronate on the anabolic effect of PTH and loading on bone in 

old mice. (Chapter 7) 
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1.1  The skeleton and the effects of aging 

The normal skeleton provides a myriad of functions. It aids mechanical transduction of 

forces to allow locomotion. It acts as protection for vital organs. It acts as a store for 

essential minerals, such as calcium and phosphorus and it acts as a haematopoietic centre 

in the marrow cavities [13, 37, 38].  

Bone is primarily comprised of dense lamellar sheets of hydroxyapatite crystals and type 

I collagen fibres, which provide majority of the strength, and the essential material 

properties of bone [39]. The collagen molecules provide the bone’s key resistance to 

tensile forces, whilst the mineralised components of the bone provide the key resistance 

to compressive forces [40]. It is reported that, of the factors that are associated with bone 

strength, bone mass, measured as bone mineral density (BMD) contributes approximately 

70% [41]. Bone mass is the amount of bone per unit area or volume and is reported as 

either areal BMD (bone mass per unit area, (g/cm2)) or volumetric BMD (bone mass per 

unit volume (g/cm3)). Loss of bone mass is problematic, as the structural functions of the 

skeleton are impaired and the risk of failure through fracture is increased. Bone mass 

reduces and fracture risk increases with age in both men and women, but most severely 

in post-menopausal women [15]. 

The resultant condition of low bone mass is generally referred to as osteoporosis. 

Osteoporosis is a significant public health concern, becoming even more clinically 

important with the aging population of many developing countries. Osteoporosis is 

generally defined by a low bone mass. Clinically, BMD is generally reported in relation to 

the number of standard deviations from a young healthy adult and is referred to as the T-

score [42]. Because peak bone mass is reached in young adulthood, most T-scores are 

negative. A T-score of -1 or higher is considered normal, a patient with a score between -

1 and -2.5 is considered osteopenic, and those with a score lower than -2.5 are considered 

osteoporotic [43]. Suffering a fragility (low-impact) fracture in a site usually associated 

with osteoporosis (spine/hip/wrist) also generally qualifies a patient for a diagnosis of 

osteoporosis.  Treatment for osteoporosis is generally instigated in elderly patients with a 

T-score lower than -2.5 or a fragility fracture and can range from dietary management of 
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calcium intake and increased mechanical loading, to pharmaceutical inhibition of bone 

resorption and/or anabolic stimulation of bone formation in more severe cases. These 

potential treatments are discussed in more detail in section 1.6 of this chapter.  

In the normal adult skeleton, cortical bone comprises 80% of the bone mass and trabecular 

bone the remaining 20% [39]. The cortical and trabecular compartments of bone both 

experience loss of bone mass with advancing age (Figure 1 and Figure 2). This gradual 

reduction in bone mass and strength results in marked increases in the incidence of 

fractures from low-impact falls, typically referred to as fragility fractures. Fragility 

Figure 1 –Structural change in cortical bone porosity with age. 

(A) Micrograph of a specimen from a 29-year-old woman. Pores are regular in 
shape and evenly distributed in the cortex. (B) Micrograph of a specimen from 
a 67-year-old woman. Pores are large, irregularly shaped, and have coalesced 
in cortex adjacent to the marrow producing cortical remnants. (C) Micrograph 
of a specimen from a 90-year-old woman. Most of the cortex is trabecularised 
by large and coalesced pores. Micrographs are of anterior subtrochanteric 
specimens. Figure and legend reproduced with permission [3]. 
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fractures are one of the hallmarks of osteoporosis. Van Staa et al [17] showed women 

have a greater chance than men of experiencing a fragility fracture after the age of 50. 

The predominance of women experiencing osteoporosis and fragility fractures led to the 

long-held view that the primary cause of osteoporosis was due to the acute reduction in 

oestrogen following menopause [15]. Longitudinal studies of bone mass in women and 

men have demonstrated that bone mass starts to decline with aging well before the onset 

of menopause, suggesting there are additional factors which contribute to the age-

associated decline in bone mass and subsequent increase in fragility fracture incidence 

[44-48]. Additional potential systemic and age-related factors affecting bone mass will be 

discussed in more detail in Section 1.4. 

Bone resorption results in loss of both bone mineral and also the organic components of 

bone, such as Type I collagen. Type I collagen molecules comprise approximately 90% of 

the organic component of bone [49], formed into a triple-helix configuration which then 

are combined into collagen fibres. These collagen fibres are then modified in the post-

translational setting to form covalent crosslinks between adjacent collagen fibres, 

Figure 2 - Scanning electron micrograph (SEM) of the third lumbar vertebra 
of an adult 30-year-old (left) and an osteoporotic 71-year-old woman (right).  

Images produced by Tim Arnett, University College London, made freely 
available via the European Calcified Tissue Society (ECTS) educational 
resources. 
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subsequently increasing tissue strength. These crosslinks, which are biochemically distinct 

from those formed in other forms of connective tissue in the body, are broken down 

during bone resorption by osteoclasts, with the breakdown products providing 

systemically measurable markers of bone resorption, via serum or urine [50]. 

The arrangement of collagen fibres and subsequently the arrangement of hydroxyapatite 

crystal orientation governs bone’s relative strength and resistance of bone to damage 

from increased mechanical forces. Lamellar bone consists of concentric sheets of dense, 

compact bone laid down in an orientation which is best suited to resist the primary strain 

directions and magnitudes experienced at that site. In humans (and other larger 

mammals) with thick cortical bone, this lamellar arrangement of the cortical bone is 

arranged into osteons, which are tubular structures generally aligned with the longitudinal 

axis of the bone. The central canal of these osteons, called Haversian canals, carry the 

neurovascular supply to the cortical bone. The transverse communicating channels 

between neighbouring Haversian canals are termed Volkmann’s canals (Figure 3). These 

vascular channels provide access for resorptive cells to access the cortical bone and permit 

intracortical resorption and subsequent porosity and bone loss associated with 

osteoporosis. 

Figure 3 – Diagrammatic representation of cortical bone anatomy 

Reproduced from U.S. National Cancer Institute's Surveillance, Epidemiology and 
End Results (SEER) Program (http://training.seer.cancer.gov/anatomy/ 
skeletal/tissue.html (Accessed 05/12/2017) 
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1.1.1 Diagnosis and monitoring of osteoporosis 

The deterioration in bone mass seen with age is made more difficult to diagnose early in 

the disease course because it is a clinically “silent” deterioration which is likely only to 

show clinical signs once a resultant fragility fracture has occurred. At this point, bone mass 

is frequently deteriorated to a point where intervention is less successful at restoring bone 

mass.  

Evaluation of bone mass can be performed using several techniques. Clinical evaluation of 

bone mineral density (BMD) using dual-energy x-ray absorptiometry (DEXA) is currently 

the standard of care for monitoring of bone mass in people, primarily due to the rapid test 

times, low radiation dose and non-invasive nature. Initial studies demonstrating the age-

related loss in bone mass were performed using DEXA [44, 48, 51]. Although DEXA is used 

commonly for monitoring of treatment efficacy in clinical trials [52-56], and most 

osteoporosis clinical guidelines use DEXA-derived BMD values for diagnosis and treatment 

decision making [42, 57-59], it is not able to easily separate cortical from trabecular bone 

compartments due to relatively low scan resolution and the two-dimensional nature of 

the images generated [45, 47]. 

Advances in computed tomography (CT) imaging technology have led to the wider 

adoption of quantitative CT (QCT) for assessment of bone density, which is able to resolve 

bone structure in 3D and achieve separate quantitative measures of both trabecular and 

cortical bone mass and architecture. QCT is also able to overcome sources of artefactual 

error seen using DEXA, associated with factors such as variable body mass or patient 

positioning [57, 60]. QCT is able to assess additional parameters which are shown to 

correlate to fracture risk and/or bone strength that aren’t possible with DEXA, such as 

trabecular plate/rod architecture [61-63] and intracortical porosity [64-67]. Both in clinical 

trials and in research animal models, CT-based imaging is becoming the gold standard for 

assessment of bone mass and architecture changes seen with aging and also in response 

to pharmacological and other treatments. A recent systematic review of studies evaluating 

the effects of osteoporosis treatments using high resolution peripheral QCT (HR-pQCT) 

identified treatment-specific differences between trabecular and cortical bone and also 
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between anti-resorptive and anabolic agents [64], although these authors reiterated the 

valid point that, as with any new technology which may improve diagnostic sensitivity, a 

degree of standardisation of the measures collected between and within studies needs to 

be agreed to permit more meaningful comparisons between studies evaluating age- or 

treatment-related changes in volumetric BMD (vBMD). 

1.1.2 Bone structure changes with age 

Age-related changes in bone mass are compartment specific with clear age- and sex-

specific differences in the cortical versus the trabecular compartments. As humans age, 

typically the cortical shell expands, increasing the periosteal area, but it becomes thinner 

due to endosteal resorption; between the ages 20- 90 years of age, periosteal apposition 

increases bone total cross-sectional area by ~15%, but endosteal resorption concurrently 

increases by 25-40%, resulting in thinner cortical shell [45] (Figure 4). The age-related 

periosteal expansion does result in improvements in the biomechanical performance of 

cortical bone. The greater distance of the cortical bone from the centroid of the bone 

results in increases in the area moment of inertia which improves resistance to bending 

Figure 4 – Aging is associated with cortical thinning due to medullary expansion. 

Aging results in medullary expansion and intracortical resorption. (A) Micrograph of a 
specimen from a 78-year-old woman. (B) Micrograph of a specimen from a 90-year-
old woman. Micrographs are from anterior subtrochanteric specimens. Cracks are 
preparation artifacts. Figure adapted and used with permission from [3]. 
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[45, 68]. Men have larger bones, on average, at all ages, compared to women, and this 

factor is one of the main determinants of the sex-dependant differences in whole-bone 

strength [68]. 

In women, substantial cortical bone loss does not occur until midlife, associated with 

menopause, with a significant correlation to the serum levels of biologically active sex-

steroids, and it is well established that sex-steroid deficiency contributes to osteoporosis 

[47]. Cortical bone loss in men is slightly different, with a small, but significant loss seen in 

young adulthood, which remains consistent until 75 years of age [47] and lower overall 

cortical bone losses compared to women (-8% vs -17% respectively, for cortical area at the 

distal radius [45].  

A further advantage of the increased usage of HR-pQCT has been its ability to evaluate 

trabecular bone mass and architecture, independent of the overlying cortical shell, whilst 

being able to avoid the use of bone biopsies. Bone biopsies are invasive and are typically 

taken from regions of the skeleton which are not representative of common fracture sites 

(biopsies are most commonly taken from the ilium, an uncommon site for fragility 

fractures resulting from osteoporosis).  

Trabecular bone mass, like cortical bone mass, also declines with age, in both men and 

women [46]. The axial skeleton trabecular bone appears to be more severely affected with 

aging in women, with a 55% loss of bone mass compared to 46% in men between the ages 

of 20 and 90 [45]. This sex-specific reduction in trabecular bone mass is less clear when 

peripheral trabecular bone sites are analysed. Distal radial trabecular bone mass is less 

affected by aging in men and women, and there was no sex-specific differences in the 

trabecular microarchitecture [45, 66]. These clinical studies help demonstrate site- and 

sex-specific differences in the response of bone to aging in people, however, a thorough 

understanding of the mechanisms underlying the site- and sex-specific differences 

remains unclear. The use of in vitro and in vivo animal models has helped further our 

knowledge of the cellular mechanisms underpinning the processes of bone (re)modelling 

and bone’s biological response to aging. 
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1.2  Bone cells and bone (re)modelling, and the effects of aging. 

1.2.1  Bone cell origins and function  

Osteoblasts 

Osteoblasts are derived from marrow stromal cells (MSC). MSCs can also develop into 

other cell lineages such as adipocytes, myocytes, chondrocytes and possibly neuronal cells 

[69]. Understanding of the molecular triggers/transcription factors that help differentiate 

these cells from their ancestral cell lines has greatly increased in recent years with the 

proliferation of molecular genetics techniques. The differentiation of MSCs into 

osteoblasts is promoted by key transcription factors including the principal osteogenic 

master gene, runt-related transcription factor 2 (Runx-2) [70], and osterix [71]. Cells then 

differentiate into mature, matrix-synthesising osteoblasts, actively forming bone matrix 

and promoting mineralisation. Other transcription factors which regulate osteoblast 

differentiation and activity have been identified, but detailed discussion of these is beyond 

the scope of this thesis, and they are reviewed elsewhere [72-74]. Developing knowledge 

of this transcriptional cascade has led to the identification of several key genes primarily 

expressed at certain stages of the MSC lineage development, which have been utilised in 

the generation of cell-line specific mutants using Cre-recombinase techniques to permit 

expression of a given gene mutation of interest only in the given cell type of interest (and 

all subsequent stages in the lineage). Figure 5 demonstrates the common Cre-

recombinase variants used in the investigation of MSC lineage cells. Comprehensive 

discussion of the use of cell-specific transgenic mice in the study of bone biology is well 

reviewed elsewhere [75-77]. 

After osteoblasts have completed the necessary amount of bone formation, some of them 

are committed to differentiate further into osteocytes, which become embedded in the 

deposited matrix, and others appear to change into seemingly quiescent bone lining cells. 

This is illustrated in Figure 6. Most osteoblasts, however, undergo apoptosis [78].  
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Osteocytes 

Osteocytes are cells encased in the mineral matrix of bone following terminal 

differentiation of osteoblasts along the osteoprogenitor lineage of cells. They are 

embedded within the mineral matrix by the bone formed by osteoblasts. This process was 

initially thought to be a passive process following bone mineralisation [79], but further 

evidence implicates a more active process in which they actively migrate into the osteoid 

being deposited by their osteoblast counterparts through the use of collagenase and 

Matrix Metalloproteinases (MMPs) [80] resulting in the invasive development of dendritic 

processes and canaliculi between the newly embedded cells and existing, deeper 

osteocytes [18]. Further evidence that osteocytes are not just “passive prisoners” in the 

matrix includes the finding that aging promotes an increase in the number of dendritic 

connections between osteocytes in adult versus juvenile rats, although aged rats 

Figure 5 - Differentiation lineage markers for osteoblastic/osteocytic lineage.  

Cre-recombinase is bound to the above genes to breed mice with other genes of 
interest expressed only in the cell type above, and their descendants. SMA – 
Smooth muscle actin, Runx2 – Runt-related transcription factor 2; Col1A1 - 
Collagen 1 A1; DMP1 – Dentin Matrix Protein 1, Sost – Sclerostin. 
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demonstrated a reduction in canalicular number compared with adults [80, 81]. Another 

study using acid etching and back-scattered electron mircroscopy also demonstrated that 

osteocyte lacunae showed decreasing canalicular connections with neighbouring lacunae 

with advancing age [82]. Furthermore, lactation stimulates a reversible increase in the size 

of the osteocytic lacunae [83, 84], suggesting ongoing cellular activity that alters bone 

structure is present, even in osteocytes imprisoned within mineral matrix.  

Osteocytes are also now widely accepted to be the primary mechanosensory cells of bone. 

They sense changes in mechanical strain and transduce externally applied strain stimuli 

into a signal to promote or suppress bone formation or resorption as required. Since it 

was first established [85] that osteocytes respond to strains in their surrounding matrix, 

evidence has accumulated that their responses are diverse [18, 22, 38, 86-88] and 

potentially significant in controlling subsequent bone formation by osteoblasts [38] and 

bone resorption by osteoclasts [21, 22, 89]. More discussion on strain sensing by 

osteocytes is included in section 1.8. The imbalance between bone formation and bone 

resorption and poorly regulated bone remodelling and modelling is one of the underlying 

defects in bone metabolism which precipitates age-related osteoporosis [30, 31]. Bone 

(re)modelling is discussed in more detail in the next section (1.3) of this chapter. 

Osteoclasts 

Osteoclasts are cells descendant from haematopoietic (myeloid) cells, related to the 

macrophage lineage [90, 91]. They mature from these precursors to form multinucleate 

giant cells whose primary role is to resorb bone (Figure 6). The majority of osteoclast 

precursors reside in the bone marrow, and for this reason, endosteal bone resorption is 

greater than periosteal bone resorption. The key regulators of osteoclast activity are 

Macrophage Colony Stimulating Factor (M-CSF) and Receptor Activator of Nuclear Factor 

κB (RANK) ligand (RANKL). M-CSF binds the CSF1R receptor, which in turn generates a 

cascade of reactions which includes, among other targets, synthesis of the RANK receptor 

in osteoclasts [90]. Impairment of the gene encoding for CSF1R receptor results in severe 

osteopetrotic phenotype, and treatment with M-CSF in these animals results in abrogation 

of this effect [92-94]. RANKL, discussed in more detail in the next section, has been shown 
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to be a key osteoclastogenic factor [95, 96] which aids in the maturation and 

differentiation of osteoclasts and promotes bone resorption.  

Once formed, osteoclasts spread across the bone surface that is to be resorbed and form 

a seal over the area, allowing the secretion of osteolytic substances (proteases, tartrate-

resistant acid phosphatase (TRAP) and cathepsin K) to combine with the acidic 

environment provided by the osteoclast through secretion of HCl. These substances, 

combined with the low pH environment at the brush border of the osteoclast allows 

digestion of the bone mineral matrix and subsequent release of other factors, such as 

Transforming Growth Factor β (TGF-β) [97] and bone morphogenetic proteins (BMPs) 

from the mineral matrix. The ability of molecules such as TGF-β to simultaneously increase 

osteoclast and osteoblast activity may begin to explain why bone formation and 

resorption appear closely coupled during bone (re)modelling [98]. The control of activity 

of osteoblasts and osteoclasts is primarily mediated by osteocytes. 

Figure 6 – Evolution of osteoblastic and osteoclastic lineage cells. 

Mesenchymal stem cells (MSC)develop into matrix embedded osteocytes. 
Haematopoietic pluripotent stem cells develop into multinucleate osteoclasts. 
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1.3 Bone (re)modelling 

Bone modelling describes the situation where bone formation occurs without the 

necessity for prior resorption. Bone remodelling, on the other hand, is the coordinated 

activity of osteoclasts removing old/damaged bone and osteoblasts subsequently forming 

new bone in the same site, typically in efforts to maintain bone mass. In young animals, 

with growing bone, modelling dominates over remodelling, however, once most growth 

is complete in the adult skeleton, maintenance of bone mass is needed, so the primary 

process involved in bone mass management is bone remodelling. Remodelling occurs to 

help repair areas of microdamage, which would otherwise accumulate and could lead to 

eventual fatigue failure/fracture. The processes of remodelling involve three main 

sequential phases: resorption, reversal and then formation, which are primarily mediated 

by the activity of osteoclasts and osteoblasts and their progenitors. The initial resorption 

phase is conducted by osteoclasts, which remove old, unnecessary, or damaged bone. The 

reversal phase is the transition phase where the activity of osteoclasts starts to decrease 

and the activity of osteoprogenitors increases and the development/recruitment of 

osteoblasts increases to eventually transition into an active site of bone formation [99].  

As described previously, remodelling activity is primarily orchestrated through the 

controlling influences of the neighbouring osteocytes, although some osteoblastic activity 

is through the effect of cross-talk with osteoclasts and the processes of bone resorption. 

The closely associated niche formed by the presence of these major bone cell types has 

been referred to as the basic multicellular unit (BMU) and all phases of the remodelling 

cycle occur within the BMU. The cellular niche of the BMU may also have an integral role 

to play in the close coupling of the remodelling functions of bone. Osteoclasts may control 

the pH of the extracellular environment in the BMU thus regulating osteoblast function 

[100, 101]. These compartments have also been shown to be covered by modified lining 

“canopy” cells which show markers of osteoblast differentiation [102]. Reduced bone 

formation and increased resorption was shown after disruption of these lining cells [103]. 

The proposed signalling mechanism for this remains to be proven experimentally. 
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Osteocytes are now widely thought of as the “master regulator” of adaptive bone 

remodelling, subsequently signalling to nearby osteoclasts to initiate the resorptive phase 

and then in turn to osteoblasts to promote the formation phase, thus modulating their 

development and activity [18, 19, 104]. 

The recruitment of osteoclasts and initiation of a remodelling event can be controlled by 

multiple factors. Strain has been hypothesised to mediate the direction of osteoclasts 

tunnelling in BMUs, with principal strain direction dictating the direction of travel of 

osteons [105], which should increase the tensile strength of bone. In contrast, reduced 

mechanical loading results in increased osteoclast numbers and bone resorption [106], 

although the bone loss associated with unloading is not necessarily coupled to formation, 

so may not represent a true bone remodelling situation. It could alternately represent a 

remodelling event that is aborted prior to the formation phase.  The effect of mechanical 

loading on bone cell activity is discussed in further detail in section 1.8.2 of this chapter. 

In addition to the direction of principle strain, bone microdamage has also been 

repeatedly shown to mediate remodelling activity. In adult bone with fatigue damage, 

remodelling osteons were 7 times more likely to be situated adjacent to a microcrack, than 

elsewhere. In the normal adult situation; 2-10% of the skeleton is estimated to be replaced 

annually through bone remodelling [107, 108]. An earlier study also demonstrated 

increased bone remodelling associated with fatigue micro-damage to bone, with 44 times 

more microcracks in association with resorption spaces than expected by chance alone 

[109]. The development of the BMUs was later confirmed to be a result of microdamage, 

suggesting that the remodelling is directed by site of microdamage, and not that the 

microdamage occurs in sites of already remodelling bone due to inherent weakness [110]. 

The direction of travel of osteons was also demonstrated to be guided by the location of 

microcracks and the subsequent osteocyte apoptosis surrounding these areas of injury 

[111]. More recent work has localised osteocytic expression of RANKL to those cells 

surrounding areas of micro-damage, and the related apoptotic cells [112]. It is quite likely 

that this RANKL expressed at the cells adjacent to microdamage and apoptosis promotes 

the differentiation and activity of osteoclasts to initiate or direct a remodelling event. 
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1.3.1 Transcriptional control of bone cell activity during remodelling 

The control of bone cell activity is complex and multifactorial. A detailed review of the 

current state of understanding of molecular control of bone remodelling is outside the 

scope of this thesis. Notwithstanding, it is important to discuss several key signalling 

molecules and pathways with key involvement in the control of both osteoclastic 

resorption, and also osteoblastic formation. RANKL and osteoprotegerin (OPG) are 

essential for the normal differentiation and activity of osteoclasts, and the Wnt pathway, 

and its inhibitor, sclerostin are key regulators of osteoblast activity. 

RANKL and OPG and the resorptive phase of bone remodelling 

Initiation of the remodelling cycle must be stimulated initially by a resorptive event. 

Therefore, recruitment and activation of osteoclasts is essential for remodelling to begin. 

As mentioned earlier, M-CSF and RANKL are integral signalling factors necessary for 

osteoclast activity. RANKL is a primarily membrane-bound protein involved in recruitment 

and differentiation of bone marrow macrophage cells into osteoclasts.  

RANKL is competitively inhibited by OPG, a competitive decoy receptor of RANKL, thus 

preventing the activation of the RANK receptor. OPG is also important in intracellular 

trafficking of RANKL [113]. Hence, increase in the concentration of OPG also decreases the 

degree of bone resorption. See Figure 7 for a diagram summarising the function of the 

RANK/RANKL/OPG pathway. 

RANKL was originally believed to be produced primarily by osteoblasts, as co-culture with 

osteoblast progenitors was able to stimulate osteoclast differentiation [114, 115]. 

However, two paradigm-shifting studies [21, 22] have shown, using DMP1-Cre RANKL 

knockout mice, that in growing mice at least, it is osteocytes (and possibly late osteoblasts 

and bone lining cells), and not, as was previously thought, osteoblasts or their progenitors, 

that are the predominant source of RANKL necessary for bone remodelling. Genetically-
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modified mice lacking RANKL in osteocytes alone did not lose bone when loading was 

reduced by tail suspension [21]. In a follow-up [116] to the initial study [21], Sost-Cre 

transgenic mice, with knockout of RANKL in osteocytes only (and not bone-lining cells) still 

demonstrated a marked decrease in osteoclast number and also increase in cancellous 

bone mass. These publications demonstrating a shift in understanding of RANKL 

regulation were published concurrently, around the time that the author’s PhD 

experiments were being conceived. Whilst these studies demonstrated RANKL is produced 

by osteocytes, the temporal and spatial relationships between changes in strain, RANKL 

expression and osteoclast activity had never been established. One of the aims of one of 

Figure 7 Schematic representation of the RANK/RANKL/OPG axis and its effect on 
osteoclasts.  

RANKL, produced primarily in osteocytes, binds RANK, which stimulates the 
differentiation of immature osteoclasts, and the activation of mature osteoclasts to 
stimulate active bone resorption. OPG, produced by osteoblasts and osteocytes, is a 
competitive decoy receptor molecule which blocks RANKL from activating the RANK 
receptor. Decreased RANKL:OPG ratios decrease osteoclast activity. 
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the experiments described in Chapter 4 of this thesis was to better characterise the 

temporal and spatial patterns of expression of RANKL in cortical bone osteocytes following 

alterations in the mechanical loading environment, particularly following disuse.  

With respect to bone phenotypes, genetic studies deleting the genes responsible for the 

production of RANKL and RANK (the Tnfsf11 gene and Tnfrsf11a gene, respectively) 

resulted in severe osteopetrotic phenotype and failed tooth eruption in mice [117, 118]. 

Deletion of the gene expressing OPG (Tnfrsf11b), conversely resulted in osteoporosis and 

increased osteoclastic activity [119, 120]. Over expression of RANKL in transgenic mice 

shows an osteoporotic phenotype [121] and over expression of OPG results in 

osteopetrosis but normal tooth eruption [122]. Based on these findings, 

RANKL/RANK/OPG interaction is essential for control of osteoclastogenesis in vivo. RANKL 

remains membrane bound unless cleaved proteolytically by enzymes such as matrix 

metalloproteinases (MMPs) like MMP-14. In primary neonatal calvarial osteoblasts, 

addition of MMP-14 increased RANKL cleavage and suppression of MMP-14 increased 

membrane-bound RANKL and promoted osteoclastogenesis [123]. MMP-14 deficient mice 

also showed an increase in osteoclastogenesis in vivo [123]. Hence, the membrane-bound 

form of RANKL is more effective than serum RANKL at stimulation of osteoclastogenesis 

[22, 123-126]. The membrane-bound nature of RANKL involved in bone resorption also 

suggests that its activity is through primarily localised paracrine pathways, rather than 

systemic increases in serum levels. This allows the resorptive response to be controlled in 

a localised and site-specific manner, as is necessary for effective adaptive bone 

remodelling. 

There appear to be many factors which can upregulate RANKL expression. These include 

PTH, prostaglandin E2, Vitamin D3, TNF-α and various interleukins (IL-1, IL-6, IL-11 and IL-

17) [126, 127]. TGF-β can down regulate RANKL mRNA expression [127, 128] however one 

study demonstrated that RANKL protein expression was unaffected by TGF- β 

administration in vitro [126]. There is evidence that mechanical load regulates the 

expression of RANKL in a load dependant manner, although studies have demonstrated 

conflicting results when load is applied using in vitro loading systems, and in vivo in 
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rodents. In vitro cell culture experiments have shown variable results when applying load 

to cells. These vary from increased RANKL expression with load to decreased expression 

[129-135]. Unfortunately, the techniques of load application were not the same in these 

studies, so comparison is difficult, and additionally, the in vitro response to load may not 

necessarily correlate with the in vivo situation as the three-dimensional orientation and 

lacunocanalicular arrangement of osteocytes in bone may confer additional and/or 

different responses to mechanical load. The quantification of RANKL expression in 

situations of altered mechanical load in vivo has not been extensively investigated, 

however RANKL is increased in osteocytes following disuse [21, 22, 136] induced by tail 

suspension. RANKL was also increased in tibial bone marrow following disuse from sciatic 

neurectomy in mice, although this increase was mitigated by parathyroidectomy 

indicating the modulatory effect that PTH can have on bone remodelling [137]. 

In addition to expression in osteocytes and osteoblasts, RANKL expression is widespread 

throughout the mouse and human body with lymphocytes (B and T cells)[118, 138], 

thymus [139], developing mammary tissue [140], brain, skeletal muscle, skin, spleen, 

kidney [141] and neoplastic tissues including mammary carcinoma and metastatic bone 

neoplasia [142] all displaying expression of the mRNA and/or protein. The effect of these 

extraskeletal sources of RANKL on bone remodelling is debatable. Activating T cells was 

shown to stimulate RANKL production in vitro and in vivo and this resulted in an 

osteoporotic phenotype in mice [118]. However, crossing the Lck-Cre mice with RANKL 

deficient transgenic mice, to create mice deficient in RANKL specifically in T cells, did not 

result in a noticeably osteopetrotic phenotype [22].  

Although osteoclastic control appears to be primarily controlled by RANKL produced 

within the skeletal tissue, isolation of pure osteocyte or osteoblast fractions has been met 

with technical difficulty. RANKL mRNA expression has been detected in both osteocyte 

rich fractions and osteoblast rich fractions in mice [21, 22, 136]. As described previously, 

the use of transgenic mice, however, has enabled the identification of the cellular origin 

of RANKL involved in osteoclastic differentiation and activity. In situ localisation of RANKL 

expression, however has been met with more difficulty. Immunohistochemistry (IHC) 
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techniques have been hampered by the poor affinity of commercially available anti-mouse 

RANKL antibodies. An early study, using in situ hybridization (ISH) to localise RANKL mRNA 

and IHC to identify RANKL protein found both RANKL mRNA and protein expressed in most 

tissue examined, including extraskeletal sites. Interestingly, the mature osteocytes 

examined in this study did not appear to express much RANKL [141]. Chapter 4 reports the 

optimisation of a protocol for the immunolocalisation of RANKL in cortical bone. 

Antibodies developed against human RANKL (Denosumab) have been used therapeutically 

to control the osteoclastogenesis often implicated in bone fragility disorders, mainly 

osteoporosis, but also resorptive conditions such as breast or prostate neoplasia 

metastasis to bone [143-146]. Discussion of RANKL inhibition as a therapeutic treatment 

option is further detailed in section 1.7.2 of this chapter and in Chapter 4. 

The reversal phase of bone remodelling 

Once the resorptive phase of remodelling is complete, a reversal phase ensues, where 

mononuclear cells are recruited to the eroded surface to help prepare it for future bone 

formation by osteoblasts. Recent work has confirmed these “reversal” cells are part of the 

osteoprogenitor lineage [147-149]. Additionally, very recent work has proposed an 

overlapping transitional phase of the remodelling cycle, called the “reversal-resorption” 

phase. By examining longitudinal sections of Harversian canals undergoing remodelling, 

the authors identified a region immediately behind the cutting cone of the remodelling 

front, where osteoclasts and reversal osteoprogenitors alternated on the bone surface 

and canal diameter further widened, suggesting that a section of the remodelling process 

is still undergoing resorption whilst the reversal cells are beginning to prepare the region 

for the subsequent formation phase [99].  

Although the process of bone cell coupling is incompletely understood, the reversal phase 

is integral in coupling the subsequent bone formation to the preceding bone resorption. 

Several potential coupling factors originating from osteoclasts and the activity of 

resorption have been identified [99, 150] and inhibition of osteoclasts impairs the 

formation phase of the remodelling cycle [151].  Furthermore, although coupling factors 
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are important to promote recruitment and differentiation of osteoprogenitors, proximity 

and viability of sufficient numbers of these cells is also critical to allow effective reversal 

of the remodelling cycle [152]. Andersen et al [147] demonstrated a significantly reduced 

“reversal” cell density on the eroded surface of post-menopausal iliac biopsy samples with 

greater distances between osteoclast and osteoblast cell clusters, suggesting a greater 

number of aborted reversal events. This may go part-way to explaining the increase in 

intracortical porosity seen in cortical bone of old people. Impairment of the activity of 

osteoclasts to impair the initiation of the formation phase of the remodelling cycle is, in 

part, the basis for the use of the anti-resorptive, Risedronate, in chapters 6 and 7. 

Recruitment and differentiation of osteoblasts in the BMU is essential for the effective 

completion of the bone remodelling cycle. The coupling of bone formation to the 

preceding bone resorption is, as mentioned earlier, incompletely understood, with several 

physical and biochemical factors proposed to modulate the rate of osteoclast:osteoblast 

coupling. The origin of the osteoblasts located in the BMU is also incompletely 

understood. Cell division has not been observed within the BMU, so osteoblasts must be 

recruited from other sites, or potentially differentiate from other related cell types, such 

as bone lining cells [153], or possibly the osteoblastic “reversal” cells discussed earlier in 

this section [152]. As both bone lining cells and reversal cells have been shown to express 

gene markers suggestive of the osteoblast lineage, and bone lining cells typically cover the 

bone surface prior to bone resorption and separate to make way for osteoclasts, these 

cells are a likely source of the matrix-synthesising osteoblasts present in the formation 

phase of the bone remodelling cycle. Recruitment from the MSC cell pool may also be a 

source of these cells. Lineage tracing techniques have recently allowed better 

characterisation of the source of osteoblasts [153-155], and ongoing work, in 

collaboration with our laboratory, aims to further elucidate the physical origins of these 

proliferating cells. 
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Wnt/β-Catenin Pathway, sclerostin and the formation phase of bone remodelling 

Once the reversal phase is complete, recruited matrix synthesising osteoblasts proceed 

with the formation phase of the remodelling cycle. As described earlier, osteoblasts are 

influenced by several different signalling factors. One of the key transcriptional regulators 

of differentiation into osteoblasts is provided by the Wingless Homology (Wnt) signalling 

pathway [156]. There are several Wnt genes which have been implicated in the control of 

bone mass, both through action on osteoblasts, and also through action on osteoclasts 

[157]. Synthesis of bone matrix is facilitated through activation of target genes through 

both the canonical (Wnt/β-catenin) pathway, and other non-canonical pathways. The 

canonical Wnt pathway is illustrated diagrammatically in Figure 8. In the canonical Wnt 
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Figure 8 - Schematic representation of canonical Wnt signalling.  

The central molecule required for canonical Wnt signalling is β-catenin, which is 
normally degraded following poly-phosphorylation by a protein complex including 
GSK-3β, thereby limiting its levels in cytoplasmic pools. Wnts binding to their co-
receptors LRP and FZD results in inhibition of the GSK-3β complex, permitting β-
catenin cytoplasmic accumulation. Cytoplasmic β-catenin can either translocate to 
cadherin junctions at the cell membrane, or into the nucleus where it is able to alter 
gene expression in conjunction with other transcription factors. This pathway is also 
regulated through extracellular inhibitors including sclerostin, dickkof (DKK)1, 
secreted frizzled-related proteins (SFRPs) and Wnt inhibitory factors (WIFs). 
Reproduced with permission [6] 
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pathway, Wnt proteins bind to the Frizzled (Fzd)/Lipoprotein-related receptor (LRP)5, 

activating it and blocking the phosphorylation and subsequent degradation of intracellular 

β-catenin. Consequently, intracellular β-catenin concentration increases, resulting in its 

translocation to the nucleus, and binding with other transcription factors, resulting in the 

transcription of osteogenic target genes [158]. Wnt proteins have a multitude of functions 

which depend quite heavily on context, so the exact role of the varied pathways affected 

by individual Wnt proteins still remains somewhat unclear. Detailed reviews of the current 

state of knowledge is provided elsewhere [157, 158].  

Sclerostin, produced almost exclusively by osteocytes, acts as an antagonist to the Wnt 

pathway [159]. We, and others, have shown that, in osteocytes, sclerostin is up-regulated 

in vivo following unloading and down-regulated following loading [8, 20, 160]. Sclerostin 

also may have a role in controlling osteoclastogenesis through the potential down 

regulation of OPG expression in osteocytes and osteoblasts [96, 161]. Osteocytes, in 

addition to being the major source of sclerostin, also produce several BMPs shown to 

modulate bone formation [73, 162-164].  

Antibodies against sclerostin are in the final regulatory stages for approval for treatment 

to reduce fracture risk and increase bone mass in osteoporotic patients. Sclerostin 

antibody (Scl-Ab) treatment resulted in reactivation of quiescent bone lining cells, but no 

increase in proliferation or change in rate of apoptosis, suggesting the anabolic effect of 

Scl-Ab may be due to activation of quiescent cells [165]. Sclerostin blocking antibodies 

have demonstrated significant increases in hip and spine BMD and strength following 

treatment [166, 167], although bone mass did return to baseline following discontinuation 

after 12 months [168]. Further discussion of therapeutic treatment with sclerostin 

blocking antibodies for management of osteoporosis is detailed in section 1.7.3 of this 

chapter. 

1.4  The effect of aging on bone cell function 

As bone ages, resorption increases, with a concurrent decrease in the rate of bone 

formation. This results in net bone loss in people [169]. This impairment of the processes 
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involved in maintenance of bone mass and architecture is probably due to derangement 

of normal cellular activity of the cells involved in bone homeostasis and the subsequent 

imbalance in the rates of resorption and formation. In this section, the potential 

contribution of age-related changes in cell number and function to the age-related failure 

in regulation of bone mass will be discussed.  

Osteocytes 

The number of osteocytes has been demonstrated to decrease with aging in humans [170] 

and mice [29, 171]. The reduction in osteocyte number, primarily through apoptosis, has 

been hypothesised to increase bone fragility [172]. Osteocyte apoptosis is also associated 

with other bone catabolic situations. Glucocorticoid treatment-associated fragility 

fractures of the femoral neck were correlated to the degree of osteocyte apoptosis [173]. 

Disuse [174, 175] and withdrawal of oestrogen following ovariectomy [176-178] have both 

also been shown to reduce osteocyte number through apoptosis. Reduced osteocyte 

viability and subsequent reduction in numbers has been hypothesised to result in an 

increase in bone fragility as the bone effectively has lost its ability to sense damage and 

direct remodelling appropriately [18]. Although osteocyte apoptosis following disuse and 

mechanical overload and microdamage [109, 111, 179] has in itself been associated with 

triggering bone remodelling [180], the overall decrease in cell numbers once cells have 

died is likely to eventually result in a decreased mechanosensory capacity.  

However, although osteocyte number is decreased with aging, the activity of surviving 

osteocytes may not necessarily be impaired. RANKL and sclerostin concentration in bone 

marrow serum was decreased with aging in mice [181], although this study did not 

quantify osteocytic concentration. Conversely, Meakin et al [29] have demonstrated that 

despite a significant decrease in the percentage of viable osteocytes with aging, the 

proportionate response to loading was maintained in old mice, compared to young mice, 

evaluated through decreased osteocytic expression of sclerostin. This suggests that 

surviving osteocytes in old mice are still able to respond to exogenous signals with similar 

efficacy to young mice. 
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Osteoclasts 

The amount of bone resorption increases with age, but little evidence exists exploring the 

direct effect of aging on the cellular activity and number of osteoclasts. Cultured human 

osteoclasts demonstrated significantly greater proliferation and resorptive activity when 

cultured on cortical bone chips from old (8y) versus young (9-month) cattle femoral 

diaphyseal bone [182], suggesting that the control of osteoclast-mediated resorption is 

dependent on the age of the bone itself. Aged rat bone also demonstrated an increased 

osteoclast number on periosteal bone compared with young animals in vivo [183]. This 

study also demonstrated a greater increase in osteoclast number in aged bone at the 

metaphyseal periosteum, compared with the diaphyseal periosteum, which may explain 

the significantly greater increase in cortical porosity noted with aging in metaphyseal bone 

compared with mid-diaphyseal bone [184].  

Osteoclasts from old bone may also impair osteoblast function more than those from 

young bone. Conditioned media from osteoclasts cultured from old mice suppressed 

mineralisation of osteoblasts in vitro more than media from young mice [185]. 

Furthermore, these authors were also able to demonstrate that this inhibition of 

osteoblast function was mediated by sclerostin production from the old mice osteoclasts, 

a cell type previously believed to be incapable of producing sclerostin. Age-specific 

inhibition of osteoblast function mediated by osteoclastic expression of sclerostin may, at 

least in part, contribute to an age-related impairment of bone formation. 

Osteoblasts 

There are numerous studies exploring the effects of aging on the differentiation, activity 

and number of osteoblasts described in reviews on the effect of aging on the 

differentiation of mesenchymal stem cells into the osteoblastic lineage [186] and the 

effect of aging on osteoblast number and activity [187, 188]. 

There are several key points to note when considering the effect of age on osteoblast 

function. A greater proportion of MSCs differentiates into adipocytes instead of 

osteoblasts in old compared with young animals and people and this consequently impairs 
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the regenerative potential of bone [186, 189-191].  The reduction in osteoblast cell 

numbers and differentiation seen with aging subsequently reduces the number of colony 

forming units in bone marrow samples cultured in vitro in old mice, compared with young 

mice [192]. The inverse relationship of age with osteoblast differentiation versus 

adipocytogenesis is proposed to be heavily dependent on the transcription factor 

peroxisome proliferator-activated receptor (PPAR)γ [193] which is expressed in higher 

concentrations in old mice compared with young mice [194]. The later stages of osteoblast 

differentiation are also inhibited with aging, with one early study demonstrating an age-

related increase in the number of pre-osteoblasts and a decreased number of mature 

osteoblasts in rats [195]. In addition to the age-related changes in differentiation of MSCs, 

there is also an age-related alteration of both the TGF-β and BMP signalling pathways 

[194] which suggests that aging also affects both of these pathways, which are key bone 

formation signalling pathways. 

As well as reduced numbers of osteoblasts in old mice and people, there is also some 

evidence that their lifespan is also decreased through more prevalent apoptosis 

associated with an increase in oxidative stress [196]. Another study demonstrated an 

increase in the number of apoptotic cells in MSC culture from old animals compared with 

young animals [197]. Conversely, in a study of human bone marrow samples, there was 

no effect of age on the expression of apoptosis markers, BCL-2 and DRAK1 in whole bone 

marrow aspirates suggesting that apoptosis in human marrow is not affected by aging. 

However, this study was performed on the mixed population of cells retrieved from a bone 

marrow aspirate, rather than a pure culture of MSCs [198]. There are also studies 

suggesting that the speed of proliferation of osteoblasts is decreased [197] and that the 

potential number of population doublings in vitro is decreased with age [199, 200], 

probably due to rapid decrease in telomere length (an indicator of cellular senescence) 

following in vitro expansion. As osteoblasts experience a decrease in differentiation, cell 

life-span and increased apoptosis, this ultimately leads to a decrease in the overall 

osteoblast number with aging, which, in turn, results in decreased bone formation. 
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There is also strong evidence that osteoblast activity in response to mechanical loading is 

reduced in old versus young cells in both in vitro and in vivo experimental models. Of 

importance, it appears that the ability of osteoblasts to proliferate in response to loading 

appears reduced when compared to young animals [29]. This and other relevant studies 

will be discussed in more detail in Section 1.8.2.  

1.5  Aging and systemic regulators of bone remodelling 

Although bone remodelling is locally regulated, there are numerous systemic regulators 

of bone cell activity involved in growth and demand for increased serum calcium, such as 

pregnancy and lactation. These include parathyroid hormone (PTH), calcitonin, sex 

steroids, growth hormone, insulin-like growth factor (IGF), fibroblast-like growth factor 

(FGF)23, osteocalcin and Vitamin D. Consideration of the effect of aging on these systemic 

pathways is, therefore, important. The key mechanisms for physiological control of bone 

mass to adapt to periods of physiological demands such as. These regulators have all been 

reviewed extensively elsewhere [37, 201-209] and apart from PTH, and sex steroids will 

not be discussed in detail in this thesis. 

1.5.1 Regulation of Calcium Homeostasis 

One of the most significant systemic metabolic demands placed on the skeleton in a 

normal physiological situation occurs during pregnancy and subsequent lactation. During 

pregnancy, and even more so during lactation, the demand for calcium is increased [210-

212]. To facilitate the required increase in calcium demand for both foetal growth and 

milk production, Vitamin D synthesis is increased, which, in turn results in increased 

intestinal absorption of calcium. Once lactation begins, and the calcium loss through milk 

production increases, the increase in intestinal absorption of calcium facilitated by 

Vitamin D is insufficient to maintain physiological levels of serum calcium. Lactation also 

stimulates a hormone called prolactin, which further improves the efficiency of calcium 

uptake from the intestine and improves calcium and phosphate conservation in the kidney 

[213]. Although prolactin helps provides some improvement in serum calcium levels, the 

major source of calcium for the lactating animal comes from the maternal skeleton [211]. 
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This demand for calcium is so great that a typical 6-month lactation period in humans 

results in a 5-8% decrease in BMD – equivalent to the yearly loss seen in post-menopausal 

women [212]. 

It appears that much of the lactation-associated bone loss occurs through osteocytic 

osteolysis, where the peri-lacunar bone mineral is resorbed to mobilise the calcium stores. 

Interestingly, as it is not possible for osteoclasts to access the osteocyte lacunae in 

majority of instances, it must be the osteocytes themselves that are enacting the 

resorption process [83, 214]. Osteocytes have been shown, during lactation, to express 

genes typically associated with osteoclastic resorption of bone, such as tartrate-resistant 

acid phosphatase (TRAP), Cathepsin K, carbonic anhydrase, and matrix metalloproteinase 

(MMP) 13 [84, 214, 215]. The key mediators of active bone loss during lactation are PTH-

related protein (PTHrP) and suppression of oestrogen seen with suckling. PTHrP is typically 

produced in the mammary tissues in response to lactation and serum levels correlate 

inversely to the bone mass in mice and women [216, 217]. Mice with osteocytes in which 

the PTH receptor has been knocked out, do not demonstrate the lactation-related 

enlargement of the osteocyte lacunae or increase in osteocytic TRAP activity seen in 

control mice [214]. The bone loss seen in relation to the suckling-dependant decrease in 

oestrogen is probably mediated by similar mechanisms to that seen following menopause. 

These mechanisms will be discussed more in the later section (1.8.4) on age-related effects 

on sex-hormones in bone remodelling.  

Furthermore, as the lacunar size returns to normal within 1 week of weaning, osteocytes 

must also possess the ability to form bone mineral as well as resorb it [214]. Although the 

increase in bone resorption results in a sudden increase in serum concentration of calcium 

and phosphate and acute bone loss, typically, following weaning, bone mass can return to 

normal levels relatively quickly. This is probably due to the acute surge in PTH following 

weaning resulting in a formation response by osteoblasts, although recent work suggests 

that PTH is not necessary to achieve the post-lactational replenishment of the bone 

mineral content [218]. 
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1.5.2 Parathyroid Hormone 

As it remains, for the time being, the only licenced anabolic treatment for management of 

low bone mass, PTH is probably the most studied and well-understood hormone involved 

in regulating bone mass. The parathyroid gland chief cells produce PTH in response to 

changing levels of circulating serum calcium. PTH’s primary purpose is to maintain serum 

calcium within a very narrow physiological range. It achieves this by modulating renal 

calcium secretion and Vitamin D production and, most importantly, regulating the 

resorption of calcium from bone mineral. Although the primary physiological role of PTH 

on bone is to promote bone resorption through osteoclasts, the pattern of PTH 

administration can affect the balance of bone resorption and bone formation. 

Intermittent daily administration of PTH results in a primarily formative response, which 

is likely due to the differential effects on the key osteoclast activator, RANKL seen between 

continuous versus intermittent administration [219, 220].  

PTH and PTHrP bind to the PTH/PTHrP receptor to exert their effects. The receptor is found 

on many cells, including osteoblasts, osteocytes and renal tubule cells [221]. Whilst several 

of the individual pathways affected by PTH/PTHrP have been investigated, one of the 

specific details of great clinical importance is what proportion of the hormone’s anabolic 

effect on bone is mediated through the mechanisms of bone modelling, where prior 

resorption is not necessary, and what proportion is due to stimulation of a remodelling 

response associated with the activation of osteoclastic bone resorption [222]. The dual 

effect of PTH both allows its positive clinical effect, but ultimately limits its long term use, 

as prolonged treatment with PTH results in time-dependent increases in cortical bone 

porosity [223, 224]. Regardless of the balance of these two modes of action, PTH and its 

analogues have been repeatedly demonstrated to increase bone mass at trabecular sites 

and increase cortical thickness and porosity in cortical bone, resulting in a decreased risk 

of fracture [222]. The effects of PTH on aged bone are described in more detail in chapter 

7 of this thesis, which describes a series of experiments evaluating the effect of combining 

PTH with the bisphosphonate, risedronate, to inhibit osteoclast function and reduce 
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resorption, to evaluate the contribution of remodelling and modelling to the anabolic 

response following intermittent PTH treatment. 

1.5.3 The role of sex steroids on age-related bone loss 

Oestrogens 

The importance of sex steroids, particularly oestrogen, in the maintenance of appropriate 

bone mass and architecture is powerfully demonstrated by the prevalence of osteoporosis 

and increased risk of fragility fractures noted in postmenopausal women, compared with 

men and eumenorrheic women. Lifetime risk of any fracture was 53.2% at 50 years of age 

for women and 20.7% for men, and overall prevalence of vertebral fractures alone in 

Europe was 18-26% dependent on the country of origin  [17, 225]. The effect of oestrogens 

and androgens on skeletal physiology and pathophysiology has been very recently 

reviewed [226] and the effects of sex hormones is not the focus of this thesis, so only a 

summary overview of the effects will be provided in this section. 

Oestrogen is primarily produced in the ovary and acts primarily at the oestrogen receptors 

(ER)α and β. Osteoblasts, osteocytes and osteoclasts have all been demonstrated to 

express ERα and ERβ [227]. ER’s roles in bone have also been extensively reviewed 

elsewhere [228-230]. At puberty, the increase in circulating oestrogens result in increased 

long-bone growth and diaphyseal expansion in females. Following the completion of 

puberty, the surge in serum oestrogen concentration leads to apoptosis of the 

hypertrophic chondrocytes, resulting in cessation of longitudinal bone growth [231]. ERα 

has also been demonstrated to be involved in the response to mechanical loading [232], 

but involvement of ERs in the response to loading will be discussed in some more detail 

later in section 1.8. 

Oestrogen’s main role in the adult skeleton is to maintain bone mass. In the normal 

situation oestrogen suppresses bone turnover to help match it with formation to maintain 

a stable bone mass [107]. Oestrogen has multiple effects on bone cells. Its anti-resorptive 

mechanism of action is to suppress osteoclastogenesis and activity of osteoclasts. It also 
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increases apoptosis of osteoclasts. In contrast, its effects on osteoblasts are generally 

positive, with increased formation, differentiation, proliferation and activity [226].  

As discussed earlier, cessation of menstrual activity, or menopause, results in a precipitous 

drop in serum oestrogens, which subsequently leads to accelerated bone loss with aging 

[233]. 20-30% of trabecular bone mass is lost in the 4-8 years following menopause onset, 

with smaller, but still significant losses of cortical bone of around 5-10% [234]. 

Ovariectomy in rats and mice results in similar deterioration in bone mass [235, 236]. 

Following the decline in serum oestrogen, bone resorption markers increase by more than 

formation markers, but both are increased following menopause, suggesting the primary 

determinant in these women may be increased bone turnover, with an imbalance toward 

more resorption, thus causing the bone mass loss [237]. Osteoclasts number is also 

increased in ovariectomised mice [238].  

Although the most rapid bone loss is seen in the 5-10 years following menopause onset in 

women, there is a continued loss of bone mass that progresses at a similar rate in both 

women and men. This continued age-associated bone loss has been ascribed most 

recently to increased oxidative stress with increases in reactive oxygen species (ROS) and 

possibly changes in growth hormones [16]. The effects of oxidative stress will be discussed 

briefly in section 1.5.4 of this chapter. 

Androgens 

Androgens have been demonstrated to have similar effects to those of oestrogens in 

females; decreased osteoclast formation and activity and increased osteoblast formation 

and activity [226]. However, the major androgen hormone, testosterone, is aromatised to 

produce oestrogen, which makes separation of the distinct effects of these two hormones 

in men difficult [239]. In men with an aberrant aromatase enzyme, and consequently 

minimal circulating oestrogen, persistent linear growth due to delayed physeal closure, 

and osteopaenia are seen [240, 241] illustrating the importance of the conversion of 

testosterone to oestrogen. Testosterone itself does also have effects on the skeleton. This 

is demonstrated by the positive effects that dihydrotestosterone (DHT), a non-
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aromatisable analogue, has on bone – the impaired skeletal growth seen in growth 

hormone knockout mice during puberty was rescued following treatment with DHT, 

highlighting the importance of androgens on skeletal growth [242]. 

Unlike in women, there is no clear decrease in circulating sex hormones in men, which 

results in only steady decline in bone mass with aging, rather than the precipitous drop in 

trabecular bone mass seen in menopausal women. Acute loss of sex hormones in men, 

demonstrated by castration of male sex offenders, mimicked the loss of bone seen in post-

menopausal women [243]. As most men do not experience the acute loss of sex hormone 

and subsequent severe bone loss, their risk of osteoporosis and fragility fracture is 

reduced compared with women [244]. Furthermore, as only 7% of osteoporotic men were 

testosterone deficient [245], it is likely that the age-related bone loss seen in men is 

primarily due to other mechanisms, such as increased oxidative stress, or other age-

related impairment of bone cell function.  

1.5.4 Role of oxidative stress in age-related bone loss 

Although the age-related bone loss seen in humans and mice is certainly multifactorial, a 

growing body of evidence implicates the deleterious effects of oxidative stress in bone as 

a major contributing factor to the reduced osteoblast activity seen in the elderly [187]. 

The concentration of reactive oxygen species (ROS) is elevated in bone of old mice [196] 

and these changes can be recreated by administration of glucocorticoids. [246]. The 

increase in ROS may be partly to do with the fact that serum levels of endogenous 

glucocorticoids are elevated in old mice [171]. 

Age-related increase in ROS in bone has several negative effects on bone mass and bone 

turnover. Osteoclastogenesis is promoted by ROS [247, 248] and osteoblast number and 

rate of bone formation is reduced, subsequently reducing bone mass [249]. This 

impairment appears to be related to inhibition of Wnt signalling in osteoblasts [250]. 

There also appears to be an association with increased ROS and increased apoptosis of 

osteocytes and osteoblasts, further reducing bone formation activity [196, 251]. This 
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multifactorial nature of the effect of ROS on bone metabolism adds another underlying 

factor which can influence age-related bone loss. 

Whilst this section has described some of the mechanisms which may contribute to the 

bone loss seen with advancing age, there are certainly other effects which may contribute, 

yet are not discussed in detail within this literature review, as they fall outside the scope 

of this thesis. These include the immune system [252, 253], growth hormone [254, 255], 

advanced glycation end products and their receptors [256], telomere shortening [257, 

258], and increased endogenous glucocorticoids [171]. 

1.6 Animal models of skeletal aging 

1.6.1 Non-rodent models of skeletal aging 

An ideal experimental model to study age-related responses to mechanical and 

pharmaceutical stimuli should mimic the age-related changes described earlier whilst 

being cost-effective and reproducible. Whilst non-human primates are commonly used as 

experimental models due to their biological similarities to humans, their use in studies of 

age-related changes is limited. Although they display similarities to humans following 

aging and ovariectomy, including intracortical remodelling, an aspect of bone remodelling 

usually absent in old rodents [259-263], there are some limitations to their use in 

experimental studies. Female rhesus monkeys do not reach menopause until 24 years of 

age [264]. Furthermore, they do not appear to experience post-menopausal bone loss 

from the vertebrae; a hallmark of human post-menopausal osteoporosis [265, 266]. 

Hence, due to their long life-span, associated increased costs, availability, and importantly, 

the welfare and emotive issues surrounding their use in scientific research, non-human 

primates are not a feasible model for routine studies of skeletal aging. 

Aged sheep have been used to study skeletal response to glucocorticoid treatment [267], 

hip replacement implants [268] and implants coated with the bone signalling factor, BMP-

2 [269]. Young sheep have also been used to study the osteogenic response to loading 

[270], although this will be discussed in more detail later in this literature review. 
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However, similar to primates, sheep’s high cost as experimental animals, genetic diversity, 

lack of a true menopause and housing limitations limit their usefulness for study of age-

related osteoporosis. Similar limitations exist for use of pigs, cattle and dogs, although 

they have been used in occasional studies of the effect of age on bone [271-273].  

1.6.2 Rodent models of aging 

Compared to the large mammals discussed in the previous section, rodents are cheaper, 

easier to house and show very small amounts of phenotypic variation between animals 

due to their highly-inbred nature [274]. Genetic manipulation of mice is also now routine 

and allows generation of strains of mice with genetically accelerated aging and early 

senescence. This helps reduce the time required to generate an “aged” animal. Takeda et 

al [275] developed the senescence accelerated mouse (SAM) model which remains the 

most comprehensively studied model of early senescence. A further refinement of this 

model, the SAMP6 mouse, was established as a model of age-related osteoporosis, which 

demonstrates low bone mass and spontaneous fractures at skeletal maturity [276]. An 

antagonistic refinement of the SAM mouse is the SAMR model which is resistant to aging. 

This mouse has been used as a control mouse in aging studies [277, 278]. Although these 

mice show similarities related to normal aging, use of these models has been criticised 

because the molecular mechanisms involved in the accelerated senescence is unknown, 

and the mechanisms associated with normal aging are certainly multifactorial and cannot 

be accurately mimicked by single genetic mutations. Furthermore, and very importantly, 

SAMP6 mice did not demonstrate a reduced responsiveness to mechanical loading 

compared with SAMR controls [278], despite several studies demonstrating a reduced 

responsiveness to mechanical loading in naturally aged animals. This is of particular 

relevance to studies examining the response to mechanical loading in aging animals, 

discussed further in Section 1.8 of this chapter, and such as those planned for the 

experiments described within this thesis. 

Although the reduced time-scale required to generate early senescence mice models is 

convenient, wild-type mice still have relatively short lifespans, which makes them still a 

reasonable, and feasible choice for use as an experimental model for investigating the 
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effect of aging on the skeleton and for investigating the response to mechanical loading. 

Rats and mice both demonstrate age-related changes in bone mass and architecture. Bone 

loss is detectable after approximately 12 months of age in Wistar rats, in both their cortical 

and trabecular compartments [279]. Although rats are commonly used in studies exploring 

age-related changes in bone, the majority of the studies exploring the effect of aging on 

bone biology are now performed in mice, in particular the C57BL/6 strain of mouse. 

C57BL/6 mice do not undergo a true menopause. Uterine weight, a sensitive indicator of 

sex-steroid status, remains normal until at least 31 months of age [196]. Therefore, loss of 

bone mass seen in old mice is predominantly due to age-related factors, and not sex-

steroid deficiency. This makes them an ideal model for studying the effects of aging on the 

skeleton and the diseases associated with aging [280]. 

The effect of aging on the skeleton has been characterised more comprehensively in the 

C57BL/6 strain than in any other [260]. Periosteal expansion and endosteal resorption 

occur in mice older than 12 months [281, 282], although both of these studies explored 

cortical changes within the femur. Until recently, no studies had characterised the pattern 

of bone mass changes seen with aging in the tibia of mice. Our laboratory has recently 

demonstrated that the tibia experiences marked trabecular and moderate cortical bone 

loss associated with aging [4] and that the cortical response is site specific, with the 

proximal tibia failing to demonstrate the cortical expansion (increase in periosteally 

enclosed area) evident in the distal tibia of the same mice (despite an increase in 

medullary area), and in the femur of mice [281, 282]. 

In addition to their well characterised skeletal response to aging, C57BL/6 strains form the 

background for the majority of genetically modified mice used for research [283]. Also, 

the C57BL/6 strain demonstrates a more robust response to mechanical loading than 

other strains of mouse or rats [284]. It is for these reasons that we chose to use the 

C57BL/6 aged mouse for the experiments described in this thesis. Our laboratory also has 

extensive experience of applying axial compressive loads to the tibia of C57BL/6 mice [1, 

2, 8, 11, 29, 32, 34, 285-287]. Finally, and a significant factor, the C57BL/6 mouse strain 

was, at the time of experimenting, the only strain of mouse that had readily available 
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populations of aged mice in the UK (Charles River Ltd, UK). Therefore, all experiments 

described in this thesis utilised young adult (17-19-week-old) and old (19-22-month-old) 

female C57BL/6 mice.  

1.7  Current treatment options for age-related osteoporosis 

Despite the increased understanding of the regulation of bone mass in health and in the 

contribution of different regulators to disease processes such as age-related osteoporosis, 

a comprehensive understanding of the complex interactions between certain key 

pathways remains elusive. A multitude of mechanisms have been implicated in control of 

aspects of bone mass and architecture, but it is becoming increasingly clear that there is 

no single pathway which is responsible for maintenance of bone mass, nor is there a single 

pathway associated with the deterioration in bone mass seen with aging in people or 

animals. For this reason, it is unlikely there will be a single “magic bullet” treatment which 

will treat all clinical signs of age-related osteoporosis. Regardless, several treatments have 

been developed to slow/stop the bone loss, and even improve bone mass, all with the aim 

to reduce fracture risk in osteoporotic patients. In this section, current and potential 

future therapeutic targets for management of age-related osteoporosis are discussed. 

Broadly, management options for osteoporosis include those which can maintain bone 

mass by reducing the degree of bone resorption, and those which can increase bone mass, 

by increasing bone formation.  

1.7.1 Calcium and Vitamin D supplementation  

The role of calcium and vitamin D in the regulation of bone mass was briefly discussed 

earlier in this chapter in section 1.5.1. Reduced levels of circulating calcium in the serum 

stimulate bone resorption due to endogenous PTH secretion. Reduced serum calcium can 

be due to reduced dietary intake.  It can also be due to poor bioavailability of oral calcium 

due to decreased vitamin D levels reducing intestinal absorption and slowing renal 

conservation of calcium. As vitamin D is produced following UV light (sun) exposure of the 

skin, women with low sun exposure are more prone to low circulating Vit D levels and 

lower bone mass than women in climates with greater sun exposure. Northern European 
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countries have a slightly higher incidence of osteoporosis that in southern European 

countries, proposed to be due to the short day length in winter in high latitudes [225]. 

Furthermore, vitamin D production through sun exposure tends to reduce with age, due 

to reduced activity levels and changes in the dermis seen with aging [288, 289]. Low 

vitamin D reduces calcium availability, with over 30% of post-menopausal females 

showing insufficient vitamin D serum levels to maintain PTH levels sufficiently low enough 

to reduce bone resorption. For this reason, vitamin D supplementation has been widely 

used to reduce risk of fracture in post-menopausal osteoporotic women and is often 

recommended as the first line of treatment in patients with osteoporosis. Combination of 

oral calcium supplementation with Vitamin D helps further increase calcium intestinal 

absorption and bioavailability thus reducing the catabolic draw on bone mineral and the 

consequent bone loss seen with aging. One study demonstrated a 25% reduction in hip 

fracture risk when calcium supplementation was added to vitamin D treatment [290]. A 

more recent meta-analysis demonstrated a 15% reduction in all fractures and a 30% 

reduction in hip fractures when combined vitamin D and Calcium supplementation is 

compared with no treatment [291]. However, use of dietary calcium supplements has 

been associated with some adverse cardiovascular events in some studies, so the 

continued use of calcium supplements for management of osteoporosis requires further 

evaluation of the safety profile [292]. 

1.7.2 Antiresorptive treatments 

Hormone replacement therapy and selective oestrogen receptor modulators 

As discussed earlier, the acute drop in circulating oestrogen following the onset of 

menopause contributes to the prevalence of osteoporosis and fractures seen in post-

menopausal women [293]. The use of oestrogen to manage post-menopausal 

osteoporosis was successful at avoiding bone loss in multiple studies [294-296]. Despite 

these promising results with respect to rescue of bone mass loss in elderly women, a 

publication by Rossouw et al [297] demonstrated unacceptably high rates of secondary 

side-effects with use of hormone therapy, including breast cancer, cardiovascular disease 
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and dementia. Subsequently, the treatment was withdrawn from general use, and the 

search for alternate targets to manage bone loss was continued. 

In place of supplemental oestrogen, modifying the effect of the endogenous oestrogen by 

modifying the function of the oestrogen receptors provides one such alternative target 

that avoids the side effects associated with supraphysiological levels of oestrogen. These 

selective oestrogen receptor modulators (SERMs) modify the activity of the ERs by 

inducing a conformational change to the receptor. Raloxifene is the only SERM licenced 

for use in the treatment of osteoporosis, as it has been demonstrated to reduce vertebral 

fracture incidence by 30-50%, although hip fracture incidence was unaffected [298]. 

Raloxifene does not increase the risk of breast cancer like oestrogen does, in fact there is 

a slight reduction in risk following raloxifene treatment. Another SERM, tamoxifen is 

licenced for treatment of breast cancer, which demonstrated an increase in ER signalling. 

Furthermore, although not licenced for treatment of osteoporosis [299], tamoxifen also 

has beneficial effects on bone mass [287]. 

Third generation SERMs (arsoxifene and lasoxifene) have also been investigated and been 

trialled in clinical trials where they resulted in similar fracture risk reduction results to 

currently available SERMs with a similar, but possibly slightly worse safety profile [300, 

301]. The manufacturers did not pursue further development of either of these drugs. 

Bisphosphonates 

Bisphosphonates (BPs) are a frontline treatment for the pharmaceutical management of 

low bone mass seen in osteoporosis, as well as several other diseases which are 

characterised by increased levels of bone resorption, such as metastatic neoplastic disease 

and Paget’s disease of bone [302-304]. BPs are all analogues of inorganic pyrophosphate; 

all variants have two phosphonate groups that share a common carbon atom. 

Modification of one or both phosphonate groups can greatly affect the affinity of binding 

to bone mineral. Factors affecting the binding affinity include the molecular arrangement 

of phosphonate side-chains – the N-H-O bond angle has been demonstrated to affect the 

affinity of binding to hydroxyapatite, the primary bone mineral matrix ingredient [302, 
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305]. Zoledronate has also been shown to form a dual bond to both hydroxyapatite 

crystals and a second type of calcium molecule [302]. The affinity with which a BP binds 

to mineral will help govern its biological availability during resorption and also its duration 

of action [306, 307]. For example, zoledronate only requires yearly injections to maintain 

its biological activity, whilst other BPs require much more frequent injections or oral 

medications. 

As BPs are preferentially adsorbed to bone minerals, they are consequently brought into 

direct contact with bone cells, particularly osteoclasts. They are generally dissociated from 

the bone mineral by the acidic environment in the resorption lacunae and then 

internalised through a process of endocytosis via vescicular movement into the cytosol 

[308]. They are then transported within the cell to the organelles, where they exert their 

ultimate cellular actions.  

The most widely used subclass of BPs in a clinical setting are the nitrogen-containing BPs 

(N-BPs). These include pamidronate, alendronate, ibandronate, risedronate and 

zoledronate. Their primary action is through interference with the mevalonate pathway 

by inhibiting the enzyme farnesyl pyrophosphate synthase (FPPS) [309, 310]. The 

mevalonate pathway is involved in prenylation of small GTPases essential for the function 

and survival of osteoclasts. Use of N-BPs results in a build-up of unprenylated GTPases, 

which thus results in reduced activation of downstream cellular processes related to 

osteoclast activity and survival. The initial cellular effect of N-BPs is to impair osteoclast 

function and reduce resorption, and in some cases result in osteoclast apoptosis, although 

apoptosis does not appear to be a mandatory requirement for inhibition by N-BPs [302].  

There is also building evidence that some of these N-BPs also have anti-apoptotic effects 

on osteoblasts and osteocytes, which are likely independent of their action on osteoclasts 

[311-314]. Even in the absence of any measurable anti-resorptive effect, the anti-

apoptotic effect of BPs can subsequently prevent the loss of bone strength [315]. The 

variable efficacy of different BPs is related not only to their binding affinity to the mineral 

matrix, but also to their variable effects on certain cellular mechanisms. 
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BPs have been, and still are, a very commonly prescribed treatment for diseases 

associated with low bone mass, and have been demonstrated to reduce the incidence of 

fragility fractures commonly seen in patients with osteoporosis [55, 316, 317]. However, 

use of BPs reduced by around 50% between 2008 and 2012 [318, 319], due in large part 

to publicity surrounding adverse events such as osteonecrosis of the jaw [320-322] and 

atypical femoral fractures [323-325]. 

Chapters 6 and 7 in this thesis describe a series of experiments which utilise the ability of 

the BP risedronate to impair osteoclast activity and bone resorption to help determine its 

effect on the loading response following unilateral sciatic neurectomy to engender limb 

disuse, a resorptive stimulus (Chapter 6) or following PTH treatment (another potent 

stimulus of resorption/remodelling). The literature surrounding bisphosphonates, 

particularly risedronate, is reviewed further in the introductions of these chapters, and 

also in several comprehensive review articles [302, 326, 327]. 

RANKL antibodies (Denosumab) 

Since identifying the biological effects of RANKL in the mammalian skeleton, utilising 

RANKL as a therapeutic target to protect against bone loss has been of interest to 

researchers and clinicians alike. Whilst administration of exogenous OPG has been 

investigated [328], for its antagonistic properties against RANKL, its clinical use was not 

pursued due to concerns over its potential immunogenicity and subsequent risk of 

impairing other systemic functions of this important osteoregulatory protein.  

Antibodies targeting RANKL have been preferentially pursued due to their reduced 

likelihood of immunogenicity. Initial animal studies in wild-type mice using Denosumab, 

an anti-human RANKL antibody did not demonstrate any effect on bone mass, however, 

transgenic mice with knock-in of a human/murine chimeric RANKL gene, denosumab 

demonstrated decreased bone resorption and increased cortical and trabecular bone 

mass and architecture [329]. The same group administered Denosumab to ovariectomised 

cynomolgus monkeys which resulted in prevention of cancellous bone loss and prevented 

deterioration of bone strength indices [330]. In addition to laboratory animal studies, 
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clinical trials were pursued to investigate the clinical safety and utility of denosumab. 

Bekker et al [331] demonstrated rapid decreases (within 12 hrs after administration) in 

urinary cross-linked n-telopeptide of collagen (NTX), a biomarker of active bone 

resorption, suggesting denosumab can have a rapid and significant effect on bone 

resorption in humans. Further phase II studies exploring the effect on post-menopausal 

women with low bone mass have shown significant increases in bone mass [332, 333], and 

one study demonstrated reversibility of the bone turnover changes following 

discontinuation, and subsequent restoration following re-treatment [334]. Furthermore, 

patients that had received 2 years of denosumab still maintained a higher BMD than 

placebo patient 2 years after discontinuing treatment [335]. Fracture risk is also reduced 

following denosumab treatment in the vertebrae (68%), hip (40%) and non-vertebral sites 

(20%) [336]. When considering histomorphometry indices based on iliac bone biopsies, 

bone turnover markers were lower in denosumab-treated patients than in alendronate 

patients [337], and discontinuing treatment resulted in a complete return to baseline 

levels of bone turnover seen in placebo patients [338], confirming the effects of 

denosumab on bone remodelling are reversible.  

Long term treatment with denosumab has demonstrated a fairly low risk of adverse 

events, comparable with existing treatments [336] and that continued treatment 

demonstrated a progressive and substantial increase in BMD over the 8 years of the study 

in post-menopausal women with low bone mass [339].  

Although phase II and III clinical trials have demonstrated a good safety profile, the 

concern remains that inhibiting the function of RANKL systemically could result in 

impaired immune function due to RANKL’s almost ubiquitous presence in many tissues. 

Meta-analysis of trials using denosumab for osteoporosis treatment have identified a 

borderline increased risk of serious infection [340]. Furthermore, given the recent 

identification of bisphosphonate-associated adverse events such as osteonecrosis of the 

jaw (ONJ) and atypical femoral fractures (see section on BPs above), surveillance of 

treated patients for these particular complications should be continued. A very recent 
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report describes 7 cases of ONJ and two of atypical femoral fractures within the cohort of 

4550 women eligible for the extension trial of the FREEDOM study [341].  

Denosumab is licenced for use in the USA and Europe for osteoporosis [342] and to protect 

against metastatic and primary bone neoplasia-associated bone loss [343]. The increasing 

clinical usage and the recent demonstration that RANKL produced by osteocytes is 

essential for the bone loss associated with disuse led us to investigate the relationship of 

osteocytic RANKL expression following both disuse and increased loading (Chapter 4). 

Cathepsin K antibodies 

Cathepsin K is an enzyme that the osteoclast uses to digest bone mineral matrix proteins, 

such as collagen. Odanacatib inhibits cathepsin K. Therefore, odanacatib treatment 

actually spares osteoclasts, but still inhibits resorption [344]. 

Treatment of adult rhesus monkeys with odanacatib resulted in improved bone strength 

and BMD at the lumbar spine and the hip [345, 346]. Histomorphometry demonstrated 

that trabecular bone remodeling was reduced in the lumbar spine and hip, yet periosteal 

modeling-based formation was increased [345, 346]. The effect of odanacatib on cortical 

bone was also investigated at the central femur. Improved formation and reduced 

resorption following odanacatib treatment led to increased cortical thickness and volume 

[347]. Human trials have demonstrated a robust improvement in cortical bone parameters 

and similar reduction in fracture risk compared to denosumab (Relative risk reduction for 

vertebral, hip and non-vertebral fractures of 72%, 47% and 23% respectively – p<0.001) 

[348]. Unfortunately, further analysis of the data from this trial, including an extension 

arm identified an unacceptably high risk of adverse cardiovascular events, including stroke 

and atrial fibrillation (RR 1.37; 95% CI 1.10–1.71; p = 0.005) [349], which subsequently led 

to the discontinuation of development of odanacatib by Merck in September 2016. 

1.7.3 Anabolic therapies 

Beyond maintenance of bone mass through impairing bone resorption, anabolic therapies 

provide promise for replacing lost bone. Currently the only licenced anabolic treatments 
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for management of osteoporosis are analogues of PTH. These treatments have been 

shown with high degrees of confidence to reduce fracture risk compared with no 

treatment [52, 350], however, a recent economic review from the Institute for Clinical and 

Economic Review has voiced concerns over the cost-effectiveness of using these novel 

treatments in management of low bone mass, given there is currently no clear evidence 

that they perform better than existing anti-resorptive treatments such as zoledronic acid 

[351].  

Teriparatide and Abaloparatide 

The anabolic drugs, Teriparatide (PTH 1-34) and Abaloparatide (PTHrP 1-34) are now both 

licenced for treatment of post-menopausal osteoporosis by the Food and Drug 

Administration (FDA) in the USA.  

Although the physiological effect of PTH excretion in the body normally is to promote 

mobilisation of calcium from the skeleton through bone resorption, intermittent 

administration of PTH (or its analogues) demonstrates a potent anabolic effect on bone 

formation with elevation in bone formation markers exceeding bone resorption markers 

for at least 2 years [352]. Improvement in histomorphometric parameters following 

teriparatide treatment mirrors the changes in bone turnover markers, with increases in 

%MS/BS in all bone compartments for all time-points measured up to 2 years [353].  

Abaloparatide has only recently been approved by the FDA (April 2017) so longer-term 

information on its effects is more limited than for teriparatide. The most recent phase III 

clinical trials demonstrated robust improvements in risk of both vertebral and non-

vertebral fractures compared to placebo and equivalent risk reduction to teriparatide 

treatment [52].  

Treatment duration is limited to only 2 years for teriparatide due to concerns over 

increased incidence of osteosarcoma development following lifelong treatment in rats. 

[354, 355]. The incidence of osteosarcoma was also increased in rodents treated with 

abaloparatide in a dose and duration dependent fashion, and this incidence was no 

different to the positive control group treated with teriparatide [356]. Despite these 
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concerns, the incidence of primary bone tumours in humans treated with teriparatide is 

very low [357], and apparently no greater than the incidence in the untreated population 

[358]. 

Currently, anabolic therapies are mostly used as a second-tier treatment, reserved for 

cases with higher risk of fragility fracture, a decision based partly on their greater expense, 

and necessity for daily subcutaneous injections. When considering combination therapies, 

the sequence with which multiple drugs are administered does appear to affect the 

magnitude of the response to treatment. This is discussed in more detail in the later 

section in this chapter on combination therapies, and in Chapter 7. 

Calcium Sensing Receptor Antagonists 

It was hypothesised that antagonising calcium sensing receptors would stimulate a 

consequent surge in PTH production, resulting in anabolic effects – clinical trials of two 

separate drugs (roncalceret, MK-5442) demonstrated inferior results when exploring BMD 

compared to alendronate, and also teriparatide, with roncalceret also resulting in a 

reduction in hip BMD [359, 360]. Further development of these two medications was not 

pursued by their manufacturers. 

Strontium ranelate 

Strontium ranelate treatment showed decreased risk of both vertebral and non-vertebral 

fracture in women and men [361-364]. Strontium ranelate never achieved FDA approval 

for the USA, but it was licensed for use in Europe for management of osteoporosis but had 

its licence conditions restricted once evidence of increased risks of myocardial infarction 

became evident. Subsequent to these restrictions, its manufacturer in Europe has 

discontinued supply due to reduced/limited market demand and concerns over 

cardiovascular adverse events [365].  

Sclerostin antibodies 

Sclerostin inhibits the Wnt pathway, subsequently impairing osteocyte proliferation and 

bone formation. Romosozumab is a monoclonal sclerostin antibody (Scl-Ab). Blocking 
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sclerostin’s activity results in improved bone formation, so Romosozumab is an anabolic 

medication which is reaching the final stages of regulatory approval with the FDA. The 

anabolism is effected by enhanced osteoblast and chondroblast differentiation and 

maturation, and inhibition of apoptosis of osteoblasts and osteocytes [366]. 

The major phase 3 trial of romosozumab in 7180 postmenopausal women with 

osteoporosis administered romosozumab 210 mg monthly or a placebo and showed new 

vertebral fractures reduced by 73% compared to placebo after 1 year (incidence 0.5% vs. 

1.8%, p < 0.001) [367]. There was also a 36% decrease in clinical fractures (p = 0.008). In 

the second year of this trial all participants were switched to denosumab. After 2 years, 

romosozumab/denosumab treated patients had 75% lower fracture rate than 

placebo/denosumab treated patients (0.6% vs. 2.5%, p < 0.001). In this trial, the incidence 

of adverse events adverse events between groups was roughly equivalent. 

A second active comparator trial comparing the efficacy of romosozumab to alendronate 

has recently been reported [368]. This study enrolled 4093 postmenopausal women and 

randomised their treatment into 12-months treatment with either romosozumab 

followed by a further 12-months treatment with alendronate, or 12 months of 

alendronate, followed by continued alendronate for a further 12 months. The study 

demonstrated improved fracture risk in both new vertebral fracture (48% risk reduction) 

and clinical fracture, defined as clinical vertebral fracture or non-vertebral fracture (27% 

risk reduction) in the romosozumab:alendronate group compared to 

alendronate;alendronate group. However, this study did report an increased incidence of 

adjudicated serious cardiovascular adverse events compared to the alendronate-treated 

group. Sixteen patients (0.8%) in the romosozumab group and 6 (0.3%) in the alendronate 

group reported cardiac ischemic events (odds ratio, 2.65; 95% CI, 1.03 to 6.77). Sixteen 

patients (0.8%) in the romosozumab group and 7 (0.3%) in the alendronate group reported 

cerebrovascular events (odds ratio, 2.27; 95% CI, 0.93 to 5.22). This finding could be 

explained by the finding that use of bisphosphonates has been shown to reduce the 

incidence of myocardial infarction [369]. 
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Initially it was hoped that the FDA would approve Romosozumab for use in treatment of 

post-menopausal osteoporosis and reduction of fracture risk in July 2017, providing an an 

additional anabolic treatment for management of osteoporosis. However, due to the 

report by Saag et al [368] reporting increased incidence of cardiovascular serious adverse 

events, the approval was deferred until the drug’s developers, Amgen/UCB, can provide 

further evidence of the safety of Romosozumab with regards to its risk of precipitating 

cardiovascular adverse events. The larger, placebo-controlled phase III study by [367] did 

not demonstrate any increase in risk of serious cardiovascular adverse events. The 

resubmission analysis is likely to pool all data between all phase III studies, to evaluate the 

safety profile of the drug [370]. 

Another anti-sclerostin antibody, blosozumab is also being developed by Eli Lilly and phase 

II trials have demonstrated similar changes in BMD to those seen with romosozumab 

[167]. Although BMD declined slowly following discontinuation of blosozumab, BMD for 

the hip and spine remained greater than placebo treated women and no adverse events 

were reported in these studies related to the blosozumab [168]. No phase III trials have 

been reported yet for blosozumab. 

An interesting observation in both studies is that treatment with sclerostin antibodies was 

not associated with any increase in the BMD of the distal radius. Sugiyama et al [371] 

hypothesise that the lack of response in this area when other regions do respond occurs 

because the radius is typically a low strain area, and thus sclerostin antibody sensitises the 

bone to responding better to mechanical strains to which it is normally incapable of in an 

elderly patient. This is supported by recently published preclinical data which 

demonstrates that the loading response is augmented following treatment with sclerostin 

antibody [372] or following genetic deletion of the sclerostin gene in mice [33]. This 

suggests that Scl-Ab could help improve the deficient mechanostat in the elderly and 

provide, in conjunction with relevant mechanical loading exercises; a “Smart” therapy that 

provides bone at areas of greatest need. 

Additionally, with regards to preclinical safety data, in contrast to PTH/PTHrP treatments, 

romosozumab was not associated with any treatment effect associated with tumour 
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development in a rodent life-long treatment study [373], which suggests that 

romosozumab is unlikely to pose an increased carcinogenic risk to humans.  

1.7.4 Combined anti-resorptive and anabolic therapies 

Management of osteoporosis is most commonly facilitated by treatment with anti-

resorptive medications, such as bisphosphonates, and more recently denosumab, an anti-

RANKL antibody. Yet, in many cases of more severe osteoporosis, particularly those at 

imminent risk of fracture, it is prudent to consider combining therapies to maximise 

improvements in bone mass and strength and subsequently reduce risk of fracture. As 

described in more detail in section 1.3, bone formation can occur without prior bone 

resorption (modelling), or via bone remodelling, which must be preceded by resorption at 

the same site. Therefore, impairment of bone resorption with medication may limit the 

amount of bone formation possible following treatment with a typically anabolic drug by 

limiting the contribution of bone remodelling to the formative response.  

The clinical interest in combined therapies has been increasing in recent years due to the 

availability of anabolic treatments beyond PTH/teriparatide. Several authors have 

comprehensively reviewed the literature relating to the combined or sequential use of 

antiresorptives and PTH [374-376]. Generally, the most consistent effect noted between 

studies for combined PTH and antiresorptives is an increase in the BMD outcome in the 

hip compared to monotherapy with PTH. In contrast, the effect of combination therapy 

on spine BMD, compared to monotherapy in majority of studies is not significantly 

different. However, when teriparatide was combined with denosumab, spine and hip BMD 

was increased [377] compared with either monotherapy. In peripheral sites, using HR-qCT, 

combined treatment was superior to teriparatide monotherapy but only marginally better 

than denosumab alone [378]. 

The effects following sequential use of the drugs appears to be dependent on the order 

the drugs are delivered. Initial concerns over the efficacy of combining anti-resorptives 

and anabolic drugs were raised by early studies of sequential treatment. Some studies 

identified inhibitory effects of alendronate on the anabolic actions of PTH/teriparatide in 
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postmenopausal women, thus limiting the benefit of therapy to bone mass [379, 380], but 

generally these studies were not sufficiently powered to detect differences in fracture risk 

between combined and monotherapy. Using histomorphometry, trabecular bone from 

iliac crest biopsies in women pre-treated with alendronate showed less tetracycline 

labelled surface at baseline than treatment naïve patients [381]. In this same study, most 

indices of bone formation following teriparatide treatment were lower in alendronate 

treated women than in untreated women. 

However, there is relatively robust evidence of a benefit of sequential combined therapy 

over monotherapy to bone mass if the teriparatide treatment is used initially, then 

followed by an anti-resorptive drug [382]. It is proposed that this discrepancy is because 

use of initial anti-resorptive drugs may impair the anabolic effect of subsequent 

teriparatide by limiting remodelling. Starting with anabolic drugs allows their anabolic 

effects to proceed unhindered, and then, once their effects are realised, an anti-resorptive 

drug can be used to maintain bone mass and strength by limiting the subsequent 

resorption. The combination of bisphosphonates and PTH analogues is discussed further 

in Chapter 7. 

Combining other antiresorptives with teriparatide may result in different outcomes. For 

example, following denosumab treatment with teriparatide treatment resulted in a 

transient reduction of the hip BMD [350]. This finding has lead authors to recommend 

continuing denosumab to overlap treatment for at least 6 months after the 

implementation of teriparatide treatment [382, 383]. Some antiresorptives, such as the 

cathepsin K inhibitor odanacatib, reduce osteoclast activity, but not number [344, 384]. 

Presence of osteoclasts, and not necessarily activity of osteoclasts may be sufficient to 

allow better bone formation by teriparatide than with bisphosphonates. There are no 

clinical trials, to the author’s knowledge, that compare the efficacy of combined 

teriparatide, or other anabolic with inhibition of cathepsin K. A preclinical trial in rats 

demonstrated an additive effect on BFR and BMD when PTH was combined with ONO-

KK1-300-01, a cathepsin K inhibitor, which was not present when alendronate was 

combined with PTH, confirming that the anabolic effect of PTH is maintained with 
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inhibition of Cathepsin K, but is slightly impaired following treatment with alendronate 

[385]. Unfortunately, as the development of odanacatib has been discontinued, it is 

unlikely that further clinical trials will be pursued. 

Treatment with the PTHrP analogue, abaloparatide followed by 6 months of alendronate 

resulted in significant risk reductions for vertebral and non-vertebral fractures in post-

menopausal women, and also significant increases in BMD at all sites measured, when 

compared with alendronate treatment alone [386]. Similarly, the active comparator trial 

for romosozumab also reported significantly improved BMD and fracture risk outcomes in 

the hip and spine [368]. 

1.7.5 Combining physical therapies with pharmaceutical treatments. 

Combining traditional pharmaceutical treatments with non-pharmaceutical treatments is 

also an area of clinical interest to our research group. Mechanical loading provides a 

stimulus that results in an adaptive response that is both structurally appropriate and 

effective at resisting the strains to which it is normally exposed. By discovering treatments 

which work in addition to, and ideally synergistically with mechanical loading, systemic 

treatments are then able to promote and improve the structurally appropriate adaptive 

response achieved by mechanical loading. As a failure in the mechanisms associated with 

the normal adaptive response to mechanical loading is hypothesised to underlie the onset 

of age-associated osteoporosis [23], discovering mechanisms and strategies to augment 

this deficient response to mechanical loading could provide clinicians another avenue to 

improve bone mass and hopefully reduce fracture risk in clinically important areas by 

directing appropriate mechanical loading activities to improve these “at-risk” sites. The 

effect on bone of altering the mechanical loading environment and the effect that aging 

has on these normal responses is discussed in detail in the next section of this literature 

review and in each individual chapter introductions. In this thesis, in an effort to identify 

strategies which may improve the age-impaired loading response, we investigate the 

effect, in old female mice, of altering the habitual loading environment prior to exogenous 

loading (Chapter 5), the effect of blocking resorption with the bisphosphonate 

risedronate, on the loading response in ambulatory and sciatic neurectomised mice 
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(Chapter 6), and the effect of blocking resorption with risedronate on the anabolic 

responses to parathyroid hormone and/or loading (Chapter 7). Current literature 

discussing the specific effects of certain pharmaceuticals on the response to mechanical 

loading in the aged skeleton is discussed in more detail later in this chapter, in section 

1.8.4. 

1.8 Regulation of bone mass and architecture by mechanical loading 

Whilst pharmaceutical therapies can both limit bone resorption and increase formation, 

these therapies mostly act in a systemic manner with effects in all bones rather than as a 

targeted treatment affecting bone sites that most need it. In contrast, mechanical loading 

acts locally by increasing bone mass and strength in sites that need it and reducing it in 

sites that do not. This adaptive change in bone mass and architecture provided by 

appropriate mechanical loading provides a “Smart” stimulus which provides bone where 

it is most needed. Augmentation of this structurally appropriate modification of bone 

mass provides an ideal strategy to improve bone mass in situations of low bone mass, and 

thus potentially reduce the risk of fracture in at-risk sites which typically suffer from 

reduced bone mass, yet high stress. The response to mechanical loading is particularly 

impaired in older people, so treatment strategies which may augment the structurally 

appropriate formation of bone imbued by mechanical loading provides an intriguing and 

potentially very important avenue for improving the bone mass in at-risk bone sites in 

osteoporotic patients, such as the hip, and distal antebrachium.  

Altering the habitual loading context within which loading is administered through disuse 

can improve the response to mechanical loading in young mice [35], as can treatment with 

a range of therapeutic agents including parathyroid hormone [32, 387, 388], Cyclosporin 

[389], tamoxifen [287] or sclerostin antibody [372]. These experiments demonstrate that 

pharmaceutical and physical manipulation of the context within which loading is 

performed can affect the magnitude of the response to loading. The later chapters of this 

thesis (chapters 5-7) explore the effects of manipulating the context within which loading 

is applied in old mice with an impaired osteogenic response to loading.  
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1.8.1 The mechanostat 

Mechanical strain is widely accepted as the principal factor controlling bone mass and 

architecture. Whether the loading stimulus induces adaptive changes in bone effectively 

can be affected by many systemic and local factors [5]. The mechanostat theory was 

originally postulated by Harold Frost [12, 13, 390]. The theory states that control of 

resorption and formation is tightly regulated based on the local strain environment to 

keep the density and architecture of bone at a level where the forces experienced are met 

by a subsequent reduction or increase in the strength of the bone to maintain a certain 

“optimal” strain [13]. This homeostatic mechanism is supposed to reduce the chances of 

mechanical failure of the bone by ensuring sufficient strength, whilst at the same time 

minimising excessive weight and metabolic wastage inherent with excessive bone mass. 

The mechanostat is summarised in Figure 9. 

Figure 9 – Schematic diagram illustrating the mechanostat theory of 
the control of bone mass 

Figure adapted from Lanyon et al [5]. 
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Demonstrations of altered environmental loading modifying the human skeleton have 

been widely investigated and reported. The overall anabolic effect of loading is well 

recognised. The earliest studies to demonstrate the effect of loading and the site-specific 

nature of the adaptive response to increased loading showed increased cortical thickness 

and/or BMD in the bones of tennis players’ racquet arms compared to their contralateral 

arm [391, 392]. Further demonstration of the anabolic effect of increased mechanical 

loading and the varied effects of the character of the loading activity was reported by 

Heinonen et al [393] where weight lifters and squash players demonstrated greater tibial 

BMD than sedentary controls, but cyclists did not demonstrate a difference in BMD 

compared to the sedentary controls. In professional footballers undergoing intensive 

training, bone mineral content is greater than age- and weight-matched controls [394].  

Although strain is the primary effector of the cellular response to mechanical loading in 

bone, changes in mechanical loading are typically also associated with activity-related 

changes in the degree of muscle mass and local blood flow, together with potential 

changes in cardiorespiratory health. These factors may also influence bone mass 

independently [207, 395], although we have recently demonstrated that concurrent 

exercise did not affect the magnitude of the response to exogenous axial tibial loading in 

mice [396]. 

Decreased loading results in a rapid reduction in skeletal mass through an increase in bone 

resorption and a decrease in bone formation. This uncoupling of formation from 

resorption is a hallmark of all forms of disuse [397]. An excellent example of the bone loss 

promoted by reduced mechanical loading is in healthy adult astronauts; unloading of the 

entire skeleton results in a reduction in bone formation and an increase in bone resorption 

and bone loss in the order of 1-1.6% per month is observed [398, 399]. Earlier studies 

demonstrated most bone parameters are able to return to normal in astronauts following 

resumption of earthly weight-bearing, although vBMD measures were not able to recover 

fully [400]. A more recent study reported that majority of parameters measured using qCT 

were not fully recovered within 12 months after return to earth [401]. Reduction of 

mechanical loading in humans, and a reduction in bone mass is observed in several other 
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situations, such as patients requiring prolonged bed rest, limb immobilisation to allow 

fracture repair, or those with spinal/nerve injury [402-405].  

The degree of bone loss seen following onset of disuse appears to be site-specific rather 

than generalised to the whole skeleton. The areas with greatest loss seem to be focused 

around those areas where the loading was previously applied – a further demonstration 

of the efficacy of the mechanostat. For example, the bone loss is greatest around the 

knees in patients following spinal cord injury, whilst vertebral bone mass actually 

increased compared to age-matched ambulatory controls [406] suggesting that the bones 

primarily affected are those which developed under the influence of mechanical stimuli 

that are subsequently unloaded due to spinal cord injury. Further evidence supporting the 

site-specificity of the response to unloading includes a demonstration in astronauts that 

weight-bearing bones demonstrated a greater loss in bone mass than non-weight-bearing 

bones following microgravity [407] 

1.8.2 The cellular response to mechanical loading 

1.8.2.1  Osteocytes 

Increasing evidence is mounting to show that the osteocyte is the cell type primarily 

responsible as the mechanosensor for bone. The unique biology of the orientation and 

distribution of the dendritic projections through the very narrow canalicular spaces allows 

the osteocyte to have an intimate association with the physical structure of the 

mineralised portions of the bone, and additionally to be able to communicate directly with 

adjacent osteocytes via cell:cell junctions and also with osteoclasts and osteoblasts on the 

lamellar and trabecular surface and within BMUs. Early work by our laboratory 

demonstrated a rapid increase in osteocyte staining for glucose 6-phosphate 

dehydrogenase (G6PD) within 6 minutes of mechanical loading in turkey ulnas [85] 

demonstrating osteocytes very quickly respond to changes in the mechanical loading 

environment. Several recent reviews have comprehensively summarised the evidence 

supporting the role of osteocytes as the chief mechanosensor [18, 38, 104]. 
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The specific mechanosensory mechanisms of osteocytes have still not been fully 

identified. The lacunocanalicular network (LCN) throughout bone and its extracellular fluid 

matrix are likely to be involved in the mechanism of transmitting whole bone stresses into 

fluid flow shear stress which can be sensed by the osteocyte to appropriately respond to 

strain and/or shear forces. A very recent review has postulated that the shape of the 

osteocytic lacunae and canaliculi can affect the mechanosensitivity of osteocytes [19]. The 

specific mechanisms for osteocyte mechanosensation are, however, only partially 

understood. This is in part because it is difficult to study the physiological context of the 

osteocyte’s role in mechanical loading in cortical bone ex vivo and in vivo models cannot 

easily study the physiological activity of the osteocyte given its location within the LCN. 

Likewise, in vitro models of osteocyte loading are limited by the inability to provide an 

appropriate 3-dimensional matrix which completely mimics the in vivo LCN.  

Multiple different mechanisms have been postulated as mechanosensory pathways. The 

primary cilium present on osteocyte-like cells has been shown to deform in cells subjected 

to pulsatile fluid flow, and the cellular response shown to be mediated via a calcium-

independent mechanism [408]. Inhibition of the primary cilia resulted in reduced 

expression of COX-2 and reduced OPG/RANKL ratio following pulsatile fluid flow in vitro 

[408]. Actin-rich cytoskeletal projections which are associated with the extracellular 

matrix are also thought to contribute to pathways for sensation of mechanical 

deformation through deformation of stretch-activated cation (Ca2+) gated channels. It is 

thought these microfilaments may attach to the canalicular walls to provide deformation 

of the stretch-activated ion channels during increased fluid shear stresses generated 

during bone loading [409]. Connexin 43 (Cx43) is a membrane-bound receptor which has 

been demonstrated to be important in osteocyte response to mechanical loading, both in 

vitro and in vivo [410-412]. In two separate studies from our laboratory, using a microarray 

approach, we were able to demonstrate that, in an osteocyte-rich cortical bone sample 

from young mice, there were many pathways that were differentially regulated following 

increased mechanical loading [413], particularly upregulation of genes associated with 

proliferation, and that the basal and loading-related gene expression were substantially 

modified by context, such as oestrogen deficiency and disuse [86]. Ultimately, there is still 
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not a definitive single pathway that can be implicated for osteocyte mechanosensation, 

and instead, there is not one, but many mechanisms/pathways for mechanosensation. 

Although many cellular pathways are affected by changes in mechanical loading, there are 

several key proteins/pathways related to mechanosensation and subsequent bone 

formation/resorption that are affected by mechanical loading that are of interest to our 

group. For example, osteocytes have been identified as the primary source of RANKL 

necessary for the resorption of bone seen following disuse induced by tail suspension [21, 

22], suggesting this molecule is not only important in regulation of osteoclast activity 

associated with disuse, but that the source of this RANKL is primarily from osteocytes, and 

not osteoblasts as originally believed. The role of RANKL in bone is discussed earlier in 

section 1.4.1 and in more detail in Chapter 4, which reports a series of experiments 

exploring the change in expression of RANKL and other related molecules following both 

induction of disuse with sciatic neurectomy, and increased loading via axial tibial loading 

to determine the temporal and spatial pattern of expression following these stimuli. We, 

and others have studied the Wnt pathway in the context of loading and demonstrated 

that the protein, sclerostin, discussed earlier in section 1.4.1, is strongly regulated by 

mechanical loading [8, 20, 227, 414]. It is down-regulated following application of 

mechanical strain in vitro [414, 415], and in vivo its expression in osteocytes is reduced 

following application of increased strain [8, 20], and it is increased following 

disuse/decreased mechanical loading [8]. These strain-related changes in sclerostin 

expression subsequently modulate osteoblast activity through sclerostin’s selective 

inhibition of the Wnt pathway [159].  

Circulating levels of oestrogen are known to affect the responsiveness of osteocytes (and 

osteoblasts) to mechanical loading, and this action is likely mediated through regulation 

of the expression of ERα; administration of oestrogen results in upregulation of 

osteoblastic ERα in vitro [416, 417]. There is abundant evidence that oestrogen receptors 

(ER) are involved in signalling associated with loading-related bone formation. Early 

studies demonstrated that ERα is necessary for the normal anabolic response to increased 

mechanical loading [232]. Knockout of ERα resulted in a diminished response to 
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mechanical loading and knockout of ERβ resulted in an increased response to mechanical 

loading [418]. In vitro work has demonstrated that while ERα is essential for the 

proliferative response of osteoblastic cells mediated by Wnt/β-Catenin signalling, this is 

via a LRP5/Wnt receptor independent pathway [415, 419, 420]. ERβ mediates the acute 

sclerostin downregulation seen following loading [419]. Taken together, these results 

suggest that signalling through ERα increases the bones’ response to mechanical strain 

(increases cell number) while ERβ suppresses it. Interestingly, osteocyte specific deletion 

of ERα did not effect the magnitude of the response to axial tibial loading in 3 month-old 

mice [421]. There are several detailed reviews discussing the role of oestrogen and its 

receptors on the adaptive response to loading in bone and further detailed discussion is 

outside the scope of this literature review [228, 229, 422]. 

Whilst many other biochemical signalling pathways have been demonstrated to be 

mediated by altered mechanical loading, their pathways are typically dependant on other 

biochemical changes for their activation, rather than being directly mediated by the 

changes in strain within the cell. For example, increases in intracellular calcium mediate 

various secondary biochemical pathways involved in the remodelling response, such as 

Protein Kinase C and Prostaglandin E2 [423] and Insulin-like Growth Factor-1R [424]. 

Although osteocytes are the primary cell involved in sensing the mechanical stimulus 

associated with loading, they are not the cells that affect the primary responses to changes 

in mechanical load. Osteoblasts and osteoclasts are the cells that mediate bone formation 

and resorption respectively, typically in response to cues from signalling molecules 

produced by osteocytes.  

Effect of aging on osteocytes 

There is considerable data to support the theory that osteocyte number and/or function 

is reduced with aging [19, 280, 425]. Lacunar density in cortical bone is reduced with aging 

[426, 427] and the number of empty osteocyte lacunae is increased in old murine bone 

[29]. The number of dendritic connections between osteocytes increases in adult versus 

juvenile rats, then decreases again with advancing age [81]. Another study using acid 

etching and back-scattered electron microscopy also demonstrated that osteocyte 
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lacunae in showed decreasing canalicular connections with neighbouring lacunae with 

advancing age [82]. A recent review looking at osteocyte lacunocanalicular architecture 

and adaptation with aging has hypothesised that the changes in lacunar shape and density 

and number of canaliculi associated with aging may be related to decreases in 

mechanosensation by osteocytes, although definitive data is still lacking [19].  

Although the response to mechanical loading is impaired in aged animals, [25, 27, 29], 

whether osteocytes are the rate-limiting factor is still uncertain. We have shown that 

osteocytes, although reduced in number compared with young animals are still able to 

respond appropriately to a loading stimulus. The suppression of osteocytic expression of 

sclerostin following loading was equivalent to that seen in young mice, when only viable 

osteocytes were evaluated [29]. However, when exploring the response to repeated 

loading episodes, a more recent study has demonstrated that the sustained suppression 

of sclerostin is impaired in old mice (22 months), compared to young adult mice (5 

months) [428], suggesting that osteocyte response to increased mechanical stimulus in 

old mice, although adequate after initial stimulation, cannot be sustained following 

repeated stimuli, and appears to involve the Wnt pathway.  Several factors probably 

contribute to the reduced cellular activity of osteocytes in old bone, including cellular 

senescence, increased osteocyte apoptosis, and altered intercellular signalling, however, 

extended discussion of these factors is outside the scope of this literature review and is 

covered in review articles [280, 429]. 

1.8.2.2  Osteoblasts 

Osteoblast numbers typically increase following increased mechanical loading. Early 

studies confirmed their proliferation was an important step on the road to bone formation 

in response to mechanical loading in turkeys and rats [430, 431]. Using 

bromodeoxyuridine (BrdU) to label proliferating cells, Turner et al [431] demonstrated 

that the endosteum incorporated 6 times more BrdU positive cells 96hrs after loading. 

Additionally, the thickness of the periosteum has also been shown to increase within 5 

days of loading the turkey ulna [430] and within 24 hours in mice [4]. These proliferative 

responses are promoted by several of the mechanosensory pathways discussed in the 
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previous paragraphs, and although the degree of response to mechanical stimulus dictates 

the magnitude of the proliferative response, there are several other external and systemic 

factors which can limit the response to mechanical loading. Of particular relevance to this 

thesis, aging [25, 27, 29, 389] and increased habitual physical activity levels (eg fighting) 

[285] have been demonstrated to impair the osteogenic response to loading. 

Furthermore, reducing the intensity of habitual loading by prior denervation of the loaded 

limb has also been demonstrated to increase the magnitude of the loading response in 

young mice [35], further supporting the suggestion that existing mechanical loading 

environment can affect the magnitude of the osteoblastic response to loading. Chapter 5 

explores the effect of reducing habitual loading on the deficient loading response in old 

mice. 

As discussed in Section 1.8.2, ERα and ERβ are important regulators of the adaptive 

response to mechanical loading. This response is mediated via regulation of osteoblastic, 

as well as osteocytic expression of the receptor. Much of the advancement of the 

understanding of the roles of ERs in bone biology has been achieved through the use of 

genetically modified mice lacking either ERα or ERβ. Initial experiments explored the effect 

of global deletion of the gene on the loading response [232]. Whilst the phenotype of 

several bone cell-specific ERα knockout strains has been relatively well described and 

summarised well in the review by Rooney et al [432], the response of these bone-cell 

specific strains of mice to mechanical loading has not been as well investigated. However, 

one study deleting ERα from osteoblastic lineage cells demonstrated an increased 

responsiveness to mechanical loading, but this effect was only evident in the cancellous 

bone and not in the cortical bone [433]. Taken together, the differential responses of bone 

to loading following ERα global deletion vs osteoblast/osteocyte-specific deletion suggests 

that ERα expression in mature bone cells may not be necessary for the control of 

functional adaptation and that further investigation is required to gain a clearer 

understanding of the role of ERα in skeletal adaptation [432]. 
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Effect of aging on osteoblasts 

In the study from our lab which demonstrated initial mechanosensation by osteocytes was 

unaffected, we also demonstrated that it appears to be a failure of proliferation of 

osteoblasts in aged mice that underlies the age-impaired response to mechanical loading 

[29]. In a follow-up microarray study, we also demonstrated that genes associated with 

proliferation were down-regulated in old mice and that loading regulated similar signalling 

cascades in old and young mice, but the responses were not sustained in old mice, 

compared to young mice [413]. This study also concluded that bone cells’ ability to 

translate acute responses into functionally relevant outcomes is impaired. This finding is 

consistent with the findings from Holguin et al [428] showing the suppression of sclerostin 

was not sustained in old mice following repeated loading. These and other studies relevant 

to the individual chapters will be discussed in more detail in the introduction of chapters 

5, 6 and 7. Furthermore, there are review articles discussing the effect of aging on bone 

cell responses to loading [19, 434]. 

1.8.2.3  Osteoclasts 

It is proposed by Skerry [435] that the response of bone to unloading is simply one end of 

a spectrum of response to mechanical stimuli, where increased mechanical loading causes 

the other end of the response spectrum. It is likely that habitual loading represents a 

middle ground on this spectrum and that unloading causes the opposite effect to 

increased loading, but that these responses are mediated by common pathways. 

However, although bone formation following disuse is reduced compared to normal 

ambulatory animals, the amount of osteoblast surface was not decreased until an 

extended period of disuse had occurred [106]. In the same study, osteoclast numbers 

increased following disuse [106]. Osteoclasts are most important for bone resorption, so 

osteoclast activity tends to increase when the magnitude of mechanical loading is 

decreased. Additionally, expression of pro-osteoclastic markers such as tartrate-resistant 

acid phosphatase (TRAP) and cathepsin K decrease when mechanical load is applied [436] 

in vitro. Several comprehensive reviews discussing the cellular responses to changes in 
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mechanical loading are published, and should be consulted for further information [38, 

104, 435, 437]. 

Effect of aging on osteoclasts 

The effect of aging on the response of osteoclast activity is not well reported. Although 

osteoclast number and activity is typically increased with aging [183, 185], there is little 

reported that examines the effect of mechanical loading on osteoclast activity in aged 

mice. In aged mice, the rate of resorption is reduced following loading, however, the 

degree of suppression of resorption is not as great as that seen following loading in young 

mice, which suggests that the ability of osteoclasts to respond to loading in aged mice is 

diminished compared to that in young adult mice [30, 31]. Further studies are needed to 

further define the effect of aging on the response to mechanical loading in osteoclasts. 

1.8.3 The effect of aging on bone’s structural response to mechanical loading  

It is postulated that reduction in bone mass seen in age-related osteoporosis is primarily 

mediated through a failure of the mechanostat [23]. Loss of bone mass associated with 

aging results in weaker bone and subsequently increased deformation of bone and 

increased strain. In the elderly, bone mass can reduce to the extent that minimal trauma 

can result in fracture, despite no appreciable changes in the levels of functional loading. 

As the normal physiological response to mechanical loading is impaired in elderly humans 

[26, 438, 439] a greatly increased risk of vertebral and non-vertebral fractures in elderly 

people is encountered, especially in women [17, 440-442]. Hence, if the mechanostat 

were functioning normally, this increase in strain seen due to decreased bone mass should 

promote an anabolic response and restore bone mass to a suitably robust state. 

Therefore, the failure of mechanical loading to stimulate a sufficient formative response 

in the elderly indicates a failure of the mechanostat.  

Studies comparing exercise interventions in people have supported the hypothesis that 

the mechanostat fails with aging; Srinivasan et al [443] have recently reviewed the age-

related effect on the response to exercise. In young children, exercise programmes 

resulted in significant increases in bone mass [444, 445], whereas in post-menopausal 
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women, most studies generally find that the bone is less responsive to loading, with no 

response or a limited magnitude of response compared to non-exercised controls [446-

448] suggesting the response to exercise in the elderly is impaired. 

There are, unfortunately very few studies directly comparing young and old people’s 

response to the same stimulus. Bassey et al [438] compared the osteogenic response to a 

vertical jumping programme of pre- and post-menopausal women and identified no 

difference in their response, although the ground reaction force measured between 

groups demonstrated higher forces in the post-menopausal women, who are likely to have 

weaker bone. This suggests that this group of women experienced greater strain 

magnitudes than their younger control groups. Although impaired in the elderly, 

mechanical loading of bone through exercise and resistance training has been 

demonstrated to lead to a higher bone mass in some studies in older humans [26, 449, 

450]. A single episode of exercise was sufficient to increase formation markers and 

decrease resorption markers in one study of postmenopausal women [451]. Furthermore, 

a metanalysis of studies examining bone’s response to exercise concluded that it is still 

possible to increase lumbar and femoral neck bone density in older patients using physical 

therapies [452].  

Several experimental animal studies have confirmed a reduced sensitivity of bone to 

mechanical loading in rodents. Rubin et al [24] used an invasive model of loading using 

the turkey ulna and demonstrated a decreased mechanoresponsiveness in the old turkey, 

compared with the young turkeys – that the level of loading that generated bone 

formation in the young animal was insufficient to generate similar levels of bone 

formation in the old animals. This provided the first experimental evidence of an age-

related impairment of the mechanostat. Following on from that study, Turner et al [25] 

demonstrated in rat tibiae, using four-point bending, that old animals had a higher 

threshold to strain before bone formation was stimulated, and a lower bone formation 

rate once formation was stimulated, compared to young controls. However, invasive 

loading models and four-point bending models result in excessive periosteal woven bone 
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formation, and as such limit the region of bone that can be analysed to the endosteal 

surface only.  

Using non-invasive loading, loads which were osteogenic in 10w old mice were ineffective 

in 26 week old mice when strains were matched between groups [453]. A more recent in 

vivo µCT study yielded similar findings and came to similar conclusions [454]. Although 

these studies demonstrate bone is less sensitive to loading in older animals, the mice used 

in these studies were only 26 weeks old. It is not until mice are 16 months (59-60w) old 

that age-related cortical bone loss becomes evident [196], although trabecular bone loss 

can be evident as early as 26 weeks [282]. Recent studies by our laboratory and others 

have repeatedly shown a decreased sensitivity to loading stimuli in truly aged mice 

compared with young animals [27, 29-31, 389]. [428, 455].  

1.8.4 The effect of concurrent treatments on bone’s response to mechanical 

loading. 

Whilst many different treatments are used to help preserve adequate bone mass and 

reduce fracture risk in clinically affected patients, as described in Section 1.7 of this 

chapter, their effects on the response of the mechanostat are less well reported. Of 

particular importance to the experiments reported in this thesis, are anti-resorptive 

bisphosphonates, and the anabolic treatment, PTH. Whilst reports detailing the effect of 

bisphosphonates and PTH treatment following disuse are relatively frequent, there are 

fewer reports describing their effects on the adaptive response to increased mechanical 

loading following treatment with bisphosphonates or PTH. This section describes 

literature exploring these interactions. 

1.8.4.1  Bisphosphonates 

BPs can attenuate the bone loss seen with reduced loading in humans and experimental 

animals. Pamidronate reduced bone loss following extended bed rest in young men [456] 

and alendronate administration abrogated bone loss in astronauts treated with 

alendronate and exercise, compared to exercise-only controls [457]. Several rodent 
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studies have demonstrated that BPs are able to completely abrogate deterioration of bone 

parameters in disuse back to levels seen in ambulatory animals [303, 458-461].  

Several studies have previously investigated the combined use of BPs and anabolic levels 

of loading in young adult rodents.  We have shown in young adult female mice (17-weeks-

old) that risedronate (RIS) has no effect on the magnitude of the osteogenic response to 

mechanical loading [34]. This suggests that the loading response primarily involves 

osteogenic modelling without requiring “coupling” of osteoblast and osteoclast activity in 

mice [34]. This study showed strong positive effects of RIS on trabecular bone, which were 

additive to the anabolic effects of loading. However, RIS had no independent effect on 

cortical bone parameters. In a similar study in young rats, Feher et al [462] showed the 

periosteal bone modelling response seen following axial ulnar loading was unaffected by 

treatment with a variety of BPs, including RIS. In the study by Feher et al [462], 

bisphosphonate treatment following concurrent ovariectomy, an additional resorptive 

stimulus, also had no effect on the degree of the loading-related response. Furthermore, 

whole body vibration-related changes in bone mass were unaffected by alendronate 

treatment [463].  Some human clinical trials have also shown that the response to exercise 

in humans is unaffected by BPs.  While two studies from the same author have found 

additive increases in bone mass with exercise and BPs [464, 465], others have found no 

additional effect of exercise/loading on BMD above the effect of BPs [446, 466]. The 

section modulus, a surrogate measure of bone strength, increased with jumping exercises 

in one study and this was unaffected by treatment with BPs [446]. 

Overall, in humans and rodents, it does not appear that the loading response is affected 

following concurrent treatment with bisphosphonates. Studies including old rodents have 

not, to the authors knowledge, combined mechanical loading and treatment with 

bisphosphonates. As bone resorption is increased with aging, we wanted to determine if 

the response to mechanical loading in old mice following treatment with risedronate was 

like that reported in young mice. Chapter 6 contains further discussion of the literature 

surrounding bisphosphonates and altered mechanical loading and then describes 
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experiments aimed at determining if bisphosphonates affect the loading response in old 

mice, both in situations of habitual loading and following prior disuse. 

1.8.4.2  Parathyroid Hormone 

PTH treatment is reported to abrogate the bone loss experienced with disuse in rats [467-

470]. Interestingly, combination of PTH with growth hormone had additive effects on both 

skeletal and muscle mass following disuse induced by Botox, although PTH generally 

prevented all skeletal deterioration seen following disuse [470]. PTH treatment also shows 

a dose responsive effect following hindlimb unloading, with low doses abrogating the 

trabecular bone loss and higher doses promoting an anabolic response that resulted in 

further bone mass accrual beyond that of vehicle treated ambulatory rats [468].  

Significantly, the anabolic response to loading in young mice was synergistically improved 

following pre-treatment with PTH [32], suggesting that PTH treatment sensitises the 

mechanostat to respond with a greater formation response to the same loading stimulus. 

An earlier study supported these findings, by demonstrating a synergistic effect of PTH 

with reloading following limb immobilisation with an elastic bandage; PTH promoted an 

enhanced response to re-loading of the immobilised limb compared to vehicle treated 

animals [471]. A recent paper demonstrated that the PTH receptor 1 in osteocytes (DMP1-

Cre) was essential for the anabolic effect of mechanical loading, supporting the inference 

from these two earlier studies that PTH signalling is involved in the response to mechanical 

loading [472]. However, a separate study looking at combined loading and PTH treatment 

on periprosthetic bone demonstrated additive, but not synergistic effects on bone mass 

[473]. Similarly, a study combining four-point bending and PTH demonstrated additive 

effects of loading and PTH, but no synergism [387].  

Although the response to combined PTH and mechanical loading was reported to be 

synergistic, or at least additive, there is only one report, to the author’s knowledge, that 

has explored the response to loading following PTH treatment in old mice. In a study 

published recently by our laboratory exploring the effects of PTH treatment on the loading 

response in old (19-month) mice, the anabolic effects of both mechanical loading and PTH 
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were additive, but not synergistic, highlighting the difference in response between young 

[32] and old mice [388]. Chapter 7 of this thesis explores the effect of PTH treatment in 

very old (22m) mice on the mechanical loading response. 

1.8.4.3  Other treatments 

The effect of other osteoporosis therapies on the response to altered mechanical loading 

has been sporadically reported. In one study, post-menopausal women, the skeletal 

response to exercise training is significantly increased following oestrogen (17β-

oestradiol) treatment [474]. Conversely, another study compared women under 

treatment with the hormone replacement therapy tibolone, and compared women with 

high levels of activity with those with low activity levels, and found no difference in BMD 

between the groups [475]. In fact this study demonstrated a greater initial increase in BMD 

in the low activity group, supposedly due to the slightly higher baseline BMD and probably 

lower resorption activity at baseline in the high activity group. Evidence from animal 

models where oestrogen was replaced have showed oestrogen treatment typically had no 

effect or reduced the magnitude of the response to mechanical loading [476]. The SERM, 

tamoxifen demonstrated partial abrogation of the trabecular bone loss seen following SN, 

but no effect on the cortical bone loss [477]. Tamoxifen also had only partial sparing 

effects on bone loss seen in dogs following cast-immobilisation [478]. Another SERM, 

Raloxifene demonstrated a more robust inhibition of the bone loss associated with tail 

suspension with trabecular architecture similar to control -non-suspended rats [303]. The 

effect of SERMs on the response to increased mechanical loading is only reported in one 

study, where loading in young mice was combined with tamoxifen [287]. In this study, 

tamoxifen treatment was associated with a synergistic response when combined with 

mechanical loading when examining the trabecular bone volume, suggesting that SERMs 

may be able to enhance the adaptive response to loading in trabecular bone. 

Sclerostin antibody has been intensively researched in the last decade. Its protective effect 

against disuse has been repeatedly demonstrated [479-483]. The anabolic response to 

increased mechanical loading has also been recently reported to be improved following 

treatment with sclerostin antibody [372], suggesting that sclerostin is involved in the 
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modulation of the adaptive response to loading in mice. Further discussion of the promise 

of combining Scl-Ab with loading is included in the general discussion chapter of this thesis 

(Chapter 8). 

1.8.4.4  Combination therapies 

Whilst the effect of combination therapy using different osteoporosis drugs on bone mass 

has been investigated in many reports, and described in more detail in Section 1.7.4, fewer 

studies have explored the effect of combining therapies on the response to altered 

mechanical loading. The response to disuse following combined treatment with PTH and 

zolendronate demonstrated additive effects on bone mass, and more than abrogated the 

bone loss associated with disuse in vehicle treated animals [467]. In a related study by the 

same group, combining PTH and Strontium Ranelate was no different to PTH treatment 

alone, with rescue of the bone loss seen following disuse [469]. Strontium ranelate alone 

had no protective effect against the bone loss associated with disuse [469].  

To the author’s knowledge, there are no reports exploring the effects of combination 

therapy on the response to increased mechanical loading. Chapter 7 of this thesis 

describes an experiment which explores the effect of combined Risedronate and PTH 

therapy on the adaptive response to mechanical loading in very old mice. Furthermore, as 

the response to PTH stimulates a primarily remodelling response, with significant 

increases in bone resorption and subsequent cortical porosity [388], we sought to 

investigate whether impairment of resorption with bisphosphonates would affect the 

anabolic response of combined loading and PTH in old mice.  

1.8.5 Models for studying the effect of altered mechanical loading on bone 

In addition to clinical and environmental situations of altered mechanical loading in 

humans, many research/experimental models have been used to investigate the response 

to alterations in mechanical loading of bone.  

In order to explore bone’s response to changes in the mechanical loading environment in 

vivo, several models have been designed to alter the amount of strain experienced by 



Chapter 1: General Introduction 

 

101 
 

bone. These models include intrinsic loading models, utilising physiological movement of 

the skeleton using muscles of the skeleton to increase strains, and extrinsic loading 

models, utilising external forces to apply additional loading forces and increase strains in 

bone. The majority of these models are well summarised in a review by Meakin et al [484], 

but are discussed in brief below.  

1.8.5.1  Exercise models of increased mechanical loading 

Increased exercise has been used to increase the level of strain experienced in bone. The 

most simplistic of these is to train animals to exercise on a treadmill [485, 486]. Treadmill 

exercise is non-invasive and the mechanical forces derived from muscle contraction and 

ground force reaction are transmitted along the length of the entire bone, leading to 

adaptive changes in all compartments of the long bone [487]. Exercise-induced 

mechanical strains can be measured [488], but controlling these between individuals and 

treatment groups is difficult [489]. 

Swimming, wearing a weighted backpack, and jumping up to or down from platforms have 

also been used to increase mechanical loading [490-497]. These other forms of exercise 

have similar advantages to those of treadmill exercise, although it is more difficult to 

control the nature of the exercise regimen such as speed and angle of inclination. 

Furthermore, the effects of exercise are not isolated to the bone itself. Exercise initiates 

several other physiological responses which can affect bone mass. However, although 

treadmill exercise resulted in increased muscle mass and systemic changes in serum IGF1, 

it did not affect the adaptive response of bone to extrinsic mechanical loading in young or 

old mice [396].  

1.8.5.2  Invasive models of artificial mechanical loading 

One of the earliest experimental models of increasing the mechanical loads transmitted 

through a bone was to remove a segment of a paired appendicular bone, such as the ulna, 

which increases loads transmitted through the radius. Several species including rats, 

rabbits, guinea pigs, dogs, sheep and pigs have been utilised for this model [498-503]. 

These models do not control the magnitude of the strain stimulus as it is dependent on 
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the activity levels and bodyweight of the individual and postoperative pain may also limit 

weight-bearing in the limb, thus limiting the desired effect of overloading. 

To circumvent these difficulties, invasive models of mechanical loading were developed, 

which allowed the direct application of precise amounts of mechanical load to a bone that 

did not rely on habitual weight-bearing. The first invasive loading models involved 

insertion of two transcortical metal pins to permit application of mechanical loads to the 

intervening bone. Heřt and colleagues originally devised these techniques in the 1970s 

using the rabbit tibia [504, 505] and later the technique was adapted for use in sheep and 

dogs by others [498, 506, 507]. This model includes the ability to control parameters such 

as peak mechanical strain, strain rate and number of loading cycles, and differences in 

bone mass and architecture between groups are controlled for by delivering different 

forces to each group, based on preliminary experiments using strain gauges to 

characterise the strain experienced in each group. However, when using this experimental 

model, an animal’s episodes of exogenously applied mechanical loading are superimposed 

on normal ambulation, so strains engendered by habitual activity could potentially mask 

some of the responses to loading. Additionally, as with the ostectomy model discussed in 

the last paragraph, disuse of the limb may occur due to surgical pain. 

Rubin and Lanyon modified this model further in the 1980s [508-511] by isolating the mid-

shaft of the turkey ulna with proximal and distal osteotomies in an effort to isolate the 

effect of habitual loading on the studied bone. Surgical pins were placed at the extremities 

of the isolated bone to permit compressive loads to be applied to the isolated bone. A 

schematic representation of this model is shown in Figure 10A. By isolating the ulna, 

strains engendered by normal activity are negligible. The wing in turkeys is not weight 

bearing and is not used for flying, so the contralateral limb is unlikely to be affected by 

changes in the loaded limb, thus serving as a suitable internal control. However, 

placement of the metal pins in bone stimulates an inflammatory reaction in the 

surrounding bone, resulting in bone formation separate to that elicited from the 

mechanical loading. To overcome this limitation, the area of bone which can be studied is 

restricted to the central diaphyseal region, away from the pins. Therefore, only cortical 
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bone, and not trabecular bone, usually situated at the epiphyses, can be studied using this 

model. 

To overcome this limitation, a model utilising application of mechanical loads to the 

vertebrae of the tail, which contain abundant trabecular bone, was devised [512]. The pins 

were placed through vertebrae adjacent to the studied bone to lessen the inflammatory 

reaction in the region of interest and permit the study of trabecular bone’s response to 

mechanical loading. Rodent tail vertebrae are not normally weight bearing bones, unlike 

human vertebrae, however, so this represents a potential disadvantage to this loading 

model. It still represents the only feasible model with which to mechanically load 

vertebrae to recreate vertebral loading in humans, so the vertebral loading model is still 

in use today [513-516], whereas invasive loading of long bones is not. 

1.8.5.3  Non-invasive models of artificial mechanical loading 

To overcome the limitations of invasive models of loading, non-invasive methods of 

loading limb bones have been developed. These models do not require surgical 

procedures for the placement of surgical pins and there is no recovery period following 

surgery which means the length of the experiments can be reduced. This has animal 

welfare benefits and reduces experimental costs. 

Four-point bending 

Turner and colleagues first developed a four-point bending model for use in rodents [517, 

518]. In this model, depicted schematically in Figure 10B, two contact points are placed 

eccentrically on the downward surface of a bone, usually the tibia. Two centrally placed 

contact points apply a downward force to the uppermost surface, resulting in a bending 

force. To generate a sham loading model, the contact points can be moved so they directly 

oppose each other, thus applying a similar squeeze to the bone, but not bending the 

central region of interest. Unfortunately, the contact points cause a woven bone 

formation response, preventing study of the periosteal surface of the bone and restricting 

any investigations to the endosteal bone surface. Again, similar to the invasive cortical 

bone models, this model is limited to the study of only cortical bone adaptive responses. 
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Cantilever bending 

A variation on the four-point bending model was developed by the Gross et al [519]. The 

proximal tibia is immobilised in a custom jig, whilst a laterally applied force is applied to 

the tibiotarsal joint, resulting in a cantilever bending mechanism. Since the only contact 

points on the bone are in the proximal and distal tibia, this model allows study of both 

endocortical and periosteal surfaces. Again, the cantilever bending model also precludes 

evaluation of trabecular bone. Both bending models do not apply load in a physiological 

direction (axially) meaning lower load magnitudes are required. However, the relevance 

of non-physiological loading directions is unknown.  
63 | P a g e   C h a p t e r  1  

 

 

Figure 10: Schematic representation of the avian ulna, tibia four point bending, and ulna axial in vivo loading 
models. A) In the avian ulna loading model metal cups (black) were inserted through osteotomies on either end 
of the ulna. These cups were attached to an actuator which subjected them to loading. B) The rat tibia four 
point bending involves applied a load through pads placed lateral and medial to the tibia in order to study 
endosteal responses. C) The ulna (and later the tibia) axial loading models involve applying loads through cups 
over the joints at either end of the bone. Black arrows indicate the direction of force application. 

 

In  our   lab,  application  of   the   tibia  axial   loading  model  enabled  us   to  extend  Robling  et  al’s  

initial finding that loading down-regulates sclerostin in the cortical bone of the ulna (20) to 

load-adaptive regions of both the cortical and cancellous bone in the tibia(23). We have also 

shown that disuse increases, whereas loading reduces, sclerostin levels in both compartments 

(23). This suggests that at least some of the loading-related events in cortical bone also occur 

A.

B.

C.

Figure 10: Schematic representation of (A) the isolated avian ulna, (B) tibial 
four point and (C) ulnar axial loading models 

Figure reproduced here with permission [4]. 
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Axial compression models of mechanical loading 

To address the issue of non-physiological directions of applied mechanical loads, our 

laboratory developed a non-invasive axial ulnar loading model to study the adaptive 

response of bone to exogenously applied mechanical loading similar to those experienced 

by normal ambulation in rodents in vivo [520, 521]. As shown in Figure 10C, the carpus 

and elbow are placed in cups from a materials-testing machine and an axial compressive 

load is applied. Although this model generally requires greater forces to elicit bone 

formation than the bending models, likely because the bone is already adapted to forces 

applied in the axial direction, the loads applied do not result in evidence of bone damage, 

such as woven bone formation and/or microcrack formation. The length of the loaded 

bone has been reported to be shorter due to premature closure of the growth plate [522, 

523]. Furthermore, the amount of trabecular bone in the rat ulna is limited, still limiting 

the ability to evaluate the adaptive response of trabecular bone to mechanical loading in 

long bones. 

Because the tibia contains more trabecular bone in its proximal epiphysis than the ulna, 

our laboratory subsequently developed an axial loading model for the tibia [2], 

compressing the knee/stifle joint and the ankle/hock joint in custom-made loading cups 

(Figure 11A). Unexpectedly, significant trabecular bone loss with loading was 

demonstrated despite a significant gain in cortical bone mass [2]. However, later studies 

using a tenfold higher strain rate have demonstrated that both cortical and trabecular 

masses increase substantially with mechanical loading as shown in Figure 11B [1, 32, 34, 

285, 287], suggesting it is the strain rate, and not loading direction that resulted in the 

trabecular bone loss. The next section of this chapter will discuss optimising the strain 

stimulus. 

Another advantage of the axial tibial loading model is that the attached fibula also 

demonstrates a significant bone formation response to mechanical loading [160] and can 

be easily dissected from the tibia after mice are sacrificed to provide a second bone to 

study bone’s adaptation to mechanical loading. The response to mechanical loading is site-

specific along the length of the tibial cortex. The mid-proximal region of the tibia (around 
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the 37% mark) appears most responsive to axial tibial loading according to early studies 

[11, 32]. The distal tibia does not demonstrate a significant increase in bone formation 

even though the applied strains are estimated to be of similar magnitude using finite 

element modelling (FEM) [8]. These findings are supported by a more recent study 

published by our laboratory using site-specificity software to more closely interrogate the 

relative changes over the length of the cortical bone of the tibia (Figure 12) [7], a technique 

utilised in chapters 4-7 of this thesis.  

Some researchers have argued that applying mechanical load to one limb may result in 

systemic effects altering the adaptive response in bones adjacent and even distant to the 

loaded bone [524], and that this effect is neuronally mediated. The systemic effects were 

abrogated by perineural local anaesthetic application prior to loading. However, further 

studies by ourselves and others have since determined that the response is confined to 

the loaded bone [1, 525] validating the use of the contralateral tibia as an internal control, 

increasing statistical power and reducing the number of experimental animals. It is, 

therefore the loading model we chose for the experiments described within this thesis.  

Figure 11: The non-invasive axial tibial loading model 

a) Schematic diagram showing the non-invasive axial tibial loading apparatus and b) a 
photograph of a murine tibia/fibula after dissection with corresponding micro-
computed tomography images demonstrating the different sites (measured from the 
proximal end) which respond to mechanical loading. Figure adapted from and 
reproduced with permission (Sugiyama et al., 2008). 
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Unfortunately, application of sufficient loading force to result in bone formation in rats 

also resulted in skin necrosis and pressure sores over the contact points on the knee and 

ankle [526], so the model’s use in larger rodents is limited. Despite its limited utility in rats, 

the tibial loading model has been widely accepted and duplicated in many other labs 

throughout the world wishing to investigate trabecular and cortical bone’s adaptation to 

its mechanical environment [453, 454, 527-531].  

1.8.5.4  Optimising the mechanical strain stimulus to elicit bone formation 

Application of an externally applied mechanical load permits precise control over the load 

stimulus and several previous studies have determined characteristics of the loading 

stimulus which affect the bone formation response to loading. This section will briefly 

discuss those relevant to designing the loading regimen for use in the experiments 

described within this thesis. 

Static versus dynamic loading 

Continuous static loading of bone does not stimulate an adaptive response whereas 

cyclical dynamic loading of the same bones at the same peak strain magnitudes does elicit 

an osteogenic response [505, 511]. Hence, most studies using exogenously applied loads 

Figure 12 Analysis of response of the mouse tibia to loading at each site along the 
bone’s length using Site Specificity Analysis software.  

Site specificity analysis of (A) Cross sectional cortical thickness (Ct.Th), (B) Cortical 
bone area (Ct.Ar), and (C) periosteally enclosed area (Tt.Ar), calculated from control 
left tibiae and loaded right tibiae from the same mice, n = 15. The x axis indicates 
percentile length along the tibia measured from the proximal end. Dots/bars above 
the graphs indicate sites of significant difference, p < 0.05 following Bonferroni 
correction. Interactions are the site by loading interactions calculated by mixed 
models; *p < 0.05, ***p < 0.001. Note that the sites between 60-80% are not affected 
by loading. Figure adapted from and reproduced with permission [7] 
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use a cyclic loading waveform, of either triangular, sinusoidal, or trapezoidal shape [2, 29, 

232, 529, 532]. 

Peak strain magnitude 

The peak magnitude of the stimulus is clearly the most important component of the strain 

stimulus to stimulate an osteogenic response to mechanical loading. Several studies have 

demonstrated that increasing the peak strain magnitude yet keeping all other loading 

characteristics the same, results in a bone formation dose response [11, 29, 509, 517, 522, 

532]. Interestingly, evidence suggests that within the strain magnitudes which cause 

lamellar bone formation, the relationship is linear, although this varies once bone 

experiences strains sufficiently large to generate woven bone formation [11].  

Strain distribution/orientation 

In the ulnar osteotomy study by Lanyon, described earlier, rosette strain gauges were 

affixed to the surface of the radius following ulnar osteotomy to record strain magnitudes 

[500]. Increases of strain on the cranial surface of the radius in the osteotomised limb 

were around 20%, which was more than double the recording on the caudal surface of 

just 8%. However, over the duration of the study (50 weeks), the caudal radial cortex, 

where less strain is typically experienced in intact bones, was the predominant site for 

formation. The amount of newly formed bone was equivalent to that removed by ulnar 

osteotomy. This sudden occurrence of strain in a site which doesn’t normally experience 

much strain resulted in an exaggerated formation response to restore baseline strains. 

This suggests the distribution, rather than just the magnitude, of the applied strain is an 

important osteogenic stimulus. Indeed, strains of similar peak magnitude as those 

engendered by wing flapping to the osteotomised turkey ulna, applied in a novel direction, 

were sufficient to stimulate bone formation [533]. Likewise, the strains necessary to elicit 

bone formation in the bending models of non-invasive loading are much lower than the 

strain necessary to cause bone formation when loading is applied in a physiologically 

similar direction to that experienced during normal physiological loading (i.e. axially) [29, 

519]. 
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Strain rate 

The rate of change of strain magnitude is also important in designing an osteogenic 

stimulus. Using the rat ulnar loading model, it has been demonstrated using various strain 

rates but the same peak magnitude, number of loading cycles etc. that increasing the 

strain rate by approximately five-fold was able to increase the osteogenic bone formation 

response by 67% [534]. Results from a separate study yielded similar results and led the 

authors to conclude that new bone formation was directly proportional to the rate of 

strain in bone tissue [535]. 

Our standard loading protocol applies an axial force in a cyclic trapezoidal wave-form to 

reach the desired peak strain, measured by strain gauges placed on the periosteal surface 

of the medial tibia. The linear loading and unloading phases of the trapezoidal loading 

wave-form allow calculation and application of a strain rate of 30 000μεs-1, shown to be 

equal to the physiological strain rate in mammals [488, 536]. The short (0.05s) pause at 

the peak load with a trapezoidal wave form permits a more consistent achievement of the 

desired peak load than with use of a triangular wave form. The use of a sinusoidal 

waveform limits the ability to reach the desired peak strain rate to a single time point 

Figure 13 – Loading waveforms for application of load represent strain rate. 

The slope of the strain vs time curves represents the strain rate. (A) Sinusoidal 
loading waveforms only achieve the maximum strain rate a single timepoint 
throughout the loading and unloading phases. (B) Triangular and (C) trapezoidal 
waveforms have a linear loading and unloading phase, thus maintaining the peak 
strain rate for the duration of the loading and unloading phases of the loading 
cycle.  
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throughout the loading wave-form. At all other time-points, the strain rate will be lower 

than that desired. See Figure 13 for a graphical representation of the wave-forms.  

Optimum number of cycles 

Evidence that the osteogenic response to loading is not related to the number of cycles of 

loading applied was first published several decades ago. Rubin and Lanyon [533] first 

demonstrated in the isolated turkey ulna, that 4 cycles per day was sufficient to abrogate 

bone loss associated with disuse, and that increasing from 36 cycles to 1800 did not result 

in any further increase in the osteogenic response. Supporting this finding, a study in rats 

trained to jump a 40cm height demonstrated little further effect of increasing the number 

of jumps from 5 up to 40 per day [497]. Despite this evidence that relatively few cycles are 

required to generate a maximal osteogenic response, many researchers still frequently 

use several thousand loading cycles which are more likely to result in woven bone 

formation and inflammation [525]. Our laboratory routinely uses 40 cycles per loading 

bout when using the axial tibial loading model [1, 8, 11, 29, 32, 34, 160, 285, 286, 388] 

Rest insertion 

Inserting a short period of rest in between loading cycles has been shown to improve the 

osteogenic response to loading. A study by Robling et al [537] demonstrated that 

portioning 360 loading cycles into 4 bouts of 90 cycles or 6 bouts of 60 cycles per day 

enhanced the osteogenic response to loading suggesting there may be some saturation of 

the mechanical loading stimulus with increasing numbers of cycles. A subsequent study 

by the same group demonstrated that a recovery period of 8 hours between loading 

sessions was sufficient to allow complete restoration of bone’s mechanosensitivity, and 

that a 14s rest period between individual loading stimuli allowed a greater osteogenic 

response than a shorter rest-insertion [538]. A further study by Gross’ group observed 

that inserting a 10 or 15 second rest period between each loading cycle enhanced the 

osteogenic stimulus in both young and aged mice [27, 539, 540]. The standard loading 

protocol in our laboratory inserts a 10 second rest period between individual loading 

cycles. 
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1.8.5.5  Models of reduced bone loading (disuse) 

As described previously, reduced mechanical loading is a clinically important cause of 

bone loss seen in people in a variety of situations. Patients immobilised through bed-rest, 

or as a result of spinal injuries experience significant bone loss, and astronauts who 

experience microgravity and reduced bone loading also undergo rapid bone loss. While 

pathological and environmental causes of reduced bone loading in humans provide a 

useful source of information and data for investigation of disuse-associated bone 

remodelling, controlling the loading stimulus is difficult, and/or the population of 

participants (astronauts) is very small. For this reason, researchers have sought 

experimental models which can provide a more controlled unloading stimulus. 

Ideally, reducing strain on the bone surface to zero would allow determination of the 

effects of a full range of strain stimuli. Perhaps the closest to achieving this would be 

experiencing zero gravity during space flight and multiple animal studies have been 

performed in space [541-547]. However, this is, for obvious reasons, not practically 

possible for most researchers. Furthermore, the effects of endogenous muscle-induced 

strains are not eliminated. Indeed, increased activity during space flight from group 

housing animals has been shown to prevent bone loss [548]. Further complicating the use 

of spaceflight as a model for reduced mechanical loading is the increase in ionising 

radiation exposure inherent with being outside our protective magnetosphere. Ionising 

radiation has been shown to reduce bone mass and increase osteoclast number [549, 

550], and also reduce the osteogenic potential of cortical but not trabecular bone in 

response to loading [551]. 

Several terrestrial (and far more practical!) experimental models of reducing the 

magnitude of mechanical loading have been described. These include cast application to 

a limb, Achilles tenotomy to unload the calcaneus and tibia, tenotomy of the patella 

tendons to unload the tibia and bandaging a limb to the abdomen [106, 552-557]. The 

techniques mentioned above are not suitable for the experiments involved in this 

experiments for a number of reasons. Cast application and bandaging of the abdomen to 

the limb is prone to slipping and as such, difficult to control the amount of strain 



Chapter 1: General Introduction 

 

112 
 

experienced in small murine legs. Furthermore, once a cast is applied, it is difficult to apply 

additional exogenous loading stimuli. When considering tenotomy, the position of the skin 

incision necessary for the section of the patella ligaments is in close proximity to the 

position of the proximal loading cup in the tibial loading apparatus, this encouraging 

wound healing problems. Achilles tenotomy was attempted by the author in aged mice, 

and a high proportion of the operated mice experienced pressure sores on the plantar 

surface of their ankles, due to the plantigrade stance engendered by tenotomy, therefore, 

this model is also unsuitable for use in aged mice with thin skin predisposed to pressure 

sores. 

Probably the most commonly used model for exploring disuse of the bone is that of tail 

suspension which eliminates ground reaction forces on the hindlimbs [558, 559]. This 

model is extensively reported in the literature and reliably demonstrates bone loss in the 

femur and tibia [21, 543, 560-562]. However, we did not select this model for several 

reasons. Firstly, there is a redistribution of blood to the cranial aspect of the animal with 

some stress response observed [563]. Additionally, this model causes bilateral bone loss, 

losing the ability to compare one limb with its contralateral control. Lastly, there will still 

be strains experienced on the bone surface from muscle contractions. Critically, in the UK, 

use of this model is not permitted on welfare grounds. This is in part because tail 

suspension is stressful – it has been utilised as an experimental model of inducing 

behavioural stress/depression [564]. 

Two further methods of inducing unloading have been reported. These induce paralysis 

of the hindlimb and therefore bone loss. This is achieved either by sciatic denervation via 

sciatic neurectomy (SN) or by the injection of botulinum toxin (Botox) to particular muscle 

groups [11, 35, 565, 566]. Following paralysis, tibial bone surface strains are reduced to 

around 300µe (compared with 600με in ambulatory animals) and the tibia can be 

subsequently reloaded using the axial tibial loading model to prevent bone loss [11, 35]. 

Interestingly, a recent paper reported the effects of combining tail suspension and Botox 

[567]. This study reported an additive effect of the two treatments on the degree of bone 

loss, and that individually each model resulted in similar degrees of bone loss. 
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Interestingly, in mice treated with unilateral Botox, some muscle and skeletal mass was 

lost in the contralateral limb – suggesting that although primarily a local effect, Botox can 

have systemic effects, which could limit the contralateral limb’s utility as an internal 

control limb. 

SN and Botox both have different advantages and disadvantages. For the studies reported 

within this thesis we chose to use SN to induce bone loss in the tibia because the paralysis 

is permanent (Botox only lasts 1-2 weeks) and it is generally more complete (Botox 

injection has to be performed in each muscle group). Botox is more difficult to obtain due 

to its status as a prescription only medicine and, as mentioned above, may not permit use 

of the contralateral limb as a valid internal control limb. Lastly, our laboratory has prior 

experience with using the SN model [8, 11]. Further discussion of disuse models, specific 

to those chapters is included in the introductions of Chapters 3 and 5.  
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1.9 Thesis Aims 

The aim of the experiments included in this thesis is to use the external bone loading in 

vivo model in mice to characterise the response to altered mechanical loading and how 

detrimental changes in the response to loading seen with aging are affected by altering 

the context within which mechanical loading is applied. This aims to inform the hypothesis 

that altering the context within which mechanical loading is applied, either physically or 

pharmacologically, will affect the magnitude of the adaptive response to mechanical 

loading in the aged skeleton, to provide a site-specific and structurally appropriate effect 

on bone mass in old animals. 

The objectives of the experiments described in this thesis were to establish a number of 

parameters in the regulatory pathways between functional loading and changes in bone 

architecture. Specifically, these experiments, were designed to establish:- 

1. The optimal loading duration to elicit a measurable osteogenic response for use 

in subsequent experiments and the effect of contralateral sham surgery on the 

pattern of bone loss in the tibia following unilateral sciatic neurectomy. (Chapter 

3) 

2. Is RANKL involved in bone (re)modelling associated with altered mechanical 

loading? (Chapter 4) 

3. The effect of disuse on the adaptive response of bone in old mice. (Chapter 5) 

4. The effect of the antiresorptive bisphosphonate risedronate on the osteogenic 

response to loading in ambulatory and sciatic neurectomised old mice (Chapter 

6) 

5. The effect of risedronate on the anabolic effect of PTH and loading on bone in 

old mice. (Chapter 7) 
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Chapter 2: Materials and Methods 

All general materials and methods are described within this chapter. Specific materials and 

methods relating to individual chapters are described later, in corresponding chapters.  

2.1 In vivo procedures: 

2.1.1 Animals 

All in vivo experiments were performed using female C57Bl/6J wild-type mice purchased from 

Charles River Laboratories, Margate, UK. Young adult mice were 16 weeks old at the time of 

delivery to the University of Bristol (UoB). Old mice were at least 19-months old on delivery. 

Mice were sorted into weight-matched groups after arrival to achieve a similar weight average 

amongst each group. These mice were then housed in groups of 4-5 for at least one week prior 

to experiment start to allow acclimatisation to the new environment and cage-mates. Housing 

was provided in polypropylene cages with sterile wood shavings, a cardboard tube for 

environmental enrichment and paper bedding. All mice were allowed free access to water 

and a maintenance diet containing 0.75% calcium (EURodent Diet 22%; PMI Nutrition 

International, LLC, Brentwood, MO, USA) in a 12-hour light/dark cycle, with room 

temperature at 21±2°C. All procedures complied with the UK Animals (Scientific Procedures) 

Act 1986 and were approved by the ethics committee at the UoB. The principal investigator 

was the holder of a home office personal license, number PIL 30/9965 working within project 

license PPL 30/2829. 

2.1.2 General Anaesthesia 

Materials 

• Isoflurane (Isoflo, Abbott Animal Health, Maidenhead, UK) 

Equipment 
• Anaesthesia induction chamber and anaesthetic machine with oxygen flow 

regulator and isoflurane vaporizer. 
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Method 

After initial priming of the anaesthetic induction chamber with 100% oxygen at 

approximately 2L/Min, the induction chamber was infused with isoflurane, initially at 6% 

vapor. The mice were placed inside the anaesthetic chamber until they were rendered 

unconscious and laying in recumbent position. Mice were then retrieved from the 

chamber carefully and then prepared for their given procedure (either surgical procedure 

or non-invasive loading of the tibia). Mice were maintained under anaesthesia using 

inhaled isoflurane in 100% oxygen altered to effect (typically around 2%) administered via 

a mask. 

2.1.3 Fluorochrome administration 

Materials 

• Calcein, alizarin, xylenol orange, doxycycline (Sigma chemical company, Dorset, UK) 

• 0.9% saline (Hameln pharmaceuticals Ltd, Gloucester, UK) 

• 0.22µm bacterial filter (Minisart plus, Sartorius, VivaScience, Hannover, Germany) 

• Insulin syringes (BD Micro-fine+ 100IU/ml syringes 1ml, B-D Ltd, Oxford, UK) 

• 5ml polypropylene round-bottomed Falcon tubes (B-D Ltd UK, Oxford, UK) 

• Aluminium Foil (Sainsbury’s Kitchen Foil, Sainsbury’s, UK) 

Solutions 

Calcein, alizarin and doxycycline solutions were made to 10mg/ml. 500mg of powder was 

mixed with approximately 48ml 0.9% saline continuously until dissolved completely. Sodium 

bicarbonate powder was added until the pH was at physiological levels (7.3 – 7.4) and saline 

added to total 50ml solution volume. 

Xylenol orange was made up to 20mg/ml. 1g of powder was added to 48ml 0.9% saline. The 

remainder of the mixing process was identical to that for the other fluorochromes. 

Once dissolved, solutions were passed through a bacterial filter and aliquots stored in sterile 

5ml polypropylene Falcon tubes. 
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All stages of the process were protected from light with aluminium foil and solutions were 

immediately stored at -20°C for later use. After defrosting, solutions were thoroughly mixed 

and passed again through a bacterial filter prior to injection. 

Method 

Calcein, alizarin, doxycycline (50mg/kg) or xylenol orange (90mg/kg) were injected 

subcutaneously on the allotted day of the loading/treatment protocol using insulin 

syringes. The schedule of treatment varied between experiments and will be described in 

each specific chapter.  

Table 1 demonstrates the excitation and emission maxima and the laser type and 

wavelength used to permit confocal imaging of the bone cross-sections. 

 
Table 1 – Fluorochromes used for sequential injections and subsequent dynamic 
histomorphometry experiments.  

Data on wavelengths and dose rates from Pautke et al [568] 

 

2.1.4 Sacrifice 

Materials 

• Medetomidine 1mg/ml (Domitor, Vetoquinol, Great Slade, UK) 

• Ketamine 100mg/ml (Anesketin, Dechra, Bladel, Netherlands) 

• 1ml hypodermic syringe (BD plastipak, Oxford, UK) 

• 21G 1 ½” hypodermic needle (Terumo Neolus, Leuven Belgium). 

Fluoro-
chrome 

Manufacturer 
(Product code) 

Peak 
excitation 

wavelength 
(nm)* 

Peak 
emission 

wavelength
* (colour) 

Laser type/ 
wavelength 

(nm) 

Concen-
tration 

(mg/ml) 

Dose 
rate 

(mg/kg
) 

Calcein  Sigma (C0875) 494 517 (green) Argon (488) 10 50 
Doxycycline 

HCl Sigma (D9891) 390-425 520-560 
(yellow) Diode (405) 10 50 

Xylenol 
Orange 

Sigma 
(227854) 440/570 610 

(orange) HeNe (564) 20 90 

Alizarin 
complexone Sigma (A3882) 530-580 624-645 

(red) HeNe (564) 10 50 
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At the end of the scientific procedure, mice were killed humanely in accordance with the UK 

Animals (Scientific Procedures) Act 1986. Mice were anaesthetised using intraperitoneal 

injection of medetomidine (1mg/kg) and ketamine (100mg/kg), then, following blood 

sampling via cardiac puncture, were killed via cervical dislocation.  

Following sacrifice and blood collection, both pelvic limbs were dissected from the body via 

coxofemoral disarticulation. After removal from the pelvis, the distal limb was dissected by 

femorotibial disarticulation. The common calcaneal tendon was transected and the 

musculature elevated proximally to allow transection of the muscle origins proximally and 

tibio-tarsal disarticulation then performed with care not to damage the tibial bone. Following 

this dissection, management of the isolated tibia and periosteal musculature varied 

depending on the subsequent experimental techniques planned. Further processing will be 

described in each relevant section later in this chapter. 

2.1.5 Sciatic Neurectomy  

Materials  

• 0.7 metric EP Polyglactin 910 (Vicryl Rapide, Ethicon, Livingston, UK) 

• 0.9% saline (Hameln Pharmaceuticals Ltd, Gloucester, UK) 

• Insulin syringes (BD Micro-fine + 100iu/ml 0.5ml 29G insulin syringes, Becton-

Dickinson Ltd., Oxford, UK) 

• Buprenorphine 0.3mg/ml (Vetergesic, Multidose vial, Alstoe Limited, Sheriff Hutton, 

UK) 

• 2% povidone iodine solution (Vetasept, Animalcare UK, York, UK) 

Equipment 

• Surgical instruments 

• Electric hair clippers 

Methods 

Following induction of anaesthesia, buprenorphine was diluted 1 in 10 with sterile saline and 

administered subcutaneously preoperatively at 45-50µg/kg.  
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The dorsal lumbar spine region from the tail base to the thoracolumbar region and laterally to 

the level of the stifle joints was clipped bilaterally using electric clippers and then prepared 

for aseptic surgery using 2% povidone iodine solution. A small skin incision of approximately 

5-7mm was made in a craniomedial to caudolateral direction caudodorsal to the right 

coxofemoral joint. Blunt dissection between the superficial gluteal and biceps femoris muscle 

was made to expose the sciatic nerve. The nerve was grasped and transected and a 5-7mm 

segment was excised. The muscles were manually reapposed then the skin wound sutured 

with one buried simple interrupted suture. In the groups with a sham surgery performed, the 

skin incision and exposure and visualisation of the sciatic nerve was undertaken but care was 

taken not to manipulate or traumatise the nerve. The skin wound was closed in the same 

manner. Following surgery and recovery, mice were returned to their previously determined 

cage groups until required for killing and sample collection. The exception were groups 

scheduled for killing at zero hours, which had surgery performed and then prior to anaesthesia 

recovery, were killed and samples collected, as described later in this chapter. Mice were 

administered additional buprenorphine subcutaneously if welfare scores were judged to be 

excessive. 

2.1.6 In vivo mechanical loading 

Equipment 

• Electromagnetic materials testing machine (ElectroForce 3100; Bose Co., Eden 

Prairie, MN, USA). 

Method 

The in vivo non-invasive axial tibial mechanical loading protocol has been previously 

described [1, 2, 11, 285]. Right tibiae were subjected to external mechanical loading under 

isofluorane-induced anaesthesia using an electromagnetic materials testing machine. Left 

limbs were used as internal controls, as validated in previous studies [1, 525]. 

To apply one episode of mechanical loading, mice were anaesthetised and the flexed knee 

and ankle joints placed in concave custom-designed cups; the knee was placed in the 
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upper cup and attached to the actuator arm of the electromagnetic materials testing 

machine and the ankle in the lower cup attached to a 22N dynamic load cell as shown in 

Figure 14. The limb is held in place by a continuous static preload of 0.5N upon which the 

dynamic load is superimposed in a series of 40 trapezoidal shaped pulses; each with a 

dwell time of 0.05s and a 10s rest period between pulses. The load rates also required 

variation between groups in order to apply an average strain rate of 30,000µe/s. This has 

been previously shown to be equivalent to physiological strain rates [488, 536]. Load rates 

for individual treatment groups are calculated based on ex vivo strain gauging and are 

detailed in each individual results chapter.  

2.2 Ex vivo procedures 

2.2.1 Ex-vivo strain measurements 

Materials 

• Ultra-Flexible PVC Lead Wire (NUF36-2550, Cooner Wire Co., Chatsworth, CA, 

USA). 

• Single element strain gauges (EA-06-015DJ-120, Vishay Measurement Group, NC, 

USA). 

Figure 14 – Schematic diagram indicating the placement of the mouse limb into the 
loading cups to apply non-invasive axial loading.  

The electromagnetic actuator acts on the upper, knee cup and the lower hock cup is 
positioned over a Load cell which measures the load applied to the limb 
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• Cyanoacrylate adhesive, catalyst, soldering flux and solder (M-bond 200, Vishay 

Measurement Group, NC, USA). 

• Isopropanol (Sigma, Poole, UK). 

• Small self-seal LDPE plastic bags 60x80mm (HK-Pack Krautscheid GMBH, Gelsdorf, 

Germany) 

Equipment 

• Materials testing machine (ElectroForce 3100; Bose Co., Eden Prairie, MN, USA). 

• Soldering iron (Vishay Measurement Group, NC, USA). 

• Ohmmeter (Digital Multimeter, Clarke International, Essex, UK). 

Method 

In order to apply similar magnitudes of peak strain to bones of mice of different treatment 

groups, we first established the strain:load relationship ex vivo in a sub-sample of 5-6 mice 

from each treatment group as previously described [11, 285, 418, 569]. 

Before gauges could be attached to the tibiae, wires had to be attached to the solder 

points of the strain gauge indicated by the red arrows in Figure 15. Appropriate lengths of 

Figure 15 – Strain gauge used for tibial strain measurements.  

Red arrows indicate solder points for wire attachment. Dotted lines indicate final gauge 
size after trimming 
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wire were cut from the reel and the PVC insulation carefully removed from both ends of 

the wire using a No.11 scalpel blade under the dissecting microscope, taking care not to 

damage the internal strands of wire. Next the wires were dipped into soldering flux and 

then solder was applied using a soldering iron. The excess plastic was then trimmed from 

the left side of the gauge using the base of the arrowhead as a cutting guide. The plastic 

film over the soldering points was then scratched off using a needle, flux applied using a 

trimmed down toothpick and then solder attached. Next, the solder on the gauge solder 

points was heated with the soldering iron and the wire inserted. Finally, the remaining 

three sides of the gauge were trimmed down using the bases of the arrowheads as cutting 

guides Figure 15. Figure 16 shows the finished gauge prior to application to the tibia. After 

completion, the resistance of the gauge was tested using an ohmmeter. A reading of 

120±0.3Ω indicated no damage to the gauge element had occurred during soldering of 

wires. If the reading was outside of this range then the gauge was discarded, as there 

would be a concern that the strain reading would not be accurate. 

Following appropriate experimental treatment, all mice were killed via a recognised 

Schedule 1 killing method (see section 2.1.5) and entire right hindlimbs were collected by 

disarticulating the hip joint, whilst preserving as much proximal skin and soft tissue as 

possible to allow normal skin coverage of the limb when loading into the materials testing 

machine. Limbs were stored at -20°C in labelled self-seal plastic bags. 30 minutes prior to 

use, limbs were brought up to body temperature in a water bath set to 37°C. The limb was 

positioned under a dissecting microscope with the medial aspect facing upwards and 

pinned into position. The skin was incised with a No.11 scalpel blade from the proximal 

end of the tibia to approximately the mid-shaft and the fascia covering the periosteum 

divided. The periosteum was then elevated to expose the tibial surface. The area was “de-

greased” using isopropanol to aid adherence of the strain gauge. In each mouse, the 

previously prepared strain gauge was then attached using cyanoacrylate adhesive in 

longitudinal alignment to the medial aspect of the tibia at 37% of its length measured from 

the proximal end following manufacturer’s recommendations. The plastic backing of the 

strain gauge was dipped in the catalyst, excess blotted off and then dipped in the adhesive. 

The gauge was then placed on the bone and held in place for 60 seconds by applying direct 
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pressure to the solder points of the gauge to avoid damage to the element. Adhesion was 

confirmed by applying gentle lateral pressure to the solder points. 

Previous studies have shown that the 37% site corresponds to the site of greatest 

osteogenic response to similar loading in young adult female C57Bl/6 mice [1]. Strains 

were measured at a static preload of 0.5N and across a range of peak compressive loads 

between 5 and 19N, at a load rate of 500N/s. Using the strain gauging data, the 

appropriate peak loads were selected for use in the later experiments. Due to slight 

variability in achieving the exact requested peak loads, the actual peak load achieved for 

each repeat was plotted as a scatter plot against the strains achieved and linear regression 

calculations were made for each treatment group to determine the average strain 

achieved for a given load/force. The formula for each regression line was used to generate 

the load required for the desired strain. These peak loads were applied using the same 

electromagnetic materials testing machine used for in vivo loading later. The strain rate 

was also altered to achieve a strain rate of 30000µƐs-1.  

Figure 16 – Photomicrograph of strain gauge preparation for ex vivo strain 
measurement on murine tibias.  

Solder points (arrows) with wire attached. The side cuts have been made 
and the top cut is all that remains to be made. The top edge of the gauge is 
immobilised by masking tape. The scale bar indicates 0.5mm.  

1mm 
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2.2.2 High resolution micro-computed tomography (μCT) analysis 

Materials 

• PVC-free cling film (Sainsbury’s, UK). 

• Drinking straw 

• 1ml hypodermic syringe (BD plastipak, Oxford, UK) 

• 70% Ethanol (EOH) solution. 

Equipment 

• µCT scanner and software (SkyScan 1172, Bruker, Kontich, Belgium). 

o Skyscan programmes used: NRecon, CTAn. 

Method 

Because mouse bones are small and the axial loading-related osteogenesis is site-specific 

[1, 7], high-resolution μCT was the primary technique used to quantify three-dimensional 

bone architecture at precisely comparable sites of the loaded and contra-lateral control 

limbs, as previously described (Sugiyama et al., 2010b; 2011; 2012a; Meakin et al., 2013). 

The lower legs were stored in 70% EOH and mounted in a plastic tube wrapped in plastic 

film to prevent drying during scanning. During later experiments in this thesis, the bones 

were held within 1ml polypropylene syringes filled with 70% ethanol and held in position 

with the rubber stoppers from the syringe. The whole tibiae and surrounding muscles 

were imaged in the SkyScan 1172 (SkyScan, Kontich, Belgium) with a voxel size of 4.8μm 

(110µm3). The applied x-ray voltage was 50 kV, current of 200mA, with 0.5mm aluminium 

filtration. The scans were over 180 degrees with a 0.6-degree rotation step. The images 

were reconstructed and binarised with global thresholding (Values: 1.000-1.160) using the 

NRecon SkyScan software. 

Following a camera upgrade in the µCT scanner in 2014, prior to the experiments 

performed for experiments in chapter 6 and 7, from a 1.3megapixel (MP) sensor to an 

11MP sensor, images scanned had a slightly different voxel size of 4.78μm and applied 

voltage of 49kV, but still with a current of 200mA and using a 0.5mm aluminium filter. The 

scans were still performed over 180 degrees with a 0.6-degree rotation step, however 
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scanning did benefit from 2 x frame averaging to reduce the noise experienced due to the 

newer, more sensitive camera sensor. Otherwise, all remaining processing steps were the 

same. 

Structural parameters were calculated using the SkyScan software for cortical bone 

(0.5mm long section at the desired site of the tibia’s longitudinal length from its proximal 

end) and trabecular bone (secondary spongiosa; 0.25 – 0.75mm distal to the proximal 

tibial growth plate). Cortical sites examined included 25%, 37%, 50% and the 75%, 

although due to development of Site Specificity Analysis (SSA)[7] during the latter parts of 

the experimental periods for this thesis, only the 37% site and trabecular site was 

examined using the traditional single-site technique and the remainder of the cortical 

bone was assessed using SSA (see section 2.2.3).  

Selection of the trabecular region of interest (ROI) was selected by hand and consisted of 

an irregular, anatomic region of interest adjacent to the endocortical boundary. All other 

ROIs were selected using automated task lists generated in the CTAn programme. The 

details of the task lists used in trabecular bone, young mouse cortical bone, old mouse 

cortical bone (larger transcortical perforations), and specific tasks lists to calculate cortical 

bone porosity (excluding the medullary cavity from the ROI for calculation of pores), and 

trabecular region cortical porosity and included in Appendix 1.  

According to the ASBMR guidelines for assessment of bone microstructure in rodents 

using μCT [570], we evaluated bone mass and architecture and changes due to loading 

[(right – left) / left] in cortical bone area (Ct.Ar), total cross-sectional area inside the 

periosteal envelope (Tt.Ar), marrow area (Ma.Ar), cortical thickness (Ct.Th), polar moment 

of inertia (PMI) and cortical area fraction (Ct.Ar/Tt.Ar) at the cortical sites. The additional 

task lists were generated to create a specific ROIs to isolate the cortical bone without the 

medullary cavity to enable the calculation of cortical bone porosity (Ct.Po) and the 

trabecular region cortical/trabecular porosity (Tb.Ct.Po) following exclusion of the 

medullary space. Bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular 

thickness (Tb.Th), trabecular separation (Tb.Sp), structure model index (SMI) and 
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trabecular pattern factor (Tb.Pf) were calculated for the hand-selected trabecular bone 

ROI. 

In experiments where sciatic neurectomy was performed, muscle area (Mu.Ar) was also 

assessed at the 50% site. Mu.Ar was drawn manually around the perimeter of the soft 

tissue envelope for one slice, and each group averaged. This was used in chapters 4, 5 and 

6 to document muscle atrophy to confirm that neurectomy had been successful, as 

previously described [11].  

2.2.3 Site Specificity Analysis of tibial cortical bone 

Materials 

• Site Specificity Analysis programme [7] 

Methods 

The full technique is taken from and described in detail in [7]. Briefly, mouse tibiae were 

scanned with high resolution μCT and reconstructed as above. The sequentially labelled cross-

sectional images from a single bone were placed in a folder called the “in path” for site 

specificity analysis. The “output” folder is created inside each “in path” folder. MatLab 

(R2015a) was then used to open the site specificity program script [available freely online at 

the journal page for [7]]. This program was then run as a standard script in MatLab to select 

and analyze the cross-sectional μCT slices of the tibia corresponding to each 1% of the bone’s 

length. 

After bone thresholding to binarise the image into “bone” and “non-bone”, site specificity 

isolates the tibia, excludes the fibula, then calculates Ct.Ar and the enclosed non-bone area 

(Ma.Ar). Initial output from the MATLAB script includes Ct.Ar and Ma.Ar and areas are 

presented in pixel area. Therefore, our scans are performed so isotropic pixels dimensions 

represent 4.78 μm. By adding the values for Ct.Ar and Ma.Ar, a value for Tt.Ar is achieved. If 

the cortex is incomplete in a given section, the Ma.Ar calculation is unreliable and thus Tt.Ar 

cannot be calculated for that individual slice. Ct.Ar is still reliable, however. When examining 

normal young adult mice, there are rarely defects in the cortex which penetrate the whole 

cortex in a single given slice, as nutrient vessels and cortical defects usually enter oblique to 
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the cortex. Cortical defects are more frequent in the trabecular bone and distal tibia such that 

we can only reliably calculate the 76 slices between 15 and 90th percentile length. In addition, 

these errors become more frequent following aging and also following treatment with certain 

pharmaceuticals, and following disuse, due to the decreased bone mass, reduced Ct.Th and/or 

increase in cortical porosity. 

After generation of the initial Ct.Ar and Ma.Ar data, saved *.bmp images are then imported 

into the freely available BoneJ programme [571, 572] for generation of cross-sectional 

thickness for each slice. BoneJ also generates several other morphometric parameters, which 

can be of pertinence in given situations, but we were primarily interested in basic 

morphometric parameters which can detail evidence of bone formation or loss at a given site. 

Where necessary, the saved binarised images were also analysed using the CtAn programme 

as above. This can also generate slice by slice measures as detailed in the standard µCT image 

analysis section in 2.2.2 for each image, corresponding to a certain percentile length, except 

for Cortical Thickness calculations, which are calculated based on a 3D model reconstruction 

in Ct.An, so therefore are not generated for each slice as output from CTAn. 

All data were then imported into a custom Excel spreadsheet as described in the Galea et al 

[7] publication to permit generation of treatment group data and subsequent relevant 

analysis. 

Statistical analysis was performed using SPSS (Version 23, IBM Corp, Armonk, NY). The data 

were analysed using a Mixed-model approach considering the relevant treatments as a 

fixed effect and the bone site as fixed categorical parameter. Mouse ID was also included 

as a random effect to account for the left and right limbs coming from the same animal. 

Sidak post-hoc adjustments were carried out if any of the effects were significant at 

p<0.05. 
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2.2.3 Quantitative Real-Time Reverse Transcription Polymerase Chain 

Reaction (qRT-PCR) 

2.2.3.1 Dissection 

Materials  

• RWT buffer (RWT Buffer, Qiagen, Crawley, UK) with β-Mercaptoethanol (Sigma 

Chemical Company, Dorset, UK) added at 10µL/ml 

• Liquid nitrogen (BOC, Bristol, UK) 

• Dry Ice (VWR, Lutterworth, UK) 

• Sterile serum-gel 1.3ml blood collection tubes (Idexx laboratories, Wetherbridge, UK) 

• Molecular Grade Ethanol (Sigma Chemical Company, Dorset, UK) 

• 1.5ml microcentrifuge tubes (Crystal Clear, E1415-1500, Starlab, Milton Keynes, UK) 

• NUNC Cryotubes vials 1.8ml #340711 (Thermo Scientific, Roskilde, Denmark) 

• Sterile, RNase-free filtered pipette tips; 200 and 1250µL (Elkay laboratory equipment, 

UK 

Equipment 

• Microcentrifuge (Heraeus Fresco 17, Thermo Scientific, Waltham, MA, USA) 

• Manual pipette (ErgoOne, Starlab, Milton Keynes, UK) 

Methods 

Following sacrifice and leg dissection as described in section 2.1.4, the tibia was sectioned 

through all bone and other soft tissue just proximal to the distal physis, then muscles and 

tendons were removed in a disto-proximal direction to expose the proximal tibial and fibular 

region. The proximal tibia/fibula was then cut just distal to the proximal physis. A dry lint-free 

tissue was used to remove the periosteal tissue as much as possible. Following this, the tibia 

bone was placed in a sterile pipette tip trimmed to fit the distal bone end in it and placed with 

the bone uppermost in a 1.5ml microcentrifuge tube. The bone and tube were then 

centrifuged at 8000g at 4°C for 15-20 seconds. This process aimed to displace the bone 

marrow and blood from the marrow cavity and leave just a cortical bone sample containing 

predominantly osteocytes, but with some osteoclasts and osteoblasts present on the bone 

surface. Following centrifugation, the tibial bone sample was placed in a cryo-tube and snap 
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frozen by placement into liquid nitrogen. Following this, the bones were stored at -80°C until 

further needed. The tissue pellet of bone marrow collected in the centrifuge tube was 

resuspended in 600µL of RWT buffer with 10µL/ml β-mercaptoethanol. The resuspended 

tissue pellet was snap frozen by immersion of the tube in liquid nitrogen then stored at -80°C. 

Tibial cortical bone tissue and marrow collection was adapted from that previously 

reported in our laboratory and elsewhere [86, 419, 573]. In some instances, the left femur 

was also prepared in a similar manner as a control cortical bone sample – the right femur 

was not collected as the loading process would inevitably exert some force on the distal 

femur as the axial loading through the knee requires compression of the distal femur. 

2.2.3.2 RNA extraction from tibia 

Materials 

• RNeasyTM Plus Universal Mini kit; QIAzol Lysis reagent (Qiagen, Crawley, UK) 

• Molecular Grade chloroform and ethanol (Sigma Chemical Company, Dorset, UK) 

• Ultrapure DNase/RNase free distilled water (Invitrogen, Paisley, UK) 

• 2.0ml low-bind safety lock tubes (Eppendorf, Fisher, Loughborough, UK) 

• 7mm RNAse-free, DNAse free stainless steel balls (Qiagen, Crawley, UK) 

Equipment 

• Manual pipette (ErgoOne, Starlab, Milton Keynes, UK) 

• Microcentrifuge (Heraeus Fresco 17, Thermo Scientific, Waltham, MA, USA) 

• Tissuelyser LT (Qiagen, Crawley, UK) 

• Spectrophotometer (Nanodrop 1000 Thermo Scientific, Waltham, MA, USA) 

Methods 

RNA extraction and purification was performed using a commercially available kit. Bones were 

removed from -80°C and placed in a 2ml Safety-lock microcentrifuge tube with a 7mm 

stainless steel ball-bearing which had been pre-cooled to -80°C. The tube was left to stand for 

2 minutes before addition of 900µL of QIAzol tissue lysis reagent. The tubes were then placed 

directly into the Tissuelyser LT and agitated at 50Hz for 5 minutes each to homogenise the 

bone. In groups where there were more samples than would fit in the Tissuelyser LT at once, 

half of the treated (right) tibial samples and half of the control (left) tibial samples were 
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homogenised consecutively. Following the homogenisation, the samples were checked for 

adequate homogenisation of the bone, and in cases where this was not sufficient, a further 2 

minutes of agitation in the Tissuelyser LT was performed. Following this step, all samples were 

processed together. After aspiration of the homogenised bone/lysis buffer mix into a new 

tube, tubes were allowed to stand for 5 minutes to allow dissociation of nucleoprotein 

complexes. Following this, 100µL of gDNA Eliminator Solution was added to each sample and 

the sample vigourously shaken for 15s then 180μL chloroform was added to each sample and 

the sample vigorously shaken for another 15s to precipitate protein. After allowing to stand 

at room temperature for 2-3 minutes, the sample was then centrifuged at 12,000g at 4°C for 

15 minutes and the upper aqueous phase was carefully transferred to a new tube to ensure 

protein and mineral contamination was minimised. The supernatant was placed in an equal 

volume of 70% ethanol, diluted using RNase/DNase free water.  

Half of the sample was added onto the spin column and placed in a centrifuge at 13,000rpm 

for 15s. The flow through was discarded and this step repeated so the entire sample had been 

passed through the spin column. Next, 700μL of buffer RWT was added onto the spin column 

and centrifuged for 15s. The flow through was discarded then 500μL buffer RPE added onto 

the column. This was centrifuged for 15s and the flow through discarded. This step was 

repeated but the second spin was extended to 2mins. Next, the spin column was placed in a 

new collection tube and centrifuged for 1min to completely dry the spin column and ensure 

removal of all ethanol contained in the RPE buffer. Finally, the spin column was placed in a 

new collection tube and 35μL of RNase/DNase free water placed directly onto the spin column 

before centrifugation for 1 min to elute the RNA.2  

The concentration of purified RNA was then directly quantified on the spectrophotometer 

using RNase/DNase free water as the control. In addition to recording the concentration of 

RNA in the elute, the 260/280 wavelength ratio and absorbance curve were also assessed to 

determine the degree of protein or DNA contamination of the sample.  

2.2.3.3 Agarose gel electrophoresis to assess RNA quality  

Materials  

• Ethidium bromide; gel loading dye; 50 base-pair ladder (Sigma Chemical Company, 

Dorset, UK).  
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• Low melting point agarose (Invitrogen, Paisley, UK). 

• 50x TAE buffer (AppliChem, Darmstadt, Germany).  

Equipment  

• Manual pipette (ErgoOne, Starlab, Milton Keynes, UK) 

• UV transilluminator and camera (UVP Lab Product, Cambridge, UK). 

• Gel electrophoresis tank (Bio-rad, Hemel Hempstead, UK)  

Solution 

TAE buffer: 50x TAE buffer stock solution was diluted to 1x by the addition of 4ml 50x TAE to 

196ml distilled water.  

1% agarose gel: 1g agarose powder was added to 100ml 1x TAE buffer. The mixture was 

dissolved by heating for 1min on full power in the microwave, stirring intermittently. 2μL of 

10mg/ml ethidium bromide was then added to complete the solution. 

Methods  

The hot agarose solution was poured into a gel tray and left to cool with the appropriate 

number of lanes. Once set, the gel in the tray was placed in the electrophoresis tank and 

topped up with 1x TAE buffer to ensure the gel was fully submerged. 5μL of the RNA sample 

was added to 1μL loading dye which was mixed and loaded into each lane. Bands were 

Figure 17 Representative agarose gel electrophoresis image run from young mice 
femoral cortical bone.  

The loading wells are at the bottom of the image and the bands visible represent the 
18s (lower band) and 28s (upper band). 
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separated by applying 200V for approximately 25mins until the dye had run half way across 

the gel. The bands were visualised by placing the gel on the UV transilluminator and a 

greyscale image captured of the gel (Figure 17). Two distinct bands were identified 

corresponding to the 18S and 28S RNA strands to ensure no significant amount of RNA 

degradation had occurred during specimen processing and RNA extraction. 

 

2.2.3.4 cDNA synthesis 

Materials 

• Quantitect Reverse Transcription Kit (Qiagen, Crawley, UK) 

Equipment 

• DNA Thermal Cycler (Mastercycle Eppendorf Gradient, Eppendorf UK Ltd., Cambridge, 

UK) 

• Electronic pipette (Starpet E, Starlab, Milton Keynes, UK)  

Method 

Synthesis was performed using a commercially available kit following the included 

instructions. Template RNA samples were thawed on ice and gDNA wipeout buffer, 

Quantiscript reverse transcriptase, Quantiscript RT Buffer, RT primer mix and RNase-free 

water were thawed at room temperature then tubes were briefly centrifuged to collect 

residual liquid from the tube sides. The genomic DNA elimination reaction was prepared on 

ice by adding up to 0.75μg (up to a maximum of 12μL) RNA to 2µL gDNA wipeout buffer before 

adding RNase/DNase free water to make a final volume of 14μL. This initial mixture was 

heated to 42°C for 2 minutes to eliminate any genomic DNA contamination. The reverse 

transcription master mix was prepared to include 1µL Quantiscript Reverse Transcriptase, 4µL 

Quantiscript RT buffer and 1µL RT Primer mix per reaction. Following the gDNA elimination 

step, the tubes were immediately removed from the heating block and cooled quickly on ice. 

Each tube then had 6µL of master mix added to it and then was incubated at 42°C for 15 

minutes and heated further to 95°C for 3 minutes to inactivate the Reverse Transcriptase 

enzyme. The cDNA was stored at -80°C and thawed out for RT-PCR as required.  
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2.2.3.5 qRT-PCR 

Gene specific standards 

Materials 

• Sybr Green JumpStart Taq ReadyMix (Sigma Chemical Company, Dorset, UK) 

• Gene specific primers, as listed in table 1 (Eurofins-MWG, Ebersberg, Germany) 

• QIA quick gel extraction kit (Qiagen, Crawley, UK) 

Equipment 

• DNA Thermal Cycler (Mastercycle Eppendorf Gradient, Eppendorf UK Ltd., Cambridge, 

UK).  

• UV transilluminator (UVP Lab Product, Cambridge, UK) 

• Nanodrop ND1000 (Labtech International, Ringmer, East Sussex, UK) 

• Manual pipette (ErgoOne, Starlab, Milton Keynes, UK) 

• Electronic pipette (Starpet E, Starlab, Milton Keynes, UK) 

Methods 

Lyophilised specific forward and reverse primers were dissolved in RNase/DNase free water 

to obtain a 100pM stock solution for each primer. The primer mix was then prepared by adding 

equal volumes of forward and reverse primer and diluting tenfold with RNas/DNase free water 

to make a final specific primer mix containing 10pM each forward and reverse primer. The 

primer stocks and primer mixes were stored at -20°C. Following RNA extraction and cDNA 

synthesis, 3µL of template cDNA was added to 2µL gene specific primer mix, 20µL 

RNase/DNase free water and 25µL Sybr Green. 

The thermal cycler was programmed to perform an initial enzyme activation step of heating 

to 95°C for 2 minutes, followed by 40 cycles of 15s incubation at 95°C, 25s at the specific 

primer annealing temperature (shown in Table 1) followed by a 30s extension time at 72°C. 

Following the 40 cycles, the samples were chilled to 4°C. 
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Table 2 - Primer Sequences and amplicon length for genes of interest 
 

Following PCR, the samples were checked for quality by running through a 2% agarose gel 

(prepared as described in section 2.2.3.3, but with twice the amount of agarose) to confirm a 

single band at the appropriate position in the agarose gel. Under UV light assisted visualisation 

and the band was excised from the gel using a sterile number 22 scalpel blade.  

The product could then be extracted from the gel using the commercially available kit 

following manufacturer’s instructions. The sample was weighed and placed in a microfuge 

tube with three times the volume of Buffer QG (from QIA quick gel extraction kit). This was 

incubated at 50°C for 10 minutes in a water bath, mixing every 2-3mins until the sample was 

completely dissolved. 1 gel volume of isopropanol was then added and 800μL of the solution 

placed on the provided spin column, centrifuged for 1min at 13,000rpm and the flow through 

discarded. This was repeated until the entire sample had been passed through the spin 

column. 500μL buffer QG was then passed through the column by centrifuging for 1min to 

remove all traces of agarose gel. The sample was washed by passing 750μL buffer PE through 

the column by centrifuging for 1min. After discarding the flow through, the column was spun 

for an additional minute to remove all traces of ethanol which is contained in buffer PE. Finally, 

the column was placed in a new microcentrifuge tube and the DNA eluted using 50μL 

RNase/DNase free water. The concentration of DNA was quantified using a 

spectrophotometer. The following website: http://www.uri.edu/research/gsc/resources 

/cndna.html, was then used to calculate total copy number based on the amplicon length 

(reported in the relevant primer paperwork) and the quantity of RNA in ng/μL. From this 

Gene Primer sequence (F then R) Amplicon Length 

(bp) 

TM (°C) 

RANKL 

(Tnfsf11) 

CAGCATCGCTCTGTTCCTGTA 107 60 

CTGCGTTTTCATGGAGTCTCA 
SOST 

(Sost) 

TGCCGCGAGCTGCACTACAC 

 

81 60 

CACCACTTCACGCGCCCGAT 

 
β2-MG ATGGCTCGCTCGGTGACCCT 

 

110 60 

TTCTCCGGTGGGTGGCGTGA 
OPG 

(Tnfsfr11b) 

TGTGTGTCCCTTGCCCTGACCA 132 60 
ACACTCGGTTGTGGGTGCGG 
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website, the following equation was used to calculate the number of copies per µL based on 

the concentration and amplicon length; 

number of copies = ( amount * 6.022x1023) / (length * 1x109 * 650) 

This calculation is based on Avogadro’s constant and the assumption that the average base 

pair weighs 650Da. This was then diluted to the nearest ten-fold dilution e.g. 1x1011 or 1x1010 

copies/μL. Ten-fold serial dilutions were then obtained from the highest concentration down 

to 1x101 copies/μL. The serial dilutions of the primers were then used as control samples to 

determine a standard curve for each gene – this permitted quantification of the amount of 

gene product in the experimental samples. 

qRT-PCR 

Materials 

• Sybr Green JumpStart Taq ReadyMix (Sigma Chemical Company, Dorset, UK) 

• 384 well PCR plates (Life Technologies, Paisley, UK) 

• PCR adhesive plate covers (Life Technologies, Paisley, UK) 

• RNase/DNase free water (Qiagen, Crawley, UK) 

Equipment 

• 7900HT Fast 384-well qPCR machine (Applied Biosystems, Abington, UK) 

• Chromo4 Real time PCR detection system (Bio-Rad Laboratories Ltd., Hertfordshire, 

UK). 

• 2-20μl and 10-200μl electronic multipipettes (Starlab, Milton Keynes, UK). 

Methods 

A 10μl reaction volume was used containing 5μl Sybr Green ReadyMix, 3μl RNase/DNase free 

water, 1μl sample or standard and 1μl primer mix. A standard curve was produced for each 

gene using the serial dilutions from section 2.2.3.5 to enable quantification of the samples. 

The protocol consisted of an initial enzyme activation incubation step of 2min at 95°C. There 

were then 40 cycles each consisting of a 15s incubation at 95°C, 15s at the specific primer 

annealing temperature listed in table 1, and then 35s extension at 72°C. The fluorescence was 

detected after each extension cycle. Finally, a melting curve was performed, to ensure only a 
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single product had been amplified, from 60 to 95°C reading the fluorescence every 0.5°C. 

Samples were analysed in triplicate and the standard curve in duplicate. The threshold was 

determined manually for each gene in the linear range of amplification. Using the formula 

derived by the line of best fit for the exponential results of the standard curve, the copy 

number per sample was calculated for the house-keeping gene and the genes of interest. A 

relative gene expression value, calculated as a ratio of the amount of β2 Microglobulin in the 

sample, gave a representative value to help normalise and account for variance in amount of 

starting material. 

2.2.4 Tissue fixation and decalcification 

Materials 

• Paraformaldehyde (PFA), phosphate buffered saline (PBS) tablets, sodium 

hydroxide pellets (NaOH), hydrochloric acid (HCl) (Sigma, Poole, UK). 

• Ethylenediaminetetraacetic acid (EDTA, Fisher Scientific, Loughborough, UK). 

• Whatman 2V filter (Whatman International Ltd., Maidstone, UK). 

Solutions 

4% PFA – 20g of PFA powder was added to ~450ml PBS and heated to 56°C to dissolve the 

powder with continuous stirring. 2-3 pellets of NaOH were added to clarify the solution 

and cooled. The pH was adjusted to 7.4 using concentrated HCl as necessary. Finally the 

volume of the solution adjusted to make 500ml using dH2O and was filtered using a 

Whatman (2V) filter before storage at -20°C. 

14% EDTA – 250g of EDTA powder was added to ~1.5l of dH2O. The solution was heated 

to 75°C with continuous stirring for approximately one hour to dissolve the powder. 

Approximately 25g of NaOH was added to adjust the pH to 6.8-7.0 and the solution cooled. 

The final volume was adjusted to make 1.75l EDTA. 

Method 

Dissected limbs were fixed in 4% PFA for 48hrs at 4°C before further dissection. Bones 

were then washed thoroughly for one hour under running tap water before decalcification 

in 14% EDTA for 28 days at 4°C. The EDTA solution was changed three times per week. 
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Satisfactory decalcification was confirmed by scanning the limbs using µCT and comparing 

the radio-density of the bone with surrounding muscle. If no difference was observed then 

paired bones were washed thoroughly under running tap water for 12 hours then 

processed for embedding. 

2.2.5 Paraffin embedding and sectioning 

Materials 

• Silane coated slides (Histobond Plus – Marienfeld, Lauda-Königshofen, Germany) 

• Paraffin 

Equipment 

• Automated histology processor (Leica Histokinette®, Leica Microsystems, Milton 

Keynes, UK) 

• Microtome (MICROM HM 355 S, Microm, Thermo Fischer Scientific, 

Loughborough, UK) 

• Nikon 50i microscope (Nikon instruments, Surrey, UK). 

• DP72 digital camera (Olympus, Center Valley, PA, USA). 

Method 

After washing under running tap water, bones were dehydrated using increasing 

concentrations of EOH; 30%, 50% and 70% for one hour in each concentration. Bones were 

the processed for wax embedding using an automated processor using a standard 24hr 

histology protocol. 

6µm transverse sections were cut on a rotary microtome in the region corresponding to 

the 37% site of maximal osteogenic response to loading, as determined by µCT [1]. Sagittal 

longitudinal 6µm thick sections of the proximal tibial epiphysis were also made after the 

proximal bone transverse sections had been collected. Sections were floated onto silane-

coated slides and then heated on a block at 65°C for 20 minutes to aid adherence of bone 

sections. 
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2.2.6 Sclerostin and RANKL immunolocalization 

Immunolocalisation techniques were only performed studies described in Chapter 4, and 

as such are described in detail in that chapter. Furthermore, a tabulated version of the 

immunostaining protocols for both Sclerostin and RANKL are included in Appendix 2. 

2.2.7 Bone embedding in methylmethacylate 

Materials 

• Analytical grade Ethanol, xylene (Fisher Scientific, Loughborough, UK) 

• Methylmethacrylate, dibutyl phthalate (Fischer Scientific, Loughborough, UK) 

• Benzoyl Peroxide (Millipore, Nottingham, UK) 

• Polypropylene 1000ml containers (VWR, Lutterworth, UK) 

• 20ml polypropylene specimen container (Securtainer III, Simport, Biloeil, QC, Canada) 

Solutions 

• MM I – 80% MMA, 20% dibutyl phthalate 

• MM II – 100ml MM I plus 2g benzoyl peroxide as polymerisation accelerant 

• MM III – 100ml MM I plus 3g benzoyl peroxide as polymerisation accelerant 

Each solution was created on the morning of the day before it would be used then allowed to 

mix for the whole day on a magnetic stirrer whilst sealed in an airtight container. In the 

evening it was taken off the stirrer and placed in the sealed, air-tight polypropylene container 

in a spark-free refrigerator. On the morning it was to be used, it was removed from the 

refrigerator and allowed to come to room temperature, so as to avoid moisture condensation 

to contaminate the solution. The new solution was then exchanged with the previous solution. 

Method 

After sacrifice and µCT scanning, bones were placed in histology cages and stored in a 1000ml 

clear polypropylene airtight container. They were sequentially placed in incrementally 

increasing concentrations of ethanol solution (80, 95, 100, 100, 100%) for 24 hrs at each 

concentration. The bones were then placed in 100% xylene for 24hr and 50:50 

xylene:methylmethacylate solution for 24 hr. These steps were performed at 4°C. Following 
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this, the bones were infiltrated with MM I, MM II and MM III for two days each, with daily 

changes of solution. All steps involving MM solutions were performed at room temperature 

during the day and then refrigerated to 4°C overnight. All stages were conducted with 

containers placed on an orbital shaker platform oscillating at 60-70Hz, both in the refrigerator 

and outside. When outside, the container was protected from light by positioning a cardboard 

box over the top of the container. Following this infiltration protocol, the bones were prepared 

for embedding. This involved placing the bones in individually labelled 20ml glass scintillation 

vials with a pre-polymerised bed of approx. 5-7mm of MM III in the bottom of the vial. The 

bones were then covered with MM III and positioned centrally on the bed. The caps on the 

vials were tightly shut to ensure airtightness, and then they were placed in a warm water bath 

at 37-39°C to promote polymerisation and then act as a heat sink to draw off the thermal 

energy created by the exothermic reaction and prevent boiling of the solution and bubble 

formation. 

All steps were protected from light to minimise photobleaching of the fluorochrome labelling 

within the bones. 

2.2.8 MMA embedded bone sectioning and visualisation using confocal 

microscopy 

Materials 

• Silane coated slides (Histobond Plus – Marienfeld, Lauda-Königshofen, Germany) 

• Dental wax 

• Double sided, adhesive tape (Staples Office Supplies, UK) 

• Slide mounting medium (Permount, Fisher Scientific, Loughborough, UK 

Equipment 

• Band-saw (Makita, Milton Keynes, UK) 

• Leica SP5-AOBS confocal laser scanning microscope attached to a Leica DM I6000 

inverted epifluorescence microscope. (Leica Microsystems, Milton Keynes, UK) 

• Microslice II annular diamond saw (Cambridge Instruments, Cambridge, UK) 

• Osteomeasure histomorphometry programme (Osteometrics, Decatur, GA, USA) 
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• ImageJ image analysis programme (US National Institute of Health, Bethesda, MD, 

USA) 

 

Method 

Plastic embedded bones were trimmed to rectangular blocks using a small band saw, then 

mounted on the rotary arm of the annular diamond saw. Blocks were fixed in position using 

melted dental wax and ensuring the bone axis was perpendicular to the cutting plane of the 

saw. 

Sections were cut every 250µm from 45% of the bone length to 30%, measured from the 

proximal end. This was performed to include the load responsive region (37%) of the bone 

following loading. These bone sections were then mounted on glass slides using a double-

sided adhesive strip. Permount embedding media and a glass cover-slip was then used to 

generate a clear medium for later laser confocal imaging. Images of fluorochrome labels were 

then acquired using the confocal microscope and 10x objective lens. 

Images were captured using three different excitation laser wavelengths; Argon (488nm) for 

Calcein, Diode (405nm) for Doxycycline and HeNe (564nm) for Alizarin and xylenol orange. 

A sequential image scan was performed of the entire transverse section of the bone at 37% of 

the length of the bone measured from the proximal end. These individual tiles were then fused 

in a mosaic to form one image of the entire bone cross section, with a pixel size of 378.8nm. 

Images were captured as 3 separate wavelengths and then merged in the proprietary Leica 

imaging programme Files were then exported and saved as *.tif RGB format files in intel byte 

order without data compression using the ImageJ computer programme. This was to allow 

importing and measurement in the Osteomeasure programme. Identification and tracing of 

the fluorescent bone labels allowed automated calculation of single and double labelled 

perimeter, interlabel distance, marrow apposition rate and bone formation rate as necessary. 

This was performed for the endocortical and periosteal surface in each specimen. 
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Chapter 3 – Optimising in vivo experimental models  

3.1 Introduction 

The murine tibia provides, within a single bone, the opportunity to thoroughly interrogate 

the effects of altered mechanical loading. Non-invasive application of load to the tibia has 

been described using several models, including four-point and cantilever bending models, 

and axial compression [2, 517, 519]. These models are described in more detail in the 

general introduction of this thesis. The tibial axial compressive loading model was 

developed to enable study of bothtrabecular and cortical bone adaptation to mechanical 

loading in the same bone [2]. The model also permits genetic [232, 574], surgical [11, 286, 

287] and pharmacological interventions [32, 34, 287, 575]. This model is now considered 

the gold-standard for study of bone’s adaptive response to mechanical loading in rodents. 

Since it was first described by our laboratory [2], we have used the non-invasive axial tibial 

loading model extensively to study the adaptive loading response in mice [8, 11, 29, 285, 

418, 574, 576, 577].  

One advantage of the tibial model is that it can be used in both use and disuse situations. 

Disuse induced by unilateral sciatic neurectomy (SN) permits assessment of disuse-

associated bone loss in trabecular and cortical bone concurrent to additional genetic 

[578], surgical [137] or pharmacological interventions [460]. SN in mice is also useful 

because it allows tibial loading to be applied [11, 35] on a unilaterally neurectomised limb. 

As we have shown previously, this model allows for investigation of the effects of altered 

strains ranging from low strains associated with disuse up to the supraphysiological strains 

possible following axial tibial loading [11]. The tibial axial compression model has also 

been shown to induce adaptive changes in the fibula as well, which provides an additional 

bone in which the adaptive response to loading can be investigated in mice [160].  

The studies described in this chapter were undertaken to optimise the in vivo models to 

be used for subsequent studies in this thesis. The overall aim being to characterise the 

response to altered mechanical loading in mice and how detrimental changes in the 
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response to loading seen with aging are affected by altering the context on which 

mechanical loading is applied. However, before doing this we set out to establish the 

appropriate time course of loading to use to accurately explore the ‘complete’ adaptive 

response to loading. We also set out to evaluate the effects of a revised surgical procedure 

for unilateral sciatic neurectomy (SN) on bone mass and architecture.  

3.1.1 Optimising a model of increased mechanical load 

When examining the response to mechanical loading in murine bones, consideration of 

the desired endpoints is crucial. Recognising when certain processes are at their peak, or 

nadir, following mechanical loading has important ramifications both for planning of in 

vivo experimental procedures, to optimise the chances of identifying the changes of 

interest, and for interpretation of existing studies – e.g. has a given intervention delayed 

the full adaptive response, or has it caused a change in the magnitude of the adaptive 

response? It is, therefore important to identify the times following loading that various 

parts of the adaptive remodelling process are occurring: eg. when measurable formation 

begins, when peak formation is occurring, and when bone has “habituated” or fully 

adapted to a given loading force.  

Bone cells can very quickly sense and respond to mechanical loading [18, 38]. Time course 

experiments, both in vivo and in vitro, following loading have demonstrated rapid changes 

in expression of signalling factors; for example, Skerry et al [85] detected strain-related 

changes in enzyme activity in periosteal osteocytes within 6 minutes of load application. 

Also, upregulation of EGR2 occurs as soon as 1-hour post loading [86, 413, 577]. 

Osteocytes in an isolated avian ulna model were demonstrated to incorporate H3-Uridine 

within 24 hours following loading and the spatial arrangement of this increased activity of 

osteocytes correlated with areas of increased bone formation seen with repeated loading 

[509, 533, 579]. This suggests that osteocytes are associated with the cellular response to 

loading by strain-specific gene upregulation.  

The resultant adaptive osteogenic response to mechanical loading is also relatively well 

characterised in the short-term. There are measurable increases in bone formation within 
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4 days of a single period of mechanical loading. Using four-point bending, Forwood et al 

[580] demonstrated that the rate of bone formation following one single loading bout 

peaked between 5-8 days after loading and was already declining by 12 days after the 

loading stimulus. Repeated mechanical loading likely extends the duration until complete 

adaptation, but should still eventually reach a state where the bone is adapted or 

“habituated” to the new, increased magnitude of load being applied. 

Most studies examining changes in bone mass and architecture in mice in response to axial 

tibial loading provide intermittent loading episodes for two weeks [1, 34, 160, 287, 484, 

531, 575, 581, 582] as there is typically significant bone formation detectable by µCT at 

this time point. Some studies have used later time points to examine the adaptive 

response to loading; eg. 4 weeks [583-585], but few studies have examined the length of 

time it takes cortical bone to fully adapt to externally applied loads in mice, and thus the 

optimal duration of loading to explore certain adaptive responses. Hence, herein we 

describe a pilot loading time-course experiment to assess the microarchitectural changes 

in bone mass using µCT and the changes in bone formation using sequentially 

administered fluorochromes for mice loaded for 2, 3 or 4 weeks. 

There are no studies, to the author’s knowledge, which examine the temporal adaptive 

response to tibial axial compressive loading in mice. Lambers et al [586] demonstrated in 

trabecular bone of tail vertebrae, using in vivo µCT, that adaptation to a repeated load 

applied to tail vertebrae is static following 10 weeks of cyclic axial compressive loading, 

with bone formation and resorption rates equal. They also demonstrated that calculated 

stiffness increased and plateaued at this point. Another study looked at the effects on tail 

vertebral trabecular bone in the early weeks following mechanical loading. This study 

demonstrated that increases in bone formation rate seen at 1-2 weeks after loading, 

assessed by dynamic histomorphometry, had returned to baseline following 4 weeks of 

loading [587].  

When considering cortical bone adaptation to loading stimuli, earlier studies examined 

the temporal process of mineralisation following four-point bending of the tibia. Turner et 

al [588] found that woven bone formation stopped after 3 weeks of loading and then fully 
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mineralised by 14 weeks, however, no time points were examined between 3 and 14 

weeks. [588]. Another study applied load to achieve a low strain (1200µƐ) in rat tibias for 

up to 18 weeks [589]. This study demonstrated that periosteal formation had plateaued 

by 12 weeks, but endosteal formation was still elevated compared to the control limb after 

18 weeks. However, the 4-point bending loading protocol does not apply a physiological 

direction of loading, so adaptation to increased loads is likely to continue for longer as the 

bone shape is not adapted to withstand these bending loads. As bone is already adapted 

to forces applied in an axial direction through normal habitual loading, adaptive bone 

formation seen with the axial compression loading models is likely to demonstrate a 

different time course to that demonstrated with exogenously applied four-

point/cantilever bending models, where the direction of strain is significantly different to 

that experienced in habitual loading. 

Only one study, to the author’s knowledge, has explored the temporal adaptive response 

to axial loading in the ulna model; Schriefer et al [590] demonstrated that axial loading 

resulted in increased bone formation initially which then plateaued within the first 5 

weeks after loading onset. They hypothesised the majority of bone formation was likely 

to have occurred as early as 2-3 weeks. As axial tibial loading is now considered the gold 

standard for study of the adaptive response to bone loading, by allowing investigation of 

trabecular and cortical bone adaptation, we planned to characterise the temporal 

response to repeated loading using µCT and dynamic histomorphometry (DH) following 

repeated loading of the tibia for up to four weeks. The use of DH enables identification of 

specific areas of formation and resorption in a given cross-section, which allows evaluation 

of responses which cannot be quantified with ex vivo µCT alone. The first aim of 

experiments described in this chapter was to establish the temporal pattern and spatial 

distribution of cortical bone formation to determine the optimal loading duration to use 

for subsequent experiments in this thesis.  

3.1.2 Optimising a model of decreased mechanical loading 

In people, bone mass has been shown to be rapidly lost following disuse induced by spinal 

cord injury [591], bed rest [456] and cast immobilisation [592]. Experimentally induced 
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bone loss by SN or tail suspension in rodents parallels much of this clinical bone loss seen 

in human bone in situations of disuse [7, 35, 558, 559, 593] with marked trabecular bone 

loss and moderate endosteal resorption in cortical bone, and minimal periosteal effects. 

Tail suspension is one of the most commonly used experimental models for inducing 

disuse in rodents. We did not, however, select this model for many reasons. Primarily, the 

procedure is not approved for experimental use under the Animals (Scientific Procedures) 

Act (1986) in the United Kingdom due to welfare/ethical concerns. There is an observed 

stress response associated with immobilisation and restraint and redistribution of blood 

to the cranial aspect of the animal [563]. Endogenous glucocorticoid excess reduces bone 

formation rate and bone mineral density [594] and corticosteroid administration is shown 

to reduce bone mass [595], possibly as a result of an increase in RANKL enhancing 

osteoclast formation [596, 597]. The physiological stress response is a recognised 

limitation of the tail suspension technique; in fact, tail suspension is used as a research 

model for inducing psychological stress in rodents [563, 564]. Considering this, the bone 

loss associated with disuse engendered by tail suspension may be confounded by 

physiological changes associated with stress. These “stress” effects are likely to be smaller 

following SN as the animal is untethered and freely able to ambulate around the cage at 

all times, although no direct comparison of the stress response between the two 

procedures exists.  

One of the other benefits of SN is that it can provide a background of diminished habitual 

loading which enables the effects of exogenous axial tibial loading to be separated from 

the effects of habitual loading and thus studied across a wider spectrum of strain 

magnitudes, as demonstrated in the paper by Sugiyama et al [11]. This paper 

demonstrated a linear relationship between bone formation and the low strains 

associated with disuse and the high strains associated with bone formation, thus arguing 

against the “Lazy Zone” hypothesis postulated by Frost [13] which states that there is a 

range of normal strains to which bone remains unresponsive, with only extremes of disuse 

or vigorous loading resulting in adaptive changes in the bone mass and/or architecture. 

Unilateral disuse allows comparison of changes with intervention to the contralateral 

normally loaded limb, thus increasing experimental power and reducing required 
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experimental numbers. Following SN, weight bearing in the contralateral limb has been 

demonstrated to remain unchanged [593]. This study did, however, document a small but 

significant reduction in BMD in the femoral and tibial epiphyses of the contralateral 

hindlimb, although the diaphyseal BMD remained unchanged [593]. Brouwers et al [598] 

have also reported “substantial” contralateral proximal tibial epiphyseal bone loss in rats 

in the contralateral sham operated leg following unilateral SN, however, do not report 

quantitative results. This suggests a systemic effect on the control of bone mass following 

neurectomy, which may involve the systemic release of vaso-active neuropeptides, such 

as Substance P [593]. Previous studies from our laboratory, and from others, have 

demonstrated that systemic blockade of the sympathetic nervous system and neurectomy 

does not impair the adaptive response to loading [35, 599, 600]. Furthermore, the 

osteogenic response to loading was significantly improved in young adult mice if preceded 

by prior SN [35], which further suggests that the involvement of any neuronally mediated 

influence on control of bone mass is small compared to the effect of mechanical loading. 

Considering these studies, our group has concluded that right unilateral SN (RUSN) 

provides the most effective method for engendering unilateral disuse.  

When performing SN, a small surgical approach must be made to the nerve to achieve 

nerve transection. Neurectomy, through the pure traumatic nature of surgery results in 

some degree of tissue trauma, and thus an inflammatory response as part of the normal 

wound healing process. Several inflammatory mediators have been linked with increased 

bone resorption, or decreased formation; most significantly, prostaglandin E2 (PGE2), a 

variety of interleukins (IL-1, IL-6, IL-17), and tumour necrosis factor alpha (TNFα) [601-

605]. It is possible that a localised inflammatory reaction associated with surgical trauma 

alone could stimulate a reduction in bone mass, so to control for a local effect of an 

inflammatory stimulus created by surgical trauma alone, we proposed a revised surgical 

model for unilateral SN where a left-sided sham (LSH) surgery was undertaken in addition 

to RUSN (RUSN+LSH). This revised model provides similar surgical wounds bilaterally, but 

only denervation to the right leg. Future experiments planned for this thesis examined the 

effect of disuse on RANKL protein expression in cortical bone. Inflammatory cytokines, 

such as PGE2 and certain interleukins, are known to be associated with bone loss through 
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increased expression of, or synergism with RANKL [601].  Prior to establishing bone’s 

expression of RANKL in situations of disuse and loading in the following chapter of this 

thesis, we first needed to confirm that RUSN+LSH resulted in similar degrees of bone loss 

to that previously reported following RUSN [4, 11].  The second aim of experiments 

described in this chapter was to characterise the effect of contralateral sham surgery on 

the pattern of bone loss in the tibia following unilateral SN. 

3.1.3 Objectives 

1. Determine the temporal pattern of bone mass changes in the murine tibia following 

repeated axial loading for two, three or four weeks, using µCT.  

2. Determine the temporal pattern of cortical bone formation in the murine tibia 

following repeated axial loading for two, three or four weeks, using dynamic 

histomorphometry. 

3. Characterise the effect of unilateral sciatic neurectomy and contralateral sham 

surgery on bone mass in the murine tibia using µCT. 

 

3.2 Materials and Methods: 

3.2.1 Objective 1: Determine the temporal pattern of bone mass changes in 

the murine tibia using µCT, following repeated axial loading for two, three or 

four weeks. 

This study was performed as an initial pilot study to provide preliminary data on the 

optimal duration of loading for later experiments in this thesis and also to provide the 

author with an introduction to axial tibial loading of the murine tibia. To establish the time-

course for bone mass changes and the loading-related changes in bone formation over 4 

weeks of loading, 17-week-old female C57BL/6 mice were divided into three groups. The 

right tibia was loaded three times weekly (Monday, Wednesday, Friday) to a peak strain 

of 2500µƐ on the medial surface of the cortex (14.97N) [29] then killed on the final 

Monday. Group 1 (n=3) was loaded for 2 weeks, group 2 (n=4) for 3 weeks and group 3 
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(n=4) for 4 weeks. Unfortunately, due to an animal death under anaesthesia, the 2 week 

group only included 3 animals for analysis, reducing the statistical power required to 

identify changes in this group. Figure 18 illustrates the experimental timeline for loading 

and fluorochrome administration. Fluorochrome labels were injected to allow assessment 

of bone formation rates throughout the experiment using DH. Fluorochrome solution 

preparation and injection is described fully in Chapter 2. Table 1 in Chapter 2 

demonstrates the dosage, and excitation and emission wavelength maxima for each 

fluorochrome compound. These values were adapted from [568] and were used to 

establish the best wavelength to use for confocal image acquisition. 

Figure 18 – Experimental timeline for the loading time-course study.  

Female 17-week-old C57BL/6 mice received right axial tibial loading three times 
weekly for either 2, 3 or 4 weeks. Fluorochrome administration according to the 
schedule shown was performed to allow dynamic histomorphometry in each group. 
Confocal laser scanning microscopy was performed on methylmethacrylate 
embedded, non-decalcified transverse sections of the 37% site of the tibia using 
Argon (488nm), Diode (405nm) and HeNe (564nm) lasers. 

 



Chapter 3 – Optimising in vivo experimental models 

 

151 
 

Following sacrifice, mice tibias were processed for µCT scanning as described in chapter 2. 

A µCT region of interest at the 37% site, measured from the proximal end, was analysed 

because it is the most load-responsive site [1, 8]. Tt.Ar, Ct.Ar, Ma.Ar, Ct.Th, PMI and 

Ct.Ar/Tt.Ar were calculated.  

 

Figure 19 – Representative image of selected posteriolateral cortex used for analysis 
of response to loading.  

The pictured image is from a control (unloaded) left limb following 2 weeks of loading 
and administration of calcein (green) on day 1, doxycycline (yellow) on day 7 and 
alizarin red (red) on day 11. Mice were killed on day 14 and bones embedded in 
methylmethacrylate then sectioned for imaging using confocal microscopy. Scale bar 
= 250µm 

A B 



Chapter 3 – Optimising in vivo experimental models 

 

152 
 

3.2.2 Objective 2: Determine the temporal pattern of cortical bone formation 

in the murine tibia following repeated axial loading for two, three or four 

weeks using dynamic histomorphometry 

Following completion of µCT scanning, embedding in methylmethacrylate and transverse 

sectioning at the mid-proximal cortical site (37% of the length of the bone measured from 

the proximal end), confocal laser scanning microscopy was performed as described in 

chapter 2 to visualise the fluorochrome labels. Briefly, Argon (488nm), Diode (405nm) and 

HeNe (564nm) wavelength lasers were used to excite the fluorochromes and then acquire 

images of the four different fluorochromes used. A mosaic of the sub-scans was generated 

to form the entire bone cross section. Images were captured using a pixel size of 378nm. 

Because the posteriolateral cortex at the 37% site shows the most significant osteogenic 

response to loading [1, 8], sections at this level were imaged and a standard rectangular 

region of interest 1000x750µm (2640x1980 pixels) was selected of the posteriolateral 

cortex, centred on the mid-cortex (see Figure 19 for a representative section and box 

outlining the region of interest selected).  

Figure 20 is a schematic diagram describing the calculation of the different dynamic 

histomorphometric indices. As each specimen had multiple labels administered, a 

separate bone formation rate and inter-label distance could be calculated for the entire 

experiment (first and last bone label) for each group (Total DH values) (Figure 20A-C) and, 

additionally, each weekly inter-label interval (0-7 days (Figure 20D), n=11; 7-14 days 

(Figure 20E), n=8; 14-21 days, (Figure 20F) n=4) (Weekly interval DH values). The 

Osteomeasure™ histomorphometry programme (Osteometrics, Decatur, GA, USA) was 

used to calculate the Ct.Ar, Ct.Th, interlabel thickness (Ir.L.Th), bone formation rate per 

bone surface (BFR.Bs) and marrow apposition rate (MAR). These parameters were 

calculated for both endocortical (Ec) and periosteal (Ps) surfaces, as described in Chapter 

2. 
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3.2.3 Objective 3: Characterise the effect of unilateral sciatic neurectomy and 

contralateral sham surgery on bone mass in the murine tibia using µCT. 

To determine if sham surgery on the contralateral limb, in addition to right unilateral SN 

(RUSN+LSH) resulted in similar alterations in bone mass and architecture to those seen in 

the tibias of mice following right unilateral SN alone (RUSN), we proposed a revised 

surgical model for SN. The revised surgical model involved right SN and left sham surgery 

in 17-week-old female C57BL/6 mice (n=6). Mice were killed 3 weeks following surgery 

then bones were analysed using µCT. Dissection, fixation and µCT scanning was performed 

as described in chapter 2.  

Following image reconstruction, cortical bone at 25%, 37%, 50% and 75% of the length of 

the bone, measured from the proximal end, was analysed for Tt.Ar, Ct.Ar, Ma.Ar, Ct.Th 

and PMI. The trabecular region, from 0.25-0.75mm distal to the proximal growth plate, 

was analysed to assess BV/TV, Tb.Th, Tb.N, Tb.Sp, Tb.Pf and SMI. Figure 21 is a 

representation of the location of each region analysed. Additionally, the muscle area 

(Mu.Ar.) at mid-shaft (50%) tibia was assessed to determine efficacy of neurectomy. 

3.2.3 Statistical analysis 

Any two related parameters measured within the same animal (eg. control left and 

neurectomised right limbs) were compared using a paired Student’s T-Test or a repeated 

measures ANOVA for analyses with multivariate effects including a paired variable. Two-

way ANOVA was used to compare analyses with >2 treatment variables, and LSD or 

Bonferroni post-hoc comparisons were used where appropriate. Significance was set at 

p<0.05. All analyses were performed with SPSS Version 23 (IBM Corp, Armonk, NY). 
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Figure 20 – Schematic diagram describing calculation of the measures 
explored using dynamic histomorphometry.  

17w-old female C57BL/6 mice had their right tibia loaded 3 times weekly (M, 
W, F) for 2 weeks (Group 1), 3 weeks (Group 2) or 4 weeks (Group 3). 
Fluorochromes were administered to each mouse as described above. Calcein 
(green line), Doxycycline (yellow line), Xylenol orange (Orange/brown line), and 
alizarin red (Red line) were administered and interlabel thickness (Ir.L.Th), 
Marrow Apposition Rate (MAR) and Bone formation rate per bone surface 
(BFR.Bs) calculated for both periosteal and endosteal surfaces. Total formation 
response (between first and last fluorochrome) was calculated for (A) group 1, 
(B) Group 2 and (C) group 3. Formation indices for weekly intervals were also 
calculated for all mice. Values were calculated for (D) 0-7 days formation 
(n=11), (E) 7-14 days (n=8) and (F) 14-21 days (n=4) intervals to determine 
changes in bone formation rates throughout the experimental loading 
duration. Weekly interval data was calculated using values from all mice. 
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3.3 Results: 

3.3.1 Determine the temporal pattern of bone mass changes in the murine 

tibia using µCT, following repeated axial loading for two, three or four weeks, 

(Objective 1). 

As described in the introduction, our first aim was to determine the temporal pattern of 

bone formation following repeated mechanical loading using µCT and dynamic 

histomorphometry with multiple sequentially administered fluorochromes. There was no 

significant difference identified in the average mouse weight between groups nor the 

tibial length between groups or between loaded and control bones (Table 3). 

25%

37%

50%

75%

TRABECULAR

Figure 21 - Representative regions of interest in the mouse tibia that were 
analysed using µCT.  

Adapted from [1, 2]. 
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Loading group 2 weeks 3 weeks 4 weeks 

Mouse weight (g) 22.4 ± 0.93 21.92 ± 0.67 22 ± 0.45 

Tibial length 

(mm) 

Control 17.86 ± 0.17 17.62 ± 0.25 17.95 ± 0.11 

Loaded 17.98 ± 0.22 17.67 ± 0.3 18.1 ± 0.1 

 
Table 3 – Mouse weights and tibial lengths following axial tibial loading for 2, 3 or 4 
weeks.  

Groups were compared with either one-way ANOVA (Weight) or mixed-
design two-way ANOVA (tibial length). There were no significant 
differences for any comparison. Values represent mean ± SEM 

 

Trabecular bone 

Trabecular bone mass was significantly increased following loading at each time point. 

Tabulated data for the trabecular analysis is presented in Appendix 3. Loading had no 

effect on the control limb for any parameter. BV/TV and Tb.N were significantly greater 

following loading after all time points. Tb.Th was only significantly greater following 

loading after 3 and 4 weeks of loading (Figure 23A-C). Tb.Sp was significantly reduced with 

loading after 3 and 4 weeks of loading (Figure 23D). Tb.Pf was reduced with loading at all 

three time points, indicating anincrease in trabecular connectivity with loading (Figure 

23E). SMI was unaffected by loading (Figure 23F). Figure 22 illustrates representative 

three-dimensional reconstructions of the trabecular bone regions of interest 

demonstrating increased bone mass and changes in Tb.Th. 

Cortical Bone 

Loading three times-a-week resulted in an increase in bone mass after 2, 3 and 4 weeks of 

loading. Tabulated data from the cortical bone analysis is presented in Appendix 3. There 

was no difference in any of the measured paramaters between the control limbs for any 

group, following contralateral loading. Compared to the control limb, Tt.Ar was not 

significantly increased after two weeks of loading but was after 3 and 4 weeks. Ct.Ar was 

increased with loading at all three time points. Ma.Ar was reduced in the mice loaded for 



Chapter 3 – Optimising in vivo experimental models 

 

157 
 

2 weeks (p<0.05), but this decrease was no longer evident in mice after 3 or 4 weeks of 

loading. Ct.Th was increased with loading after 4 weeks of loading only. PMI was increased 

with loading after all durations of loading. When considering the effect of the duration of 

loading, Tt.Ar and Ct.Ar both showed a not statistically significant tendency to be greater 

with longer durations of loading (p=0.077 and p=0.078 respectively). Ma.Ar and PMI were 

not significantly affected by loading duration, however, there was a loading*group 

interaction for Ma.Ar, demonstrating that the duration of loading affects the endosteal 

response to loading consistent with the finding that Ma.Ar reduced after 2 weeks, this 

response was absent again after 3 weeks of loading. The right loaded limb had significantly 

greater Ct.Th after 4 weeks of loading than after 2 weeks of loading (p<0.05) (Figure 24 & 

Figure 25). 

Figure 22 – The effect of different time periods of axial loading on trabecular 
bone of young adult female mice.  

Right limbs of 17w female mice were loaded three times weekly for (A, B) 2, (C, 
D) 3 or (E, F) 4 weeks then killed for analysis with µCT of the proximal tibial 
trabecular bone site. Representative 3-dimensional reconstructions of the tibial 
trabecular region of interest of control (A, C, E) and loaded (B, D, F) limbs are 
illustrated. 
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Figure 23 - The effect of different time periods of axial loading on trabecular 
bone µCT parameters of young adult female mice.  

17w female mice were loaded for three times weekly for 2, 3 or 4 weeks then 
killed for analysis with µCT of the proximal tibial trabecular bone region of 
interest. (A) BV/TV, (B) Tb.Th, (C) Tb.Sp, (D) Tb.N, (E) Tb.Pf and (F) SMI were 
calculated. * = p<0.05, ** = p<0.01, *** = p<0.001 vs control limb. Comparisons 
were performed using a mixed design ANOVA with Sidak post-hoc corrections for 
multiple comparisons. Bars represent mean ± SEM, n= 3-4/group 
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The percentage increase in Tt.Ar in response to loading tended toward a significantly 

greater increase at 3 weeks (+8.5%) compared with 2 weeks (+19.6%, p=0.09) (Figure 26). 

Ct.Ar showed a marginally greater increase due to loading at 3 weeks (29.2%) than at 2 

weeks (20.9%), however this difference was not significantly different to the increase seen 

at 2 weeks or the increase at 4 weeks (26.2%) (p=0.35).  

Ma.Ar significantly reduced with loading after 2 weeks (-18.2%). This reduction was 

significantly different to the change in Ma.Ar with loading at 4 weeks (+0.5%, p<0.05) and 

tended to be significantly different to the change with loading seen after 3 weeks of 

loading (-1.7%, p=0.06).  

 2    3     4 
Weeks of loading 

Figure 24 – The effect of different time periods of repeated loading on 
cortical bone µCT parameters of young adult female mice.  

Right limbs of 17w female mice were loaded three times weekly for (A, B) 
2, (C, D) 3 or (E, F) 4 weeks then killed for analysis with µCT of the 37% 
cortical bone site (measured from proximally). Representative axial 
sections of the tibia of left control (A, C, E) and right loaded (B, D, F) limbs 
are illustrated. The yellow arrows indicate the region of bone with 
greatest loading-related bone gain (at the posteriolateral cortex). The 
scale bars indicate 500µm 
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Figure 25 – The effect of different time periods of repeated loading on cortical bone µCT 
parameters of young adult female mice.  

17w female mice were loaded three times weekly for 2, 3 or 4 weeks then killed for analysis 
with µCT of the 37% cortical bone site (measured from proximally). (A) Tt.Ar, (B) Ct.Ar, (C) 
Ma.Ar, (D) Ct.Th and (E) PMI were analysed. ** = p<0.01, *** = p<0.001 vs control limb. # = 
p<0.05 vs loaded limb of 2 week group. Comparisons were performed using a mixed design 
ANOVA with Sidak post-hoc corrections for multiple comparisons. Bars represent mean ± 
SEM, n= 3-4/group 

 2    3     4 
Weeks of loading 

 2    3     4 
Weeks of loading 

 2    3     4 
Weeks of loading 

 2    3     4 
Weeks of loading 

 2    3     4 
Weeks of loading 

Group*loading = p<0.05 
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3.3.2 Determine the temporal pattern of cortical bone formation in the 

murine tibia following repeated axial loading for two, three or four weeks 

using dynamic histomorphometry (DH) (Objective 2). 

Total DH analysis 

Dynamic histomorphometry (DH) was performed following sequential fluorochrome 

labelling at weekly intervals for up to four weeks. Initial evaluation, performed as 

described in Figure 20A-C, was completed to evaluate overall DH results from between 

the first and last fluorochrome measured in each group, representing 2, 3 or 4 weeks of 

loading. Ct.Ar in the posteriolateral cortex, assessed using DH analysis, was significantly 

increased after all three durations of loading, and there was no significant difference 

between the loading durations (Figure 27A). This change in Ct.Ar using DH is consistent 

with the changes seen in Ct.Ar of the whole cross-section calculated using µCT. Ct.Th  

Figure 26 – The effect of different time periods of repeated loading on the 
percentage increase in µCT parameters.  

[(Right-left)/Left*100)] for (A) Tt.Ar, (B) Ct.Ar and (C) Ma.Ar are shown for mice 
following 2, 3 or 4 weeks of loading. * = p<0.05 compared to 2 weeks group. 
Comparisons were made using One-way ANOVA with Sidak post-hoc 
adjustments. Bars indicate Mean ±SEM.  

* 
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  Figure 27 – The effect of loading duration on dynamic histomorphometry parameters 
following loading in young adult female mice.  

17w female mice were loaded three times weekly for 2, 3 or 4 weeks. Fluorochromes 
were administered as specified in Figure 19. The first and last fluorochrome 
administered for each group were used to calculate the overall value for: (A) Ct.Ar, (B) 
Ct.Th, (C) Ec.Ir.L.Th, (D) Ec.MAR, (E) Ec.BFR.Bs, (F) PsIr.L.Th, (G) Ps.MAR and (H)  for each 
group. * = p<0.05, ** - p<0.01, *** = p<0.001 vs control limb. # = p<0.05 vs loaded limb 
in 2 week group. n=3-4/group. Bars represent Mean ± SEM 
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increased after 2, 3 and 4 weeks of loading. The loading related change in the Ct.Th was 

greater after four weeks than it was after 2 weeks (Figure 27B,Figure 28). Ec.Ir.L.Th and 

Ps.Ir.L.Th were significantly greater following loading in all three time points. Ps.MAR and 

Ps.BFR.Bs were greater than control limbs after four weeks of loading (Figure 27C, F-H, 

Figure 28). Raw data values are presented in table form in Appendix 3. 

The DH analysis was only performed on the posteriolateral tibial cortex, as we were 

primarily interested in the formative response and this region is the most responsive site 

for bone formation following loading [8]. However, when exploring the entire cross-

section in the confocal images, is was evident that the endosteal cortex had undergone 

marked resorption at the anteriolateral and posteriomedial cortices (Figure 29C-F). 

Further investigation of this observation was not undertaken and was deemed beyond the 

scope of this project. 

Weekly interval DH analysis 

Next we calculated the weekly interval DH indices as described in Figure 20D-F. 

Endosteally, the weekly interval loading response was associated with an overall 

significant difference between time intervals for Ec.Ir.LTh, Ec.MAR and Ec.BFR.Bs, however 

individual post-hoc comparisons between time periods did not reach significance in this 

pilot study. Periosteally, the period 7-14 days after initiation of loading demonstrated 

greatest change in Ps.Ir.L.Th, and subsequently a change in the Ps.MAR and Ps.BFR.Bs. 

(Figure 30).  

Figure 28 – Confocal laser scanning micrograph images of transverse 
sections of the tibia of young adult female mice after 2, 3 or 4 weeks of 
loading.  

IMAGE ON FOLLOWING PAGE. 17w old female C57BL/6 mice underwent 
three times-weekly loading for 2, 3 or 4 weeks and concurrent administration 
of sequential fluorochrome solutions as described in Figure 20. Bones were 
embedded in methylmethacrylate then sectioned using a concentric annular 
diamond saw and imaged using a Confocal laser scanning microscope. Scale 
bars on the low power images represent 200µm. Scale bars on the high power 
images represent 250µm. 
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Figure 28 – legend on previous page 

Control 
(LEFT) 

Loaded 
(RIGHT) 

2 
w

ee
ks

 
3 

w
ee

ks
 

4 
w

ee
ks

 

High power 
(RIGHT) 



Chapter 3 – Optimising in vivo experimental models 

 

165 
 

 

Figure 29 – The effect of different time periods of loading on endosteal resorption.  

Representative images from 17-week-old Female C57BL/6 mice were loaded for 2 (A, B), 3 (C, D) 
or 4 weeks (E, F) and injected with serial fluorochrome solutions to allow determination of 
formation and resorption. Tibiae were analysed using µCT (A, C, E) and confocal microscopy (B, 
D, F). Note the regions of bone resorption in the anteriolateral tibial endosteal cortex (yellow 
arrows) and further resorption in the posteriomedial endosteal cortex in the 4 weeks loaded 
mice (blue arrows). Scale bars indicate 500µm. 
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Figure 30 – Dynamic histomorphometric indices for the weekly intervals 
following the start of repeated axial tibial loading in young adult female 
mice.  

17w old female C57BL/6 mice were loaded 3 times weekly for up to 28 
days. Fluorochromes were administered on day 0, 7, 14, 21 and 
histomorphometric indices for [A-C] Endosteal (Es) and [D-F] Periosteal 
(Ps) [A, D] Ir.L.Th, [B, E] MAR and [C, F] BFR.Bs were calculated for each 7 
day interval as described in Figure 19 andFigure 20. Bars with the labelled 
with the same letter are not significantly different (p>0.05), based on 
one-way ANOVA. Scale bars represent mean ± SEM. n=11 for 0-7 days, 
n=8 for 7-14 days, n=4 for 14-21 days. 



Chapter 3 – Optimising in vivo experimental models 

 

167 
 

3.3.3 Characterise the effect of unilateral SN and contralateral sham surgery 

on bone mass in the murine tibia using µCT (Objective 3). 

µCT was used to confirm that the revised surgical model generated a situation of unilateral 

bone loss, equivalent to that previously reported in our laboratory with right neurectomy 

and no left sham surgery [4, 11]. The Mu.Ar was reduced significantly in the 

neurectomised limbs (4.35±0.31 mm2 in SN limb vs 7.16±0.42mm2 in control limbs, 

p<0.001), indicating successful denervation. SN did not result in any significant differences   

Figure 31 – The effect of sham surgery (left leg) and SN (right leg) on trabecular bone 
parameters in young adult mice.  

17w old female C57BL/6 mice underwent SN on the right limb and were killed 3 weeks later. The 
proximal tibial trabecular bone 0.25-0.75mm distal to the proximal tibial physis was analysed. (A) 
BV/TV, (B) Tb.Th, (C) Tb.Sp, (D) Tb.N, (E) Tb.Pf and (F) SMI were calculated. * = p<0.05, ** = 
p<0.01, *** = p<0.001 vs control limb. Each parameter was compared using paired t-test. n=6. 
Bars represent mean ±SEM. (G) 3-dimensional reconstruction of the analysed trabecular bone 
region of interest. 
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Figure 32 – Legend on following page 
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in tibial length (Left Sham 17.82 ± 0.11mm, vs Right SN = 17.81 ± 0.12mm). The bodyweight 

of the mice did not change significantly during the experiment (start weight = 22.0 ± 0.4g 

vs end weight = 22.6 ± 0.3g. 

Trabecular bone 

As predicted, SN led to loss of trabecular bone. Figure 31 demonstrates the changes 

between control and neurectomised limbs. In right SN limbs, BV/TV, Tb.Th, Tb.N and SMI 

were significantly reduced compared with control limbs. Tb.Pf was significantly greater 

following SN. Tb.Sp was unchanged.  

Cortical bone 

Figure 32 and Figure 33 illustrate cortical bone loss at different sites between the left sham 

limb and right SN limb. In the SN limbs, Tt.Ar remained unchanged at all except the distal 

75% site, where it decreased by a small but statistically significant amount (-2.7%). Ct.Ar 

significantly reduced at all sites (p<0.001), indicating bone loss throughout the whole tibial 

length. Ma.Ar increased at all sites following SN, except the 75% site, where it remained 

unchanged. Ct.Th was significantly reduced at all sites following SN. PMI was also reduced 

at all sites following SN. 

Figure 32 – The effect of sham surgery (left leg) and SN (right leg) on cortical 
bone parameters in young adult mice.  

FIGURE ON PREVIOUS PAGE. 17w old female C57BL/6 mice underwent SN on the 
right limb and were killed 3 weeks later. Cortical bone was analysed at 25, 37, 50 
and 75% of the length of the bone measured from the proximal end. (A) Tt.Ar, 
(B) Ct.Ar, (C) Ma.Ar, (D) Ct.Th and (E) PMI were calculated. * = p<0.05, ** = 
p<0.01, *** = p<0.001 vs control limb. Each parameter was compared using 
paired t-test. n=6. Bars represent mean ±SEM 
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Figure 33 – Comparing the 
effect of sham surgery (left 
leg) and SN (right leg) on 
cortical bone parameters in 
young adult mice.  
Axial µCT reconstructions of 
the tibia of 17w old female 
C57BL/6 mice that 
underwent SN on the right 
limb and were killed 3 weeks 
later. The tibial cortical bone 
was analysed at 25, 37, 50 
and 75% of the length of the 
bone measured from the 
proximal end. The scale bars 
represent 500µm 
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3.3.4 Results summary 

• Objective 1: To determine the temporal pattern of bone mass changes in the 

murine tibia using µCT, following repeated axial loading for two, three or four 

weeks,.  

o Loading significantly increased trabecular bone mass (BV/TV) after 2 

weeks, however Tb.Th was not significantly increased until 3 weeks 

following loading. Trabecular connectivity was increased (decreased 

Tb.Pf) at all time points examined. Interpretation of data was limited by 

small sample size. 

o Loading significantly increased cortical bone mass (Ct.Ar) after two weeks 

primarily due to an decrease in Ma.Ar at two weeks, followed by 

periosteal expansion (increased Tt.Ar) after 3 weeks. Cortical thickness 

was greater after 4 weeks than after 2 weeks loading. There was no 

significant difference between the load-related change in any parameter 

after 4 weeks compared with that after 3 weeks. 

• Objective 2: To determine the temporal pattern of cortical bone formation in the 

murine tibia following repeated axial loading for two, three or four weeks using 

dynamic histomorphometry (DH). 

o Considering total DH values, the periosteal bone formation response at 

the posteriolateral cortex was greater than the endosteal formation 

response. 

o Load-associated endosteal bone resorption at the neutral strain axis was 

greater after 3 and 4 weeks of loading, compared to 2 weeks. 

o Endosteal bone formation at the posteriolateral cortex was no different 

when calculated for the first, second, or third week of loading. 

Periosteally, the MAR and BFR were greatest in the second week 

following loading. 
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• Objective 3: To characterise the effect of unilateral sciatic neurectomy and 

contralateral sham surgery on bone mass in the murine tibia using µCT. 

o Trabecular bone mass (BV/TV) was significantly decreased following SN 

through reductions in trabecular thickness and number. 

o Cortical bone mass (Ct.Ar) was significantly decreased following SN, 

primarily through an increase in Ma.Ar resulting in decreased in Ct.Th. 

o The changes in bone mass with right SN + left sham are similar to those 
reported with right SN alone. 

 

3.4 Discussion 

In this chapter, we describe two studies aimed at better describing bones’ adaptive 

response in in vivo models for changing the mechanical environment of the mouse tibia. 

Several studies by our group and others have reported that intermittent axial loading of 

the mouse tibia results in peak load-related increases in bone mass, and that the 

strain/response relationship is modulated by age and genetic modifications [232, 581, 

606, 607]. What is not clear from these studies is whether this modulation is due to 

differences in the rate of new bone formation, the establishment of a habituated state at 

different strain levels, or a combination of these and other potential explanations. Timing 

experimental end points during the period of rapid bone formation or at later time points 

when functional adaptation is complete can help discriminate between these possibilities. 

Here, using µCT and dynamic histomorphometry, we were able to establish, albeit in only 

a preliminary pilot study, that measurable bone formation happens within one week of 

loading, is at its peak in the second week following loading, and bone mass accrual is 

functionally plateaued after 3 weeks. We were also able to demonstrate that contralateral 

sham surgery, following unilateral SN results in no different degree of bone loss to that 

reported with unilateral SN alone.  
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3.4.1 The temporal pattern of bone mass changes in the murine tibia following 

repeated axial loading, using µCT (Objective 1). 

In our laboratory, and many others, it has been standard practice to use ex vivo µCT 

examination to explore adaptive bone changes after 2 weeks of axial tibial loading [1, 8, 

29, 34, 285, 287, 531, 582, 606, 608, 609]. As described in the introduction, this is because 

there is significant bone formation detectable at this point, however, the adaptive 

response to a habituated state is likely to still be incomplete, allowing potential for further 

interventions to have additional/synergistic effects and/or inhibit the osteogenic 

response.  

Assessment of trabecular and cortical bone using µCT following loading in the present 

study demonstrated loading-related increases in cortical and trabecular bone mass (Ct.Ar 

and BV/TV respectively), primarily associated with periosteal expansion in cortical bone 

and increased Tb.Th and Tb.N in trabecular bone. The significant increase in Ct.Ar (20.9%) 

after 2 weeks loading, assessed by µCT in the present study was slightly lower than the 

increase in Ct.Ar seen following 2 weeks of loading in previous studies; 26.5% [34], 29% 

[531], and 32.7% [1]. This could be explained by different mouse ages and/or inter-

operator variability in loading techniques. Interestingly, after 2 weeks loading, the primary 

change in Ct.Ar was actually associated with a reduction in Ma.Ar, and no significant 

increase in Tt.Ar, which suggests that the early loading-related osteogenic response in 

these mice was more endosteal in nature (Figure 25). This is not-consistent with previous 

studies which showed loading in young mice typically produces a periosteal response [11, 

29, 34, 285, 396]. Notwithstanding, consistent with these earlier studies, periosteal bone 

formation was already apparent, according to DH analysis, after only 7 days, which 

suggests that some periosteal expansion did occur after two weeks and that reduced 

statistical power in the present study may have impaired the ability to detect the change; 

the 2-week group only had 3 animals for analysis. Post-hoc power analysis of this pilot 

study demonstrated that a group size of 4/group would have been sufficient to have >80% 

power to detect the magnitude of changes recorded suggesting that a type II error may 

have given a false negative result for Tt.Ar after two weeks of loading.  
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Interestingly, the endosteal formation response (decreased Ma.Ar) seen after two weeks 

of loading was no longer apparent after 3 or 4 weeks. This coincided with a subsequent 

tendency to more periosteal expansion. There was no significant difference in the values 

obtained from tibias after 3 weeks of loading, compared with tibias after 4 weeks of 

loading. This suggests a “plateau” in cortical bone formation after 3 weeks of axial tibial 

loading in mice.  

This analysis focused solely on the most load-responsive region of bone following axial 

tibial loading, but the temporal responses to different periods of loading may be different 

at different sites along the cortical bone. Recently, we have developed a Site Specificity 

Analysis (SSA) programme [7] which permits semi-automated analysis of cortical bone 

responses across the length of the tibia (10-90% of the length of the bone, measured from 

proximally). This method allows assessment of the changes along the length of the bone, 

and could help determine site-specific changes beyond our single region of interest (37% 

site, measured from proximally). Further studies resulting from this initial pilot study 

should not only increase experimental numbers, but also employ SSA software to analyse 

the entire cortical bone response (later experiments in this thesis utilise the SSA software). 

The trabecular response to loading after 2 weeks of loading in these mice is similar to that 

previously reported with a large increase in BV/TV (53%) due to increases in Tb.N and 

Tb.Th [1, 34]. However, when statistically comparing the trabecular µCT changes with 

loading we were unable to find any significant differences between the loading response 

at two weeks compared to the loading response at 3 or 4 weeks. This is most likely because 

the sample size used was inadequate; post hoc power analyses performed indicated that 

in the present study, for BV/TV, to identify a small effect (20% change) between groups, a 

group size of 9 mice per group was required, a far greater number than used in the present 

study. 
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3.4.2 The temporal pattern of cortical bone formation in the murine tibia 

following repeated axial loading for two, three or four weeks using dynamic 

histomorphometry (Objective 2)  

The cortical bone DH data supported the cortical bone µCT results and conclusions, 

despite the low experimental numbers. Additionally, by pooling the weekly DH data from 

all mice for the early weeks following loading, as illustrated in Figure 20, we were also able 

to increase statistical power for the 0-7d and 7-14d groups. Endosteally, the rate of 

formation at the posteriolateral cortex was consistent over the first three weeks following 

onset of loading, despite the µCT data suggesting that an endosteal formation response 

was present after 2 weeks but absent by 3 or 4 weeks. When examining the entire cross-

sectional fluorochrome-labelled images, there are clear regions of bone resorption 

occurring at the anteriolateral and posteriomedial endosteal cortices of the tibia in mice 

after 3 and 4 weeks of loading which are not apparent after only 2 weeks (Figure 29). This 

helps explain the apparent loss, at 3 weeks, of the endosteal formation response evident 

by reduced Ma.Ar after 2 weeks loading even though the DH data measured only at the 

posteriolateral cortex indicated a consistent endosteal formation response throughout 

the experiment.  

These concurrent, but spatially separate formation and resorption responses suggest a 

cross-sectional regional specificity in the endosteal bone formation and resorption 

responses in response to loading. These region-specific responses are averaged out by the 

standard µCT analysis methods employed here, thus appearing as a net steady state of 

Ma.Ar. This cross-sectional site-specificity of the response to axial tibial loading was 

demonstrated in a previous study that correlated the down-regulation of osteocytic 

sclerostin with bone formation, demonstrating new bone is formed predominantly in the 

posteriolateral and craniomedial regions of the tibia [8]. This suggests that the resorption 

response observed at the anteriolateral and posteriomedial endosteal cortex in the 

present study (Figure 29) may be related to the low strain associated with the neutral axis 

experienced during axial tibial loading. Figure 34 illustrates the areas of resorption 

identified using DH correspond to the neutral strain axis following axial compressive 
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loading. Additionally, a very recent study using longitudinal in vivo µCT experimental 

design has demonstrated that the resorptive response to loading is correlated to the 

calculated strain at the endosteal surface, but not the periosteal surface, whereas 

formation is related to strain both periosteally, and endosteally [529], further supporting 

our conclusion that the regions of apparent resorption are associated with the low 

endosteal strains on the neutral axis for axial loading. Our laboratory is currently 

collaborating with the laboratory of Professor Peter Pivonka at the Queensland University 

of Technology to develop a computed model to determine the site-specific responses to 

interventions in a radially site-specific manner [610]. Whilst initial studies have not 

examined the present dataset, we plan to expand the studies to explore the radially site-

specific response to mechanical loading and correlate this to the predicted strain and 

strain energy density to help predict the adaptive response to loading and potentially 

identify if there are site-and strain specific regions of the age-related deficiency in the 

adaptive response to loading. 

When bone formation and resorption rates are equal, bone mass does not change. There 

was no significant difference in the cortical bone parameters using either µCT or overall 

DH indices between mice loaded for 3 weeks and mice loaded for 4 weeks, suggesting that 

the adaptive loading response had “plateaued”, even at the most load-responsive 37% 

site. This suggests that bone strains engendered during application of the fixed peak 

exogenous load have returned to habitual levels where the mechanostat is balancing bone 

formation and resorption. Whilst the response to loading typically results in bone 

formation in sites of high strain, and resorption in areas of low strain, as seen at the neutral 

axis of cortical bone undergoing bending force, as demonstrated in Figure 34, that balance 

should gradually return the formation and resorption to baseline levels over time after 

continued long term loading, once the adaptive response has returned the strain levels to 

normal. This effect has been demonstrated using longitudinal in vivo μCT studies of 

trabecular bone [586]. The clear evidence of bone resorption in the fluorochrome-labelled 

images of mice loaded for 3+ weeks suggests that, after an initial period of significantly 

increased bone formation and minimal apparent resorption, the adaptive process 

increased the level of bone resorption to adapt the mass and architecture to best suit the 
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newly increased loading stresses and to maintain the “habituated state” appropriate for 

the loading stimulus. This is consistent with the earlier mentioned study in trabecular bone 

[586]. Considering the DH data collectively, when designing experiments with endpoints 

directly associated with bone formation rates, the most appropriate time to make 

measurements is within the second week after onset of loading. 

Although formation and resorption appeared to be happening concurrently in the 

endosteal surface in this study, they appeared spatially separate in their occurrence, 

suggesting the anabolic response to loading was primarily a modelling response. This is 

consistent with an earlier study by our laboratory which demonstrated that inhibition of 

osteoclast activity with the bisphosphonate risedronate did not impair the osteogenic 

Figure 34 – (A) Finite Element Model (FEM) of a murine tibia following 
axial tibial loading and (B) dynamic histomorphometry image following 
four weeks of loading.  

The yellow regions in the FEM correspond to the neutral axis where 
minimal strain is experienced. The yellow and blue arrows in (B) highlight 
the sites of clear bone resorption, with cortical bone scalloping and lack of 
fluorochrome labels. Scale bar in B represents 500µm. (A) adapted from 
Moustafa et al [8] 
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response to loading in young adult mice, also suggesting that the osteogenic response to 

loading in mice is primarily a bone modelling response [34]. In vivo time-lapse µCT imaging 

has also demonstrated that ~80% of formation occurring following loading of tail 

vertebrae occurred in sites where no previous resorption had occurred, suggesting a 

primarily modelling-based mechanism for anabolic bone gain following loading in 

trabecular bone of mice [586]. 

In this study, we have demonstrated bone formation within the first 7 days after onset of 

loading. Mantila-Roosa et al [611] demonstrated osteoid formation in loaded bones 

histologically, 4 days after loading and Forwood et al [580] have demonstrated that bone 

formation rate was increased compared to baseline within 4 days. Periosteally, formation 

was significantly greater in the second week of loading. The bone formation response was 

also greater periosteally than endosteally, particularly during the second week of loading. 

This suggests that the formation rates in the load responsive region of the tibia are 

consistent in the first three weeks of loading on the endosteal surface, but appear to peak 

in the second week for the periosteal surface. According to finite element modelling, the 

periosteal compressive strains at the posteriolateral cortex are generally greater than 

those at the endosteum in the same position during axial compressive loading [8, 30, 612]. 

In these young mice, the delay in peak formation is likely to reflect the time it takes for 

osteoblasts to proliferate and generate the formation response sufficient to quickly 

strengthen the loaded bone. Whether these proliferating cells are generated from 

activation of quiescent bone lining cells, proliferation of these resident bone cells, or 

migration and proliferation of a distant progenitor population is unknown. Further studies 

using in vivo cellular lineage tracing of these proliferating bone forming cells is currently 

underway through a collaboration between our group and another laboratory at the 

University of Connecticut, USA. The apparent reduction in periosteal MAR (although not 

significantly lower) in the third week compared with the second week after loading further 

supports the study by Lambers et al [586] that demonstrates bone formation reduces after 

an initial peak stimulated by continued loading once the habituated state has been 

reached. 
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The temporal changes in bone formation indices following loading demonstrated in the 

present study are consistent with a microarray study which explored the transcriptomic 

changes seen up to 32 days after a single loading episode [611]. This study demonstrated 

that the transcriptomic response to loading switched to genes associated with matrix 

production/bone formation within a few days and reached their peak expression around 

12 days after loading. This 12-day time point for peak matrix production corresponds well 

with the apparent peak period of bone formation according to our MAR and BFR.Bs 

measures.  

The experiments described for Objective 1 and 2 have many limitations, chiefly the low 

experimental power. In addition to greater experimental numbers, extending the duration 

of loading to confirm the “plateau” of bone formation would be necessary to more 

precisely identify the point where bone formation is no longer stimulated by further 

exposure to loading. Use of internal control limbs can help reduce experimental variance, 

however, longitudinal examination of a single bone can provide even greater statistical 

power as the same bone is directly compared before and after intervention. Currently, the 

best available tool to map and quantify region-specific changes is longitudinal sampling 

with in vivo µCT. This permits direct evaluation of sites with new bone (formation sites) 

and sites that no longer have bone (resorptive sites) compared to the pre-intervention 

scan in a site-specific manner, allowing rapid and quantitative determination of both bone 

formation and bone resorption rates. Repeated scanning (>2 sequential images) can also 

help identify sites which have resulted in bone resorption followed by bone formation, 

helping quantify the degree of “remodelling” occurring in response to a given 

intervention, such as loading [586]. Other recent studies have explored the volumetric 

bone resorption and formation responses in response to loading [30, 31, 530]. An in vivo 

µCT approach would have made an ideal method to approach the present experiment but 

was unfortunately not possible in our laboratory. 

The loading response in this experiment was evaluated in young adult female mice only. 

Old female mice, whilst demonstrated to have a diminished magnitude of response, have 

not been shown have a delayed response to loading; e.g. old female mice still responded 
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similarly to young adult mice following a single bout of loading by down regulating their 

sclerostin expression [29]. The response to loading in female mice was also demonstrated 

to have the same minimum effective strain in young and old mice, despite the diminished 

osteogenic response [29]. This suggests that the response in aged mice is not necessarily 

delayed, despite being diminished in magnitude. The difference in response to loading in 

aged mice is discussed further in the general introduction (Chapter 1) of this thesis and in 

later chapters, particularly Chapter 5. Considering the findings from this pilot experiment, 

when examining processes that are likely to involve the adaptive loading response and 

related resorption, exploration in the second to third week after start of loading is likely 

to be most appropriate. Therefore, when planning later experiments in this thesis 

designed to explore the loading response in aged mice and following SN, we chose to 

undertake loading experiments for 3 weeks’ duration.  

3.4.3 The effect of unilateral sciatic neurectomy and contralateral sham 

surgery on bone mass in the murine tibia using µCT (Objective 3) 

Performing a sham surgery on the contralateral limb used as a control should minimise 

any surgery-related potential differences between disuse and ambulatory limbs, but this 

had not been previously investigated. Here we have demonstrated that SN including a 

contralateral sham surgery resulted in similar changes in tibial bone mass to that reported 

in papers utilising SN alone. 

In our study, right SN with left sham surgery elicited a unilateral resorptive response, 

primarily via endosteal resorption, with large losses in trabecular BV/TV through reduction 

in Tb.Th and Tb.N and increases in Ma.Ar without concurrent increases in Tt.Ar. These 

losses are equivalent to that previously reported in young adult mice following SN without 

sham surgery [8, 11, 613]. The changes were also similar to the losses reported following 

tail suspension [614] and Botox injection [467], with reduction in both Tb.Th and Tb.N 

leading to the reduction in BV/TV.  

As detailed previously, cortical bone losses were quite consistent at each site examined, 

with increasing Ma.Ar and unchanging Tt.Ar for most of the proximal and mid-length 
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diaphyseal bone. The distal bone did appear to have a small (-2.7%) but significant 

decrease in Tt.Ar in the SN limb with no change in Ma.Ar, compared to control limbs. This 

may indicate slight periosteal resorption, although active periosteal resorption is relatively 

uncommon. Furthermore, according to an in vivo µCT and FEM study, resorption on the 

periosteum does not appear to be related to the strain levels experienced, unlike on the 

endosteal surface [529]. As the decrease identified is relative to the control limb, the 

apparent reduction in Tt.Ar could also indicate a possible inhibition of age-related 

periosteal expansion in the SN limb that continues to occur in the control limb. Periosteal 

expansion is a recognised process associated with aging in bone and is thought to be an 

adaptive response to compensate for the loss in strength seen with endosteal resorption 

that increases with age [615]. It is possible that the periosteal expansion normally seen 

with aging did not occur in the disuse limb as the bone was not undergoing as much 

loading and as such the adaptive response to expand the cortex to improve bending 

strength was not perceived as necessary.  

Few other studies have explored site-specific changes along the length of the tibia 

following disuse. The µCT images from mice included in this experiment were, however 

subsequently used in a study exploring the site specific effects of several different 

interventions, including disuse [7] using a novel, semi-automated Site Specificity Analysis 

software. The manuscript for this paper is included in Appendix 4 of this thesis. The study 

by Galea et al [7] showed consistent results with the multiple single-site analyses 

performed for this study, with no significant effect of SN on Tt.Ar, but a bone-wide 

reduction in Ct.Ar and Ct.Th. Ma.Ar was only significantly increased in the cortical bone 

regions proximal to the 50% site following SN. Due to the versatility and effectiveness of 

this new analysis tool, SSA was subsequently, where appropriate, used in subsequent 

experiments planned for this thesis. 

This experiment has some limitations in its design. Primarily, as our goal was to determine 

if contralateral sham affected the response to unilateral SN, inclusion of a control group 

where no sham was performed on the contralateral limb would help provide a 

contemporaneous control group, rather than comparing to historical control values from 
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previous studies. Furthermore, to help determine if SN itself, and not the surgical trauma 

associated with it, elicits any systemic effects on bone mass, inclusion of a right sham 

operated group (no disuse) would help determine if limb denervation alone results in 

changes in the bone mass of the contralateral limb.  

Although we have previously reported no apparent negative effects on the loading 

response of SN mice compared to sham operated mice [35], two previous studies have 

demonstrated reduced bone mass in the contralateral distal femur and/or proximal tibia, 

but not the diaphyseal femur/tibia, following denervation [593, 598]. This suggests that 

neurectomy of the limb may result in systemic changes which negatively affect the 

trabecular bone mass. Botulinum toxin has also been shown to have a negative effect on 

contralateral limb bone mass [616], probably due to systemic circulation of the toxin after 

intramuscular injection. The sympathetic nervous system has been demonstrated to have 

a role in control of bone mass [617-620], however, chemical sympathetic blockade of mice 

does not result in significant reductions in bone formation following loading [35, 599].  

Decreased loading of bone without denervating the limb is possible with cast 

immobilisation, although this hampers the application of intermittent axial compressive 

loads – one of the prime reasons we preferentially use SN as a model of unilateral disuse. 

Section of the patellar tendon functionally reduces mechanical loading and has been used 

as a model for experimental tibial disuse [106, 621] and avoids the potential effects of 

limb denervation. However, this procedure leaves a surgical wound on the cranial aspect 

of the stifle, where the loading apparatus compresses the proximal end of the tibia, thus 

making it an unsuitable option for use in our mice.  

Whilst the design of our experiment precluded direct comparison of sham operated with 

non-sham operated mice, due to lack of relevant control groups, our intention was to 

ensure that we were still able to elicit a unilateral resorptive response with the modified 

protocol, including a contralateral sham procedure. In achieving this aim, we were 

successful. Based on the results of this experiment, contralateral sham surgery performed 

concurrently to unilateral SN is unlikely to affect the contralateral limb’s bone mass or 
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architecture. For subsequent experiments in this thesis we therefore included sham 

surgery in our experimental design. 

 

3.5 Conclusions 

1. That the appropriate time point for analysing cortical bone structure changes 

following axial tibial loading is not before weeks after the onset of loading 

2. That the appropriate time to study the effect of loading on bone formation rate is 

from 7-14 days after the onset of loading. 

3. There appears to be no effect of sham surgery on bone loss induced by SN, as 

detected by µCT. This procedure should be incorporated in experimental protocols 

involving unilateral SN. 

 

 

Work within this chapter contributed to a peer-reviewed publication. A copy of the 

published paper is included in Appendix 4 of this thesis: 

Galea, G. L., Hannuna, S., Meakin, L. B., Delisser, P. J., Lanyon, L. E. & Price, J. S. (2015). 

Quantification of alterations in cortical bone geometry using Site Specificity Software in 

mouse models of aging and the responses to ovariectomy and altered loading. Frontiers in 

Endocrinology, 6. DOI=10.3389/fendo.2015.00052  
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Chapter 4 – RANKL and bone remodelling during mechanical 

loading 

4.1 – Introduction 

Bone cells adapt bones’ mass and architecture to withstand the mechanical forces to 

which they are subjected. This tightly controlled balance of bone formation by osteoblasts 

and bone resorption by osteoclasts is locally controlled by a negative feedback 

mechanism, with loading-engendered strain as the controlling stimulus. This is known as 

the mechanostat [12]. Osteocytes, descendants of osteoblasts, encased in the mineralised 

bone matrix, are now known to play a key role in mechanosensation [18, 22, 104, 622], 

and the subsequent control of bone formation and resorption [8, 21, 22, 38, 89, 159, 623]. 

Therefore, evaluating the activity of osteocytes’ expression of factors involved in bone 

(re)modelling provides potentially useful experimental endpoints to assess bone cells’ 

response to mechanical stimuli in bone.  

The osteogenic response to changes in mechanical loading has been quite well 

characterised in vivo, although the mechanisms involved with transducing the loading 

stimulus into an adaptive response are both complex and still incompletely understood. 

Several microarray experiments have been undertaken exploring the transcriptomic 

response to mechanical loading and the effect of altered loading context, such as aging, 

oestrogen hormone deficiency, and disuse [86, 413, 611]. We have previously identified 

changes in osteocyte expression of several molecules which relate to control of 

osteoblasts, such as sclerostin and Early Growth Response (EGR) hormone 2, and have 

used these markers as reliable experimental endpoints, using immunohistochemistry 

and/or qPCR to confirm significant in vivo and in vitro biological responses to loading and 

disuse [8, 29, 577]. 

The osteocytic control of osteoclasts in bone has been less comprehensively studied. Fairly 

recent work has, however, highlighted osteocytes as the key source of Receptor Activator 

of Nuclear Factor κB (RANK) Ligand (RANKL) necessary for bone remodelling following 
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unloading. Two seminal papers, published concurrently, were the first to demonstrate 

that it is osteocytes, and not osteoblasts as previously believed, that are the primary 

source of RANKL critical for recruitment and activation of osteoclasts involved in bone 

remodelling [21, 22]. These papers demonstrated that the bone loss seen with disuse was 

abrogated and that bone remodelling was severely impaired following selective knockout 

of RANKL in osteocytes. This major paradigm shift in our understanding of the role of 

osteocytes in regulating osteoclast activity came when the experiments for this thesis 

were being planned. The studies described in this chapter set out to determine if 

osteocytic expression of RANKL could serve as a suitable experimental end-point for the 

evaluation of the osteocytic control of osteoclasts following alterations in the mechanical 

loading environment. The experiments also aimed to characterise the temporal response 

of osteocytic RANKL expression following changes in the mechanical environment. Our 

longer-term aim, at this point, was to explore the role of RANKL in age-related bone loss 

and how it may be influenced by loading. 

4.1.1 Osteocytes as mechanosensors and a source of signalling factors. 

That osteocytes are a source of signalling factors that regulate bone (re)modelling has 

been gaining acceptance over the past 10-15 years [18]. Osteocytes are essential for 

effective mechanotransduction, a point supported by the demonstration that targeted 

ablation of osteocytes with Diphtheria toxin resulted in diminished responsiveness to both 

loading and unloading in the cortical bone of mice [624]. Since it was first established that 

osteocytes respond to strains in their surrounding matrix [85], evidence has accumulated 

that their responses are complex and diverse [38, 86]. For example, we have 

demonstrated in two separate microarray studies that loading produces a rapid and 

significant increase in the number of genes both up and down-regulated by loading, and 

that these responses are significantly altered by context, such as oestrogen deficiency, 

aging and prior disuse [86, 413].  

Osteocytes are a key source of signalling factors involved in controlling subsequent bone 

formation by osteoblasts in response to loading [8, 18, 38, 625]. Sclerostin, an inhibitor of 

the potently osteogenic Wnt pathway, and expressed almost exclusively in osteocytes, has 



Chapter 4 – RANKL and bone remodelling during mechanical loading 

 

187 
 

been, using a combination of both in vitro and in vivo techniques, repeatedly 

demonstrated to respond to changes in mechanical loading – its expression decreases 12-

24hrs following loading and increases after 3-4 days following unloading [8, 20, 159, 160, 

414, 528, 623, 626]. This reliable “inverse relationship” between sclerostin and strain 

underlies the importance of sclerostin as a signalling molecule for the regulation of bone 

mass in response to changes in loading. Furthermore, this change in sclerostin expression 

with altered loading has been used as a reliable experimental endpoint by us to help 

confirm the biological response to mechanical stimulation in mice [29, 159].   

Additionally, the transcription factor, EGR-2, following its initial identification as an early 

mechanoresponsive gene [627], was identified as another potential candidate for use as 

a suitable experimental endpoint to monitor immediate transcriptional responses to a 

mechanical stimulus (mechanosensation). In a microarray study by our laboratory, of the 

genes shown to be differentially regulated by disuse and loading, bioinformatics analysis 

revealed EGR2 as being more closely associated with more pathways and functions than 

any other transcription factor [86, 577]. Given we have demonstrated that EGR2 is 

upregulated within 30 minutes of application of mechanical strain in vitro and within 3h 

in vivo [577], our lab has since used EGR-2 expression as an endpoint to detect early 

transcriptional responses related to mechanosensation. For example, Meakin et al [29] 

used changes in the expression of EGR2 and sclerostin to confirm that the 

mechanosensory response to mechanical loading in aged female mice is maintained, 

despite the impaired formation response compared to young mice. This study concluded 

that it is, instead, the proliferative responses of the osteoblasts that are reduced in the 

age-related impairment of bone’s osteogenic response to mechanical loading.  

Although there is a significant body of work exploring the control of osteoblast activity by 

osteocytes, less attention has been paid to their potential role in controlling and targeting 

the equally important activity of resorption by osteoclasts [89]. The RANK/RANKL pathway 

is probably the most important pathway for osteoclast recruitment, differentiation and 

activation [628]. More detailed discussion of the role of RANK/RANKL in the control of 

bone mass is included in Chapter 1 of this thesis.  
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Considering the recent demonstrations that mice with osteocytic knockout of RANKL did 

not lose bone mass following unloading of bone [21], RANKL appears to be an essential 

factor in the osteocytic control of bone resorption by osteoclasts. At the time of 

experimentation, however, there was limited evidence of changes in RANKL expression in 

osteocytes of wild-type mice associated with disuse. One study demonstrated that RANKL 

qPCR expression was increased following 3 days of tail suspension [629], however this 

study was performed on whole proximal tibias, including marrow and articular cartilage, 

and not solely the osteocyte-rich cortical bone. A more recent study has demonstrated a 

mild increase in RANKL expression in whole cortical bone after 3 weeks of tail suspension 

[21]. Moriishi et al [136] demonstrated increased RANKL expression following unloading 

after 3 days, although this unloading-related increase was specific to osteoblastic cells, 

and not osteocytes.  Furthermore, RANKL expression was also increased in tibial bone 

marrow following both tail suspension [560] and sciatic neurectomy [137], although 

marrow samples usually contain very few osteocytes. Contrarily, Gerbaix et al [630] have 

demonstrated no effect of unloading on RANKL mRNA expression at 3 days. A microarray 

study performed in our laboratory, on adult mice explored the effects of disuse on the 

transcriptomic response, but only at one time-point (4 weeks) after unloading induced by 

SN  [86]. RANKL expression was unaffected by SN in this study, although this delayed time 

point may have missed the acute cellular signalling changes associated with the onset of 

disuse that we were interested in. Use of in vitro models to simulate microgravity have 

met technical difficulties, although one study using a rotating centripetal force system to 

counter gravitational forces on a 3D osteocytic cell matrix resulted in increased RANKL 

expression, concurrent to upregulation of sclerostin [623]. It is worth noting that these 

studies only explored a single time-point following onset of unloading and as the 

expression of RANKL is likely to be transient following changes in the loading environment, 

those not demonstrating any change with disuse may have missed the peak expression 

time-point. 

Interestingly, to the author’s knowledge, only one time-course experiment exploring the 

temporal pattern of adaptive changes seen with disuse is reported. This study used 

histomorphometry and radio-isotope incorporation, and found that bone formation was 
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only temporarily halted for up to two weeks, but then formation indices returned to 

control levels, despite continued unloading with tail suspension [558]. Unfortunately, this 

study did not quantify resorption indices, or expression of any osteoregulatory proteins.  

Since the osteogenic response to loading primarily involves modelling, RANKL’s 

importance in disuse-associated bone resorption is likely more significant than in response 

to increased mechanical loading. However, control of osteoclast activity following 

increased mechanical loading is still important. The effect of increased mechanical loading 

on the expression of RANKL is less consistent than loading’s effect on sclerostin 

expression. In vitro experiments have given conflicting results with application of strain to 

bone cell cultures. These vary from increased expression with strain to decreased 

expression [129-135, 631]. Unfortunately, the techniques of load application were not the 

same in these studies, so comparison is difficult, and additionally, the in vitro response to 

load may not necessarily correlate with the in vivo situation as the three-dimensional 

orientation and lacuno-canalicular arrangement of osteocytes in bone, together with the 

many added complexities of the in vivo environment may confer additional and/or 

different responses to mechanical load. The quantification of RANKL expression in vivo in 

situations of increased mechanical load has also not been extensively investigated. RANKL 

and IL-6 expression were elevated in rats trained to jump whilst carrying additional loads 

– suggesting microdamage resultant from overloading [632]. Kennedy et al [112] also 

demonstrated increased RANKL expression associated with micro-crack formation 

following fatigue loading. Evaluation of RANKL/OPG expression in response to non-

destructive loading protocols in vivo is not well reported. Grosso et al [633] have 

demonstrated an increase in OPG expression following 3 days of loading, although the 

RANKL expression was not affected.  

Microarray studies performed by our laboratory have not demonstrated a change in 

RANKL following loading (up to 72 hours after loading), despite changes in Sost [86, 413]. 

The more recent study did demonstrate a slight upregulation in OPG expression following 

loading, suggesting a possible mechanism for the down-regulation of bone resorption 

seen following loading. To the author’s knowledge, no reports exist demonstrating the 
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temporal changes in RANKL expression following loading or onset of disuse. 

Osteoprotegerin (OPG) is a competitive decoy receptor for RANKL, and is produced by 

both osteocytes and osteoblasts. Increased expression of OPG can reduce activity of 

RANKL by altering the RANKL:OPG ratio. Hence, changes in the concentration of OPG can 

affect the degree of bone resorption even if RANKL expression does not change. See Figure 

35 for a simplified organogram of the interactions between RANKL, Sclerostin and OPG 

with loading.  

 

Considering the demonstrated links between RANKL, Sclerostin and OPG, our aim was to 

explore the temporal changes, in young adult mice, in expression of RANKL, Sclerostin and 

OPG following both disuse, induced by sciatic neurectomy (SN), and following increased 

Figure 35 – Simplified organogram depicting the interactions between 
RANKL, OPG and Sclerostin. 

RANKL, produced by osteocytes stimulates the differentiation and 
activation of osteoclasts. OPG, produced by osteoblasts, and osteocytes, 
inhibits activity of RANKL by acting as a decoy receptor. Sclerostin, 
produced by osteocytes, inhibits the Wnt pathway, which impairs 
osteogenesis, and also OPG production. 
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loading, induced by axial tibial compression. The techniques used were 

immunohistochemistry and qPCR. 

4.1.2 Optimising RANKL immunolocalisation in bone 

Whilst protocols for the immunolocalisation of sclerostin in bone are well established, one 

challenge of investigating RANKL regulation by strain is the paucity of commercially 

available antibodies with which to detect it. RANKL is membrane-bound but can be 

cleaved from its cell membrane to form serum RANKL. In vitro studies have shown that 

the membrane-bound form of RANKL is much more effective at stimulating 

osteoclastogenesis than serum soluble RANKL [22, 123-126]. Therefore, identifying 

cellular changes, rather than serum changes in RANKL was viewed as the most appropriate 

experimental endpoint for this thesis. We have previously published studies using qRT-

PCR of the cortical bone shell following marrow removal to examine the transcriptomic 

osteocytic responses to loading and other interventions, [29, 286, 419] and also developed 

a reliable protocol for immunolocalisation of sclerostin in osteocytes [8], however, prior 

to this project being undertaken, we had not undertaken any studies to investigate 

osteocytic RANKL expression by IHC.  

However, at the time of undertaking these studies, RANKL protein expression using IHC 

had been reported in other normal tissues including osteoblasts, bone marrow cells, 

lymphoid tissues, mammary glands, intestinal glandular cells, hair follicles, renal tubules, 

and also diseased tissues, including synovial fibroblasts during rheumatoid arthritis and in 

primary osteosarcoma and giant cell tumours of bone [95, 141, 634-640], but only in one 

report had RANKL been studied in cortical bone osteocytes [22]. This report did not, 

however, report with IHC that RANKL expression changed with decreased loading, only 

that it was present in osteocytes of wild-type mice and not in transgenic knockout mice.  

To the author’s knowledge, at the time of experimenting, there were no reports 

documenting the use of immunohistochemistry to study changes in expression following 

intervention (eg. changes in loading or OVX) in cortical bone. This probably reflects the 

challenges in effectively localising osteocytic RANKL using immunohistochemistry, and its 
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apparent low level of expression. To study changes in expression of RANKL following 

changes in the loading environment, we sought to optimise a protocol initially developed 

by Prof Larry Suva at University of Arkansas for Medical Science (UAMS) to immunolocalise 

RANKL in the fracture callus following experimental fracture of the tibia (unpublished 

data).  

Our final aim was to use changes in RANKL and Sclerostin expression in osteocytes to 

further validate the revised surgical model for sciatic neurectomy (SN) introduced in 

Chapter 3 (including a contralateral sham surgery in the left leg). As described in Chapter 

3, we have confirmed that unilateral SN with contralateral sham surgery resulted in 

equivalent bone loss to that seen with SN performed without contralateral sham.  

Although the SN model is clearly effective at reducing strain-related stimuli, it is invasive 

(albeit minimally), requiring a small surgical incision in the proximal hindleg. Change in 

RANKL expression following surgical trauma was especially of concern as its expression is 

also affected by inflammatory cytokines, such as PGE2 and various interleukins. These 

cytokines are known to be associated with bone loss through increased expression of, or 

synergism with RANKL [601]. When designing experiments for this thesis aimed at 

evaluating the effects of disuse on the expression of RANKL, we were concerned that the 

surgical procedure itself may be sufficient to cause an acute local inflammatory response 

sufficient to alter the expression of these cytokines involved in bone adaptation, separate 

from its effects on the mechanical environment. Inclusion of a sham surgery control group 

enabled us to control for the effect of surgical trauma on the acute local inflammatory 

response and any subsequent bone loss. As we had not included a sham surgery group in 

previous studies, it was important to establish whether or not the procedure itself could 

potentially change the expression of RANKL.  

4.1.3 Objectives 

4. Optimise a protocol for immunolocalisation of RANKL in decalcified, paraffin-

embedded murine cortical bone.  



Chapter 4 – RANKL and bone remodelling during mechanical loading 

 

193 
 

5. Describe the effect of contralateral sham surgery on the osteocytic expression of 

RANKL and sclerostin protein in mice following unilateral disuse engendered by SN, 

using IHC. 

6. Describe the effect of disuse, engendered by SN on the osteocytic expression of 

RANKL and sclerostin protein, using IHC. 

7. To establish the temporal response to disuse engendered by SN on the mRNA 

expression of RANKL, OPG and Sost using qRT-PCR. 

8. Describe the effect of increased mechanical loading on the expression of the RANKL 

and sclerostin protein, using IHC 

9. To establish the temporal response to a single episode of mechanical loading on 

the mRNA expression of RANKL, OPG and Sost using qRT-PCR.  

4.2 Materials and Methods 

4.2.1 Optimise a protocol for immunolocalisation of RANKL in decalcified, 

paraffin-embedded murine cortical bone (Objective 1) 

Tables describing solutions and the final protocols used for immunohistochemistry are 

included in Appendix 2. Four different methods for immunolocalisation of RANKL in mouse 

cortical bone were tested. 

Protocol 1 

8µm transverse sections of mouse tibial bone used for initial protocol assessment were 

provided by Dr Gabriel Galea. These had been prepared as described in Chapter 2.  

Protocol 1 was essentially as described for sclerostin by Moustafa et al [160]. However, as 

work done by other members in the lab had previously found this protocol ineffective for 

detecting RANKL, an antigen retrieval step was included. Briefly, the protocol was as 

follows:  
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• Initial rehydration steps with graded alcohols. All steps are separated by wash in 

triplicate with PBS suctioned off slides and replaced – liquids retained around 

sections by hydrophobic pens (ImmEdge™ - Vector Labs, Peterborough, UK). 

• Antigen retrieval: 10mM citrate buffer at pH 6.0 for 2 hours at room temperature  

• Peroxidase blocking solution: 3% hydrogen peroxide in methanol.  

• 1° polyclonal goat anti-mouse RANKL (C-20- Santa Cruz Biotechnology, Dallas, USA) 

1:50 incubated overnight at 4°C. 

• Biotinylated 2° antibody (rabbit, anti-goat IgG (Dako, Ely, UK) 1:50 for 30 mins.  

• Apply ABC solution (Vector ABC, Vector Labs, Peterborough, UK), prepared 

according to manufacturer’s instructions – 30 mins. 

• DAB chromogen (Vector Labs, Peterborough, UK) left to develop for 5 minutes.  

• Formalin fixed, paraffin-embedded (FFPE) mouse spleen sections (8µm thick) were 

trialled as positive control sections, due to their high concentration of T-

lymphocytes, shown to express RANKL [641].  

• Slides were then dehydrated and mounted. 

Protocol 2 

As described for protocol 1, but with shorter DAB development time of 3 minutes.  

Protocol 3 

For this study, we collaborated with Professor Larry Suva at the University of Arkanasas 

for Medical Science (UAMS) who had recently developed a protocol for localisation of 

RANKL in decalcified cortical bone sections. The author undertook an externship at 

Professor Suva’s laboratory at UAMS for training in IHC techniques.  

• 6µm FFPE decalcified transverse sections of the tibial cortical diaphysis of 17-week-

old female C57BL/6 mice were used.  

• FFPE longitudinal sections from 3-4 month old wild-type mouse tibias that had 

undergone distraction osteogenesis for another study [642] were included as 

positive controls, as hypertrophic chondrocytes and the highly active regenerative 
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endocortical new bone formed during distraction osteogenesis stained strongly for 

RANKL protein (Personal communication, L. Suva – unpublished data).  

• The antigen retrieval with citrate buffer was performed by heating the buffer to 

boiling point then placing the slides in for 60 minutes, whilst allowing the solution 

to cool slowly to room temperature.  

• Washing was through immersion in PBS on an oscillating platform. 

•  1° antibody was changed to a different batch, which had been validated for 

immunohistochemistry on FFPE sections. (RANKL N-19, Santa Cruz Biotechnology, 

Dallas, USA) and incubated overnight at 4°C.  

• Proprietary ImmunoCruz™ ABC staining system (Santa Cruz Biotechnology, Dallas, 

USA) was used according to manufacturer’s instructions 

• 2° antibody was diluted to 1:200.  

• The DAB was left to develop for 120 seconds.  

• The sections were counterstained with haematoxylin for 10 or 30 seconds then 

washed and mounted.  

Protocol 4: Antibody Concentration trial  

• All steps were repeated as for protocol 3, except that a RANKL concentration 

gradient trial was performed.  

• The primary antibody was made to 1:50, 1:75, 1:100 and 1:200.  

• Counter-stain was changed to 1%, 0.5% or 0.25% Light green solution, and slides 

were stained for 45 seconds before washing, dehydrating and mounting. 

Identification of a positive control cell population for RANKL IHC. 

While trialling /testing the above protocols, we also sought to identify a suitable, readily 

available and strongly staining cell population as a positive control. The following mouse 

tissues were examined to evaluate RANKL staining intensity: spleen, bone fracture callus 

from distraction osteogenesis model mice (Courtesy of Professor Larry Suva from UAMS) 

and proximal tibial epiphyseal bone, including the articular cartilage and the hypertrophic 
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chondrocytes of the growth plate. Each of these tissues were evaluated for general stain 

intensity, specificity and clarity. 

4.2.2 In vivo procedures 

4.2.2.1 Sciatic neurectomy to investigate RANKL and sclerostin expression following 
disuse 

Effect of disuse on RANKL/Sclerostin expression - IHC (Objectives 2 and 3) 

To determine the effect of sciatic neurectomy plus sham surgery on RANKL and Sclerostin 

protein expression, 17-week-old female C57BL/6 mice underwent right SN alone (SN only) 

(n=4) or right SN and left sham (Sham+SN) (n=4) to determine if left sham surgery effected 

the SN-associated changes in expression of RANKL and/or sclerostin. Mice were killed 4 

days after surgery and limbs dissected, fixed, decalcified and sectioned according to the 

protocols described in chapter 2 for IHC staining for RANKL and sclerostin.  

Effect of disuse on RANKL/Sost expression - qRT-PCR (Objective 4) 

For this temporal study of RANKL and Sost  expression, 17-week-old female C57BL/J mice 

(n=48) underwent right SN and left sham surgery. Six weight-matched groups (n=8) were 

created and mice were killed at 0, 3, 6, 12, 24 or 72 hours following surgery. Tibiae were 

harvested as described in Chapter 2 and the cortical bone shells samples stored at -80°C 

for qRT-PCR later.  

A further experiment was undertaken using the same experimental design, as an 

additional time point, where mice (n=8) were killed 2 weeks after Sham+SN. Sampling and 

specimen preparation was identical. 

4.2.2.2 Axial tibial loading to investigate RANKL and sclerostin expression following 
increased loading 

Effect of loading on RANKL/Sclerostin expression - IHC (Objective 5) 

Female 17-week-old C57BL/6 mice underwent one single loading session to a peak strain 

of 2500µƐ then were sacrificed 24 hours after loading and their tibias were prepared for 
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sectioning and IHC as described in Chapter 2. The mice used for this experiment were 

originally from an experiment performed in our lab by Dr Lee Meakin which has been 

published, describing the effects of loading and ageing on sclerostin expression [29]. 

Sections from this experiment were used for RANKL and sclerostin immunolocalisation in 

the present study. 

Effect of loading on RANKL/Sost expression – qRT-PCR (Objective 6) 

Female 17-week-old C57BL/6 mice (n=24) were divided into 3 weight-matched groups of 

n=8. All mice underwent one single loading session on the right tibia to achieve 2500µƐ 

on the medial tibial surface (14.97N). Mice were killed 6h, 12h or 24h after loading and 

tibial cortical shells prepared for qPCR as described in Chapter 2.  

4.2.3 Ex vivo procedures 

4.2.3.1 Ex vivo procedures 

Immunohistochemistry 

Immunohistochemistry to identify osteocytic RANKL and Sclerostin was performed on 

FFPE decalcified transverse bone according to the protocol described in section 4.2.1, and 

tabulated in Appendix 2. 

The RANKL IHC protocol optimised in objective 1 (protocol 4) was used to examine the 

proportion of positive staining osteocytes in cortical bone of the posteriolateral cortex of 

the 37% site as this site has been demonstrated to have a high degree of load 

responsiveness based on previous µCT and finite element modelling of the murine tibia in 

previous studies [8, 643]. RANKL and Sclerostin positive osteocytes in sections were 

quantified in the Sham+SN and SN only groups after blinding the author to treatment 

group through randomising and re-numbering the digital images to eliminate possible 

bias. Blinding Key assignment was performed using Microsoft Excel, and digital micrograph 

images were renamed by a colleague not involved in counting, and this key was then used 

to reassign each value to the correct animal/limb after counting was complete. 
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Counting of immunopositive and negative osteocytes was performed on a single high-

power field (400x) of at least 6 separate cortical bone sections from the posteriolateral 

tibial cortex at the 37% site, measured from the proximal end, the region demonstrated 

to be most load-responsive [8]. After counting the percentage of positive osteocytes was 

calculated as: % positive cells = positive osteocytes/(positive+negative osteocytes) x 100. 

This value was calculated for each mouse and the mean values for each group are 

reported. 

qRT-PCR 

The cortical bone samples were prepared and analysed as described in Chapter 2 to 

establish the relative expression of Sost (Sclerostin), TNFSF11 (RANKL) and TNFSFR11B 

(OPG) mRNA using qRT-PCR at the above time points following induction of unilateral 

disuse. β2MG was used as the house-keeping gene and the left leg was used as the internal 

control limb as previously reported [29, 286, 419]. Primer sequences are listed in Chapter 

2.  

4.2.4 Statistical analysis 

For the IHC experiments, any two related parameters measured within the same animal 

(eg. control left and neurectomised right limbs) were compared using a paired Student’s 

T-Test or a repeated measures ANOVA for analyses with multivariate effects including a 

paired variable. In the qRT-PCR timecourse experiments, comparison of expression for 

each gene was performed using a mixed design ANOVA with limb as a repeated measure 

and time-point as a fixed effect. Sidak post-hoc tests for multiple comparisons were 

performed where the main effect was found to be significant. Significance was set at 

p<0.05. All analyses were performed with SPSS Version 23 (IBM Corp, Armonk, NY) 
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4.3 Results 

3.3.1 Objective 1: Develop a protocol for immunolocalisation of RANKL in 

decalcified, paraffin-embedded murine cortical bone. 

As seen in Figure 36, using Protocol 1, there was non-specific background staining in 

control IgG sections, particularly in marrow and skeletal muscle. A likely explanation for 

this is that the DAB exposure was too long in and/or the antibody concentration was too 

high. Therefore, the DAB development time was reduced in protocol 2. However, there 

was still visible chromogen development in the control slides, particularly around the 

perivascular tissues (Figure 36B), skeletal muscle and marrow where endogenous 

peroxidases may be at greater concentrations, and where antibodies are more likely to 

non-specifically bind. 

 

IgG Control 1:50 RANKL antibody 

Figure 36 – Immunolocalisation of RANKL in mouse cortical bone (Protocol 1) 

Low power representative images from sections of cortical bone stained using protocol 
1 demonstrating high levels of non-specific staining. Note the high chromogen stain 
intensity particularly noted in the marrow and skeletal muscle of both (A) control IgG 
and (B) RANKL Ab slides (yellow arrows). Note also the positive staining osteocytes even 
in the control IgG sections (red arrow). Scale bars = 100µm. 

A B 
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For protocol 3, based on advice from Professor Larry Suva at UAMS, we changed the 

antibody batch and antigen retrieval steps to help expose the epitopes more effectively, 

which in turn enabled a reduction in the DAB development time. In addition, the 

counterstain was exchanged for haematoxylin. However, because it is a nuclear stain, the 

haematoxylin counterstain limited the ability to visualise if the osteocytes were positively 

stained due to high nuclear:cytoplasm ratio (Figure 38A). Even in the slides only stained 

with haematoxylin for 10 seconds, the cytoplasmic detail was still obscured for osteocytes. 

This still resulted in quite strong nuclear staining. the haematoxylin stain intensity was too 

great to allow effective quantification of the positive staining osteocytes, despite lowering 

the immersion time for slides (Figure 38A-B). 

Figure 37 – RANKL immunolocalisation in mouse cortical bone according to (A, C) 
Protocol 1 and (B, D) Protocol 2.  

These sections are representative images of osteocytes in negative IgG control 
sections (A, B) and RANKL stained sections (C, D). Positive staining osteocytes are 
visible in the negative IgG control sections in (A) (red arrow). The perivascular cells in 
(B) still show positive staining in the IgG control section (yellow arrow). Scale bars = 
25µm. 
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As nuclear staining limited the ability to identify and count of positively staining 

osteocytes, in protocol 4 a concentration gradient of light green counterstain was 

performed as it is a general protein stain and allows better contrast between the brown 

colouring of the DAB chromogen. Furthermore, protocol 4 used an antibody stain dilution 

gradient to identify the most appropriate antibody concentration. The only dilution that 

resulted in sufficient osteocyte stain intensity without excessive background staining was 

1:50 (Figure 39). 

 

Figure 38 – RANKL immunolocalisation in mouse cortical bone (Protocol 3).  

These sections are high power representative images of osteocytes in negative IgG 
control sections (A, B) and in RANKL labelled sections (C, D). Slides were then 
counterstained with haematoxylin for (A, C) 30 seconds (B, D) and 10 seconds. Note 
the difficulty in identifying the positive staining osteocytes due to staining of the 
nuclei in osteocytes. Scale bars = 25µm. 
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 Figure 39 – RANKL immunolocalisation in mouse cortical bone (Protocol 4)  

(A) 1:50 IgG negative control. (B-E) RANKL Antibody dilutions: (B) 1:200; (C) 1:100; (D) 
1:75 and (E) 1:50. Note gradual increase in stain intensity in osteocyte lacunae, with 
1:50 showing clearer staining than all lower dilutions. Scale bars = 50µm. 
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Figure 40 demonstrates the reduced concentration of Light Green (0.5% and 0.25%) at the 

lowest two antibody dilutions (1:100 and 1:50). Optimising this protocol demonstrated 

that the 1:50 antibody concentration clearly stained osteocytes better than 1:100 and that 

either concentration of Light Green was suitable. 
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Figure 40 –RANKL immunolocalisation (Protocol 4) 

Light green concentration gradient. (A,B) 0.25%, and (C,D) 0.5% Light Green Solution 
used as counterstain. (A, C) 1:100 and (B, D) 1:50 dilution of RANKL antibody. The 
staining intensity is not greatly different between 0.25% and 0.5%, and the 1:50 
RANKL antibody concentration clearlyprovides the optimal staining intensity. Scale 
bars = 50µm. 
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Identification of appropriate positive control cells 

The use of mouse splenic sections was unsuitable for use as a positive control, as the 

cellular density precluded easy identification of positive and negative cells and the 

endogenous peroxidase activity of the high density of red blood cells may also have 

enhanced DAB staining (despite blocking with hydrogen peroxide (Figure 41A,B). Use of 

the epiphysis and growth plate cartilage revealed the hypertrophic chondrocytes and the 

articular chondrocytes as suitable and strongly staining cells for use as a positive control 

cell population in RANKL immunolocalisation (Figure 41C-F). Additionally, the highly active 

mineralising front in distraction osteogenesis also proved a strongly staining area for 

RANKL (Figure 41G,H). To eliminate the difficulty of haematoxylin counterstain obscuring 

the nucleus of the cells of interest, light green counterstain was employed and also 

demonstrated clear RANKL staining of the hypertrophic choncrocytes (Figure 41I,J).  

Megakaryocytes within the bone marrow cell population also stained positively for RANKL 

and are usually within the same section as cortical bone – unlike the other cells identified 

in this experiment. The megakaryocytes are visible with either light green or haematoxylin 

counterstain, but due to their large cytoplasm, they are more easily identified with a 

nuclear stain, like haematoxylin, than light green (Figure 41 L, M). 
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Figure 40 – Legend on following page 
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4.3.2 Objective 2: Describe the effect of contralateral sham surgery on the 

osteocytic expression of RANKL and sclerostin protein in mice following 

unilateral disuse engendered by SN, using IHC 

After confirming with µCT (Chapter 3) that Sham+SN resulted in similar bone loss to that 

previously reported without contralateral sham surgery [11] and after optimising the 

RANKL IHC protocol, we next evaluated the effect of contralateral sham surgery on cortical 

bone osteocyte expression of sclerostin and RANKL.  

There was no significant difference in the number of positive staining osteocytes between 

SN only and Sham+SN groups for both Sclerostin (Figure 42) and RANKL (Figure 45). 

Furthermore, there was no difference in the number of positive osteocytes counted 

between the control limbs that had not had any surgery (SN only group) and those that 

had undergone left sham surgery (Sham+SN group) for either Sclerostin (Figure 42) or 

RANKL (Figure 45). The number of positively staining osteocytes is represented in Figure 

43 & Figure 44.  

 

 

 

Figure 41 – High power representative images of selected positive control 
sections following RANKL immunolocalisation. 

IMAGE ON PREVIOUS PAGE. (A-B) Mouse spleen sections; (C-D) Tibial growth 
plate; (E-F) Tibial articular cartilage; (G-H) Endocortical mineralising front in a 
distraction osteogenesis model; (I-J) Tibial growth plate; (L-M) Tibial bone marrow 
including megakaryocytes (arrows). A,C,E,G,I are negative control sections. 
A,B,I,J,L are counterstained with light green solution. All other sections are 
counterstained with haematoxylin. Scale bars = 25µm. 



 

Figure 42 – Effect of sham surgery and disuse (by SN) on sclerostin expression in 
osteocytes.  

17w old female C57BL/6 mice underwent right SN and either no surgery (n=4) or a 
sham surgery (n=4) on the left limb. Mice were killed 4 days later and Sclerostin IHC 
performed on sections of bone. Representative high power images of the 
posteriolateral tibial cortical bone at the 37% site, measured from the proximal end. 
Left Control limbs (A, C) and Right Disuse limbs (B, D) are demonstrated. Groups had 
either Right SN only (A, B) or left sham surgery and right SN (C, D). The number of 
sclerostin positive osteocytes in the control left limbs was not affected by sham 
surgery, but expression of sclerostin was increased following unloading by SN. Scale 
bars = 50µm 

 

  

Figure 43 – Effect of sham surgery 
and disuse (by SN) on sclerostin 
expression in osteocytes 

17w old female C57BL/6 mice 
underwent right SN and either no 
surgery (n=4) or a sham surgery (n=4) 
on the left limb. Mice were killed 4 
days later. Results show % of 
Sclerostin immunopositive 
osteocytes and groups were 
compared using a mixed-design 
repeated measures ANOVA. ** = 
p<0.01 Right vs left limb. Means ± 
SEM are reported. 
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Figure 45 - Effect of sham surgery and disuse (by SN) on RANKL expression in 
osteocytes.  

17w old female C57BL/6 mice underwent right SN and either no surgery (n=4) or a 
sham surgery (n=4) on the left limb. Mice were killed 4 days later and Sclerostin IHC 
performed on sections of bone. Representative high power images of the 
posteriolateral tibial cortical bone at the 37% site, measured from the proximal end. 
Left Control limbs (A, C) and Right Disuse limbs (B, D) are demonstrated. Groups had 
either Right SN only (A, B) or left sham surgery and right SN (C, D). The number of 
RANKL positive osteocytes was not affected by SN or sham surgery. Scale bars = 50µm 

Figure 44 - Effect of sham surgery and 
disuse (by SN) on RANKL expression in 
osteocytes.  

17w old female C57BL/6 mice 
underwent right SN and either no 
surgery (n=4) or a sham surgery (n=4) 
on the left limb. Mice were killed 4 days 
later. Results show % of RANKL 
immunopositive osteocytes and groups 
were compared using a mixed-design 
repeated measures ANOVA. Means ± 
SEM are reported. 
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4.3.3 Objective 3: Describe the effect of disuse, engendered by SN on the 

osteocytic expression of RANKL and sclerostin protein, using IHC. 

After confirming that contralateral sham appeared to have no significant effect on the 

expression of sclerostin or RANKL, and did not appear to affect the degree of adaptive 

bone changes in response to disuse engendered by SN (Chapter 3), we evaluated whether 

disuse resulted in significant changes in the osteocytic expression of sclerostin and RANKL. 

Following 4 days of disuse, sclerostin expression increased (+35.87%, p<0.01) (Figure 42 & 

Figure 43), however, no significant change in RANKL expression was noted (-0.2%, p>0.05) 

Figure 44 & Figure 45, Appendix 3 - Table A4.5). 

4.3.4 Objective 4: To establish the temporal response to disuse engendered 

by SN on the mRNA expression of RANKL, OPG and Sclerostin using qRT-PCR. 

Having shown using IHC that RANKL expression was unchanged four days after SN, despite 

an increase in sclerostin expression, we next investigated the temporal changes in mRNA 

for the gene encoding for RANKL (TNFSF11) using qRT-PCR of time points earlier than 4 

days. In addition, we also assessed the mRNA expression of the genes encoding for OPG 

(TNFSFR11B), the competitive decoy inhibitor of RANKL, and Sclerostin (Sost), which has 

been shown to affect the expression of RANKL [644].  

When examining the effect of SN, there was no change in expression of Sost, RANKL, OPG 

or RANKL:OPG mRNA at any time point, at least until 3 days following surgery (Figure 46). 

When examining the effect of time after surgery, RANKL expression in the control limb of 

the 3h group was significantly higher than the expression noted in the control limb of the 

12h group (p<0.05), although there was no significant effect of duration after surgery for 

any other parameter when considering the control limbs. There was also no significant 

effect of time after surgery between SN limbs for any parameter (Figure 46).  

Following the unexpected lack of effect of SN on expression of RANKL at the early time-

points (using qPCR and also IHC), a later time point following SN was performed to  
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Figure 46 – Change in mRNA expression of SOST, RANKL and OPG following disuse in young 
adult female mice 

17w old female C57BL/6 mice underwent SN and were then killed at various time points 
following SN and the cortical bone processed and analysed for expression of mRNA for (A) 
Sost, (B) RANKL, (C) OPG and (D) RANKL:OPG. Gene expression is reported relative to the 
expression of the house-keeping gene, β2MG. * = p<0.05 vs respective control limb of 
alternate time point. n=7-8. Comparisons were performed using mixed design repeated-
measures ANOVA with post hoc Bonferroni adjustments made. Error bars = mean ± SEM.  
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determine if SN resulted in gene expression changes at a time point when demonstrable 

bone loss is typically occurring following SN, based on CT (2 weeks). Sost expression in 

tibial cortical bone was increased (+118.8% p<0.05) 2 weeks after SN, however the 

expression of RANKL, OPG and the RANKL:OPG ratio were still unchanged following 2 

weeks of disuse (Figure 47). 
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Figure 47 – Change in mRNA expression of (A) SOST, (B) RANKL and (C) OPG in 
young adult female mice following 2 weeks of disuse 

(D) RANKL:OPG is calculated as the ratio of RANKL and OPG expression. 17w old 
female C57BL/6 mice underwent SN then were killed 2 weeks after surgery. Gene 
expression is reported relative to the expression of the house-keeping gene, β2MG. 
* = p<0.05 relative to control limb – comparisons made with paired t-test. Error bars 
= Mean ± SEM (n=8). 
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4.3.5 Objective 5: Describe the effect of increased mechanical loading on the 

expression of the RANKL and sclerostin protein, using IHC 

Following the unexpected lack of any apparent change in the expression of RANKL 

following reduced mechanical loading as a result of SN, we undertook studies to explore 

the effect of increased mechanical loading on the expression of RANKL and Sclerostin. 

Initially, immunolocalisation by immunohistochemistry of Sclerostin and RANKL 

expression was performed 24 hours after a single episode of loading. Expression of RANKL 

24h following loading was not significantly different to that in control limbs (Figure 48A, 

C). This was despite a significant reduction in the expression of Sclerostin following 

loading, similar to that previously reported by ourselves and others [8, 20] (Figure 48B, C). 

4.3.6 Objective 6: To establish the temporal response to a single episode of 

mechanical loading on the mRNA expression of RANKL, OPG and sclerostin 

using qRT-PCR. 

We next sought to determine whether loading altered the RNA expression of RANKL, Sost 

or OPG. RANKL and OPG expression were unaffected by loading at any time-point tested 

(Figure 49 A-C). The overall expression of RANKL in mice at the 12h time-point was 

significantly lower than the 6h time-point, however there was no difference when paired 

loaded or control limbs were compared by post-hoc comparisons (Figure 49A). The 

RANKL:OPG ratio showed a tendency to decrease after loading (p=0.083) but this change 

was not significant.  

Interestingly, loading was associated with a significant reduction in the expression of Sost 

at 6h post-loading but loading had no effect on SOST expression at 12h or 24h in this 

experiment (Figure 49D). The expression of Sost in the control limb of the 6h group was 

significantly greater than the expression in the control limb of the 24h group. This is 

difficult to explain, but as this experiment did not include a 0h control group, we could not 

determine whether the result was anomalous, or if the variance in the control limb at 6 

hours was due to some other variable, such as diurnal variation or potentially some other  
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Figure 48 - Effect of axial loading on RANKL and Sclerostin expression in osteocytes in young 
adult mice, determined by immunohistochemistry.  

Transverse sections of the tibia, 37% of the length of the bone measured from the proximal 
end were evaluated in the posteriolateral cortex for the percentage of positive staining 
osteocytes. Mice were killed 24 hours after a single session of axial tibial loading. 
Representative images of 200X photomicrographs of the posteriolateral cortex following (A, 
B) RANKL, (C, D) Sclerostin IHC. (A, C) left limbs were internal controls. (B,D) right limbs were 
loaded. Scale bars = 100µm. (E) percentage of positive staining osteocytes following 
immunolocalisation of RANKL (n=5) and Sclerostin (n=4). *** = p<0.001. Comparisons were 
performed with a paired Student’s t-test. Error bars = Mean ± SEM. 
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systemic effect, such as anaesthesia related changes. On examination of the concentration 

of RNA in the extracted samples, there was no significant differences in RNA concentration 

between loaded and unloaded limbs, or between different time points (Appendix 3).  

 

Figure 49 – Change in mRNA expression of SOST, RANKL and OPG following a 
single episode of mechanical loading in young adult female mice 

17w old C57BL/6 female mice underwent one session of axial tibial loading and 
then were killed 6, 12 or 24 hours after loading. Tibial cortical bone was 
analysed with qRT-PCR for (A) RANKL, (B) OPG, (C) RANKL:OPG and (D) SOST. 
Values are expressed relative to expression of β2MG as a house-keeping gene. 
Results were compared using a two-way, repeated measures, mixed design 
ANOVA. n=7-8. @ = p<0.05 effect of time point (including control and loaded 
limbs). ** = p<0.01 – effect of loading at a given timepoint. # = p<0.05 - effect 
of time point on control limbs only. Error bars = Mean ± SEM. 
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4.4 Discussion 

This chapter describes a series of experiments documenting the expression of RANKL and 

Sclerostin at the RNA and protein level following decreased and increased loading in vivo. 

These data replicate previous findings that sclerostin is down-regulated by increased 

loading and up-regulated in disuse. However, the experiments described here did not 

identify any concurrent changes in the expression of RANKL following unloading or 

loading. 

4.4.1 Immunolocalisation of RANKL in cortical bone. 

The first studies we described were the optimisation of a protocol to immunolocalise 

RANKL in cortical bone where we could illustrate moderate levels of positive staining in 

osteocytes. At the time of these studies, there was, to the author’s knowledge, only one 

published report of localisation of RANKL in femoral osteocytes [22]. We interpret this to 

reflect low antibody affinity and, presumably, low osteocytic RANKL concentration 

compared with other cell populations. There have since been publications demonstrating 

staining within osteocytes of trabecular bone [461, 645], although the apparent staining 

intensity in both reports appeared similarly low when compared with that achieved using 

our protocol.  

As RANKL produced by osteocytes is apparently essential for the activation and function 

of osteoclasts necessary for the bone loss seen with disuse [21, 22], the ability to visualise 

changes in the expression of RANKL in a site-specific manner using histologic techniques 

like IHC would help identify the potential site-specific nature of adaptive bone 

remodelling, similar to the site-specific nature of the response to loading of sclerostin 

expression previously demonstrated by Moustafa et al [8]. Hypertrophic chondrocytes 

were a reliable and strongly staining positive control cell population present in young adult 

mice. They were easily identifiable and consistently present in all mice examined. 

Furthermore, the articular cartilage cells, present in young and old mice, also typically 

stained strongly. Of note, when considering the staining of transverse tibial sections of the 

diaphyseal cortical bone, is that the megakaryocytes within the bone marrow were a 
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further population of strongly staining cells, however the marrow in general appeared to 

have moderate degrees of non-specific staining. Figure 41 illustrates the degree of staining 

in each of these populations. Having a readily available positive control cell population 

within the same tissue of interest is convenient and provides an internal control as the 

same section will have been treated identically through all processing steps, unlike a 

separate exogenous positive control slide, such as sections of tumour from Giant Cell 

Tumours of Bone, previously recommended as a suitable positive control cell population 

for RANKL [639]. 

As expected [646], RANKL immunolocalisation produces diffuse cytoplasmic staining as it 

is primarily a membrane bound protein. We conclude that a counterstain which does not 

obscure the nucleus, such as Light Green solution is more suited for IHC studies in 

osteocytes than nuclear stains such as haematoxylin as, due to the high 

nuclear:cytoplasmic ratio of osteocytes, DAB signal was obscured by the nuclear stain and 

made quantification difficult. Quantification of RANKL positive osteocytes was less 

problematic when a non-nuclear counterstain (or no counterstain at all) was used. 

Interestingly, images showing immunolocalisation of RANKL in cortical bone osteocytes in 

the study by Plotkin et al [461] also used a green counterstain.  

In our study, a high concentration of antibody was required to help localise osteocytic 

RANKL. Steps to unmask the antibody and quench endogenous peroxidase activity were 

also essential to provide a strong enough signal in the osteocytes. As a high antibody 

concentration was required to generate sufficient signal, there was a degree of non-

specific staining in tissues such as blood vessels, marrow and muscle. These tissues are 

typically quite “sticky” when high antibody concentrations are used. High levels of non-

specific staining, were detected using protocols 1 and 2, particularly in muscle and bone 

marrow, which were improved by changing the batch of antibody and improving the 

washing steps in between steps of the protocol and modifying the antigen retrieval step 

to improve epitope exposure. Not all osteocytes appear positively-stained in each section, 

reinforcing the selectivity of the IHC method used. Additional negative control specimens 

could also have been used to demonstrate that the staining seen was not non-specific; 
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e.g. pre-incubating the negative control slides with a RANKL peptide would have been an 

alternative approach. Furthermore, sections of bone from mice with genetic global 

deletion of RANKL could be used. Typically, global deletion of RANKL results in severe 

osteopetrosis, failure of tooth eruption and failure to develop lymph nodes [21]. We did 

not have access to these transgenic mice for this study. 

We demonstrated that immunolocalisation of RANKL in cortical bone osteocytes is 

possible although the antibody has low affinity and required a very high concentration of 

primary antibody, with appropriate antigen retrieval steps to achieve a clear enough 

signal. Following validation of this protocol for RANKL immunolocalisation, we next sought 

to use it to identify changes in RANKL expression in response to both unloading, 

engendered by SN, and loading, engendered by axial tibial loading.  

4.4.2 Contralateral sham surgery does not affect the osteocytic expression of 

RANKL or Sclerostin. 

One disadvantage of sciatic neurectomy as a disuse model compared with tail suspension 

is that it requires a surgical intervention. When planning the disuse experiments, we were 

concerned that the expression of RANKL locally (and thus bone mass) could be affected by 

the surgical trauma and subsequent inflammatory response. We therefore elected to 

modify the protocol for unilateral SN and perform a contralateral sham surgery on animals 

to control for this potential effect. Several inflammatory mediators have been linked with 

bone resorption, or decreased formation; most significantly, prostaglandin E2, a variety of 

interleukins (IL-1, IL-6, IL-17), and tumour necrosis factor alpha (TNFα) [601-605]. These 

cytokines are known to be associated with bone loss through increased expression of, or 

synergism with RANKL [601].  

As described in Chapter 3, bone loss associated with SN following a contralateral sham 

surgery was consistent with previous reports of unilateral SN without contralateral sham 

surgery [8, 11, 35]. Expression of RANKL and sclerostin using IHC was also no different in 

control limbs with sham surgery or no surgery. Therefore, neither bone mass, nor the 

expression of RANKL or sclerostin is affected when comparing sham operated and non-
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operated limbs. Thus, it appears unlikely that the surgical procedure itself was sufficient 

to stimulate an inflammatory response significant enough to affect the remodelling 

response and/or bone mass.  

4.4.3 Disuse sufficient to cause cortical bone loss and increased expression of 

sclerostin has no effect on RANKL expression. 

Despite significant reductions in bone mass and the concurrent increase in the expression 

of sclerostin, disuse was not associated with changes in osteocytic RANKL protein 

expression in tibial cortical bone of young mice. However, the original hypothesis that 

changes in loading may alter RANKL expression is supported by other studies published 

after this project was started. Pichler et al [645] demonstrated a decrease in RANKL 

expression in tibial trabecular osteoblasts following whole body vibration, whilst Plotkin 

et al [461] demonstrated an increase in RANKL positive osteocytes in vertebral bone 

following tail suspension (disuse). Both evaluations were, however, performed in primarily 

trabecular bone of young mice. We evaluated changes in diaphyseal cortical bone 

following SN or axial tibial loading as we were interested in the cortical bone adaptive 

response. This shows that there can be compartment specific (trabecular vs cortical) 

responses to the mechanical environment. 

Increased sclerostin expression after 4 days in response to SN reported in our mice was 

also consistent with that previously reported [8, 20, 528, 626, 647]. A recent study 

exploring the site-specific nature of the sclerostin response to disuse [647] demonstrated 

an increase in cortical bone osteocytic sclerostin protein expression after 2 and 8 weeks 

of disuse in rats, and a corresponding increase in mRNA Sost expression at both time 

points. Interestingly, serum concentrations of RANKL was measured in this study and 

decreased in response to disuse after 2 weeks of disuse, but had equilibrated after 8 

weeks. Furthermore, change in the osteocytic expression of sclerostin in trabecular bone 

during unloading was not as great as that seen in cortical bone. We have previously also 

found that sclerostin expression in trabecular bone was site-specific [8].  
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Using the SN disuse model, we also did not find disuse-associated changes in the mRNA 

expression of RANKL or OPG at early (0-3 days) or late (2 weeks) time-points. Previous 

reports have demonstrated increased levels of RANKL mRNA following longer-term 

unloading [21, 614, 630], but these have used tail suspension rather than SN and mostly 

used longer periods of disuse (2 or 3 weeks) at a point where significant bone loss had 

already occurred. RANKL was also increased in tibial bone marrow following disuse from 

sciatic neurectomy in mice, although this increase was mitigated by parathyroidectomy 

indicating the modulatory effect that PTH can have on bone remodelling [137]. A further 

recent paper explored the osteocytic expression of RANKL and OPG protein using IHC and 

demonstrated an increase in RANKL expression and a decrease in OPG expression seen 

with unloading of vertebral bone, induced by tail suspension [461]. However, this same 

study demonstrated that inhibition of osteocyte apoptosis was insufficient to prevent 

bone resorption and that osteocytic RANKL is not the sole mediator of osteoclastogenesis 

and the bone loss induced by lack of mechanical forces [461].  

Here we have demonstrated, at 3 and 14 days following unilateral SN, that RANKL mRNA 

expression in cortical bone was unaffected. Another report has also showed no increase 

in osteocyte RANKL expression at 3 and 7 days following tail suspension [136]. RANKL 

expression was unaffected after 7 days unloading in the study by Gerbaix et al [630]. In 

comparison, the studies discussed above demonstrating a change in RANKL expression 

following disuse have generally examined delayed timepoints >2 weeks, whereas we 

explored timepoints <2 weeks. Furthermore, studies demonstrating increased RANKL 

expression following disuse have mostly explored trabecular regions of the skeleton 

(proximal tibia and vertebrae) suggesting that osteocytic RANKL in cortical bone may not 

be a critical regulator of osteoclast activity. 

There are several reasons why we may have been unable to demonstrate changes in the 

expression of RANKL using qPCR. Strain-related bone (re)modelling is well accepted to be 

a locally controlled process. Xiong et al [21] demonstrated that RANKL mRNA expression 

in cortical bone samples of mice with osteocyte RANKL knockout was not significantly 

different to that of control littermates, despite showing impaired remodelling. This 
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suggests that, given the expression of RANKL in cortical bone samples was unchanged, 

bone samples used for qPCR assessment may not contain only RANKL produced from 

osteocytes, subsequently overwhelming any change in the osteocytic expression. This 

could explain why small changes in osteocytic RANKL expression may not be detected 

using the cortical bone samples prepared for qPCR analysis.  RNA extraction from cortical 

bone typically produces low yields, necessitating the analysis of the whole length of the 

tibial cortical bone. This may also introduce an “averaging” effect throughout the bone 

thus masking potential regional changes in RANKL expression. However, in comparison, 

sciatic neurectomy generates “uniform” increases in sclerostin expression both distally 

and proximally in the tibia [8] and bone loss throughout the length of the tibial cortical 

bone [7]. It may, in future, be possible to isolate a smaller proximal portion of the bone, 

where bone loss is known to be greater [7] for RNA extraction. With current technologies 

it is possible to detect transcriptomic changes in very small numbers of RNA 

transcripts/copies from cortical shell lysates.  

Most other studies demonstrating increased RANKL expression in mice following 

unloading were performed using tail suspension. There are differences between disuse 

induced by SN and that engendered by tail suspension. Tail suspension results in increased 

serum cortisol [648]. Endogenous glucocorticoid excess reduces bone formation rate and 

bone mineral density [594] and corticosteroid administration is known to result in an 

increase in RANKL expression [596]. Stress-related increases in endogenous steroids 

therefore may cause increased RANKL expression, independent of, or in addition to, the 

effects of unloading. Endogenous cortisol has not been measured following SN, nor are 

there any direct comparisons between the systemic effects of SN and tail suspension, 

however, animals do not appear to appear to demonstrate “stress” related behaviours 

following SN and continue to show normal cage behaviour such as nest-building 

behaviours which are not possible with tail suspension. 

The data presented from cortical bone of tibias of mice following sciatic neurectomy 

suggest that osteocytic RANKL and OPG expression does not change, despite a significantly 

lower bone mass and significant upregulation in Sost/Sclerostin expression. This result is 
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not consistent with the studies of Xiong et al [21], which demonstrated that RANKL 

produced by osteocytes was essential for the trabecular bone loss associated with disuse. 

Furthermore, this study demonstrated that RANKL mRNA expression in cortical bone of 

control mice was increased following tail suspension. Osteocyte RANKL knockout mice 

also develop a marked increase in bone mass, primarily through gradual obliteration of 

the medullary cavity with bone trabeculae, even after being born with phenotypically 

normal skeletons, suggesting that osteocytic RANKL’s role may be more important 

endosteally, and associated with trabecular bone, than in diaphyseal cortical bone. Even 

though its presence may be essential, our findings cannot support the inference that 

localised osteocytic RANKL up-regulation is essential for the bone resorption in cortical 

bone seen in situations of disuse engendered by SN.  

The studies which demonstrate changes in expression of RANKL with disuse using IHC all 

studied the changes in trabecular bone sites [461, 645, 649], which could be consistent 

with a site-specific role for RANKL in bone. Apoptosis associated with disuse engendered 

by tail suspension was the stimulus for RANKL up-regulation and subsequent bone loss in 

long bones of mice. There appears to be an interaction between RANKL expression and 

apoptosis. Inhibition of apoptosis abrogated the RANKL increase and subsequent bone 

loss [649]. Conversely, Plotkin et al [461] showed that, in vertebral bone, following tail 

suspension, inhibition of osteocyte apoptosis impaired the increase in RANKL associated 

with disuse, but did not impair the bone loss, although this study examined vertebral bone 

and the study by Cabahug-Zuckerman et al [649] studied distal femoral trabecular bone. 

Previously, Kennedy et al [112] have shown that there was a close relationship between 

microcrack-associated osteocyte apoptosis and RANKL expression in cortical bone. There 

are no studies, to the author’s knowledge, describing the degree of osteocyte apoptosis 

associated with sciatic neurectomy, nor are there any other studies demonstrating a 

change in RANKL expression following disuse in diaphyseal cortical bone. It appears likely, 

given our findings, that although osteoclast recruitment and activation by increased levels 

of osteocytic RANKL may be important in some situations of bone resorption, the 

requirement for its increased expression to permit resorption following disuse in cortical 

bone is questionable. The studies mentioned above, combined with the findings of the 
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experiments described in this chapter suggest that regulation of RANKL expression in 

trabecular bone appears more important to the remodelling response than changes in 

diaphyseal cortical bone. Further work exploring the effect of disuse on RANKL expression 

between several different sites will help elucidate any site-specificity to the changes seen 

following unloading. 

4.4.4 Axial tibial loading sufficient to result in bone formation decreases 

osteocytic sclerostin expression but has no effect on RANKL expression. 

Having failed to show any changes in the expression of RANKL following unloading, we 

next investigated if its expression had any relationship to increased loading in mice. After 

demonstrating the loading protocol used in the previous chapter resulted in new bone 

formation according to µCT and dynamic histomorphometry analysis (Figure 24 and Figure 

28 – Chapter 3), we were unable to demonstrate a reliable load-related change in the gene 

expression of RANKL or OPG at 6, 12 or 24 hours after loading, despite demonstrating a 

down-regulation in the expression of sclerostin after 6 hours. The decrease in Sost we 

identified in this loading time course experiment is consistent with previous published 

data suggesting that Sost/sclerostin decreases with loading [8, 20, 528]. The observation 

that RANKL expression was not significantly changed up to 24 hrs after mechanical loading 

in our study is also supported by microarray time course analyses of cortical bone 

following loading [86, 413]. 

In vitro studies exploring the effect of mechanical stimulation on expression of RANKL have 

yielded variable results. These vary from increased expression with load to decreased 

expression [129-135]. Comparison between these studies is challenging due to differing 

strain application techniques, and additionally, the in vitro response to load may not 

necessarily correlate with the in vivo situation as the three-dimensional orientation and 

lacunocanalicular arrangement of osteocytes in bone may confer additional and/or 

different responses to mechanical load. 

There are, to the author’s knowledge, few other published reports exploring the response 

of RANKL expression in loaded cortical bone, either considering RANKL mRNA or protein 
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expression. Recent microarray experiments performed in our laboratory exploring the 

transcriptomic response of bone to mechanical loading have not detected a significant 

change in the expression of RANKL mRNA. However, we have demonstrated an increase 

in the expression of OPG mRNA up to 12h after loading [413], which, in the case of no 

change in RANKL expression, would result in a reduction in the RANKL:OPG ratio, thus 

decreasing the resorptive drive following loading. RANKL:OPG ratio did show a tendency, 

in the present study, to reduce at 6 and 12h after loading. This suggests that, although 

there was no significant change in RANKL or OPG individually, a relative reduction in the 

concentration of RANKL vs OPG may be sufficient to reduce the resorptive drive following 

loading, thus improving the osteogenic response by limiting concurrent resorption 

without a specific decrease in RANKL expression.  

Many experimental advances in the understanding of the role of RANKL in bone 

remodelling have been made with genetic mutations using either whole body knock-out 

models, or cell-specific conditional knockouts. This approach has helped promote our 

understanding of the source of RANKL responsible for the bone loss seen with disuse [21, 

22] and also more recently our understanding of RANKL’s interaction with other 

molecules, such as PTH [650] and Sclerostin [651]. Further studies on the mechanical-load 

associated regulation of formation and resorption particularly focused on RANKL 

expression will be best pursued using genetically manipulated mice, and in particular, 

conditional knockout strains to help dissect the mechanisms involved in the regulation of 

the mechanostat. 

In summary, this series of experiments has demonstrated that changes in sclerostin 

expression remain a sensitive experimental endpoint for detecting cellular responses to 

changes in the mechanical loading environment. Conversely, RANKL cannot be 

recommended as a suitable experimental endpoint to explore bone’s response to changes 

in mechanical loading. 
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4.5 Conclusions 

• Osteocytic RANKL expression in cortical bone does not change with mechanical 

unloading engendered by SN, or with mechanical loading engendered by axial 

compressive loading. This suggests that measurement of its expression in cortical 

bone is not a suitable endpoint to assess responses to loading and unloading in 

mice.  

• The hypothesis that changes in the levels of expression of RANKL in osteoctyes in 

cortical bone are essential for regulating osteoclast activity associated with 

changes in the mechanical environment cannot be supported by the results of 

these studies 

• Regulation of RANKL expression in response to changes in the mechanical loading 

environment may be site specific with others reporting changes in RANKL 

expression in trabecular bone where none were noted in diaphyseal cortical bone. 

These studies suggest that while changes in osteocyte RANKL expression are 

clearly important for regulating adaptive bone remodelling in trabecular bone, 

osteocyte derived RANKL in the context of cortical bone mass remains unclear and 

requires further investigation. 

  

Parts of the studies reported in this chapter were presented as a late-breaking abstract to 

the 2013 annual meeting of the ASBMR in Baltimore, Maryland [652]. A copy of the poster 

is included in Appendix 4 of this thesis. 

  



Chapter 4 – RANKL and bone remodelling during mechanical loading 

 

225 
 

 



 

 

 

 

Chapter 5 

The effect of disuse on the osteogenic 
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Chapter 5 – The effect of disuse on the osteogenic response 

to loading in old mice. 

5.1 Introduction 

Bones undergo functional adaptation in response to loading to ensure their structural 

integrity. Bone is added in areas where more stiffness/strength is required in an 

arrangement that best suits resistance of current forces, and bone is resorbed where bone 

is stiffer/stronger than is necessary, thus minimising the weight of material being used. 

This local homeostatic feedback mechanism aims to achieve a “target” strain as its 

objective through the adaptive responses that are generated once controlling “off target” 

strains are sensed. This mechanism has been coined the “mechanostat”[12].  

As described previously in this thesis, the normal osteogenic response to mechanical 

loading is impaired with ageing and we have hypothesised that this is why, in old people, 

the incidence of fragility fractures increases [23]. It is well recognised that aging affects 

the osteogenic response to mechanical loading in rats and mice [25, 27, 29, 31, 453, 455, 

493, 582]. In regions of cortical bone at least, despite a conserved endosteal response to 

loading, the periosteal osteogenic response to loading is abrogated [27, 29, 455]. It has 

been suggested that this may be due to impaired capability of periosteal osteoblasts to 

proliferate [29]. The study by Meakin et al (2014), undertaken in our laboratory, found 

evidence that cortical long bone derived osteoblasts from old mice retain their ability to 

initiate early transcriptional and proliferative responses to strain in vitro, but their 

progression through the cell-division cycle is delayed. Contrary to Frost’s [12] hypothesis 

that aging changes the “set-point” for responsiveness to increased mechanical loading in 

the elderly, the study by Meakin et al (2014) demonstrated in vivo that the minimum 

effective strain beyond which bone gain occurs was not significantly different between 

young and old female mice, but the amount of bone accrued over two weeks of loading 

was lower in the old mice [29].  
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Using in vivo longitudinal µCT technology to investigate whether the pattern of bone gain 

following loading is altered by age, Razi et al [30] compared the number of sites where 

resorption or formation occurred in a site-specific manner in young (10w), adult (26w) and 

old (78w) mice before and after unilateral tibial loading. In this study, overall resorption 

was increased in adult and old mice compared with juvenile growing mice and the majority 

of resorption was noted endosteally. Resorption was reduced following anabolic loading 

in both adult and old mice, however significant ongoing resorption was still present 

despite loading. Loading-related bone formation was greater in young animals compared 

with old, and the likelihood of a given site experiencing either formation or resorption was 

correlated to the calculated minimum principal strains, according to finite element 

modelling [30]. Interestingly, a more recent study from the same group has demonstrated 

that the resorption probability is only correlated to calculated strains on the endosteal 

surface, and not the periosteal surface [529]. This suggests that additional region-specific 

factors, such as the local cellular context, as well as strain-related stimuli, are inherent in 

controlling the processes of resorption in response to loading. This is consistent with our 

group’s suggestion that acute loading-related cellular responses are influenced by the 

osteogenic context in which loading acts. We have demonstrated that, in addition to 

aging, deletion of oestrogen receptor alpha (ERα) or oestrogen deficiency (following 

ovariectomy) both significantly alter the number and type of genes significantly regulated 

by mechanical loading [86, 413]. Furthermore, treatment with the selective oestrogen 

receptor modulator, tamoxifen, which is an ER agonist in bone, synergistically improved 

the osteogenic response to loading in trabecular bone, further supporting the suggestion 

that biological context affects the mechano-responsiveness of bone [287].  

In addition to the altered hormonal context, we also found that changing the habitual 

strain environment through disuse induced by sciatic neurectomy significantly altered the 

number and type of genes regulated by loading [86]. A change in the osteogenic context 

may begin to explain the observation that, in young adult mice, axial tibial loading in limbs 

where normal loading is reduced by SN resulted in more new bone formation than when 

similar loading was superimposed upon the normal strains of habitual activity [35]. 
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Disuse causes a reduction in bone formation and also increases in bone resorption [653]. 

These changes appear to have some age-dependant differences. Following tail 

suspension, old rats appear to lose cortical bone through intracortical resorption, causing 

pore formation, whereas young rats undergo endosteal resorption leaving the 

intracortical bone relatively intact. Conversely, trabecular bone loss seen following disuse 

engendered by tail suspension in young rats is not evident in old rats [184]. The response 

to disuse in the tibia of young adult mice was evaluated using µCT in Chapter 3 of this 

thesis and demonstrated that, 3 weeks following SN, cortical bone mass was reduced 

primarily through endosteal resorption causing increased Ma.Ar. Periosteal apposition 

was mostly unaffected. Trabecular bone loss was primarily through decreases in 

trabecular thickness and number. The response to disuse induced through SN in old mice 

has not, however, to the author’s knowledge, been reported, although resorption rates 

are generally higher and formation rates lower in old animals [31]. The first aim of this 

chapter was to describe the effects of unilateral SN alone on cortical bone mass and 

architecture in old female mice. To enable evaluation of the cortical bone changes over a 

wider selection of sites in the tibia, our group has developed a software programme called 

Site Specificity Analysis (SSA) which is a semi-automated programme that allows 

calculation of standard µCT parameters at each centile site along the bone from 10-90% 

of the bone, measured from the proximal end [7]. Prior to investigating the effect of prior 

disuse on the loading response in old mice. We used SSA to analyse μCT data for the 

present study.  

As described previously, an earlier study from our lab demonstrated that the osteogenic 

response to loading could be augmented following a short period of prior disuse in young 

mice [35]. Another study in young adult mice demonstrated the osteogenic response of 

bone was lower in mice that received an incrementally increasing load up to a normally 

highly osteogenic load when compared with those that were loaded initially with the 

highly osteogenic peak load, then had loads reduced decrementally over the same 

duration [590]. This provides further evidence that load responsiveness in mice is loading 

history/context dependent. Although these studies were all conducted in young adult 

mice, a recent pilot study in our laboratory suggested that the osteogenic response to 
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loading in old mice could be improved by a short period of disuse prior to loading [4]. In 

follow up to these initial observations, the second aim of this chapter was to determine, 

in old mice, whether altering the mechanical loading history through prior and 

concurrent disuse affects the osteogenic response to loading. Given the loading response 

in mice appears to be loading history/context dependent, we hypothesised that in old, as 

in young mice, the adaptive response to loading would be greater if preceded by a period 

of reduced loading engendered by SN. 

5.2 Objectives 

1. Characterise the site-specific changes in cortical bone 3 weeks after unilateral SN 

in old (19-month-old) female mice using Site Specificity Analysis (SSA). 

2. Determine the effect of SN on the bone mass and architecture of the contralateral 

limb without induced loading in old female mice using SSA. 

3. Determine the effect of prior SN on the response to mechanical loading of cortical 

and trabecular bone regions of interest in old female mice, using single-site µCT 

analysis. 

4. Determine the effect of prior SN on the rate of bone formation in loaded tibias of 

old female mice, using dynamic histomorphometry. 

5. Determine the effect of prior SN on the response to mechanical loading of the 

entire cortical bone in old female mice, using SSA. 
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5.3 Materials and Methods 

5.3.1 Animals and in vivo procedures 

Experiment 1: Characterise the site-specific changes in cortical bone 3 weeks after 
unilateral sciatic neurectomy in old (19-month-old) female mice using Site Specificity 
Analysis (SSA). 

To assess the site specific response to SN in old mice using SSA software [7], nine 19-

month-old female C57BL/6 mice were obtained from Charles River Laboratories (Margate, 

UK). All mice underwent unilateral right SN as described in Chapter 2 and the left limb was 

used as an internal control. Mice were confined to their standard cage and allowed free 

movement. µCT data from old female mice used for this experiment were part of an earlier 

experiment conducted by Meakin [4] where conventional, single-site µCT analysis of the 

proximal cortical bone region of interest was performed. Some of the initial results from 

this experiment will also be reported for reference. 

Experiment 2: Determine the effect of prior disuse on the osteogenic response to 
loading in old female mice using single-site µCT, SSA and dynamic histomorphometry. 

Twenty 19-month-old female C57BL/6 mice were used for this study. This experiment was 

undertaken to achieve Objectives 2-5. The strains produced by loading were calibrated in 

aged mice (n=5) by strain gauges attached ex vivo according to the technique described in 

Chapter 2. The strain gauging data used for this study was performed in mice of identical 

age for an earlier published study [29]. Mice were divided into two weight-matched 

groups and after 1 week of environmental acclimatisation, SN was performed on the right 

limb (n=10) as described in Chapter 2. Sham surgery (n=10) was performed on the right 

limb of control group animals. Sham surgery was performed on the left limb of all mice, as 

validated in Chapter 3 and 4 of this thesis. Analgesia was provided by subcutaneous 

buprenorphine (0.05mg/kg), as required.  

Four days following right SN/Sham surgery, right tibiae were loaded under anaesthesia on 

alternate days for eight sessions. The experimental time line is illustrated in Figure 50. Left 

limbs were used as internal controls as previously validated [1]. The protocol for non-
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invasively loading the mouse tibia is described in Chapter 2. Mice were loaded to achieve 

2500µε on the medial surface of the tibia at the 37% site. The strain rates during the 

application and release of load were 30,000μεs-1. This corresponded to a compressive load 

of 11.77N (+0.5N preload = 12.27N total load) with a load ramp rate of 393Ns-1. Mouse 

losses occurred due to death under general anaesthesia (n=2) and tibial fracture during 

loading (n=2), subsequently reducing experimental numbers to n=9 for the sham group 

and n=7 for the SN group. 

5.3.2 Ex vivo procedures 

High-resolution µCT single-site analysis 

Single-site analysis was performed for Objective 3. Mice were sacrificed on day 21. After 

dissection and fixation in 4% paraformaldehyde at 4°C for 48 hours, tibia were then 

washed in graded alcohol and stored in 70% ethanol. Tibial µCT was performed as 

described in Chapter 2. We evaluated the effect of SN and age on changes [(right – left) / 

left]*100 due to loading in the trabecular region (0.25-0.75mm distal to the proximal 

physis) and at the cortical site (37% from the proximal end), according to ASBMR 

Figure 50 – Time line describing the experimental protocol for SN/loading 
experiments in aged mice. 

Mice had surgery on day 0 and killed on day 21. In experiment 2 and 3 loading 
started on day 4. Calcein and Alizarin complexone were injected 
subcutaneously on day 6 and 18 respectively. Mice were killed on day 21. The 
day number is listed across the top of the figure. L = Loading. SN = Sciatic 
Neurectomy.  
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guidelines [570].  The parameters measured included; trabecular bone volume fraction 

(BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular pattern factor 

(Tb.Pf), cortical bone area (Ct.Ar), total cross-sectional area inside the periosteal envelope 

(Tt.Ar), medullary area (Ma.Ar), cortical thickness (Ct.Th) and bone area fraction 

(Ct.Ar/Tt.Ar). Muscle Area (Mu.Ar) was also assessed to confirm efficacy of SN.  

Site Specificity Analysis 

Following assessment of the osteogenic response to loading at the 37% site using our 

conventional, single-site analysis, we determined the SN or loading associated changes for 

Ct.Ar, Tt.Ar, Ma.Ar and PMI over the length of the tibial diaphysis (10% - 90% site) using 

SSA [7]. The procedure for performing SSA is detailed in Chapter 2. Briefly, bone site was 

set as a fixed categorical parameter, with the intervention (loading, surgery) included as 

fixed effects, the loading*surgery interaction to determine if SN affected the response to 

loading. The intervention*site interaction was evaluated to determine whether the main 

effect was site-specific (i.e. if the response to loading or SN was significantly different at 

different sites). The analysis undertaken for Objectives 1 and 5 included mouse ID as a 

random effect to account for the left and right limbs belonging to the same mouse. Sidak 

post-hoc correction was performed if a main effect was significant (p<0.05). Each 

percentile site was compared between control and SN limbs of mice in experiment 1 

(Objective 1). The left control limbs of the mice from the Sham group and the SN group in 

experiment 2 were compared to assess the effect of SN on the contralateral limb 

(Objective 2). The data from all mice in experiment 2 was compared to assess the effect 

of SN on the response to loading (Objective 5).  

Dynamic histomorphometry 

Mice were injected with calcein (50mg/kg) and alizarin (50mg/kg) subcutaneously on day 

6 and day 18 of the loading period respectively (Figure 50). Following sacrifice, fixation 

and µCT scanning, tibiae were embedded in methylmethacrylate as described in Chapter 

2. Transverse sections were taken from the region in the tibia where we have previously 

demonstrated the response to axial loading is maximal (37% of the length measured from 

the proximal end) [1]. Images were captured using a confocal microscope with HeNe 
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(563nm) and diode (494nm) lasers with an isotropic pixel size of 378nm. Mineral 

apposition rate between the two labels on the endosteal and periosteal surfaces were 

measured in the posterio-lateral aspect of the right loaded tibiae only, where strains and 

bone formation engendered by loading have previously been shown to be maximal [8].  

Statistical analysis 

Analysis of SSA data was performed using a linear mixed model approach, with bone site 

as a fixed categorical parameter and intervention (surgery, loading) as a fixed effect. 

Intervention by site interaction was also assessed to identify any site-specific responses. 

Mouse ID was included as a random effect. If effects were significant, post-hoc Sidak 

correction was applied to identify individual sites where the effect was significant 

(p<0.05). Repeated-measures ANOVA, with post-hoc least-squares difference testing, was 

used to evaluate the effect of loading between left control and right loaded samples 

(loading effect) and between sham and SN groups (surgery effect) in the single-site µCT 

analysis experiments. The interaction “loading*surgery” was also established. The effect 

of SN on the inter-label distance and marrow apposition rate (MAR) due to loading in aged 

mice of experiment 2 was evaluated using an unpaired t-test on right loaded limbs only 

since insufficient double label was present on left control limbs of aged mice due to their 

high rates of resorption and low rate of baseline formation. Values are reported as mean 

± standard error of the mean (SEM). 

5.4 Results 

5.4.1 Objective 1: Characterise the site-specific changes in cortical bone 3 

weeks after unilateral sciatic neurectomy in old (19-month-old) female mice 

using SSA. 

Preliminary single-site µCT analysis from Meakin [4]. 

As detailed earlier, the data analysed for Objective 1 was obtained from mice used from 

an earlier experiment [4]. Here, for convenience, we re-report the single-site µCT data 

obtained for trabecular bone and the proximal (37%) cortical site with permission from 
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the author (Lee Meakin). In trabecular bone, BV/TV (-39.6±12.5% p=0.027) and Tb.Th (-

23.3±4.7% p=0.002) were significantly reduced following SN. Tb.N (p=0.191) and Tb.Pf 

(p=0.785) were not significantly affected by SN. In proximal cortical bone, Ct.Ar (-

10.47±3.1% p=0.021) was significantly reduced following SN, but Ma.Ar (p=0.08) and Tt.Ar 

(p=0.651) were not affected following SN. 

SSA analysis 

Following three weeks of SN, SSA demonstrated Tt.Ar was significantly lower in SN limbs 

compared with control limbs, although following post-hoc corrections, this significant 

difference was only significant at a single site. Significant reductions in Ct.Ar and increased 

Ma.Ar were evident. Ct.Ar, but not Ma.Ar demonstrated a site-specific effect (SN*site 

interaction) with significantly greater loss of Ct.Ar proximally (Figure 51). Changes due to 

SN were more variable in the proximal tibia (Figure 51), particularly with Tt.Ar and Ma.Ar, 

although Ct.Ar still demonstrated a significant loss of bone following SN in the proximal 

region. 

Interestingly, SN alone in old mice resulted in significant increases in bone porosity and 

complete transcortical breaches in several of the mice in this experiment, although not all. 

These changes occurred primarily in the cortical bone proximal to the mid-point of the 

bone (approximately 45-50%). Due to these changes, the SSA program experienced some 

difficulty in performing the boundary marking operation which isolates the overall bone 

periosteal perimeter in each cross section, then subsequently calculates Tt.Ar and Ma.Ar 

for the remaining image. Furthermore, when there were multiple complete cortical 

breaches, the SSA programme separated the cortex into multiple separate objects, which 

then, as part of the remaining programming removed all but the largest object from the 

image (Figure 52). This resulted in the binarised image that was eventually analysed being 

reduced to a fragment of the entire cortical cross section and thus resulting in erroneously 

reduced Ct.Ar, Ma.Ar and Tt.Ar in some individual images. This increased variability 

between animals resulted in an increased SEM in the mean values reported for the 

proximal bone sites. This limitation of the SSA programme was recognised in the initial 

publication by its authors [7].  



Chapter 5 – The effect of disuse on the osteogenic response to loading in old mice. 

 

236 
 

 

 

 

 

 

Figure 51 – Site-Specificity Analysis illustrating the effect of three weeks of disuse 
engendered by SN on cortical bone structure.  

SSA was performed in 19-month-old female mice that were killed 21 days after SN in the right 
limb. (A) Tt.Ar, (B) Ct.Ar and (C) Ma.Ar were evaluated. The orange spots indicate a significant 
difference between control and SN limbs at that given bone site. Values represent Mean ± SEM 
(n=9). 
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5.4.2 Preliminary single-site µCT analysis from Meakin [4] 

Preliminary data has suggested that the deficient response to loading in old mice can be 

restored following a short period of prior and concurrent disuse [4]. We reproduce this 

data here for ease of reference. In the Meakin (2013) study, with an identical experimental 

loading and SN protocol to Experiment 2 in the present study, the impaired loading 

response in old female mice undergoing axial tibial loading was rescued to a level of bone 

acquisition that was similar to that seen in young mice when loading was preceded by 

prior disuse engendered by SN. Figure 53 demonstrates the strain-dependent loading 

response is diminished in aged female mice, but following a short period of disuse (4 days), 

the loading response was improved such that the percentage increase in bone mass (Ct.Ar) 

was restored to levels similar to those seen in young mice. 

Figure 52 – Representative images of the 37% site following 3 weeks of SN.  

Images represent (A) initial µCT reconstruction of axial slices demonstrating 
increased intracortical porosity, and (B) output image following processing with 
SSA programme. The yellow arrows demonstrate cortical defects which resulted in 
segmentation of the cortical bone into separate objects and subsequent reduction 
in the calculated Ct.Ar, and Ma.Ar – The Tt.Ar used in the SSA programme is a 
derived sum of the Ct.Ar and Ma.Ar. In this particular image, the Ma.Ar would have 
been calculated as zero, as there is no enclosed space. 
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5.4.3 Objective 2: Determine the effect of sciatic neurectomy on the bone 

mass and architecture of the contralateral limb without induced loading in old 

female mice using SSA. 

To ensure that the demonstrated difference in the response to loading was not due to 

unintended changes in the control left limb due to right SN, a direct comparison of the left 

control limbs was performed using SSA. This demonstrated that Tt.Ar, Ct.Ar and Ma.Ar in 

the control limb of the SN group mice were not significantly different from that in the 

Sham group in the sites assessed by SSA (Figure 54). 

Figure 53: The effect of prior disuse on loading-related changes in Ct.Ar at the proximal 
37% site at different magnitudes of mechanical strain in young and aged male and female 
mice.  

The right tibia of (A) ambulatory and (B) right sciatic neurectomised mice was loaded and 
µCT used to analyse the cortical morphology in each limb. Data represented as mean ± SEM. 
Young and aged mice were compared using two-stage linear regression. Post-hoc t-tests 
were used to compare the MES and slope for both males and females since overall 
significance was detected. *p<0.05, **p<0.01, ***p<0.001. Figure adapted and reproduced 
with permission from [4]. 
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5.4.4 Objective 3: Determine the effect of prior SN on the response to 

mechanical loading of cortical and trabecular bone regions of interest in old 

female mice, using single-site µCT analysis. 

The effect of SN (n=7) or sham surgery (n=9) on the response to loading was established 

using µCT. Muscle area in SN limbs was significantly lower than in sham limbs, confirming 

the efficacy of SN. Tibial length and body weight were not significantly different between 

groups (Table 4). 

Figure 54 – Site-Specifity Analysis (SSA) illustrating the effect of unilateral 
disuse engendered by right SN and/or loading on cortical bone structure 
of the left contralateral leg of mice.  

SSA of (A) Tt.Ar, (B) Ct.Ar and (C) Ma.Ar calculated from the control left tibia 
of mice 3 weeks after right sham or SN and right tibial loading for 8 alternate 
day loading episodes, n=7-9. Data points represent mean and error bars 
represent SEM. There was no significant difference between the left tibias 
of right sham or right SN mice using mixed-model analysis (p>0.05). 
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 Sham operated (n=9) Sciatic neurectomy (n=7) 

Bodyweight (g) 30.22 ± 4.14 30.28 ± 2.01 

Tibial length (mm) Left Control 18.51 ± 0.09 18.56 ± 0.09 

Right Loaded 18.43 ± 0.07 18.59 ± 0.10 

Mu.Ar (mm2) Left Control 7.35 ± 0.14 7.35 ± 0.27 

Right Loaded 7.48 ± 0.13 5.36 ± 0.23 *** ‡‡‡ 

Table 4 – Effect of a background of disuse engendered by SN and/or right 
tibial loading on bodyweight, tibial length and muscle area.  

Bodyweight, tibial length and cross-sectional muscle area (Mu.Ar) measured 
at the mid diaphyseal (50% site) tibia. Data shown as mean ± SEM. ‡‡‡ = 
p<0.001 for the loading*surgery interaction; compared using mixed design 
ANOVA. *** = p<0.001; compared with control limb using a post-hoc pairwise 
comparisons. 

The data collected from experiment 2 for the single-site µCT analysis of the trabecular and 

37% cortical sites were examined using a mixed-design repeated measures ANOVA with 

loading as the within subject effect and surgery (SN) as the between subjects effect. All 

results reported in this section pertain to this experiment. All neurectomised limbs were 

also concurrently loaded. As expected, we demonstrated no apparent effect of SN on the 

contralateral limb for any measure (Table 5). This mirrors the findings of the SSA from 

Objective 2.  

No measure of trabecular bone examined was affected by SN alone. Loading resulted in a 

20.5% increase in Tb.Th in sham operated mice. No other trabecular parameter was 

significantly affected by loading. Prior SN did not affect the magnitude of the loading 

response in any trabecular parameter measured. 

When considering the cortical bone site, SN alone had no effect on any parameter 

measured. Loading significantly increased Tt.Ar, Ct.Ar, Ct.Ar/Tt.Ar, Ct.Th and PMI (p<0.01 

for loading as a main effect by repeated measures ANOVA), but had no effect on Ma.Ar 

(Table 5, Figure 55).  

Prior SN significantly altered the effect of loading for Tt.Ar and Ma.Ar (p<0.05 for the 

loading*surgery interaction by repeated measures ANOVA). The increase in Tt.Ar 
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associated with loading was significantly higher in mice subjected to prior SN (7.98±1.7%) 

than in the sham group (1.02±2.2%, p<0.05). The change in Ma.Ar was also significantly 

greater in the SN group (6.02±3.69) than in the sham group (-5.76±3.30, p<0.05) (Figure 

55). Ct.Ar, Ct.Th, PMI and Ct.Ar/Tt.Ar did not show significantly different responses to 

loading between surgery groups (Table 5). This indicates that SN was associated with 

greater overall endosteal resorption, but concurrently greater periosteal bone formation, 

following loading.  

Figure 55 – The effect of a background of disuse engendered by SN on the cortical bone 
response to axial tibial loading in old female mice.   

19m old C57BL/6 female mice underwent SN (n=7) or Sham surgery (n=9) on day 0 then 8 
alternate-day episodes of right axial tibial loading sufficient to generate a strain magnitude of 
2500µε starting on day 4. Mice were killed on day 21. μCT analysis showing the percentage 
change between left control and right loaded limbs ((Right-Left)/Left * 100). Data represented 
as mean ± SEM. (A) Total area within the periosteal envelope (Tt.Ar); (B) Cortical bone area 
(Ct.Ar); (C) Medullary area (Ma.Ar); (D) Average Cortical Thickness (Ct.Th). Data were 
compared using a repeated measures ANOVA. * = p<0.05 versus response to loading in sham. 
This figure is modified from the figure published in [9] 
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Trabecular bone Sham operated (n=9) Sciatic neurectomy (n=7) 

BV/TV (%) Left Control 1.714 ± 0.273 1.572 ± 0.179 
Right Loaded 2.166 ± 0.315 1.298 ± 0.281 

Tb.Th (mm) Left Control 0.044 ± 0.002 0.050 ± 0.001 
Right Loaded 0.053 ± 0.003* 0.054 ± 0.002 

Tb.Sp (mm) Left Control 0.414 ± 0.009 0.407 ± 0.007 
Right Loaded 0.413 ± 0.007 0.438 ± 0.007* 

Tb.N (mm-1) Left Control 0.411 ± 0.080 0.315 ± 0.037 
Right Loaded 0.435 ± 0.072 0.234 ± 0.046 

Cortical Bone (37% site) 
Ct.Ar (mm2) Left Control 0.573 ± 0.020 0.574 ± 0.013 

Right Loaded†† 0.620 ± 0.021 ** 0.628 ± 0.019 ** 
Tt.Ar (mm2) Left Control 1.125 ± 0.022 1.083 ± 0.016 

Right Loaded†† 1.137 ± 0.030 1.169 ± 0.022 ‡ *** 
Ma.Ar (mm2) Left Control 0.552 ± 0.019 0.509 ± 0.013 

Right Loaded 0.516 ± 0.011 0.541 ± 0.020 ‡ 
Ct.Ar/Tt.Ar (%) Left Control 0.509 ± 0.014 0.530 ± 0.009 

Right Loaded†† 0.545 ± 0.006 ** 0.537 ± 0.014 
Ct.Th (mm) Left Control 0.117 ± 0.004 0.123 ± 0.003 

Right Loaded†† 0.128 ± 0.005 ** 0.128 ± 0.003 
PMI (mm4) Left Control 0.240 ± 0.011 0.238 ± 0.006 

Right Loaded†† 0.256 ± 0.012 0.263 ± 0.010 
MAR (μm/day) Endosteal   2.22 ± 0.19   3.34 ± 0.32    ## 

Periosteal   1.49 ± 0.14   3.15 ± 0.53    ## 
Table 5 – Effect of a background of disuse engendered by SN on the osteogenic response 
to loading in old female mice using conventional µCT analysis.  

Parameters of bone mass and architecture were measured in trabecular bone 
of the proximal tibia (0.25-0.75mm distal to the proximal physis) and cortical 
bone (37% site measured from the proximal end) using µCT. Mineral apposition 
rate (MAR) was measured using dynamic histomorphometry. Data shown as 
mean ± SEM. †† = p<0.01 as a main effect for loading and ‡ = p<0.05, ‡‡‡ = 
p<0.001 for the loading*surgery interaction; compared using mixed design 
ANOVA. * = p<0.05, ** = p<0.01, *** = p<0.001; compared with control limb 
using a post-hoc pairwise comparisons. ## = p<0.01; compared with sham group 
using an unpaired t-test. 
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5.4.5 Objective 4: Determine the effect of prior SN on the rate of bone 

formation in loaded tibias of old female mice, using dynamic 

histomorphometry 

Dynamic histomorphometry of the posteriolateral tibial cortex revealed a load-related 

increase in the mineral apposition rate in SN compared to Sham loaded mice on both the 

endosteal (+50.4%, p<0.01) and periosteal (+112.2%, p<0.01) surfaces suggesting that SN 

is associated with increases in both endosteal and periosteal bone formation rate in 

response to loading (Figure 56). 

Figure 56 – Effect of a background of disuse engendered by SN on the loading-
associated periosteal and endosteal bone formation in aged mice.  

Confocal images of representative transverse sections of the posteriolateral 
cortex of the tibia taken at the 37% site illustrating calcein and alizarin 
flurochrome labels administered at day 6 and day 18 of loading. The scale bars 
indicate 50µm. Endosteal surface = en, Periosteal surface = ps. (A) Loaded 
without prior SN; (B) Loaded with prior SN. (C) Mineral Apposition  Rate at the 
posteriolateral cortex. Un-paired t-tests were used to compare sham and SN 
groups. ** = p<0.01. This figure is modified from the figure published in [9]. 
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5.4.6 Objective 5: Determine the effect of prior SN on the response to 

mechanical loading of the entire cortical bone in old female mice, using SSA. 

Mixed model analysis of the data for this objective was performed and the p-values of 

main effects and interactions from the mixed model are reported in Table 6. 

Periosteally-enclosed area (Tt.Ar) 

Tt.Ar was significantly increased by loading, and this effect was site-specific, with a greater 

increase due to loading in the distal cortical bone (distal to 75% site) than in the proximal 

region of the bone. Prior SN resulted in a significantly greater loading related increase in 

Tt.Ar than in the sham surgery group (SN*Loading interaction = p<0.001) (Figure 57A, B). 

Interestingly, this SN-associated increase in the response to loading appeared to focus 

around the 37% site, where single-site analysis identified a response, and also in the 

cortical bone distal to ~78% site, a region which is normally minimally responsive to 

loading in aged mice. 

Cortical bone area (Ct.Ar) 

Ct.Ar was significantly increased by loading and this effect was site-specific, with greater 

loading-related increase proximally and distally, compared to the mid-shaft (~50-70%). 

Prior SN resulted in a significantly greater loading-related increase in Ct.Ar than in the 

sham surgery group (Figure 57C, D). 

Medullary Area (Ma.Ar) 

Loading resulted in overall significant reductions in Ma.Ar and this effect was site specific, 

with loading related decreases in Ma.Ar confined to the proximal cortical bone and loading 

related increases in Ma.Ar observed distally. Prior SN resulted in a significantly greater 

loading related increase in Ma.Ar than Sham surgery, particularly in the cortex distal to 

the 60% site (Figure 57E, F) 
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Polar Moment of Inertia (PMI) 

Loading resulted in a significant increase in PMI and this effect was site specific, with 

greater loading-related increase in PMI proximally, compared with distal sites. Prior SN 

resulted in a significantly greater loading-related increase in PMI than in the sham surgery 

group (Figure 57G, H). 

 

 

Effect Tt.Ar Ct.Ar Ma.Ar PMI Ct.Po 

SN p=0.461 p=0.634 p=0.547 p=0.546 p=0.383 

Loading p<0.001 p<0.001 p<0.001 p<0.001 p=0.523 

SN*Loading p<0.001 p=0.009 p<0.001 p=0.001 p<0.001 

Site*SN p=0.857 p=0.431 p=0.980 p=0.956 p<0.001 

Site*Loading p<0.001 p<0.001 p<0.001 p=0.041 p<0.001 

Table 6 - The effect of a background of disuse engendered by SN on the response to 
loading in old female mice.  

Significance (p) values following mixed model analysis of SSA data exploring cortical bone 
parameters following unilateral loading with or without ipsilateral SN in old mice. n= 7-9. 
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Figure 57 – Effect of a background of disuse engendered by SN on the adaptive response to 
loading in cortical bone of old female mice.  

SSA was undertaken on µCT data of tibias from 19m-old female C57BL/6 mice following sham 
surgery (A,C,E,G) or SN (B,D,F,H) and subsequent right axial tibial loading for 3 weeks. (A, B) 
Tt.Ar, (C, D) Ct.Ar, (E, F) Ma.Ar and (G, H) PMI were analysed using SSA. Grey spots represent 
a significant difference (p<0.05) between control and loaded limbs at that site following mixed 
model analysis. Values represent Mean ± SEM (n=7-9)  
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Cortical Porosity (Ct.Po) 

Ct.Po in the proximal cortical bone was significantly reduced with loading (Figure 58A). 

Prior SN resulted in a significantly different response to loading for Ct.Po, and this 

interaction demonstrated a site-specific effect. The proximal cortex showed decreases in 

Ct.Po with loading and the distal cortex, where the loading related increase in Tt.Ar is 

greatest, demonstrated a loading-related increase in Ct.Po (Figure 58B). This appeared to 

be due to increased woven bone formation in response to loading. Figure 59 shows 

representative images at the 85% site of loaded limbs from sham and SN mice, illustrating 

the increase in cortical porosity and apparent woven bone formation. 

 

Figure 58 – The effect on cortical porosity of a background of disuse engendered 
by SN and/or mechanical loading of the tibia in old female mice.  

SSA was undertaken on µCT data of tibias from 19m-old female C57BL/6 mice 
following sham surgery (A) or SN (B) and subsequent right axial tibial loading for 
3 weeks.  Ct.Po was analysed using SSA. Grey spots represent a significant 
difference (p<0.05) between control and loaded limbs at that site following mixed 
model analysis. Values represent Mean ± SEM (n=7-9)  
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5.4.7 Results summary 

Objective 1 

• SN in old female mice resulted in significant reductions in Ct.Ar, primarily in the 

proximal tibia, associated with an increase in Ct.Po. 

Objective 2 

• SN had no effect on the cortical bone structure of the contralateral limb of old 

female mice. 

Objective 3 

• The adaptive response to loading in trabecular bone of old mice was unaffected by 

prior SN. 

• The adaptive response to loading in cortical bone at the 37% site was increased 

following prior SN, compared with sham operated animals, with increased 

Figure 59 – The effect of a background of disuse engendered by SN on the 
ipsilaterally loaded limb of old female mice.  

Representative µCT transverse reconstructed slices from loaded bones at 85% site 
in (A) sham operated and (B) SN operated mice, demonstrating the increased 
periosteal woven bone formation in neurectomised limbs, resulting in greater 
porosity distally. Scale bars represent 500µm. 
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periosteal apposition. A load-related medullary expansion was also seen in SN-

operated mice. 

Objective 4 

• Loading-associated bone formation was increased periosteally and endosteally at 

the posteriolateral cortex in mice with prior SN, as demonstrated by DH. 

Objective 5 

• SSA confirmed that prior disuse resulted in a greater load-related increase in total 

area, cortical bone area and PMI compared to sham-operated controls, despite 

decreased load-associated medullary contraction in mice that experienced prior 

disuse. 

• Prior SN resulted in a significantly greater load-associated decrease in Ct.Po in 

proximal cortical bone, but a significantly greater load-associated increase in Ct.Po 

in distal cortical bone associated with periosteal woven bone formation distally. 

 5.5 Discussion 

In the experiments described in this chapter, we demonstrate that 3 weeks of SN reduces 

bone mass in old female mice, with a concurrent increase in porosity proximally. A short 

duration of reduced loading, engendered by SN, improved the periosteal osteogenic 

response to loading; a finding consistent with previous data from both young and old mice 

[4, 35]. Concurrent SN also resulted in overall load-related endosteal expansion, despite 

an observed focal increase in endosteal bone formation engendered by loading at the 

posteriolateral tibial cortex.  

Several previous studies have reported a lower response to mechanical loading in old 

rodents [25, 29, 389]. A previous study which demonstrated adult mice have a diminished 

response to loading compared to young, growing animals, also showed that increasing 

strain magnitude can restore the age-impaired loading response [453]. Taken together 

with our current study, these results suggest that the age-related impairment of the 

mechanostat is not consequent to an intrinsic failure of the mechanisms whereby bone 
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mass increases, but to a reduction in the efficacy of these mechanisms to respond to 

strain-related stimuli to which they respond effectively in the young, healthy skeleton. 

5.5.1 Sciatic neurectomy in old mice results in endosteal and intracortical 

bone loss. 

In this part of the study we were able to confirm, through use of the recently published 

SSA software [7], that SN of 3 weeks duration is sufficient to result in significant bone loss 

in old mice, primarily due to a reduction in cortical area, which was greater proximally 

than distally. SSA did not, however, demonstrate a significant effect of SN on total area or 

medullary area in the proximal cortex. This may have been due to limitations of the SSA 

programme to analyse these parameters effectively in this extremely porous old bone. 

Single-site µCT analysis from the same mice confirmed this lack of effect of SN on 

medullary area and total area at the 37% site [4] suggesting the single-site µCT analysis 

may also have similar limitations. These limitations were acknowledged in the original SSA 

publication describing application of this software [7]. 

The interpretation of the data from the proximal region in this study should be made with 

some caution. The variable results for the regions proximal to the ~45% site are likely in 

part due to the limitations of the SSA programme in dealing with breaches in the cortical 

bone resultant from the increased level of porosity engendered by SN in several of the 

mice analysed (Figure 52). The increase in porosity may partly explain the significant 

reduction in cortical area without a concurrent significant reduction in medullary area. A 

previous study using tail suspension demonstrated unloading-associated reduction in 

BMD with concurrent increases in intracortical porosity in aged (32-month) rats which 

were not present in young rats [184]. An earlier study also demonstrated an increase in 

porosity after unilateral hindlimb immobilisation by strapping the limb to the body [654]. 

Our original study using the site specificity approach demonstrated in young mice that 

endosteal expansion is greater in the proximal tibia following SN compared with distally 

[7]. The presence of endosteal expansion over a greater region of the distal tibia in old 

mice, which was not as apparent in young mice neurectomised for the same duration is 
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likely due to the increased basal resorption evident in aged vs young animals [30, 443]. 

Increased resorption with disuse can be mitigated with antiresorptive therapies, such as 

bisphosphonates. Several rodent studies have demonstrated that BPs are able to abrogate 

deterioration of bone parameters in disuse back to levels seen in ambulatory animals [458-

461]. Chapter 6 of this thesis explores the effects of the bisphosphonate risedronate on 

bone’s adaptive response to loading in the context of prior disuse. 

5.5.2 A short period of prior disuse enhances the periosteal response to 

loading in old female mice. 

We next confirmed that short periods of dynamic loading in aged mice stimulate a greater 

periosteal osteogenic formation response when applied over a background of disuse than 

against a background of habitual loading through normal ambulation. This finding 

supported a previous finding by our lab that imposing a background of disuse, rather than 

habitual loading, abrogates any age-related difference in the osteogenic response to 

external loading over the full physiological range of peak strains from 500 to 2500µε [4, 

9](Figure 53). The nature of this “rescue” appears to be related to an activation of bone 

formation on the periosteal surface where it has previously been reported to be impaired 

[29, 455]. 

The data from the present study also support findings from a previous study in young adult 

mice which demonstrated that SN-induced disuse can increase the osteogenic response 

to loading [35]. The authors of this study proposed that the nature of the rescue was due 

to a degree of averaging of the total strain-related stimulus – ie. that mice performing 

normal habitual loading activity have a higher average strain stimulus due to the habitual 

loading. Thus, given the smaller difference between habitual loading strains and the 

strains experienced when greater abnormal loads are applied, ambulatory mice are less 

likely to respond to a given exogenous strain input than those mice who have a low 

average strain stimulus through disuse engendered by SN. Background strains engendered 

by ambulation during habitual cage activity measured in vivo at the medial surface of the 
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tibia were halved following SN from approximately 600µƐ in intact mice to approximately 

300µƐ [11]. The strain averaging hypothesis is illustrated diagrammatically in Figure 60. 

 

Lanyon [655, 656] first proposed the response to functional strains as being “error driven” 

by suggesting it is abnormally large strains experienced which are the controlling stimulus 

for the mechanically adaptive response to loading, and not the strains that are being 

experienced habitually. This theory is supported by the finding that insertion of a 10s gap 

between load impulses in loading protocols was able to promote a greater osteogenic 

response in old mice when compared to sinusoidal loading [27].  

This is also consistent with our previous observation that the osteogenic response to 

loading in group housed male mice was lower than that in individually housed males and 

in females because regular fighting between group-housed males engenders a habitual 

strain environment little different from that engendered by artificial loading [285]. 

Another study compared the historical loading environment in mice by incrementally 

increasing loading to a high peak load over several weeks in one group and decrementally 

reduced loading from an initially high peak load to low loads in another group, and 

demonstrated significantly greater bone formation in the latter group [590]. Our results 

Figure 60 – Diagrammatic representation of the strain averaging hypothesis.  

(A) normal habitual loading results in a smaller change in peak strain (x) following application 
of a set peak strain than the change in peak strain (y) seen after loading in mice with reduced 
habitual loading due to sciatic neurectomy (B) 
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are also supported by the findings of a very recent study exploring the effect of prolonging 

the duration of disuse prior to loading in aged mice, which confirmed the “rescue” of age-

impaired loading response, and that a longer duration of disuse (100d vs 5d) resulted in 

more robust increases in load induced cortical bone formation in old mice [657]. 

Furthermore, the trabecular bone response was not rescued by prior disuse of any 

duration. 

Whether the observed rescue phenomenon is part of an “averaging” mechanism, as 

previously proposed [35], remains to be determined, although the results of these studies 

certainly suggest that the historical loading context is important in determining the 

response to a given strain stimulus.  

In the study by de Souza et al [35], loading-related increase in both endosteal and 

periosteal mineral apposition rates were greater in young mice following SN than those 

which continued to load their limbs through normal ambulation between episodes of 

loading. In contrast, in the neurectomised limbs of old mice used in the present study, the 

increase in bone formation appears predominantly periosteal, as demonstrated by the 

µCT and dynamic histomorphometric imaging. Interestingly, the periosteal surface is the 

area where the loading response is reported to be most impaired by age [29, 455]. 

Structurally, periosteal bone formation is ideally placed to most appropriately improve 

bone’s resistance to bending and reduce strains and likely fracture risk [443]. Periosteal 

expansion in long bones improves the resistance to bending/torsion, approximated as the 

moments of inertia. Using SSA, there was a significant effect of SN on the loading-related 

increase in PMI.  

Prior disuse significantly altered the response to loading when considering the endosteal 

compartment. Load-related endosteal formation (indicated by medullary area reduction 

evident in sham-operated tibias using SSA) was partially abrogated in SN-operated tibias 

(Figure 57E, F). This appears to contradict the dynamic histomorphometry analysis which 

suggests that endosteal, as well as periosteal, load-related bone formation was increased 

in mice loaded on a background of disuse. Our interpretation of this apparent discrepancy 

is that the endosteal formation was focally discrete and primarily located at the load-
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responsive posteriolateral cortex. Unfortunately, it is very difficult to quantify the amount 

of bone resorption using dynamic histomorphometry alone. Use of in vivo µCT is a more 

versatile technique to evaluate the volumetric degree of bone resorption. Bone resorption 

rates have recently been reported to correlate with maximum principal strain magnitude, 

calculated based on FEM on the endosteal surface, but not on the periosteal surface [529]. 

This further supports the suggestion that the two compartments differ in their response 

to changes in mechanical strain.  

Interestingly, spatially separate sites of formation and resorption endosteally within the 

same cross-section were found following loading of greater than 3 weeks in young adult 

mice (Chapter 3, Figure 28). This finding, combined with the SSA results from this chapter, 

suggests a site-specific component to the cross-sectional and proximo-distal location of 

bone formation following loading, in young and aged mice. The endosteal new bone 

formation was lamellar in appearance and was observed in the posteriolateral tibial cortex 

at the 37% site, which is the same site previously demonstrated by our group to display 

the greatest amount of formation following axial loading [1, 8].  

An alternate hypothesis for the observed improvement in the osteogenic response to 

loading on a background of disuse is an increase in remodelling-based bone formation 

following initiation of a “pro-resorptive” state induced by SN. SN has been shown to 

increase osteoclast numbers very rapidly after surgery [106]. Anti-resorptive treatments 

such as bisphosphonates inhibit osteoclast function and if the increased presence of 

osteoclasts following disuse is involved in the augmented adaptive response to loading 

following SN, through osteoclast:osteoblast cell “coupling”, then impairing osteoclast 

activity would likely also impair the SN-associated improvement of bone formation. The 

studies described in chapter 6 of this thesis aim to determine if this potential mechanism 

underlies the observations made in this chapter. 

Skeletal muscle’s potential control of bone homeostasis has been garnering significant 

attention in recent years [658]. The crosstalk between bone and the surrounding skeletal 

muscle has been demonstrated to have some effect over bone metabolism; for example 

the feed forward loop between interleukin-6 and osteocalcin secreted by muscles and 
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bone respectively is one mechanism which may facilitate control of bone mass through 

muscle activity [658]. Loss of muscle mass is a well-established consequence of SN and 

disuse in young mice. In the present study, SN resulted in significant reduction in muscle 

size compared to sham-operated controls. The enhanced osteogenic loading response on 

a background of disuse occurred despite this ongoing muscle loss, arguing against 

muscle/bone crosstalk as an important factor in the observed rescue of the osteogenic 

response to loading.  

The experiments described in this chapter are not able to provide any explanation of the 

cellular mechanisms underlying the reported differences in the adaptive response to 

loading following SN. A previous study undertaken by our laboratory showed that loading 

in the context of disuse engendered by SN increased the number of genes differentially 

regulated by mechanical loading [86]. The cellular mechanisms underlying cellular 

mechanosensitivity remain incompletely understood, but recent work has demonstrated 

that mice deficient in Connexin 43 (Cx43) are resistant to bone loss seen with disuse [606] 

and have an improved osteogenic response to mechanical loading at the periosteal 

surface [659]. Cx43 is a gap junction protein. The authors of the study postulated that Cx43 

affects bone cells’ response to mechanical loading through altering levels of cellular 

Wnt/β-catenin signalling.  Alterations in Wnt signalling at endosteal and periosteal 

surfaces in aged mice following disuse could underlie the primary observation noted in 

this study that a background of disuse was associated with a greater osteogenic response 

to short periods of loading than loading on a background of habitual loading.  

The observations in the present study may also be explained in part by transient adaptive 

cellular stiffness changes. It has recently been suggested that reversible and transient cell 

stiffness changes engendered by mechanical stimulation may act as an intrinsic “brake” to 

further mechanical responses by diminishing the strain a cell experiences when equivalent 

stress is applied [660]. This suggests that the intracellular cytoskeletal accommodation 

that occurs due to loading eventually impairs the ability for a cell to respond to the 

mechanical stress applied. These in vitro findings are consistent with the well-established 

finding that inserting rest periods between periods of loading increases the osteogenic 
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response to loading [27] and our present finding that “habitual” strains also blunt the 

loading response in old mice.  

Our present study has also done nothing to establish the cellular mechanisms involved in 

the apparent site-specific differences in the loading response between sham and SN 

animals. In the study by Moustafa et al [8], the location of bone formation due to loading 

was found to correlate to the degree of relative osteocytic sclerostin down-regulation, 

rather than the local load-induced peak strain magnitude, estimated through finite 

element modelling. In the tibia, formation is greatest proximally, with a minimal response 

to loading distally, despite apparently osteogenic levels of strain according to FEM. This 

suggests that sclerostin regulation throughout the tibia may also be involved in the site-

specific nature of the endosteal bone formation and resorption response in these mice 

following SN. Interestingly, the down regulation of sclerostin expression following loading 

does not appear affected in old mice despite the impaired osteogenic response to loading 

[29]. Periostin has been shown to be necessary for inhibition of sclerostin and to be 

involved in the bone loss associated with unloading. Periostin knockout mice showed no 

bone loss following hindlimb unloading, which corresponded with a lack of upregulation 

in sclerostin with unloading [630, 661].  

Periostin is also reported to be involved in the periosteal expansion typically seen with 

ageing; it is impaired in periostin KO mice, with these mice demonstrating a smaller Tt.Ar 

and reduced periosteal formation with ageing, compared with wild-type controls [662]. 

Furthermore, qRT-PCR expression of periostin in cortical bone has been demonstrated to 

be lower in aged mice compared with young adult mice. Interestingly, expression of 

periostin did not increase with loading in aged mice, whereas it did increase in young mice 

in a microarray time course experiment [4]. Periostin expression also increased with 

loading in an earlier microarray study, and in that study, the regulation of periostin was 

different following loading on a background of SN compared to ambulatory mice [86]. 

Combining the results of the present study with those above implicating periostin in 

modulation of age-, loading- and site-specific bone formation suggests that changes in 

periostin expression could be involved in a potential mechanistic pathway for the 
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apparent rescue of periosteal formation following loading of old mice on a background of 

disuse. Further investigation into the mechanisms of the observations reported in this 

chapter would benefit from considering investigation of the relationship of periostin and 

sclerostin to the bone formation and loss demonstrated. 

Regardless of the cellular mechanisms behind the SN-mediated improvement in load-

related bone formation, the improvement in bone architecture by periosteal expansion 

will typically improve mechanical resistance to fracture better than that achieved by 

endosteal bone formation alone. When considering the clinical relevance of the current 

findings, to the extent that data from old mice can be extrapolated to old humans, it 

appears that modification of the pattern of mechanical loading in the elderly, with lower 

frequency, higher magnitude loading may be sufficient to improve the diminished 

osteogenic response to loading and improve structurally appropriate bone formation and 

possibly reduce fracture risk. This is consistent with exercise trials in post-menopausal 

women where unilateral strength exercises produced significant improvements in hip and 

radial bone mass, where endurance exercises did not [26]. Exercise interventions in the 

elderly do, however, have far smaller clinical benefits for bone mass than the same 

interventions in young people [663], so preventative exercise to develop bone mass is of 

greater benefit. Indeed, physical activity that benefits bone mass in youth provides lifelong 

benefits in cortical bone strength [664]. Nonetheless, in older people, modification of their 

physical loading/exercise regimens could provide non-pharmaceutical treatment options 

to improve bone mass in a structurally appropriate manner. Similarly, mechanical loading 

techniques/exercises in people with inherently low habitual loading levels, such as those 

confined to a bed, or in spinal injury patients, could be more osteogenic than in 

ambulatory people. These potential clinical benefits need to be confirmed and would need 

to be weighed against the potential detrimental and other general health effects of 

changes to exercise/loading patterns in people, such as cardiovascular health and 

increased fracture risk of over-loading osteoporotic and potentially weaker bone. 
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5.6 Conclusions 

• Reducing habitual loading of the tibia in aged mice induced by SN increases the 

periosteal osteogenic response to short periods of dynamic artificial loading 

suggesting that strain-related stimulus arising from ongoing normal ambulatory 

loading may reduce the magnitude of response to short periods of more 

osteogenic stimulation.  

• These results suggest that there is no inherent age-related impediment, either to 

the accurate assessment of strain and subsequent perception of strain, or to 

loading-related periosteal expansion in response to appropriate loading.  

• As far as the data from old mice can be extrapolated to old humans, modification 

of the therapeutic regime of loading of bone may be able to improve the 

osteogenic response to loading and thus bone mass, although further studies are 

necessary. 

 

 

Parts of this chapter contributed to a peer-reviewed publication (joint-first author). A copy 

of the published paper is included in Appendix 4 of this thesis: 

Delisser, P. J.*, Meakin, L. B.*, Galea, G. L., Lanyon, L. E., & Price, J. S. (2015). Disuse 

rescues the age-impaired adaptive response to external loading in mice. Osteoporosis 

International, 26(11), 2703–2708.  

*These authors contributed equally. 
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Chapter 6 - The effect of risedronate and loading in old mice 

 

6.1 Introduction 

The primary determinant of bone mass and architecture is mechanical loading and its 

influence is probably exerted by the effects of loading-induced strains on the cells resident 

in bone tissue, thus regulating bone modelling and remodelling. The adaptive 

(re)modelling response in young animals ensures sufficient bone is strategically placed to 

prevent excessive damage to the bone tissue and reduce the risk of undue damage and 

bone failure during functional loading. Failure in this regulatory mechanism, called the 

“mechanostat”, is hypothesised to be a major factor that underlies the increased 

incidence of fragility fractures in the elderly [23].  

The bone loss associated with old age has many features in common with the bone loss 

that is the consequence of unloading (disuse) and is inevitably more severe when the two 

are combined, as is often the case in elderly patients who may be bed-bound or have 

increased sedentary behaviour [456, 665]. In the previous chapter of this thesis we 

showed that old female mice lose bone following disuse (by SN), and this bone loss 

involved increased intracortical porosity not seen following SN in young mice. The loss of 

bone observed in old mice [31] can be countered by the use of anti-resorptive drugs such 

as bisphosphonates (BPs) as their mechanism of action is to reduce resorption by 

inhibiting the activity and survival of osteoclasts [302] and interrupt the remodeling cycle. 

BPs are mainstay treatments for osteoporosis in humans; in 2012, 14.7 million 

prescriptions were dispensed in the USA alone [319]. However, the use of BPs as front-

line drugs has decreased in the last decade as newer anti-resorptive therapies have 

become available and because of some concerns regarding their safety, namely their 

association with osteonecrosis of the jaw and atypical femoral fractures, particularly after 

prolonged use [666-668].   
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In addition to their use for treating age-related bone loss, BPs can also attenuate the bone 

loss seen with reduced loading in humans and experimental animals. Pamidronate 

reduced bone loss following extended bed rest in young men [456] and alendronate 

administration abrogated bone loss in astronauts treated with alendronate and exercise, 

compared to exercise-only controls [457]. Several rodent studies have demonstrated that 

BPs are able to completely abrogate deterioration of bone parameters in disuse back to 

levels seen in ambulatory animals [458-461].  

Whilst BPs all inhibit the activity and/or survival of osteoclasts, different molecular 

variants of BPs have varied clinical efficacy for inhibiting bone resorption. These varied 

types and mechanisms are discussed in more detail in the general introduction (Chapter 

1) of this thesis. Most newer generation bisphosphonates, such as risedronate (RIS), are 

termed nitrogen-containing bisphosphonates and act on the mevalonate pathway, by 

inhibiting the enzyme farnesyl pyrophosphate synthase (FPPS) in osteoclasts. This, in turn, 

causes an increase in the intracellular accumulation of prenylated proteins, which impairs 

osteoclast function and resorption, and eventually leads to apoptosis. Impairment of 

osteoclast function may in turn affect the subsequent activity of osteoblasts by 

interrupting the bone cell “coupling” of osteoclast to osteoblast function in the bone 

multicellular unit. While BPs are clearly very effective at preventing the bone loss 

associated with aging and with unloading, questions have been raised as to whether BPs 

may compromise the effect of concurrent anabolic therapies because they reduce 

remodelling activity; i.e. there is a body of literature to show that the positive effects of 

PTH may be reduced by prior BP treatment [380, 669-671]. The use of combination 

therapies remains controversial, although recent evidence suggests that PTH primarily 

stimulates new bone through modelling-based formation and can still produce new bone 

even when bone resorption is suppressed with BPs, and as such, concurrent anti-

resorptive therapies should not diminish PTH’s anabolic effect [672]. Chapter 7 of this 

thesis investigates the combined effect of PTH and risedronate in old mice in more depth. 

Several studies have previously investigated the combined use of BPs and anabolic levels 

of loading in young adult rodents.  We have shown in young adult female mice (17-weeks-
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old) that RIS has no effect on the magnitude of the osteogenic response to mechanical 

loading [34]. This suggests that the loading response primarily involves osteogenic 

modelling without requiring “coupling” of osteoblast and osteoclast activity in mice [34]. 

This study showed strong positive effects of RIS on trabecular bone, which were additive 

to the anabolic effects of loading. However, RIS had no independent effect on cortical 

bone parameters. In a similar study in young rats, Feher et al [462] showed the periosteal 

bone modelling response seen following axial ulnar loading was unaffected by treatment 

with a variety of BPs, including RIS. In the study by Feher et al [462], bisphosphonate 

treatment following concurrent ovariectomy, an additional resorptive stimulus, also had 

no effect on the degree of the loading-related response. Furthermore, whole body 

vibration-related changes in bone mass were unaffected by alendronate treatment [463].  

Some human clinical trials have also shown that the response to exercise in humans is 

unaffected by BPs.  While two studies from the same author have found additive increases 

in bone mass with exercise and BPs [464, 465], others have found no additional effect of 

exercise/loading on BMD above the effect of BPs [446, 466]. The section modulus 

(surrogate measure of bone strength) increased with jumping exercises in one study and 

this was unaffected by treatment with BPs [446]. 

Patients with osteoporosis, those most likely to be prescribed BPs, are usually elderly 

(and/or postmenopausal), and the effect of BPs on the loading response in old animals 

has, to the authors’ knowledge, not been investigated. The first aim of this chapter was 

to determine the effect, in old female mice, of RIS treatment on bone’s response to axial 

tibial mechanical loading. We did this initially using the artificial axial tibial loading model 

against a background of normal ambient loading.  

We hypothesised that the osteogenic response to mechanical loading in old female 

mice, as in young mice, although inherently diminished due to age [29], would not be 

impaired by RIS. 

In the previous chapter (and associated peer-reviewed publication [9]), we demonstrated 

that a short period of prior and concurrent disuse engendered by sciatic neurectomy was 

sufficient to “rescue” the impaired osteogenic response to loading in old female mice; an 
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observation which could have significant clinical implications. Improvement in the 

osteogenic loading response has previously been reported following prior and concurrent 

disuse in young mice [35]. As discussed in Chapter 5, these authors hypothesised that the 

improved response following SN was due to a depressive modulatory effect of habitual 

loading on the response to externally applied exogenous loading in ambulatory animals, 

which is removed in neurectomised animals. An alternate hypothesis for this observation 

is that prior disuse in old mice “primes” the osteogenic response through an increase in 

resorptive action, increasing the possibility of remodeling-based bone formation through 

“coupling” of osteoclast and osteoblast activity. If this alternate hypothesis were true, 

then treatment with BPs would inhibit the apparent “rescue” of the loading response. The 

loading response in old mice following RIS treatment has not been studied, nor has the 

effect of RIS on the response to loading on a background of disuse, in young or old animals. 

The second aim of this chapter was to determine the effect of RIS treatment on the 

modulation by disuse of bone’s response to axial tibial mechanical loading. We did this 

by applying the axial tibial loading model on a background of disuse engendered by SN.  

We hypothesised that treatment with RIS would not impair the augmented loading 

response seen following loading preceded by prior disuse. We postulated that if RIS 

treatment does not affect the loading response, or the disuse-associated improvement of 

the loading response seen in old female mice, that these processes do not involve the 

coupling of osteoclasts and osteoblasts to any significant degree. 

6.2 Objectives 

1. Determine, using single-site μCT analysis, the effect of RIS treatment on the 

response to axial tibial mechanical loading in old (19-months-old) female C57BL/6J 

mice. 

2. Determine, using single site μCT analysis, the effect of RIS treatment on the disuse-

modulated osteogenic response to loading in old (19-month-old) female C57BL/6J 

mice. 
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3. Use Site-specificity analysis (SSA) to evaluate the bone-wide effects of RIS on the 

osteogenic response to axial tibial mechanical loading, with or without prior 

disuse, engendered by SN, in old female mice. 

 

6.3 Materials and Methods 

6.3.1 Effects of risedronate and disuse on tibial loading responses in aged 

female mice 

Animals 

Nineteen-month-old female C57BL/6 mice (n=60) were purchased from Charles River 

Laboratories Inc. (Margate, UK). Housing and nutritional management is described in 

Chapter 2. Mice were weight matched into four equal sized groups of n=15 then allowed 

1 week of acclimatisation. 

Experimental design 

On day 0, mice underwent right SN (n=30) or right sham surgery (n=30). Also starting on 

day 0, mice were treated with daily subcutaneous injections of vehicle (0.9% NaCl; n = 30) 

or risedronate (RIS) [Sigma-Aldrich, Gillingham, Dorset, UK] at a dose of 15μg/kg/day for 

21 days (days 0–20). Starting on day 4, the right tibiae were subjected to external loading 

under isoflurane-induced anaesthesia on alternate days for 8 treatments, on day 4, 6, 8, 

10, 12, 14, 16 and 18. The loading treatments lasted approximately 7-8 minutes. Normal 

activity within the cages was allowed between loading episodes. The non-loaded contra-

lateral (left) bones were used as internal controls, as has been previously validated in 

chapter 3 of this thesis and by Sugiyama et al [1] and confirmed by others in the rat ulna 

axial loading model [525]. Mice were killed on day 21. The experimental timeline is 

illustrated in Figure 61. 

As loading has been demonstrated to abrogate disuse associated bone loss [9, 673, 674], 

a SN control group without additional loading was not included in the present study to 
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minimize the number of animals used in experimental procedures. For the same reason, 

we also chose not to include a group of mice treated with RIS and subjected to SN without 

additional loading as BPs have been demonstrated to completely abrogate deterioration 

of bone parameters in disuse back to levels seen in ambulatory animals [458-461]. 

 

Strain gauges attached ex vivo to the medial aspect of the tibia at 37% of the bone’s length 

measured from the proximal end of 19-month-old female C57BL/6 mice showed that a 

peak load of 11.77N engendered approximately 2500µε in that region [9].  

Experimental groups were divided as follows: VEH-Sham (n=15), VEH-SN (n=15), RIS-Sham 

(n=15) and RIS-SN (n=15). Due to animal losses, final mouse numbers for the respective 

groups above, were n=15, 14, 15, 13. 

High-resolution micro-computed tomography (μCT) analysis 

Following humane culling and sample collection as described in Chapter 2, fixed tibias 

were scanned by μCT (SkyScan 1172; Bruker, Kontich, Belgium) with a voxel size of 

4.78μm. Trabecular bone (secondary spongiosa; 0.25–0.75 mm distal to the proximal 

growth plate) and proximal cortical bone (0.5 mm long region of interest centered at 37% 

of the bone's length from its proximal end) were assessed using single-site µCT analysis as 

described in Chapter 2. The trabecular bone parameters evaluated included bone mass 

parameters; (Bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular 

separation (Tb.Sp) and trabecular thickness (Tb.Th)) and architectural parameters 

Figure 61 – Experimental timetable for loading/SN and Risedronate (RIS) 
experiment in old female mice.  

Mice were operated in day 0 and killed on day 21. All mice received either 
15µg/kg RIS or Saline vehicle via daily subcutaneous injection. Loading 
started on day 4 and was performed every second day for 8 sessions. L = 
Loading, SN – Sciatic Neurectomy. 
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(Structure Model Index (SMI) and Trabecular Pattern Factor (Tb.Pf)). In the cortical region 

of interest, cortical bone area (Ct.Ar), periosteally enclosed area (Tt.Ar), medullary area 

(Ma.Ar), cortical area fraction (Ct.Ar/Tt.Ar), cortical thickness (Ct.Th), cortical porosity 

(Ct.Po) and polar moment of inertia (PMI) were evaluated. These parameters were 

assessed as recommended [570]. Additionally, muscle area (Mu.Ar) was measured as the 

cross-sectional area of the soft-tissue envelope at the mid-tibia (50% of the length of the 

bone), excluding the periosteally enclosed area. This measure was calculated from the µCT 

images and was performed to confirm the efficacy of the disuse induced by SN.  

Site Specificity Analysis (SSA) 

Following single-site µCT analysis methods for Objectives 1 and 2, the µCT data was further 

analysed using SSA to evaluate the “global” changes generated by the treatments. The 

procedure for SSA is further detailed in Chapter 2.  

Statistical analysis 

All data are shown as mean ± SEM. Body weight and lengths of the left control and right 

loaded tibiae were compared by mixed-design repeated measures ANOVA. Percentage 

change in bodyweight [(End weight – Start Weight)/Start Weight * 100] was compared 

using two-way ANOVA (Table 1). Percentage change in Mu.Ar [(Right Mu.Ar – Left 

Mu.Ar)/Left Mu.Ar * 100] was compared using two-way ANOVA. Control (left) and loaded 

(right) limbs of vehicle and RIS mice were compared using mixed-design repeated 

measures ANOVA, with loading and RIS as the main effects (Fig 1 and 2, Table 2). 

Percentage change with loading ((right limb-left limb)/left limb * 100) values between 

sham and SN mice were compared using Two-way ANOVA to assess the effect of SN +/- 

RIS on the loading response. The main effects (SN and RIS) and any interactions on the 

adaptive loading response were considered (Fig 3). Post-hoc comparisons were carried 

out for all ANOVAs using the least significant differences (LSD) method. Statistical analysis 

was performed using SPSS for Windows (version 23.0; SPSS Inc., Chicago, USA) and p < 

0.05 was considered to be significant for all analyses. 
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Analysis of SSA data was performed using a linear mixed model approach, with bone site 

as a fixed categorical parameter and intervention (surgery, loading, RIS) as a fixed effect. 

Intervention by site interaction was also assess to identify any site-specific responses. 

Mouse ID was included as a random effect. If effects were significant, post-hoc Sidak 

correction was applied to identify individual sites where the effect was significant 

(p<0.05). 

6.4 Results 

Animal body weight, tibial lengths and Mu.Ar are reported in Table 7. All groups lost a 

small amount of weight over the duration of the experiment (p<0.001, Table 7). The 

percentage of weight loss during the experiment was smaller in RIS treated mice 

compared with vehicle treated mice (-6.19±0.58% vs -8.53±0.65% respectively, n=28-29, 

p=0.009), and greater in SN mice compared with Sham-operated mice (-8.56±0.76% vs -

6.33±0.48% respectively, n=27-30, p=0.011). There was no interaction between RIS 

treatment and surgery on bodyweight (p>0.05). When compared using mixed-design 

ANOVA, tibial length was not affected by loading (p=0.7), surgery (p=0.37) or RIS 

treatment (p=0.14). The decrease in muscle area was significantly greater following SN, 

compared with Sham operated mice, and the decrease in each SN mouse was greater than 

the maximal decrease in any individual sham mouse, confirming the efficacy of SN. RIS 

treatment did not affect the change in muscle area (Table 7). 

SN did not result in greater weight loss following a similar duration of loading and 

experimental protocol in the previous chapter of this thesis. Sciatic neurectomy resulted 

in significant reduction in muscle size compared to sham-operated controls. As there were 

more mice neurectomised in the present study (n=27, vs n=7 in the previous study), the 

increased weight loss in SN mice may be due to a small, but statistically significant disuse-

associated muscle mass loss that the previous study was insufficiently powered to detect. 

The clear effects of RIS treatment we report, particularly in cortical bone, confirm that the 

treatment regime used was effective and would have been expected to abrogate bone 

loss caused by disuse alone, supporting our decision not to include a non-loaded RIS+SN 

group. 
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Table 7 – Effect of RIS treatment, loading and/or sciatic neurectomy on tibial length, 
bodyweight and muscle area in aged mice.  

Tibial length of left (control) and right (loaded) tibias and bodyweight in mice treated with 
vehicle or RIS with right sham or SN. Percentage change in weight for each mouse = 
(Weight@end-Weight@start)/Weight@start * 100. Percentage change with loading of 
muscle area (Mu.Ar) = (Right Mu.Ar – Left Mu.Ar)/Left Mu.Ar * 100. Values are Mean ± 
SEM (n=13-15). Tibial length was unaffected by any main effect. § = p<0.001 weight at end 
of experiment vs experiment start (Mixed design ANOVA). * = p<0.05 – main effect of SN; 
ǂ = p<0.05 – main effect of RIS (Two-way ANOVA on percentage weight change values). 
*** = p<0.001 versus sham operated group (Two-way ANOVA on % change Mu.Ar with 
loading). 

6.4.1 Effect of RIS on the response to mechanical loading in old female mice 

6.4.1.1 Effect of risedronate. 

The effect of RIS treatment was determined by comparing effect of RIS between the 

control (non-loaded) limbs of vehicle-treated mice and RIS-treated mice using a mixed-

design ANOVA and post-hoc adjustments. In trabecular bone, RIS alone resulted in a 

decrease in SMI (-20.2%, p<0.01) and Tb.Pf (-38.1%, p<0.01) (Figure 62A, B,Table 8). This 

suggests a change from rod to plate-like trabeculae and an increase in trabecular 

connectivity respectively. Tb.Th was also greater following treatment, when RIS was 

considered as a main effect in the ANOVA (p<0.05), however, differences between 

individual groups did not reach significance following post-hoc adjustments (Figure 62C). 

RIS treatment did not affect BV/TV, Tb.Sp or Tb.N (Table 8). In cortical bone, Ct.Ar was 

greater following RIS treatment, when RIS was considered as a main effect in the ANOVA  

Treatment Vehicle Risedronate 

Sham 
(n=15) 

SN 
(n=14) 

Sham 
(n=15) 

SN 
(n=13) 

Tibial length 
(mm) 

Left (Control) 18.71±0.07 18.61±0.08 18.79±0.06 18.74±0.08 

Right (Loaded) 18.68±0.05 18.65±0.06 18.77±0.05 18.72±0.09 

Bodyweight (g) Start 28.3±0.4 27.8±0.7 28.0±0.4 27.9±0.4 

End 26.1±0.4 § 25.1±0.5 § 26.6±0.3 § 25.8±0.4 § 

% change -7.6±0.6% -9.6±1.2% -5.1±0.7% ǂ -7.5±0.9% * 

Mu.Ar (%) % change with 
loading 

-2.58±2.62% -23.04±1.41% *** 1.61±2.42% -26.79±1.94% *** 
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Table 8 - Trabecular and cortical µCT parameters in the left (non-loaded) and right 
(loaded) tibiae of old mice.  

19m-old female C57BL/6J mice underwent right SN or sham surgery then were treated 
with daily vehicle (saline) or risedronate (RIS) (15µg/kg/day) and alternate day axial tibial 
loading for 8 episodes. Mice were killed 21d after surgery. Mean ± SEM are shown. n = 13-
15. § = p<0.05, §§ = p<0.01, §§§ = p<0.001 - effect of loading vs control limbs; # = p<0.05, 
## = p<0.01, ### = p<0.001 vs vehicle-treated mice (mixed-design ANOVA). a = p<0.05 - 
main effect of RIS following mixed-design, repeated-measures ANOVA - post-hoc tests do 
not reach significance. ‡ = p<0.05, ‡‡ = p<0.01, ‡‡‡ = p<0.001 - effect of SN on the 
magnitude of the loading response (Two-way ANOVA from percentage change with 
loading values ((Right-left)/left * 100)). There were no significant effects of RIS treatment 
on the magnitude of the response to loading or interactions of RIS with SN (Two-way 
ANOVA).  

 

All values represent  
Mean ±SEM 

Vehicle Risedronate 
n=15 (sham), n=14 (SN) n=15 (sham), n=13 (SN) 
Non-loaded Loaded Non-loaded Loaded 

Trabecular      
BV/TV (%) Sham 5.64 ± 0.40 7.40 ± 1.50 7.08 ± 0.83 7.00 ± 0.75 
 SN 6.70 ± 0.90 6.42 ± 0.52 6.10 ± 0.51 6.51 ± 0.75 
Tb.N. (/mm) Sham 1.16 ± 0.10 1.38 ± 0.37 1.34 ± 0.18 1.14 ± 0.14 
 SN 1.42 ± 0.23 1.13 ± 0.14 1.22 ± 0.13 1.13 ± 0.12 
Tb.Th. (mm) Sham  0.050 ± 0.002 0.058 ± 0.002 §§ 0.054 ± 0.001 0.064 ± 0.002 §§§ a 

 SN 0.049 ± 0.001 0.059 ± 0.003  0.052 ± 0.001 0.059 ± 0.002 
Tb.Sp (mm) Sham 0.381 ± 0.007 0.369 ± 0.018 0.382 ± 0.010 0.392 ± 0.007 
 SN 0.371 ± 0.013 0.373 ± 0.010 0.393 ± 0.005 0.395 ± 0.005 
SMI Sham 1.79 ± 0.05 1.95 ± 0.10 1.43 ± 0.11 ## 1.66 ± 0.12 §  

 SN 1.83 ± 0.07 2.13 ± 0.06 1.66 ± 0.04 1.66 ± 0.09  
Tb.Pf Sham 21.50 ± 1.12 21.54 ± 1.76 13.31 ± 2.07 ## 14.31 ± 1.59 ## 
 SN 22.45 ± 1.55 24.37 ± 1.28 18.3 ± 0.52 16.55 ± 1.71 
Cortical (37%)      

Tt.Ar. (mm2) Sham 1.100 ± 0.015 1.188 ± 0.015 §§§ 1.127 ± 0.016 1.192 ± 0.019 §§§ 
 SN 1.129 ± 0.016 1.233 ± 0.022 1.110 ± 0.016 1.202 ± 0.015 
Ct.Ar. (mm2) Sham 0.520 ± 0.018 0.564 ± 0.015 §§§ 

‡‡ 
0.520 ± 0.015 0.522 ± 0.018 §§§ 

 SN 0.566 ± 0.017 0.580 ± 0.019  0.521 ± 0.015 0.527 ± 0.012 ‡‡ 
Ma.Ar. (mm2) Sham 0.578 ± 0.013 0.625 ± 0.010 §§ 0.606 ± 0.009 0.670 ± 0.011 
 SN 0.563 ± 0.016 0.653 ± 0.015 0.589 ± 0.009 0.674 ± 0.008 
Ct.Ar/Tt.Ar. (%) Sham 52.71 ± 1.27 52.64 ± 0.89 53.9 ± 0.86 56.31 ± 1.01 
 SN 49.89 ± 1.23 53.08 ± 1.09  53.16 ± 0.96 56.16 ± 0.64 
Ct.Th. (mm) Sham 0.229 ± 0.005 0.258 ± 0.005 § 0.247 ± 0.006 # 0.278 ± 0.007 §§ 

### 

 SN 0.234 ± 0.007 0.275 ± 0.008 0.237 ± 0.006 0.278 ± 0.006 
PMI (mm4) Sham 0.108 ± 0.004 0.117 ± 0.003 §§§ 0.12 ± 0.002 # 0.129 ± 0.002 §§§ # 
 SN 0.105 ± 0.002 0.112 ± 0.003‡ 0.117 ± 0.002 0.127 ± 0.002  
Ct.Po (%) Sham 11.73 ± 1.12 10.72 ± 0.26 10.89 ± 0.26 10.83 ± 0.41 
 SN 10.88 ± 0.72 14.17 ± 0.79 ‡‡‡ 10.21 ± 0.42 12.69 ± 0.70 ‡‡ 
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(p<0.05), but differences between control limbs did not reach significance following post-

hoc adjustments (Figure 63A). RIS increased Ct.Th (p<0.05) and PMI (p<0.05) (Figure 63B-

C, Table 8), but did not affect Tt.Ar, Ct.Ar/Tt.Ar, Ma.Ar and Ct.Po (Table 8). 

6.4.1.2 Effect of loading 

The effect of loading was determined by comparing between the left (non-loaded) and 

right (loaded) limbs of vehicle-treated mice using a mixed-design ANOVA and post-hoc 

adjustments. In the proximal tibial trabecular bone of vehicle-treated mice, loading 

increased Tb.Th (+18.4 ±4.65% p<0.01) (Figure 62C, Table 8) but did not affect BV/TV, 

Tb.Sp, Tb.N, or Tb.Pf (Table 8). When considered as a main effect in the ANOVA, SMI was 

significantly greater in loaded limbs, but this was not significant in vehicle-treated mice 

following post-hoc adjustments (Figure 62A). 

In cortical bone, there were significant loading-related increases in Tt.Ar (8.3±1.1%, 

p<0.001), Ct.Ar (+8.5±1.8%, p<0.001), Ct.Th (+11.03±5.26%, p<0.05) and PMI 

Figure 62 – The effect of axial compressive tibial loading and 
Risedronate (RIS) treatment on trabecular bone parameters of old 
mice.  

19m-old female C57BL/6J mice underwent treatment with daily 
injections of subcutaneous 15µg/kg RIS, or vehicle solution for 21 
days. The right tibia also underwent axial tibial loading on alternate 
days for 8 treatments from day 4. Mixed-design repeated measures 
ANOVA with LSD post-hoc adjustment was performed. * = p<0.05, ** 
= p<0.01, *** = p<0.001 vs control (non-loaded) limb. # = p<0.05, ## 
= p<0.01 vs Vehicle (VEH) limb. Bars indicate Mean ± SEM, n = 14-15. 
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(+13.55±2.48, p<0.001) indicating an overall increase in bone mass following loading, 

primarily due to periosteal expansion (Figure 63A-D, Table 8). This increase in bone mass 

occurred despite a loading-associated concurrent increase in Ma.Ar (+9.22±2.99%, 

p<0.01) (Figure 63E). Ct.Po (Figure 63F) and Ct.Ar/Tt.Ar were unaffected by loading 

(p>0.05) 

6.4.1.3 Combined effect of risedronate and loading 

When considered together using ANOVA, the main effects of loading (p<0.001) and RIS 

(p<0.05) on Tb.Th were positive and additive (Figure 62C), but the RIS associated 

Figure 63 – The effect of axial compressive tibial loading and Risedronate (RIS) 
treatment on proximal cortical bone parameters of old mice.  

19m-old female C57BL/6J mice underwent daily treatment with daily injections of 
subcutaneous 15µg/kg RIS, or vehicle solution for 21 days. The right tibia also underwent 
axial tibial loading on alternate days for 8 treatments from day 4. Mixed-design repeated 
measures ANOVA with LSD post-hoc adjustment was performed. * = p<0.05, ** = p<0.01, 
*** = p<0.001 vs control (non-loaded) limb. # = p<0.05, ## = p<0.01, ### = p<0.001 vs 
Vehicle (VEH) limb. Bars indicate Mean ± SEM. n=14-15 
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decreases in Tb.Pf and SMI were not affected by loading (p>0.05). Although SMI did not 

increase following loading alone, it was increased following loading in the RIS-treated 

group (p<0.05)(Figure 62A). In cortical bone, the effects of RIS treatment and loading were 

additive for Ct.Ar, Ct.Th and PMI. in the proximal cortical bone site (Figure 63A-C). RIS 

treatment did not affect the loading-related increase in Tt.Ar but abrogated the loading-

related increase in Ma.Ar seen in vehicle-treated mice (Figure 63D, E). 

6.4.2 Effect of RIS on the disuse-mediated rescue of the impaired loading 

response in old mice 

6.4.2.1 Effect of disuse on the osteogenic response to loading 

Analysis of the effect of SN on the loading response at the cortical site showed that 

vehicle-treated mice subjected to SN demonstrated a greater loading-related increase 

than sham mice in Ct.Ar (+8.51±1.84% vs +16.4±1.82% respectively, p<0.01) and PMI 

(+13.6±2.5% vs +18.1±2.7% respectively, p<0.05) (Figure 64A, B; Table 8). Ct.Ar/Tt.Ar also 

showed a tendency towards a greater increase with loading in the SN group, relative to 

sham operated mice (p=0.055) (Figure 64C). Although RIS inhibited the loading-induced 

increase in Ma.Ar in sham operated mice, Ma.Ar was unaffected with loading in the SN 

group. In the loaded limbs of vehicle-treated mice that had been neurectomised, Ct.Po 

increased compared to the sham group (SN: +33.96±7.28%, Sham: -0.78±6.68%, 

p<0.001)(Figure 64D). There was no observed effect of SN on loading-related changes in 

Tt.Ar, Ma.Ar, or Ct.Th in cortical bone, or with any trabecular bone parameter (p>0.05) 

(Table 8). 

6.4.2.2 Effect of RIS on the modulation of responses to loading by disuse 

RIS treatment did not affect the response to prior disuse engendered by SN for any 

parameter examined in either cortical or trabecular bone (p>0.05) (Figure 64, Table 8). 

This confirms what we observed in chapter 5; prior and concurrent disuse enhanced the 

osteogenic response to loading in cortical bone in these aged mice and that this response 

was not significantly altered by treatment with RIS. 
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Figure 64 - Effect of Risedronate (RIS) and Sciatic Neurectomy (SN) on the 
adaptive response to axial tibial mechanical loading in cortical bone.  

Percentage change in response to loading ((right – left)/left * 100) for cortical bone 
µCT parameters of mice following initial right SN or Sham surgery on day 0, and 
daily treatment for 21 days with 15µg/kg RIS or saline vehicle solution then 
alternate-day unilateral axial right tibial loading for 8 episodes starting from day 4. 
MicroCT analysis data for (A) Ct.Ar, (B) PMI, (C) Ct.Ar/Tt.Ar and (D) Ct.Po are 
shown. Two-way ANOVA with LSD post-hoc adjustment was used to compare the 
effects of SN and RIS on the % change due to loading. For the effect of SN vs sham 
operated mice, # = p<0.05; ## = p<0.01, ### = p<0.001, following post-hoc 
adjustments. RIS did not affect the magnitude of response for any measure 
examined when compared with VEH. There were no significant SN*RIS 
interactions. Error bars indicate Mean ± SEM. n = 13-15 
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6.4.3 Site Specificity Analysis 

Mixed model results definitions:  

If a given interaction is significant (i.e. p<0.05) for: 

• Bone-site*loading (or RIS) interaction – effect of loading (or RIS) is significantly 

different at different sites. 

• RIS*loading interaction – percentage change due to loading is significantly 

different in RIS treated compared to vehicle-treated mice which was interpreted 

as a synergistic interaction (or an inhibitory interaction if the effects were 

opposite). 

o If the interaction is not significant, yet the independent variables are 

significant, this indicates an additive effect. 

• SN*loading interaction – percentage change due to loading is significantly different 

in SN mice compared with sham mice. 

• SN*RIS interaction – percentage difference due to SN is significantly different in 

RIS-treated mice compared to Vehicle-treated mice. 

o A non-significant interaction indicates that RIS had no effect on the 

osteogenic response to loading following SN. 

6.4.3.1 Effect of RIS on the loading response in old mice. 

To explore the effect of RIS on the bones’ loading response in old mice, we performed a 

within-treatment comparison of sham operated mice with RIS treatment, Loading and 

Bone site as fixed effects. Tt.Ar (p<0.001) and Ct.Ar (p<0.05) demonstrated significant 

RIS*Bone-site interactions, indicating they demonstrated a site-specific response to 

treatment with RIS (Figure 65A, Figure 66A). However, the magnitude of any effect is quite 

small, with a few sites proximally and distally bone demonstrating significant changes. 

Ma.Ar was not significantly affected by RIS treatment (p>0.05) (Figure 67A). RIS treatment 

demonstrated significant main effects only for Ct.Th (p<0.05), with RIS demonstrating a 

trend towards a significant main effect for Ct.Ar (p=0.075). In vehicle treated mice, RIS 

treatment resulted in a significant increase in Ct.Th, primarily around the 37% and 60% 
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sites, according to SSA although the treatment effect was not significantly site-specific 

(Treatment*Bone-site interaction p=0.986)(Figure 68A). These increases in bone mass 

indicate a small but significant effect of RIS on the entire cortical bone of aged mice.  

We next mapped the effect of loading in vehicle-treated mice. Axial tibial loading 

significantly increased Tt.Ar, primarily at the region surrounding the 37% site (Figure 65B) 

and this change was site-specific (p<0.001 for Bone-site*Loading interaction). Ct.Ar 

increased with loading around the 37% site as expected, but this effect extended over 

most of the proximal tibia (10-45%) and also reached significance distally (80-85%) (Figure 

66B). The changes in Ct.Ar with loading were site-specific (p<0.001 for Bone-site*Loading 

interaction). Loading resulted in a regional increased in Ma.Ar at the 37% site (Figure 67B) 

and this effect was site-specific (p<0.001 for Bone-site*Loading interaction) suggesting 

slight loading associated endosteal expansion, consistent with the single-site CT analysis. 

Loading also significantly and site-specifically affected Ct.Th, primarily increasing in 

thickness in the proximal half of the cortical bone (10-50%), but also distally (75-80% 

sites)(Figure 68B).  

To demonstrate any combined effects of RIS treatment and mechanical loading on bone 

mass, the loaded limb of vehicle-treated mice was compared to the loaded limb of RIS-

treated mice. There were minimal further RIS-associated increases in Tt.Ar of loaded limbs 

(Figure 65C) although 3 single, non-continuous sites of significance were present at the 

bone extremities after post-hoc adjustments. RIS treatment resulted in additive increases 

in Ct.Ar (Load*RIS interaction p=0.130) (Figure 66C). RIS treatment resulted in additive 

increases in Ct.Th (Figure 68D) where the thickness increased compared to vehicle treated 

loaded limbs in both the 37% region and also in the distal cortical bone. The RIS-associated 

increase in Ma.Ar identified at 37% site appeared abrogated following treatment with RIS, 

consistent with the findings of single-site µCT analysis at this site, although Ma.Ar at this 

site was not significantly different from the vehicle-loaded limb following post hoc 

adjustments (Figure 67B, C). According to the mixed model analysis, a significant 

Loading*RIS interaction for Ma.Ar (p<0.05) was present, suggesting that RIS abrogated the 

loading-related increase in Ma.Ar seen in vehicle treated mice.  
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Figure 65 – The effect of risedronate (RIS) and/or loading on Tt.Ar of whole tibia in old 
female mice.  

SSA was performed on tibias from 19month old female C57BL/6 mice after 21 days of daily 
injections of RIS or vehicle (Veh). Loading was performed on alternate days from day 4 for 8 
episodes. Mice were killed on day 21. (A) Effect of RIS on control limbs, (B) Effect of unilateral 
loading on vehicle-treated mice and (C) Effect of loading on RIS treated mice. Analysis was 
performed via Mixed Model analysis using Sidak post-hoc correction for multiple 
comparisons. Grey spots indicate p<0.05 for that bone site after post-hoc comparisons. n=15. 
Values and error bars represent Mean ± SEM. 
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Figure 66 – The effect of risedronate (RIS) and/or loading on Ct.Ar of whole tibia in old 
female mice.  

SSA was performed on tibias from 19month old female C57BL/6 mice after 21 days of 
daily injections of RIS or vehicle (Veh). Loading was performed on alternate days from 
day 4 for 8 episodes. Mice were killed on day 21. (A) Effect of RIS on control limbs, (B) 
Effect of unilateral loading on vehicle-treated mice and (C) Effect of loading on RIS 
treated mice. Analysis was performed via Mixed Model analysis using Sidak post-hoc 
correction for multiple comparisons. Grey spots indicate p<0.05 for that bone site after 
post-hoc comparisons. n=15. Values and error bars represent Mean ± SEM. 
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Figure 67 – The effect of risedronate (RIS) and/or loading on Ma.Ar of whole tibia in old 
female mice.  

SSA was performed on tibias from 19month old female C57BL/6 mice after 21 days of daily 
injections of RIS or vehicle (Veh). Loading was performed on alternate days from day 4 for 
8 episodes. Mice were killed on day 21. (A) Effect of RIS on control limbs, (B) Effect of 
unilateral loading on vehicle-treated mice and (C) Effect of loading on RIS treated mice. 
Analysis was performed via Mixed Model analysis using Sidak post-hoc correction for 
multiple comparisons. Grey spots indicate p<0.05 for that bone site after post-hoc 
comparisons. n=15. Values and error bars represent Mean ± SEM. 
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Figure 68 - The effect of risedronate (RIS) and/or loading on Ct.Th of whole tibia in old 
female mice.  

SSA was performed on tibias from 19month old female C57BL/6 mice after 21 days of 
daily injections of RIS or vehicle (Veh). Loading was performed on alternate days from 
day 4 for 8 episodes. Mice were killed on day 21. (A) Effect of RIS on control limbs, (B) 
Effect of unilateral loading on vehicle-treated mice and (C) Effect of loading on RIS 
treated mice. Analysis was performed via Mixed Model analysis using Sidak post-hoc 
correction for multiple comparisons. Grey spots indicate p<0.05 for that bone site after 
post-hoc comparisons. n=15. Values and error bars represent Mean ± SEM. 



Chapter 6 - The effect of risedronate and loading in old mice 

 

281 
 

6.4.3.2 Effect of disuse on the response to loading in old mice 

To explore the effect of disuse on the bones’ response to loading in old mice using SSA, 

we calculated the percentage change with loading for each site and used these values to 

perform a within-treatment comparison of vehicle-treated mice, with SN and Bone site as 

fixed effects. SN significantly increased the loading-related change in Tt.Ar (p<0.001) in a 

site-specific manner (p<0.001), predominantly limited to the distal tibia (83-90%)(Figure 

69A). There was no apparent effect in the normally load responsive area surrounding the 

37% site. SN also significantly increased the loading related change in Ct.Ar (p<0.001) in a 

site specific manner (p<0.001), again predominantly in the distal tibia, but also at the 37% 

and 60% sites (Figure 69B). SN did not affect the loading-related change in Ma.Ar, nor was 

Figure 69 – The effect of SN on the loading response in old female mice.  

SSA was performed on tibias from mice that had undergone right SN or Sham surgery on day 0 and 
right tibial loading on alternate days from day 4 for 8 episodes. Mice were killed on day 21. Analysis 
for (A) Tt.Ar, (B) Ct.Ar, (C) Ma.Ar, and (D) Ct.Th was performed via Mixed Model analysis using Sidak 
post-hoc correction for multiple comparisons. Grey spots indicate p<0.05 for that bone site after post-
hoc comparisons. n=13-15. Values and error bars represent Mean ± SEM. 
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there any site-specific effect (p>0.05) (Figure 69C). SN did not significantly increase the 

loading related change in Ct.Th overall (p>0.05), but the effect of SN was site-specific 

(p<0.05)(Figure 69D). In effect, SN resulted in a greater change with loading for Ct.Th in 

the mid-shaft tibia, but a smaller change with loading in the distal cortical bone.  

6.4.3.3 Effect of RIS on the loading response in old female mice 

Following confirmation of the disuse-associated “rescue” of adaptive bone formation, we 

assessed the effect of RIS on the adaptive loading response in sham operated female mice. 

RIS treatment did not alter the loading-related changes in Tt.Ar, Ct.Ar, Ma.Ar or Ct.Th 

(Figure 70). 

Figure 70 - The effect of RIS on the loading response in old female mice.  

SSA was performed on tibias from mice that had been administered RIS or vehicle daily from 
day 0 and administered right tibial loading on alternate days from day 4 for 8 episodes. Mice 
were killed on day 21. Analysis for (A) Tt.Ar, (B) Ct.Ar, (C) Ma.Ar, and (D) Ct.Th was performed 
via Mixed Model analysis. None of the parameters were found to be significantly different so 
no post-hoc tests were performed. n=15. Values and error bars represent Mean ± SEM. 
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6.4.3.4 Effect of RIS on the modulation of responses to loading by disuse 

Next, we examined the effect of RIS on the loading response in SN mice. RIS treatment did 

not significantly affect the loading response in SN mice for any parameter (p>0.05) 

suggesting that RIS had no effect on the magnitude of the increased loading response in 

SN mice (Figure 71A-D). 

Finally, we evaluated the effect of SN on the loading response in RIS treated mice. SN 

resulted in a significantly greater response to loading in RIS treated mice for both Tt.Ar 

and Ct.Ar (p<0.001) with significant site-specific effects for both Tt.Ar and Ct.Ar 

Figure 71 Effect of Risedronate (RIS) on the response to loading following prior disuse 
in old female mice.  

SSA was performed on tibias from mice that had undergone right SN or Sham surgery on 
day 0 and daily RIS or vehicle injections for 21 days including  right tibial loading on 
alternate days from day 4 for 8 episodes. Mice were killed on day 21. Analysis for (A) 
Tt.Ar, (B) Ct.Ar, (C) Ma.Ar, and (D) Ct.Th was performed via Mixed Model analysis. The 
effect of RIS on the percentage change with loading was evaluated. Sidak post hoc 
corrections were performed where main effects or interactions were significant in the 
mixed model.  n=13-15. Values and error bars represent Mean ± SEM. Grey spots indicate 
significantly different responses to mechanical loading (p<0.05) at a given site.  
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(p<0.001)(Figure 72 A, B). SN did not significantly affect the loading response for Ma.Ar or 

Ct.Th in RIS treated mice (p>0.05)(Figure 72 C, D). SN however, did demonstrate a site-

specific effect of SN on the loading response for Ct.Th in RIS treated animals (p<0.001), 

although following post hoc comparisons, this was only significant at two adjacent sites 

(66-67%). These two sites no longer demonstrated a reduction in Ct.Th with loading 

following SN, compared to Sham operated mice. There were no interactions between RIS 

treatment and SN for any measure, further supporting the suggestion that RIS treatment 

did not affect the augmentation of the loading response by SN. 

 

 

Figure 72 Effect of SN on the response to loading following Risedronate (RIS) treatment in 
old female mice.  

SSA was performed on tibias from mice that had undergone right SN or Sham surgery on day 
0 and daily RIS or vehicle injections for 21 days including right tibial loading on alternate days 
from day 4 for 8 episodes. Mice were killed on day 21. Analysis for (A) Tt.Ar, (B) Ct.Ar, (C) 
Ma.Ar, and (D) Ct.Th was performed via Mixed Model analysis. The effect of SN on the 
percentage change with loading was evaluated. Sidak post hoc corrections were performed 
where main effects or interactions were significant in the mixed model.  n=13-15. Values and 
error bars represent Mean ± SEM. Grey spots indicate significantly different responses to 
mechanical loading (p<0.05) at a given site. 
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6.5 Discussion 

In this thesis chapter, we have demonstrated that RIS treatment in old female mice has 

small but significant effects on cortical bone mass, and that the response to mechanical 

loading is unaffected by RIS. We have also demonstrated that the “rescue” of loading-

related bone formation seen following disuse engendered by SN is similarly unaffected by 

co-treatment with RIS.  

6.5.1 Response to risedronate treatment is site- and age-specific 

In a previous study in young mice we observed that RIS had a positive effect on trabecular 

bone mass and no effect on any cortical bone parameters [34]. In the old mice used in the 

current study, the response to treatment was different; we observed a positive effect of 

RIS treatment on cortical bone mass which was not noted in young mice. This age-related 

difference in the cortical bone response to RIS is likely to reflect the ongoing endocortical 

resorption in aged mice which is greater than in young mice [530]. RIS increased Ct.Ar and 

Ct.Th without affecting Tt.Ar and also abrogated the loading-associated increase in Ma.Ar. 

One study has demonstrated a small but significant increase in Ct.Th in 4-month-old mice 

following alendronate treatment, which was also sufficient to mitigate bone loss seen 

following tail suspension [461]. Other studies in young, growing rodents have detected a 

slightly reduced periosteal bone formation following bisphosphonate treatment [675, 

676], whereas studies in skeletally mature rats and dogs show no effect on periosteal 

apposition following use of RIS [462, 677].  

Although cortical bone was more responsive to RIS treatment in old mice compared to 

young, surprisingly, trabecular BV/TV did not increase following RIS treatment in the old 

mice in this study. The lack of response to RIS treatment in trabecular bone was surprising 

considering it is a site of higher osteoclast numbers and remodeling activity, and the result 

may reflect the very small amount of trabecular bone remaining in the bones of 19-month-

old female mice, with only a few trabeculae per bone. This restricts the available bone on 

which to exert anti-resorptive effects and additionally restricts the available bone on 

which formation can continue. However, RIS was associated with alterations in 
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architectural parameters - decreased Tb.Pf and SMI. This suggests RIS results in increased 

trabecular connectivity (reduced Tb.Pf), and formation of plate-like rather than rod-like 

trabeculae (reduced SMI), without a significant increase in overall bone volume. One 

recent study [678] concluded that although SMI was developed to represent a quantifiable 

measure of surface shape (sphericity) of a given structure, due to the high degree of 

concavity presented in highly connected trabecular bone, SMI was more representative of 

changes in BV/TV rather than changes in plate:rod architecture. However, as BV/TV was 

unaffected by any treatment in this experiment, and there was limited connectivity in the 

trabeculae, it is arguable that the SMI values attained in the present experiment are 

representative of changes in plate:rod architecture.  

Greater trabecular connectivity and wider plate-like trabeculae are likely to increase 

mechanical strength, even without increased BV/TV. BP treatment in young adult mice 

and rats has been shown to result in similar reductions in SMI [679, 680]. The effect of BP 

treatment on Tb.Pf in young adult bone has only been reported in the context of 

ovariectomy, where BPs were protective of the ovariectomy-induced increase in Tb.Pf. 

[681]. Osteoporotic humans also have been shown to improve trabecular 

microarchitecture following treatment with BPs, particularly with respect to SMI [682, 

683]. To the author’s knowledge, there are no studies which report the effect of BPs on 

Tb.Pf. in human subjects. 

When considering the results of our study and those discussed above, it appears that the 

type of response seen following treatment with BPs is age-specific. Care should therefore 

be taken when extrapolating data from young animals to old animals, and indeed to old 

humans. To the authors’ knowledge this is the only study currently available which 

documents the trabecular bone response (or lack thereof) to treatment with RIS in old 

mice. RIS has also been demonstrated to have a different effect between long bones and 

mandibular bones in young mice, further suggesting that a differential, site-specific 

response to treatment between bone sites exists [667]. 

In addition to our single-site µCT analysis at the 37%, load-responsive site, site-specific 

changes in the tibial cortical bone were examined following RIS treatment alone and this 
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demonstrated only a small but still statistically significant response to treatment, primarily 

through a general increase in Ct.Th. This finding is consistent with the single-site µCT 

analysis. Ct.Ar, Tt.Ar and Ma.Ar were not affected by RIS independently of loading. This 

may be due to inherently low levels of basal resorption in cortical bone of control limbs. 

Resorption rates are still relatively low in old mice [530], so it may be that a longer 

treatment course than 3 weeks of RIS would result in clearer benefits to bone mass beyond 

increases in Ct.Th quantifiable by uCT. Longer-term treatment with RIS would be expected 

to result in smaller Ma.Ar due to inhibited endosteal resorption in aged mice as the 

endocortical resorption rate is significantly higher than in young animals [530]. To the 

author’s knowledge, there are no longer term studies exploring the effect of prolonged BP 

use on bone mass and architecture in old mice. However, the next chapter of this thesis 

describes the results of an experiment where old female mice were treated with RIS for 6 

weeks. A study in adult rats (6m-old) treated with pamidronate for 5 months was unable 

to identify changes in Tt.Ar, Ct.Ar or Ct.Th according to histomorphometry [684], further 

supporting the lack of response to BP treatment in cortical bone of young mice. This study 

in rats only explored the proximal tibial metaphyseal cortical bone, so site-specific effects 

could not be evaluated as in the present study.  

The positive effects noted with RIS treatment in this study could be partly explained by 

the ability of some bisphosphonates to have anti-apoptotic effects on osteocytes and 

osteoblasts. This may contribute to the age-related difference in responses to RIS given 

bones from old mice have a greater proportion of empty osteocyte lacunae [29] and 

higher rates of osteocyte apoptosis [685]. Future studies could investigate this by 

undertaking TUNEL or cleaved caspase-3 staining of bone sections from mice treated with 

RIS or vehicle. Interestingly, in a recently-published study, a selective analogue of 

alendronate, IG9402, which does not impair resorption, but retains the anti-apoptotic 

effects on osteocytes and osteoblasts, was unable to mitigate the bone loss seen following 

unloading [461]. However, it is not known whether IG9402 would have the same effects 

in old mice and whether it would mitigate the bone loss associated with aging.  
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In addition to an age-dependent difference in the response between trabecular and 

cortical bone in mice, the cortical bone response to RIS in this study (10-90% site) 

demonstrates site-specific effects, primarily at the bones’ extremities (metaphyseal) 

rather than in the diaphyseal region. This tendency for effects in the metaphyseal region 

due to RIS could be due to the greater proximity of these areas to the trabecular bone, 

where more osteoclasts typically reside. When designing future experiments including use 

of bisphosphonates in mice, use of techniques to assess a larger range of sites will increase 

the chance that any effect of treatment is identified. The lack of cortical bone response to 

RIS in young mice in our previous study [34] and presence of a significant response in old 

mice in this study emphasize the importance of considering the age and bone site assessed 

when investigating the effect of interventions in experimental mouse models.  

6.5.2 Risedronate treatment does not impair the loading response in aged 

mice. 

We, and others, have previously reported that the adaptive response to loading in old 

mice is diminished compared with young mice [25, 29, 389].  In the present study, the 

magnitude of the loading response in cortical bone was similar to that previously reported 

[9, 29, 455]. Interestingly, in this cohort of animals, loading unexpectedly resulted in 

focally increased Ma.Ar at around 37%, suggesting that axial tibial compressive loading 

can potentially stimulate increased endosteal resorption. Endosteal resorption was 

demonstrated at the 37% site in the face of ongoing loading in young mice in Chapter 4 of 

this thesis. A regionally-confined increase in Ma.Ar could be explained by continued bone 

resorption without adequate adaptive bone formation, due to age-related deficiencies in 

endosteal bone formation. Holguin et al [455] have also reported a greater increase in 

medullary volume associated with loading in young mice, although they did not see this 

response in aged mice in the same study. Other loading studies in old mice have 

demonstrated no change in Ma.Ar with loading, or even a reduction with loading in some 

cases at higher strain [9, 29, 530]. The focal endosteal expansion response seen at the 37% 

site in our study is, therefore, not fully consistent with that reported in other studies. This 

difference could be explained by different operators, different loading protocols and 
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machines, and different selected cortical regions of interest. Regardless of these 

differences between studies, the increased levels of resorption in old mice could help 

explain the positive response of cortical bone to treatment with RIS, via increases in Ct.Th 

and PMI. In young mice, RIS treatment has no measurable effect on the endosteum of 

cortical bone and the loading response is unaffected by RIS treatment [34]. 

Combined treatment with RIS and loading showed additive increases in Ct.Ar, Ct.Th and 

PMI; this could be attributed to the loading-related increase in Tt.Ar combined with 

abrogation of the loading-related increase in Ma.Ar by RIS. RIS treatment did not adversely 

affect any of the loading-related gains achieved in this experiment. This supports the 

conclusions of Sugiyama et al [34] that the osteogenic loading response is primarily 

mediated by bone osteogenic modelling involving de novo bone formation, and not bone 

remodeling where formation is preceded by, and coupled to, resorption.  

6.5.3 The SN-associated rescue of age-impaired adaptive bone formation is 

not affected by treatment with risedronate 

We hypothesised that coupling of osteoclast and osteoblast activity is not responsible for 

increased loading-related bone formation when loading is superimposed on disuse. In the 

previous chapter of this thesis, we demonstrated that a short period of disuse preceding 

axial mechanical loading of the tibia was sufficient to “rescue” the age-impaired 

osteogenic response to loading. In this chapter, we confirmed that the improvement in 

the adaptive loading response in old female mice following prior SN is reproducible. 

However, the pattern of formation was slightly different to that reported by us previously 

[9], with increases in Ct.Ar, and no further increase in Tt.Ar, indicating that the augmented 

adaptive response in this experiment was not primarily periosteal, as was seen in the 

earlier report. Nevertheless, the increase in Ct.Ar still resulted in a concomitant 

improvement in PMI, a surrogate measure of bone torsional strength, suggesting that the 

improvement in the adaptive response following SN still led to structural improvements 

in the cortical bone. An explanation for this observation is provided in Chapter 5. Briefly, 

the strain context on which loading is applied may affect a given bone’s response to 
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additional mechanical loading. Bones’ response to short periods of artificial loading 

superimposed on disuse have been previously investigated in young [35, 673, 674], and 

old rodents [9, 657]. In these studies, axial tibial loading or simulated resistance training 

abrogated bone loss due to disuse. Only the studies by De Souza et al [35, 657] and Meakin 

et al [9] effectively compared the loading response when superimposed on normal loading 

with that where it was superimposed on disuse. In these studies, the osteogenic response 

to loading was greater in disuse animals than it was in ambulatory animals. Furthermore, 

extending the length of preceding disuse further augmented the improvement in the 

osteogenic response [657]. Combining the results of these three studies together with the 

present study’s results, suggests that the impaired adaptive loading response in old mice 

can be rescued by a period of disuse starting shortly before mechanical loading. Dynamic 

histomorphometry would have allowed better characterization of the formative and 

resorptive responses in this experiment, and was originally planned, but not performed 

due to financial and time restrictions 

Notwithstanding the age-related differences in the effect of RIS noted in the present 

study, our findings that RIS did not impair the osteogenic adaptive loading response are 

consistent with the modeling-based adaptive response to loading seen in young mice [34]. 

The lack of effect of RIS on the loading response in SN mice also suggests that an increase 

in basal remodeling is not involved in the observed “rescue” of the osteogenic response 

to loading seen in these old animals and that the likely mechanism involved in the 

observed rescue does not involve the processes of osteoclast:osteoblast coupling.  

Bisphosphonates are effective in preventing disuse-related bone loss in humans, such as 

in patients subjected to bed-rest or spaceflight [456, 457], but it remains to be determined 

whether the adaptive loading response in humans is augmented following disuse, as it is 

in mice. The effect of RIS on the adaptive loading response in human patients with reduced 

bone loading also remains to be examined. However, to the extent that results in old 

animals can be extrapolated to old humans, our data suggest concurrent RIS treatment 

should not adversely affect the ability for the aged skeleton to respond to mechanical 

loading. 
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6.6 Conclusions 

• In old mice, RIS treatment increased cortical bone mass but had no effect on 

trabecular bone mass. This response to RIS treatment in old mice differs from that 

observed in young mice. This is further evidence that caution should be exercised 

when extrapolating results between age groups. 

• RIS treatment in old mice, sufficient by itself to result in greater cortical bone mass, 

did not alter the osteogenic loading response relative to vehicle-treated mice. This 

suggests that loading related bone gain in old mice, as in young mice, is unaffected 

by processes involved in bone remodelling.  

• The observed “rescue” of the age-impaired osteogenic response to loading by prior 

disuse was unaffected by RIS, and thus our hypothesis was supported.  

• To the extent that the situation in old mice can be extrapolated to old humans, the 

benefits of RIS treatment in maintaining bone mass are achieved without any 

impairment on the bone gain potentially conferred by increased loading.  

 

Parts of the experiments reported in this chapter were presented as an abstract to the 

2015 annual meeting of the ASBMR in Seattle, Washington where it received a Plenary 

Poster Prize, leading to a Young Investigator Travel Grant being awarded [686]. A copy of 

the poster abstract is included in Appendix 4. A manuscript is being prepared for 

submission to the journal Osteoporosis International. 
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Chapter 7 – RIS+PTH and the loading response in old mice 

7.1 Introduction 

In the previous chapter of this thesis, we demonstrated that risedronate (RIS) treatment 

did not affect the anabolic response to loading in old female mice, nor did it affect the 

improvement in the anabolic response to loading brought about by a short period of prior 

disuse induced with sciatic neurectomy. These findings both suggest that functional 

adaptation in old mice, and its enhancement by disuse, are primarily bone modelling 

responses that can work independently of the need for resorption.  

As described previously, bone mass, as well as basal bone formation rates are inherently 

reduced in old mice [29-31, 389], and reduced bone mass and deteriorations in bone 

architecture are a major underlying factor for the development of fragility fractures in the 

elderly [656]. As antiresorptive medications alone typically only limit further loss of bone 

mass, finding potent anabolic stimuli for bone formation and restoration of bone mass 

that work in the bone of old people is of paramount importance to improving successful 

management of osteoporosis in the future.  

While loading has been shown to be osteogenic in old mice and humans [687], there is a 

risk of fracture and low patient compliance [688]. Furthermore, the scope for 

pharmaceutical anabolism of bone mass is currently limited. The only licenced anabolic 

treatments for osteoporosis is parathyroid hormone (PTH) (including truncated analogues 

of the hormone). Sclerostin antibody is another promising anabolic therapy which is in the 

final regulatory phases prior to licensing for treatment of low bone mass and reductions 

in vertebral fracture risk, however, this is still unavailable as a licensed treatment for 

people. PTH treatment is a potent anabolic therapy, although it does promote bone 

resorption as well as formation, with the anabolic effects initially exceeding the resorptive 

effects [379]. The cellular effects of PTH treatment are described in more detail in the 

general introduction of this thesis. 



Appendix 4 

 

294 
 

PTH therapy is well described in young adult rodents, with the effects well characterised 

[32, 672, 689, 690]. PTH has effects in both trabecular and cortical bone; it typically results 

in increased bone mass in the trabecular compartment through increases in Tb.Th and 

Tb.N., whilst cortical bone mass is primarily augmented by periosteal proliferation and 

increased Tt.Ar. Significantly, the anabolic response to loading in young mice is 

synergistically improved following prior pre-treatment with PTH [32], suggesting that PTH 

treatment sensitises the mechanostat to respond with a greater formation response to 

the same loading stimulus. Concurrent to undertaking the experiments for the present 

chapter, our lab performed a related experiment exploring the combined effect of PTH 

treatment and loading in old mice. The combined effects of PTH and loading were different 

when loading was applied to old mice treated with PTH; although additive, the response 

to loading is no longer synergised by PTH treatment as observed in young mice [388]. 

Furthermore, in this study, PTH treatment showed an inhibitory effect on the positive 

effects of 2 of weeks loading in trabecular bone. In another study directly comparing the 

response to PTH treatment in young (8w) and old (12 months) mice in a fracture healing 

model, PTH treatment increased osteoblast proliferation and subsequent bone formation, 

but the old mice demonstrated significantly reduced PTH-related effects compared with 

young mice [691]. Notwithstanding, despite the differences in response between old and 

young mice in the above studies, PTH still demonstrated a dose and time dependent effect 

on the increase in bone mass in old mice, but interestingly, also an increase in porosity 

was observed, associated with PTH treatment [388]. This increase in porosity 

demonstrates the additional resorptive effects that treatment with PTH engenders. This 

porosity was not noted in young mice treated with PTH [32].  

For obvious reasons, there is substantial clinical interest in the potential to combine 

anabolic PTH treatment with anti-resorptive bisphosphonates [374, 375, 692-696]. The 

key question is whether the remodelling induced by PTH is necessary for its anabolic 

effects to work. Inhibition of resorption is a potential concern when treating with any 

medications which could, at least in part, rely on the osteoclast:osteoblast “coupling” 

which is inherent in bone remodelling. There is a body of literature which has suggested 

that pretreating people with anti-resorptive medications before treatment with PTH may 
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actually impair the magnitude of the anabolic effect of PTH, consistent with the suggestion 

that significant proportions of PTH’s anabolic effect may be linked with concurrent 

resorption and remodelling-based bone formation [379, 697, 698]. One study 

demonstrated that remodelling-based formation made up 70% of bone formation sites in 

iliac biopsies of PTH-treated people compared with only 30% associated with de novo 

modelling-based formation, although this assessment was based on visually determining 

the appearance of formation sites according to dynamic histomorphometry, and didn’t 

determine if concurrent resorption was a prerequisite for the formation observed [699]. 

Further rodent studies have also demonstrated the importance of the presence of 

osteoclasts for an optimal PTH effect. Mice treated with anti-RANKL antibody, which 

greatly reduced osteoclast numbers, demonstrated a reduced PTH effect, whereas mice 

in the same study treated with Alendronate, a bisphosphonate which reduced osteoclast 

activity, but not osteoclast number still demonstrated a normal PTH anabolic response 

[700] suggesting that osteoclast presence, but not necessarily resorptive activity was 

necessary for PTH’s anabolic effect. A separate study demonstrated a ~50% decrease in 

osteoclast numbers with alendronate treatment whilst still demonstrating additive 

positive effects on bone mass and architecture with combined PTH-alendronate therapy 

compared to monotherapy [701]. A further study in mice with constitutively increased 

PTH-R signalling demonstrated that impairing resorption with alendronate, sufficient to 

reduce osteoclast numbers, resulted in reduced bone formation on the endocortical 

surface, but had no effect on the periosteal surface, and that bone mass was additively 

increased in the trabecular bone compartment, demonstrating a site-specific effect of the 

actions of PTH on the relative balance between modelling- and remodelling-driven bone 

formation [702].  

The bisphosphonate RIS has age-specific effects on bone in mice. In young adult mice, RIS 

increases trabecular bone of the proximal tibia with increases in BV/TV primarily through 

increases in Tb.N, whilst having minimal effects in the cortical bone [34]. Conversely, in 

old mice studied in the previous chapter of this thesis, cortical bone mass increased 

following RIS treatment using the same treatment protocol as previously employed in 
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young adult mice. Additionally, we did not observe a significant effect of RIS on the 

trabecular bone mass, although it did alter some architectural parameters. Despite these 

age-related differences in response to RIS, the response to loading in mice of both ages 

was still unaffected by concurrent treatment suggesting that loading-induced formation 

in mice was likely via bone modelling-based mechanisms in both old and young mice. 

Furthermore, the rescued bone formation seen following disuse in old mice was 

unaffected by RIS treatment, further supporting the modelling-based nature of bone 

formation in response to loading in old mice. The augmented anabolic response of loading 

brought about by prior disuse is also not likely related to the increased basal resorption 

stimulated by disuse. Whether the effect of remodelling-based bone formation has a 

significant effect on the overall anabolic effect of other anabolic treatments remains a 

contentious issue. 

Despite several studies in both rodents and humans demonstrating that cellular activity 

can be impaired by co-treatment with anti-resorptives and PTH, multiple studies in 

humans have suggested that concurrent or sequential use of PTH and antiresorptives still 

results in an additive and clinically significant positive effect on overall bone mass [350, 

378]. In a recent meta-analysis of studies assessing the effect of combined therapy with 

alendronate and PTH, the authors observed a reduction in the anabolic effect of PTH in 

bone sites made of largely trabecular bone (lumbar spine, femoral neck) when combined 

with BPs. The distal radius site however, experiences a greater increase in BMD with 

combination therapy [671]. A systematic review evaluating the effect of PTH monotherapy 

vs combination therapy on peripheral cortical bone sites has actually demonstrated a 

reduction in bone mineral density following PTH monotherapy, which is typically 

attenuated when PTH is combined with an antiresorptive treatment [703]. 

Rodent studies have demonstrated mixed findings with regards to the combined effects 

of BPs and PTH on bone mass, with some suggesting inhibitory effects of BPs with PTH 

treatment, some demonstrating no additional effect of BPs over PTH, and others 

demonstrating additive effects of PTH and BPs [696, 700, 704, 705]. These rodent studies 

have all used young or adult mice. One study has suggested that the difference in response 
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may be to do with the remodelling status of the bone that is studied [706]. They found 

that alendronate blunted the anabolic effect of PTH in bone that was undergoing 

remodelling (secondary spongiosa) but not bone that was non-remodelling (primary 

spongiosa). Interestingly, this study also compared co-treatment with a Cathepsin K 

inhibitor (another anti-resorptive treatment), which demonstrated additive effects in both 

remodelling and non-remodelling bone. Considering the differences reported between 

the responses to risedronate and PTH in old versus young mice demonstrated in chapter 

6 of this thesis and in other studies [32, 34, 388], and the potential for greater amounts of 

remodelling occurring in old mouse cortical bone, the aim of this chapter was to evaluate 

the effect of inhibiting resorption with RIS on the anabolic stimuli of PTH and/or loading 

in old female mice.  

We did this by administering RIS and PTH concurrently then applying the axial tibial loading 

model to old mice and assessed the outcome with µCT. We hypothesised that impairing 

the resorptive response by administering RIS would not affect the anabolic effects of PTH 

in the tibias of old mice and that the anabolic response to combined PTH and loading 

would also not be affected as the primary mechanism for bone gain for each of these 

anabolic stimuli is via bone modelling. 

7.2 Objectives: 

Using µCT analysis, to: 

1. Establish the effect of treatment with RIS on the response to concurrent treatment 

with PTH in the tibias of old female mice. 

2. Establish the effect of RIS treatment on the adaptive response to mechanical 

loading in the tibias of old female mice treated with PTH. 

7.2 Materials and Methods 

Old (18-month-old) female C57BL/6 mice (n=84) were obtained from Charles River 

Laboratories (Margate, UK). Originally these mice were planned to begin the experiment 

after 1 week of acclimatisation, however the author’s personal circumstances resulted in 



Appendix 4 

 

298 
 

a significant delay in the commencement of the experiment. A 3-month period of 

premature paternity leave meant the mice began the experiment at 21-months of age, 

rather than the planned 18 months. 

7.2.1 Experiment 1: load strain relationship of old mice treated with RIS and/or 

PTH 

At 21 months of age, 24 mice (n=6/group) were divided into 4 groups. Group one (VEH) 

was administered saline vehicle injections, group 2 (RIS) was administered RIS 15µg/kg SC 

three times weekly, group 3 (PTH) was administered PTH (1-34) 50µg/kg daily, SC, and 

group 4 (RIS+PTH) was administered RIS 15µg/kg three times weekly and PTH 50µg/kg 

daily. Injections were administered for 4 weeks. At this point, mice were killed and their 

right pelvic limbs were harvested for strain gauge application to determine the load strain 

relationship for each treatment group, to ensure application of similar strains between 

groups. Full details of the protocol used to perform ex vivo strain gauging can be found in 

chapter 2 of this thesis. The experimental timeline is illustrated in Figure 73. 

7.2.2 Experiment 2: The effect of concurrent RIS treatment on the anabolic 

effect of PTH and axial tibial loading. 

In vivo procedures 

Using identical group assignment and treatments to those described in objective 1 of this 

chapter, 21-month old mice (n=60) were weight matched and divided into 4 equal groups 

(n=15). Following 4 weeks of injections, mice underwent loading to achieve 1800µƐ 

measured at the medial tibial cortex, according to the calculated forces measured using 

strain gauging from Objective 1. The forces applied to each group are shown in Table 9. 

This strain was selected to allow further positive treatment responses to be detected 

following treatment with both PTH and RIS. The strain for each group was achieved by 

adapting the peak load applied as: Peak load = target load + 0.5N pre-load.  

Loading was performed three times weekly (M, W, F) for 2 weeks as described in Chapter 

2 of this thesis, then mice were killed on day 42, 3 days following the final loading episode 
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and both hind limbs were dissected and fixed for µCT scanning as described in Chapter 2. 

The experimental time line is illustrated in Figure 73. 

µCT scanning and single-site analysis 

Left (control) and right (loaded) tibias underwent µCT scanning and image reconstruction 

as described in Chapter 2. Initially, our single-site regions of interest (ROIs) at the proximal 

trabecular bone (0.25-0.75mm distal to the proximal tibial physis) and the maximally load 

responsive cortical site (37% of the length of the bone measured from proximal) were 

examined for changes in the standard trabecular and cortical measures, as described in 

Chapter 2 and recommended by Bouxsein et al [570]. Parameters assessed included 

BV/TV, Tb.Th, Tb.N, Tb.Sp, Tb.Pf and SMI for the trabecular bone, and Tt.Ar, Ct.Ar, Ma.Ar, 

Ct.Th and PMI for the cortical bone. 

Due to obvious and significant increases in cortical porosity in mice treated with 6 weeks 

of PTH, a new task list was developed to more accurately assess the degree of porosity of 

the cortical bone envelope, without including the vacant space in the medullary cavity. 

This customised task list was developed following communication with, and advice from 

Kjell Laperre, product specialist for Bruker microCT (Kontich, Belgium). The full detailed 

task list for the µCT analysis programme CTAn (Skyscan, Bruker, Kontich, Belgium) is 

included in the Materials and Methods chapter. Briefly, the task list allows isolation of a 

region of interest (ROI) including all of the cortical bone, and any pores up to a pre-

determined size, but excluding the large volume medullary cavity. The porosity 

calculations are then made on this newly formed ROI, rather than the entire area inside 

the periosteal envelope. The Ct.Po tasklist was also run in the trabecular region of interest 

after initial manual selection of the tibia only (and subsequent exclusion of the fibula) 
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SSA analysis 

Following initial examination using single-site µCT analysis of trabecular and 37% cortical 

ROIs, we also performed site-specificity analysis (SSA) to evaluate the tibia-wide changes 

in cortical bone due to the different treatments. SSA technique is described in detail in 

Chapter 2 of this thesis. The results from this analysis demonstrated increased variability 

in the most proximal bone sites (10-14%) in this batch of mice, primarily due to cortical 

breaches preventing automatic segmentation of the entire cortex, so all analyses for this 

experiment were performed only on the sites between 15% and 90%, rather than the 

normal 10-90%. 

7.2.3 Statistical Analysis 

Analyses were carried out using SPSS (version 23) or GraphPad Prizm (Version 5). Analysis 

of the effect of RIS and/or PTH treatment was performed using a two-way ANOVA. The 

effect of treatments on the loading response was assessed using the % change with 

Figure 73 – Experimental plan for the Strain gauging and RIS-PTH 
treatment response study.  

Mice were treated with daily PTH or vehicle and/or thrice-weekly RIS or 
vehicle subcutaneously for four weeks, then either killed (n=24) for strain 
gauging (Experiment 1), or had their right tibia loaded three-times weekly 
for two weeks (n=60) then were killed for µCT assessment of their tibias 
on day 42 (Experiment 2). 
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loading [(Right-Left)/Left*100] values and then similarly compared using two-way ANOVA. 

Post-hoc tests were performed using the Least Significant Differences (LSD) (equivalent to 

no correction for multiple comparisons) as there were only 2 treatment groups in each of 

the 2 main effects. 

Analysis of SSA data was performed using a linear mixed model approach, with bone site 

as a fixed categorical parameter and intervention (RIS, PTH) as a fixed effect. Intervention 

by site interaction was also assessed to identify any site-specific responses. Mouse ID was 

included as a random effect. If effects were significant, post-hoc Sidak correction was 

applied to identify individual sites where the effect was significant (p<0.05).  

Mixed model results interaction definitions:  

If a given interaction is significant (i.e. p<0.05) for: 

• Bone-site*RIS (or PTH) interaction – effect of RIS (or PTH) is significantly different 

at different sites. 

• RIS*PTH interaction –change due to RIS is significantly different in PTH treated, 

compared to vehicle-treated mice which was interpreted as a synergistic 

interaction (or an inhibitory interaction if the effects were opposite). 

o If the interaction is not significant, yet the independent variables are 

significant, this indicates an additive effect. 

• RIS (or PTH)*loading interaction – percentage change due to loading is significantly 

different in RIS (or PTH) treated mice compared with sham mice. 
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7.4 Results 

7.4.1 Strain gauge experiment 

The relative load:strain relationships for mice following treatment with VEH, RIS, PTH or 

RIS+PTH are demonstrated in Figure 74 and Table 9. After 4 weeks of treatment the load 

strain relationship showed no significant difference between the load:strain relationship 

of different groups (p=0.28), although the slope of the RIS+PTH group tended to be lower 

than the slope for RIS treated mice on post-hoc comparisons (p=0.06). Considering these 

apparent differences, the decision was made to apply load to each group according to 

their individual regression line calculations, rather than apply the same load to all mice. 

 

Figure 74 – The effect of 28 days of RIS and/or PTH treatment on the 
load:strain relationship in the tibia of old female mice.  

Statistical analysis was via linear regression. Strains were determined via ex 
vivo strain gauging as described in Chapter 2. Data points represent the 
mean ± SEM. Lines indicate linear regression line. The regression lines were 
constrained to pass through zero. The reference line is placed to indicate 
the load required to engender 1800µƐ at the medial tibial diaphysis. 

// 
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Group VEH RIS PTH RIS+PTH 
R2 0.9971 0.9929 0.8849 0.9889 
Slope 174.49 201.4 178.19 146.25 
Load at  
1800 µƐ 

10.32N 8.94N 10.10N 12.31N 

Peak load 
applied 
(+0.5N) 

10.83N 9.44N 10.6N 12.81N 

Table 9 - Load:Strain relationship from tibias of old female mice treated with RIS, PTH or 
both. 

R2 represents the closeness of fit of the regression line. The slope is the gradient of the 
line. All regression lines were constrained to pass through zero. The load required to 
achieve 1800με was used for each respective group in the loading experiment following 
the addition of the 0.5N preload required to hold the limb within the cups of the loading 
device. 

 

7.4.2 The effect of RIS and/or PTH on the tibial trabecular and cortical bone. 

Trabecular bone 

We first assessed the effect of RIS and PTH treatment on the trabecular and proximal (37% site) 

cortical bone by using a within treatment comparison of the control limb in these old mice. When 

considering the trabecular region of interest, PTH treatment had no effect on trabecular bone in 

control treated bones for any measure (p>0.05) (Figure 75, Figure 76). PTH did result in a significant 

increase in Tb.Ct.Po of the cortical shell at the level of the trabecular ROI (p<0.001) (Figure 76C). 

RIS also had no effect on control treated bones in trabecular bone.  

BV/TV was significantly increased in bones treated with PTH and RIS. The RIS*PTH interaction was 

significant (p<0.05) suggesting that concurrent treatment enabled a gain in bone mass that was 

not observed in mice treated with RIS alone. In mice treated with RIS, the Tb.Pf and SMI 

significantly decreased following treatment with PTH (p<0.05), where they did not decrease in 

mice not treated with RIS, however this interaction between RIS and PTH was not significant 

(p>0.05) (Figure 76). Table 10 reports the significance (p-values) following Two-way ANOVA for 

both the main effects (RIS and PTH) and their interaction (RIS*PTH). 
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Figure 75 – The effect of 6 weeks of RIS and/or PTH treatment on bone mass µCT 
parameters of the proximal trabecular region of the tibia of old female mice.  

22-month-old female C57BL/6 mice (n=60) underwent daily PTH injections and three-times 
weekly RIS injections for 6 weeks. µCT assessment of (A) BV/TV, (B) Tb.Th, (C) Tb.Sp, (D) Tb.N 
of a region of interest 0.25-0.755 distal to the proximal tibial physis. Comparisons were 
performed with a two-way ANOVA with LSD post hoc comparisons. Values displayed are 
mean ± SEM. ** = p<0.01 RIS vs VEH of same PTH group. # = p<0.05, ### - p<0.001 PTH vs 
VEH for same RIS group. 
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PARAMETER BV/TV Tb.Th Tb.Sp Tb.N Tb.Pf SMI Tb.Ct.Po 

RIS 0.043 0.361 0.042 0.110 0.162 0.522 0.549 

PTH 0.767 0.470 0.608 0.474 0.048 0.029 <0.001 

RIS*PTH 0.033 0.927 0.922 0.071 0.241 4.990 0.088 

Table 10 – Effect of RIS and PTH treatment on the trabecular bone of old female mice.  

P-values following tests of between subjects effects following Two-way ANOVA on control 
(unloaded) limbs of 22month old female mice following 6 weeks of treatment with RIS 
and/or PTH. RIS and PTH were included as between-subjects effects. Main effects or their 
interactions were considered significant if p<0.05. 

 

Cortical bone 

PTH treatment also resulted in significant increases in Tt.Ar (p<0.01) and Ct.Ar (p<0.001) but had 

no effect on Ma.Ar (p>0.05). Ct.Th also did not change with PTH treatment alone (p>0.05) (Figure 

Figure 76 – The effect of RIS on the anabolic response to PTH treatment on tibial trabecular 
bone microarchitectural parameters in old female mice.  

22-month-old female C57BL/6 mice (n=60) underwent daily PTH injections and three-times 
weekly RIS injections for 6 weeks. µCT assessment of (A) Tb.Pf, (B) SMI and (c) Tb.Ct.Po of a 
region of interest 0.25-0.755 distal to the proximal tibial physis. Comparisons were performed 
with a two-way ANOVA with LSD post hoc comparisons. Values displayed are mean ± SEM. # = 
p<0.05, ### - p<0.001 PTH vs VEH for same RIS group. 
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77). Cortical Area Fraction (Ct.Ar/Tt.Ar) also increased significantly with PTH treatment, along with 

PMI (p<0.001).Ct.Po was also significantly greater in PTH treated mice (p<0.01) (Figure 78).  

RIS treatment alone resulted in decreased Ma.Ar (p<0.05) and increased Ct.Th (p<0.05) (Figure 77) 

and Ct.Ar/Tt.Ar (p<0.01) (Figure 78). RIS treatment did not affect any other µCT parameter 

measured (p>0.05). 

Figure 77 – The effect of 6 weeks of RIS and/or PTH treatment on bone mass µCT parameters 
of the 37% site cortical bone of the tibia of old female mice.  

22-month-old female C57BL/6 mice (n=60) underwent daily PTH injections and thrice weekly 
RIS injections for 6 weeks. µCT assessment of (A) Tt.Ar, (B) Ct.Ar, (C) Ma.Ar, (D) Ct.Th, (E) 
Ct.Ar/Tt.Ar, (F) PMI and (G) Ct.Po of the cortical bone centred around 37% of the length of the 
bone measured from proximal. Comparisons were performed with a two-way ANOVA with 
LSDpost hoc comparisons. Values displayed are mean ± SEM. * = p<0.05, *** = p<0.01 RIS vs 
VEH of same PTH group. ## = p<0.01, ### - p<0.001 PTH vs VEH for same RIS group. 
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In mice treated with RIS and PTH we observed increased Tt.Ar, Ct.Ar, PMI (p<0.001) and Ct.Ar/Tt.Ar 

(p<0.01) and increases in Ct.Ar (p<0.05) that were not present in mice treated RIS alone, although 

this interaction was not significant. Ct.Th (p<0.001) and Ct.Ar/Tt.Ar (p<0.05) were also increased 

in PTH/RIS treated mice. A decrease in porosity was observed in PTH/RIS mice which was not 

present in mice treated with RIS alone. The effects of PTH and RIS were additive for Ct.Ar and  

 

Table 11 – Effect of RIS and PTH treatment on the cortical bone of old female mice.  

P-values following tests of between subjects effects following Two-way ANOVA on control 
(unloaded) limbs of 22month old female mice following 6 weeks of treatment with RIS 
and/or PTH. RIS and PTH were included as between-subjects effects. Main effects or their 
interactions were considered significant if p<0.05. 

 

 

PARAMETER Tt.Ar Ct.Ar Ma.Ar Ct.Th PMI Ct.Ar/Tt.Ar Ct.Po 

RIS 0.232 0.033 0.004 <0.001 0.223 0.003 0.013 

PTH <0.001 <0.001 0.396 0.611 <0.001 <0.001 0.002 

RIS*PTH 0.169 0.486 0.511 0.270 0.336 0.872 0.317 

Figure 78 – The effect of 6 weeks of RIS and/or PTH treatment on micro-architectural µCT 
parameters of the 37% site cortical bone of the tibia of old female mice.  

22-month-old female C57BL/6 mice (n=60) underwent daily PTH injections and thrice 
weekly RIS injections for 6 weeks. µCT assessment of (A) Ct.Ar/Tt.Ar, (B) PMI and (C) Ct.Po 
of the cortical bone centred around 37% of the length of the bone measured from proximal. 
Comparisons were performed with a two-way ANOVA with LSDpost hoc comparisons. 
Values displayed are mean ± SEM. * = p<0.05, ** = p<0.01 RIS vs VEH of same PTH group. 
## = p<0.01, ### - p<0.001 PTH vs VEH for same RIS group 
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Ct.Ar/Tt.Ar. The magnitude of effect seen with PTH treatment alone was not affected for any 

measure in RIS/PTH treated mice, except that the PTH-associated increase in Ct.Po was abrogated 

by RIS treatment, although this interaction was not statistically significant. Table 11 reports the 

significance (p-values) following Two-way ANOVA for both the main effects (RIS and PTH) and their 

interaction (RIS*PTH) 

 

Site-specificity analysis (SSA) 

Following single-site µCT analysis, SSA was used to evaluate the cortical bone changes over 

the length of the tibia. Table 12 reports the significance (p-values) following mixed-model 

analysis for both the main effects (RIS, PTH and loading) and their interactions. 

 

 
 

RIS PTH SITE*RIS SITE*PTH RIS*PTH SITE*RIS*PTH 

Tt.Ar 0.206 <0.001 0.928 <0.001 0.592 0.256 

Ct.Ar 0.120 <0.001 0.825 <0.001 0.929 0.991 

Ma.Ar 0.001 0.039 <0.001 0.463 0.491 0.202 

Ct.Th <0.001 <0.001 0.931 <0.001 0.200 1.000 

PMI 0.608 <0.001 0.311 <0.001 0.558 0.019 

Imax 0.543 <0.001 0.360 <0.001 0.712 0.247 

Imin 0.964 <0.001 0.647 <0.001 0.570 0.025 

Ct.Po 0.005 0.219 <0.001 <0.001 0.700 0.993 

Table 12 – Effect of RIS and PTH and their interactions on the cortical bone of old female 
mice.  

SSA was performed and values represent p-values of fixed effects and interactions 
following Type III tests of fixed effects in tibias of 22month old female mice following 6 
weeks of treatment with RIS and/or PTH, and loading three-times weekly for the final two 
weeks. Main effects or their interactions were considered significant if p<0.05. 
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Periosteally Enclosed area (Tt.Ar) 

PTH resulted in a significant increase in Tt.Ar and this effect was site specific with the bone 

sites proximal to the 40% site being most significantly increased. RIS treatment did not 

significantly affect Tt.Ar. RIS treatment did not significantly affect the response to PTH 

treatment (Figure 79A).  

Cortical bone Area (Ct.Ar) 

PTH treatment resulted in in a significant increase in Ct.Ar and this effect was site specific, 

with greater increases in Ct.Ar seen in the proximal bone compared wth the distal bone, 

although significant increases in Ct.Ar following PTH treatment were identified at the 

majority of bone sites. RIS treatment did not significantly affect Ct.Ar. RIS treatment did 

not significantly affect the response to PTH treatment (Figure 79B).  

Medullary Area (Ma.Ar) 

PTH treatment resulted in significant decreases in Ma.Ar, at both the proximal and distal 

extremities of the bone, although this effect was not site-specific. RIS treatment resulted 

in significant decreases in Ma.Ar in the proximal cortical bone (proximal to 45% site), and 

this effect was site-specific. RIS treatment did not significantly affect the response to PTH 

treatment (Figure 79C). 

Cortical Thickness (Ct.Th) 

PTH treatment resulted in significant increases in Ct.Th and this effect was site specific, 

with the bone distal to ~50% site demonstrating the most significant increases, while the 

proximal bone was mostly unaffected. RIS treatment also resulted in a significant increase 

in the Ct.Th, with a site-specific effect where the distal bone was also more significantly 

affected than the proximal cortex. RIS treatment did not significantly afffect the response 

to PTH treatment (Figure 79D). 

Polar Moment of Inertia (PMI) 

PTH resulted in a significant increase in PMI and this effect was site specific, with the bone 

proximal to the ~70% site responsive and the distal bone unaffected. RIS treatment alone 
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did not result in a significant increase in PMI. There was a significant site-specific RIS*PTH 

interaction, with RIS treatment resulting in a greater increase in PMI in the proximal bone 

of PTH treated mice, compared with vehicle treated mice (Figure 80A).  

Maximum moment of inertia (Imax)  

PTH treatment resulted in significant improvements in Imax and this effect was site-specific, 

with the proximal cortical bone significantly affected, whilst the distal cortex was 

unaffected. RIS treatment did not affect Imax nor did it significantly affect the response to 

PTH (Figure 80B).  

Minimum moment of inertia (Imin) 

PTH treatment resulted in significant increases in Imin and this effect was site specific, with 

the bone proximal to the 70% site significantly greater following treatment compared with 

vehicle treated bones. RIS treatment alone did not result in significant increases in Imin. 

There was a significant site-specific RIS*PTH interaction, with RIS treatment resulting in 

an increase in Imin in the proximal bone of PTH treated mice, compared with a significant 

decrease associated with RIS treatment in vehicle treated mice (Figure 80C). 

Cortical Porosity (Ct.Po) 

PTH treatment resulted in significant site-specific increases in Ct.Po, with bone sites 

proximal to the ~20% site were most affected by PTH treatment. RIS treatment resulted 

in significant decreases in Ct.Po of the cortical bone, and this effect was site-specific, with 

significant effects demonstrated in the regions between 20-60%. RIS treatment did not 

significantly affect the response to PTH treatment (Figure 80D). 
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Figure 79  – Effect of RIS treatment on the anabolic response to PTH treatment in old female 
mice.  

FIGURE ON PREVIOUS PAGE. Site-specificity analysis was performed on the tibias of 22-
month-old female mice following 6 weeks of treatment with 15µg/kg RIS three times weekly 
and 50µg/kg PTH (1-34) daily. Sites between 15% and 90% were analysed – 10-14% sites 
were excluded from analysis due to high variability in this old cohort of mice. (A) Periosteally 
enclosed area (Tt.Ar), (B) Cortical bone area (Ct.Ar), (C) Medullary area (Ma.Ar) and (D) 
Cortical Thickness (Ct.Th) were analysed using a mixed model approach with Sidak post-hoc 
adjustments. The coloured spots above each graph represent the post-hoc comparisons 
between individual groups, as described by the key at the bottom of the figure and represent 
sites where p<0.05. (n=13).  

Figure 80 - Effect of RIS treatment on the anabolic response to PTH treatment in old 
female mice.  

FIGURE ON FOLLOWING PAGE. Site-specificity analysis was performed on the tibias of 22 
month-old female mice following 6 weeks of treatment with 15µg/kg RIS three times 
weekly and 50µg/kg PTH (1-34) daily. Sites between 15% and 90% were analysed – 10-14% 
sites were excluded from analysis due to high variability in this old cohort of mice. (A) Polar 
moment of inertia (PMI), (B) Maximum moment of inertia (Imax), (C) Minimum moment of 
inertia (Imin) and (D) Cortical porosity (Ct.Po) were analysed using a mixed model approach 
with Sidak post-hoc adjustments. The coloured spots above each graph represent the post-
hoc comparisons between individual groups, as described by the key at the bottom of the 
figure and represent sites where p<0.05. (n=13). 
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7.4.3 The effect of RIS and/or PTH on the adaptive response to loading in old 

female mice 

7.4.3.1 The effect of loading on vehicle treated mice 

Single-site analysis 

Following our demonstration that RIS and PTH have largely additive effects on cortical 

bone and possibly a synergistic effect in proximal cortical bone, with regards to moments 

of inertia, we next evaluated the effect of axial loading on the tibia of vehicle treated, old 

mice. Results are presented in Table 13. 

 

µCT parameter Control 
(n=14) 

Loaded 
(n=14) 

p-value 
(paired t-test) 

Cortical bone    
Tt.Ar (mm2) 1.21 ± 0.02 1.22 ± 0.02 .479 
Ct.Ar (mm2)r 0.59 ± 0.02 0.62 ± 0.01 .073 
Ma.Ar (mm2) 0.62 ± 0.02 0.60 ± 0.03 .397 
Ct.Th (mm) 0.109 ± 0.005 0.115 ± 0.004 .129 
PMI (mm4) 0.25 ± 0.01 0.27 ± 0.01 .180 

Ct.Ar/Tt.Ar (%) 0.49 ± 0.02 0.51 ± 0.02 .087 
Ct.Po (%) 3.26 ± 0.98 2.87 ± 0.75 .674 

Trabecular bone    
BV/TV (%) 3.66 ± 0.57 5.00 ± 0.76 .020 

Tb.Th (mm) 0.06 ± 0.002 0.067 ± 0.003 .101 
Tb.Sp (mm) 0.40 ± 0.01 0.39 ± 0.01 .157 
Tb.N (mm-1) 0.62 ± 0.1 0.77 ± 0.13 .085 

Tb.Pf 26.72 ± 3.04 20.53 ± 1.93 .083 
SMI 2.33 ± 0.16 2.13 ± 0.13 .341 

Tb.Ct.Po 13.74 ± 0.89 14.36 ± 1.4 .658 
Table 13 – The effect of two weeks of axial tibial loading on bone in vehicle (control) 22-
month-old female mice using single-site μCT analysis.  

µCT parameters of cortical (37% site, measured from proximal end) and trabecular bone 
in vehicle-treated mice were compared using a paired t-test. Significance values are 
reported in the table – values <0.05 are highlighted in bold. Values reported are Mean ± 
SEM. 
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When assessing the cortical bone loading response in vehicle treated mice, there was no 

significant response to mechanical loading for any of the cortical bone parameters 

evaluated. There was a tendency for Ct.Ar (p=0.073) and Ct.Ar/Tt.Ar (p=0.087) to increase 

with loading, but these increases were not significant.  

Loading resulted in a significant increase in BV/TV (+68.5 ± 32.6%, p<0.05) and also 

resulted in a trend towards increase in Tb.N (p=0.085) and Tb.Pf (0.083), although these 

changes were not significant (Table 13). Loading did not result in changes in any other 

trabecular bone parameter. 

Site specificity analysis 

In addition to evaluation using single-site analysis, SSA was also performed on the vehicle-

treated mice to explore the effect of loading in these old mice. It is important to note 

when interpreting these results that the mice in this study were older that used in previous 

studies in earlier chapters, due to operational and technical reasons explained in the 

Methods and Materials section of this chapter. Loading resulted in no significant change 

in Tt.Ar (p>0.05), (Figure 81A), but increased Ct.Ar in cortical bone (p<0.001). However, 

this effect was not site-specific (p>0.05), with the increase only significant in the proximal 

bone, although not specifically at the normally load responsive 37% site (Figure 81B). 

Loading also resulted in a significant reduction in Ma.Ar in the proximal cortical bone 

(p<0.001), although this site-specific response was not statistically significant (p>0.05) 

(Figure 81C). Loading also increased the Ct.Th (p<0.001) but this effect was also not site-

specific (p>0.05). Ct.Th also appeared to demonstrated the largest magnitude of change 

in response to loading, compared to other parameters examined (Figure 81D). 

Loading did not cause an increase in PMI (p>0.05)(Figure 82A). Loading increased Imax 

(p<0.05) but not Imin (p>0.05)(Figure 82B, C). Loading resulted in a significant decrease in 

Ct.Po with sites around 20% and sites around 50% demonstrating significant decreases, 

although this site-specific effect was not statistically significant (Figure 82D). 
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7.4.3.2 Effect of RIS and PTH on the response to loading in old female mice 

Single-site analysis 

Although there was limited osteogenic response to loading in the vehicle-treated 22-

month-old mice, we proceeded to evaluate if there was any significant effect of PTH on 

the loading response and the effect of concurrent RIS treatment. The percentage change 

in response to loading for each parameter for each treatment group is reported in Table 

14 and Figure 83. At the 37% site, using single-site analysis, the response to mechanical 

loading was not significantly affected by RIS treatment or PTH treatment, nor was there 

any significant interaction between them when compared using a two-way ANOVA. This 

suggests that treatment with RIS and/or PTH had no effect on the response to loading in 

these 22-month-old female mice at the load-responsive 37% site (Table 14, Figure 83).  

Figure 83 – The effect of RIS and PTH on the response to axial tibial loading in cortical bone 
of old female mice using single-site analysis at the 37% site.  

22-month-old female C57BL/6 mice were treated with subcutaneous injections (three-times 
weekly of RIS and daily of PTH) for 6 weeks. Mice had their right tibia loading three times 
weekly for the final two weeks. The tibia was scanned using µCT and single-site analysis was 
performed on the 37% site (measured from the proximal end). The percentage change due to 
loading was calculated ((Right-Left)/Left * 100). Values were compared using a two-way 
ANOVA and post-hoc adjustments were made with the least squares difference test 
(equivalent to no adjustment). Bars represent mean ± SEM. n=13-14 
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Considering the response to mechanical loading in the trabecular bone, concurrent PTH 

treatment demonstrated no significant effects in all parameters evaluated. However, the 

decrease in Ct.Po in the trabecular region (Tb.Ct.Po) following loading tended to be lower 

following treatment with PTH (p=0.056), compared to vehicle-treated mice. Neither RIS 

alone, nor the RIS*PTH interaction affected the change seen with loading for any of the 

parameters measured (p>0.05)(Figure 84, Table 14, Table 15). 

 

 

  

Figure 84 - The effect of RIS and PTH on the response to axial tibial loading in trabecular 
bone of old female mice using single-site analysis.  

22-month-old female C57BL/6 mice were treated with subcutaneous injections (three-
times weekly of RIS and daily of PTH) for 6 weeks. Mice had their right tibia loading three 
times weekly for the final two weeks and were killed 3 days after the final loading session. 
The tibia was scanned using µCT and single-site analysis was performed on the 37% site 
(measured from the proximal end). The percentage change due to loading was calculated 
((Right-Left)/Left * 100). Values were compared using a two-way ANOVA and post-hoc 
adjustments were made with the least squares difference test (equivalent to no 
adjustment). Bars represent mean ± SEM. n=13-14. 
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 Parameter VEH 
(n=14) 

RIS 
(n=13) 

PTH 
(n=14) 

RIS + PTH 
(n=13) 
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g)

 

Cortical Bone (37% site)    
Tt.Ar 1.39 ± 1.84 1.84 ± 1.32 1.47 ± 1.61 2.03 ± 1.92 
Ct.Ar 6.79 ± 3.19 5.06 ± 4.23 6.09 ± 2.46 3.81 ± 1.96 

Ma.Ar -2.77 ± 3.16 -1.14 ± 3.15 -3.48 ± 4.44 0.48 ± 4.77 

Ct.Th 8.78 ± 5.87 -0.22 ± 3.12 -1.62 ± 3.13 -2.93 ± 6.19 
PMI 7.38 ± 4.15 4.51 ± 3.5 5.7 ± 2.03 3.5 ± 1.76 

Ct.Ar/Tt.Ar 5.45 ± 2.94 2.9 ± 3.03 4.9 ± 3.09 2.02 ± 2.16 
Ct.Po 6.79 ± 19.19 6.77 ± 27.15 42.89 ± 18.24 10.86 ± 15.34 

Trabecular Bone    
BV/TV 68.47 ± 32.59 71.69 ± 72.53 84.24 ± 41.01 22.89 ± 16.63 
Tb.Th 14.79 ± 7.07 5.52 ± 4.58 9.64 ± 8.9 9.12 ± 6.14 
Tb.Sp -2.38 ± 1.57 -1.42 ± 4.46 -3.22 ± 2.87 -0.71 ± 1.9 
Tb.N 45.75 ± 24.06 90.31 ± 94.93 69.1 ± 36.76 18.63 ± 17.2 
Tb.Pf -15.28 ± 9.41 5.71 ± 17.28 -11.92 ± 11.2 14.91 ± 37.54 
SMI -3.14 ± 8.28 1.86 ± 10.27 -2.6 ± 6.84 -0.85 ± 13.9 

Tb.Ct.Po 6.83 ± 9.03 5.24 ± 9.68 -3.37 ± 3.87 -12.99 ± 4.76 
Table 14 – The effect of RIS and/or PTH treatment on the osteogenic response to loading 
in 22-month-old female mice.  
Percentage change with loading was calculated for each mouse ((Right-left)/left * 100) 
and values reported are Mean ± SEM. 

Cortical (37% site) Trabecular 
 

RIS PTH RIS*PTH 
 

RIS PTH RIS*PTH 

Tt.Ar 0.708 0.862 0.887 BV/TV 0.521 0.715 0.476 

Ct.Ar 0.142 0.936 0.540 Tb.Th 0.485 0.912 0.532 

Ma.Ar 0.499 0.570 0.636 Tb.Sp 0.551 0.984 0.790 

Ct.Th 0.744 0.129 0.152 Tb.N 0.955 0.642 0.363 

PMI 0.200 0.960 0.483 Tb.Pf 0.267 0.769 0.891 

Ct.Ar/Tt.Ar 0.182 0.814 0.503 SMI 0.737 0.914 0.871 

Ct.Po 0.434 0.328 0.435 Tb.Ct.Po 0.445 0.056 0.584 

Table 15 - The effect of RIS and/or PTH treatment on the response to axial tibial loading 
in 22-month-old female mice.  

Two-way ANOVA was used to analyse the percentage change with loading of cortical and 
trabecular bone sites in old (22m-old) female mice following 6 weeks of treatment with 
RIS and/or PTH and 2 weeks of loading in the final two weeks of treatment. Values 
reported are p-values following tests of between-subjects effects. p<0.05 for RIS*PTH 
indicates a significant difference in the response to loading in the presence of PTH as a 
result of concurrent RIS treatment.  (n=13-14). 
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Site Specificity analysis 

Further to our demonstration that neither PTH, nor RIS affected the response to loading 

in these 22-month-old mice at the 37% cortical or trabecular site, the lack of any significant 

RIS*PTH interaction for the response to loading for any parameter measured indicates 

that the response to loading following PTH is not significantly different from the response 

to loading following RIS+PTH. 

As we had demonstrated site-specific effects of PTH and RIS treatment earlier in this 

chapter, we also performed SSA to evaluate the effects of RIS and/or PTH on the response 

to loading throughout the whole tibia. Table 16 illustrates the results following mixed 

model analysis.  

 

 
RIS PTH Site*RIS Site*PTH RIS*PTH Site*RIS*PTH 

TT.AR 0.228 0.709 0.478 0.001 0.518 0.455 

CT.AR 0.850 0.890 0.780 0.006 0.356 0.876 

MA.AR 0.378 0.826 0.120 0.106 0.161 0.080 

CT.TH 0.107 0.085 0.171 0.166 0.195 0.882 

PMI 0.393 0.563 0.332 <0.001 0.506 0.382 

IMAX 0.387 0.289 0.134 <0.001 0.422 0.968 

IMIN 0.303 0.601 0.992 0.001 0.666 0.687 

CT.PO 0.361 0.176 0.035 0.823 0.417 0.835 

Table 16 – The effect of PTH and RIS on the loading response of 22-month-old female 
mice by SSA.  

Results shown are p-values from the Type III tests of fixed effects for the main effects and 
interactions following analysis of percentage change with loading values ((Right-
left)/left)*100) using a mixed model approach. This analysis was performed using site as 
a fixed categorical variable, and RIS and PTH as fixed effects.  p<0.05 for Site*RIS (or PTH) 
indicates significantly different responses to RIS (or PTH) at different sites of the bone. 
p<0.05 for RIS*PTH indicates a significant difference in the response to loading in the 
presence of PTH as a result of concurrent RIS treatment. p<0.05 for Site*RIS*PTH indicates 
that the effect of RIS on the PTH+loading response is significantly different at different 
sites. Values of p<0.05 are highlighted in bold type. 
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Effect of PTH on the response to loading 
PTH treatment alone resulted in a site-specific increase (p<0.01 for Site*PTH) for the 

change with loading for Tt.Ar and Ct.Ar, although after post-hoc comparisons, there was 

only 1-2 individual bone-sites proximally which demonstrated significantly greater 

response to loading following PTH treatment compared with vehicle treatment (Figure 85). 

PTH treatment did not significantly affect the response to loading for Ma.Ar and Ct.Th, 

although PTH-treated mice showed a tendency (p=0.085) to increase Ct.Th less than 

vehicle treated mice (Figure 85). PTH treatment resulted in a site-specific increase in 

loading-related changes in PMI, Imax and Imin (Figure 85). For these measures, the 

metaphyseal bone sites appeared to tend towards an increase in loading-related 

improvement, however, following post-hoc testing, no individual bone sites were 

significantly different. PTH treatment did not affect the response to loading with respect 

to Ct.Po (Figure 85).  

Effect of RIS on the response to loading 
RIS treatment had no effect on the response to loading when considering Tt.Ar, Ct.Ar, 

Ma.Ar, Ct.Th, PMI, Imax and Imin (Figure 85 –, Figure 86), RIS treatment resulted in a site-

specific response to loading for Ct.Po. RIS “protected” against the loading-related increase 

in Ct.Po in the mid-shaft tibia (56-59%), but resulted in a slight load-related increase in 

Ct.Po in the distal bone (data not shown). 

Combined effect of RIS and PTH on the response to loading. 
Similar to the single-site analysis performed earlier in this chapter, RIS treatment did not 

have any significant effect on the loading response seen following PTH treatment for any 

measure examined (Figure 85 –, Figure 86). However, in the distal sites, the response to 

mechanical loading was apparently greater following combined treatment with RIS+PTH 

than with either RIS or PTH alone. This response was most evident when examining Tt.Ar, 

Ct.Ar, PMI, Imax and Imin. (Figure 85 –, Figure 86). These changes were typically due to 

woven bone formation at the periosteum formed at the distal bone sites (Figure 87). 
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 Figure 85 – legend on following page 
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Figure 85 – The effect of PTH and combined RIS+PTH on the osteogenic 
response to loading in old female mice. 

FIGURE ON PREVIOUS PAGE. SSA was performed on mice following 6 weeks of 
treatment with Vehicle or RIS and/or PTH and three-times weekly loading for 
the final two weeks. (A, E) Periosteally enclosed area (Tt.Ar), (B, F) Cortical bone 
area (Ct.Ar), (C, G) Medullary area (Ma.Ar), (D, H) Cortical thickness (Ct.Th) 
were compared between vehicle and PTH treated mice (A-D) and RIS and 
RIS+PTH mice (E-H). A mixed model approach was used to compare groups and 
Sidak post-hoc adjustments performed where effects were significant. Grey 
spots indicate individual sites that are significantly different (p<0.05). Values 
indicate Mean ± SEM. (n=13-14 

 

Figure 86 – The effect of PTH and combined RIS+PTH on the osteogenic 
response to loading in old female mice.  

FIGURE ON FOLLOWING PAGE. SSA was performed on mice following 6 weeks of 
treatment with Vehicle or RIS and/or PTH and three-times weekly loading for the 
final two weeks. (A, E) Polar moment of inertia (PMI), (B, F) Maximum moment 
of inertia (Imax), (C, G) Minimum moment of inertia (Imin) and (D, H) Cortical 
porosity (Ct.Po) were compared between vehicle and PTH treated mice (A-D) 
and RIS and RIS+PTH mice (E-H). A mixed model approach was used to compare 
groups and Sidak post-hoc adjustments performed where effects were 
significant. Grey spots indicate individual sites that are significantly different 
(p<0.05). Values indicate Mean ± SEM. (n=13-14 
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Figure 86 – legend on previous page 
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Figure 87 – The effect of RIS and/or PTH on the loading response in the distal tibia of 22-
month-old female mice.  

Binarised μCT images following SSA, taken from the 82% bone site of (A) unloaded left tibia 
of vehicle (control) mouse, (B) loaded right tibia of vehicle (control) mouse, (C) loaded right 
tibia of RIS treated mouse, (D) loaded right tibia of PTH-treated mouse and (E) right loaded 
tibia of RIS+PTH treated mouse. Combined treatment appears to result in an exaggerated 
woven bone response to loading in the distal bone. 
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7.4.4 Results summary 

1. The effect of PTH on the tibia of old female mice 

a. In trabecular bone, PTH treatment had no effect. However, a significant 

increase in the Ct.Po of the cortical shell at this specific level was observed.  

b. In the 37% cortical region, PTH treatment resulted in significant increases 

in periosteal expansion and subsequent increases in bone mass (Ct.Ar), but 

concurrent increases in cortical porosity.  

c. Following SSA, PTH treatment resulted in significant increases in Tt.Ar with 

concurrent decreases in Ma.Ar, resulting in increases in Ct.Ar and Ct.Th. 

These increases in periosteal expansion resulted in subsequent increases in 

measures of moment of inertia, particularly in the proximal bone, due to 

periosteal expansion. Ct.Po also increased following PTH treatment, 

primarily in the proximal bone.  

2. The effect of RIS on the tibia of old female mice 

a. In trabecular bone, RIS treatment permitted an increase in BV/TV and an 

increase in trabecular connectivity (Tb.Pf) and a change from rod- to plate-

like trabeculae (SMI). 

b. In the 37% cortical region, RIS treatment generated increases in Ct.Th 

which resulted in additive increases in Ct.Ar and Ct.Ar/Tt.Ar.  

c. Following SSA, RIS treatment resulted in decreased Ma.Ar and Ct.Po in the 

proximal bone, with increased Ct.Th in the distal bone. 

3. The combined effect of PTH and RIS on the tibia of old female mice 

a. In trabecular bone, an increase in BV/TV and Tb.Pf, and a decrease in SMI 

was seen in mice treated with RIS+PTH that was not observed in mice 

treated with PTH alone.  

b. At the 37% cortical region, there were additive increases in Ct.Ar and 

Ct.Ar/Tt.Ar in mice treated with both PTH and RIS. There was no difference 

in Ct.Po between mice treated with RIS+PTH and those treated with PTH 

alone. 
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c. Following SSA, a small but significant improvement in the response to PTH 

treatment for PMI and Imin was seen following concurrent RIS treatment in 

the proximal cortical bone site. Furthermore, there were additive increases 

in Ct.Th, and additive decreases in Ma.Ar following combined PTH+RIS 

treatment.  

4. The effect of RIS and PTH on the adaptive response to loading in old female mice 

a. Effect of Loading alone 

i. Loading did not result in significant increases in bone mass at the 

37% cortical bone site, although did result in a significant increase 

in BV/TV in the trabecular region. The mice used in this study were 

older than previously examined (22-month-old vs 19-month-old). 

ii. SSA demonstrated that loading resulted in small but significant 

increases in bone mass, with decreases in Ma.Ar and increases in 

Ct.Ar and subsequent increases in bending strength (Imax). These 

changes were only significant in the proximal regions of the bone. 

Loading also significantly reduced cortical porosity in the proximal 

cortical bone. 

b. Effect of PTH/RIS on the response to mechanical loading 

i. At the 37% cortical site, using the single-site analysis technique and 

at the trabecular bone site, there was no significant effect of 

treatment with either PTH or RIS on the response to loading. 

ii. Using SSA, PTH treatment resulted in a site-specific improvement in 

the response to loading for periosteal expansion and bone area, and 

subsequent increases in moments of inertia. RIS treatment alone 

resulted in a marginally lower change in Ct.Po, but did not affect the 

response to loading for any other parameter.  

iii. There did appear to be an exaggerated periosteal woven bone 

response to loading evident in the distal cortical bone of mice 

treated with RIS+PTH which was not evident in the mice treated 
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with either agent alone, although this effect was not significant 

(p>0.05). 

 

7.5 Discussion 

In this chapter, we have demonstrated that PTH and RIS have additive effects on cortical 

bone mass and moments of inertia when administered concurrently in old female mice, 

and that inhibiting resorption through use of risedronate does not appear to impair the 

anabolic effect achieved by intermittent administration of PTH in old mice. Furthermore, 

despite observing a limited loading response in these very old mice, we have also 

demonstrated that neither PTH, nor risedronate, negatively affected the magnitude of the 

loading response, and in fact, PTH treatment resulted in a mild improvement load-related 

change in Tt.Ar in the proximal bone of 22-month-old mice, supporting the findings 

previously that both PTH and Risedronate act additively to the anabolic stimulus of loading 

to further improve cortical bone mass. This suggests that active resorption is not necessary 

to permit the anabolic activity of PTH to proceed. 

7.5.1 PTH treatment increases bone mass, but concurrently increases porosity 

in old mice. 

PTH treatment was anabolic in cortical bone in the present study, with increases in Ct.Ar 

and Tt.Ar, resulting in subsequent increases in calculated moments of inertia (indicators 

of likely bending/torsional strength). These changes are similar to other published 

responses to treatment with marked bone formation and subsequent increases in bone 

mass in both old and young mice [32, 388, 707, 708]. These changes were seen primarily 

in the proximal bone, but did demonstrate changes in Ct.Ar throughout the length of the 

cortical bone, suggesting a more generalised effect that that seen with mechanical loading 

[7, 11]. The response to PTH treatment has actually been demonstrated to be more 

effective in old mice, compared to young mice [707] which, these authors proposed, is 

due to additional anti-oxidant effects of PTH beyond those of the recognised anabolic 

effects demonstrated in young animals. Although there was no reported effect of PTH on 
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trabecular bone in these aged mice, similar findings to a recently published study by our 

laboratory [388], this may be due to the very low numbers of trabeculae in aged mice 

bone in the proximal tibia. This lack of response differs to the profuse anabolic response 

of trabecular bone seen in young mice treated with PTH [32]. 

The increase in intracortical porosity following PTH treatment in these mice mirrors that 

in our earlier study [388], and also that seen in mice with constitutively active PTH 

receptors [702, 708]. This increase in porosity was primarily identified in the proximal 

cortical bone, according to the SSA, similar to the findings in our earlier study [388]. The 

PTH-associated “pore” formation has been demonstrated to be associated with an influx 

of osteoclasts, demonstrated by increased cathepsin K staining and osteoclast localisation 

within the “pores” [388], suggesting these resorption events are mediated by osteoclasts, 

rather than by any other intracortical resorption event, such as that reported with 

osteocytic osteolysis reported in situations of lactation [83]. Our earlier study also 

demonstrated periostin-positive cells and concurrent bone formation (using fluorescent 

labelling) within these pores, suggesting that bone remodelling-based formation is 

occurring following PTH treatment as resorption and formation are spatially occurring in 

adjacent sites [388]. Contrary to the suggestion that all PTH-associated resorption is 

osteoclast mediated, however, PTH/PTHrP has been demonstrated to be associated with 

osteocytic osteolysis and perilacunar/pericanalicular demineralisation [709, 710] and this 

appears mediated via osteocytic production of Cathepsin K and TRAP [214]. Furthermore, 

genetically-modified mice lacking osteoclasts still showed evidence of pericanalicular 

resorption, indicating that osteoclasts are unnecessary for osteocytic osteolysis to occur 

[710]. Regardless of whether osteocytic osteolysis is involved in PTH-mediated resorption, 

the apparent increase in bone remodelling-based formation in mice following PTH 

treatment is supported by the finding that the anabolic effect of PTH in mice was impaired 

in the absence of osteoclasts promoted by RANKL antibody treatment (Denosumab)[700]. 

Although significant amounts of de novo bone formation without preceding resorption 

occur following PTH treatment, the coupling of bone formation to osteoclastic activity, 

stimulated by PTH still likely plays some role in its anabolic effect, although the 
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proportional contributions of modelling-based and remodelling-based bone formation 

following PTH treatment remains unclear. 

7.5.2 RIS treatment has no effect on the anabolic effect of PTH in old mice 

Due to the likelihood of remodelling playing a significant role in the anabolic effects of PTH 

in mice, we next explored the effect of the anti-resorptive RIS on the PTH response in old 

mice. Similar to the reports by Pierroz et at [700] and de Bakker et al [672], we did not 

observe any impairment of the anabolic effect of PTH following co-treatment with a 

bisphosphonate in these old female mice. Conversely, the study by Pierroz et al [700] has 

shown that reducing the number of osteoclasts with RANKL antibody (Denosumab) did 

impair the anabolic effect of PTH, however reducing their activity alone, without 

decreasing osteoclast numbers through treatment with the bisphosphonate alendronate, 

did not impair the anabolic response to PTH treatment. This suggests that the presence of 

osteoclasts, and not necessarily the active resorption of bone may be important for 

promoting the anabolic effect of PTH associated with “remodelling”. Alendronate 

treatment in a study by de Bakker et al [672] was associated with a significant reduction 

in osteoclast numbers. Although we did not quantify osteoclast numbers following RIS 

treatment in the present study, our earlier study demonstrated an increase in osteoclast 

numbers within the cortical pores generated following 4 weeks of PTH treatment [388]. 

Inhibition of resorption with both alendronate and risedronate does not require 

osteoclast apoptosis [711], so, given the PTH anabolic effect was not apparently affected 

by RIS treatment, it would appear plausible that the majority of the anabolic effect of PTH 

in the present study was not dependent on the active resorption of bone for its effect.  

RIS treatment significantly reduced Ct.Po in the control limbs of mice in this study. Given 

the clear evidence of increased Ct.Po shown in this study, and increased Ct.Po and 

osteoclast activity within the intracortical pores in our previous study [388], it is perhaps 

surprising that treatment with RIS did not result in greater reduction in Ct.Po in PTH-

treated mice than in Vehicle-treated mice. This could suggest that a proportion of the 

intracortical resorption seen following PTH treatment could be mediated by processes 

separate to those generated by osteoclasts, such as osteocytic osteolysis, as discussed 
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earlier. Mice lacking osteocytic cathepsin K and/or TRAP could help dissect the 

contribution of osteocytic osteolysis to the PTH-associated increase in Ct.Po in old mice. 

Our study also demonstrated additive effects on the cortical bone mass of old female mice 

treated with combined PTH and RIS. This finding is mirrored by a study in young mice 

which similarly demonstrated additive effects on BV/TV following combined PTH and 

alendronate treatment by increasing formation and decreasing resorption respectively. 

Although these findings were only reported in trabecular bone of young adult mice [672], 

this study used longitudinal in vivo μCT scanning to perform volumetric dynamic 

histomorphometry to evaluate both formation and resorption indices and the results 

suggested that the early anabolic responses to PTH are independent of resorption. 

Another study has demonstrated additive positive effects of PTH and alendronate in 

cortical bone using μCT and histomorphometry [701].  

Although molecular evidence suggests that use of antiresorptive treatments such as RIS 

may impair some of the cellular anabolic effects of PTH in bone, clinical and experimental 

evaluation of the effects of combination therapy appears to support their use together as 

beneficial to bone mass beyond the effects of therapy with either alone. Our study 

demonstrates that, even in old mice with lower bone mass and increased basal resorption, 

combined therapy with PTH and RIS can act additively to improve bone mass in mice. This 

is supported by several clinical studies demonstrating a positive clinical effect in 

combination therapy [350, 378, 703]. Another meta-analysis has demonstrated that 

alendronate has additive effects to PTH in cortical sites but can impair the anabolic effect 

of PTH in trabecular sites [671]. As the trabecular bone stock in aged female mice tibias is 

so small, it is difficult to draw conclusions in this study based on the combined effects of 

RIS and PTH. Future studies in aged mice looking to explore the effect of combination 

therapy on trabecular bone in aged female mice should examine bone sites with greater 

trabecular bone stock, such as the vertebrae, or the distal femur. This was outside the 

scope of the present study. 
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7.5.3 Mechanical loading is not affected by PTH and/or RIS treatment in old 

female mice 

Previous studies have examined the effect of mechanical loading in mice following pre-

treatment with RIS [34] and PTH [32] in young adult mice, and RIS (Chapter 6) and PTH 

[388] in old mice. These studies have all demonstrated additive or synergistic positive 

effects on bone mass when combining loading with RIS or PTH. We sought to determine if 

the loading response in old mice was affected following pretreatment with both PTH and 

RIS concurrently. The bone mass in vehicle-treated mice in this study was only mildly 

increased following loading, with BV/TV increased with loading in trabecular bone, and a 

small increase in Ct.Ar through a decrease in Ma.Ar, according to SSA. This response was 

reduced in magnitude to that reported in old mice by our laboratory previously, however 

this is possibly because the mice used in this study were 3 months older (22-months vs 19-

months) than those previously reported (Chapters 5 & 6)[9, 29, 388, 396]. We also reduced 

the applied peak strain from 2500με to 1800με in this experiment to allow the potential 

additive effects on bone mass of both PTH and RIS to be observed (ie. we did not want the 

bones’ adaptive capacity to be “maxed” out). It is therefore possible this applied strain 

was not sufficient to reach the minimum effective strain needed to stimulate bone 

formation in these older mice. 1800με was sufficient to generate an osteogenic response 

in previous studies in 19-month-old mice [286, 388]. Despite the diminished response to 

mechanical loading in this study, comparison of the percentage changes with loading of 

μCT parameters still enabled us to determine if the addition of PTH and/or RIS was able to 

alter the osteogenic effect of mechanical loading. The response to loading was unaffected 

by treatment with PTH or RIS individually in the old mice used in this study. This is 

consistent with the findings reported by Meakin et al [388] and those in chapter 6. 

Furthermore, treatment with RIS did not impair the osteogenic response achieved by 

combining loading and PTH.  

Interestingly, when exploring the effect of combined therapy on the response to loading, 

the distal tibia demonstrated an apparent synergistic effect of RIS+PTH on the periosteal 

bone formation (Figure 85E-F, Figure 87) which subsequently affected the calculated 
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measures of moments of inertia (Figure 85 –E-G). Examination of the μCT images from the 

tibia demonstrated that mechanical loading stimulated an apparent woven bone 

proliferative response in the periosteal distal tibia of mice following combined RIS/PTH 

treatment that was not present in vehicle treated mice, or those treated with either RIS 

or PTH alone. This finding is difficult to explain simply but could be due to regional changes 

in bone stiffness that were not accounted for by the single-site strain-gauging experiment 

measured at the ~37% site. For example, it may be possible for the distal tibia in RIS+PTH-

treated mice to experience greater peak strains with loading calibrated to achieve a 

certain strain at the 37% site, compared to strains distally in monotherapy or vehicle 

treated mice, which could lead to the observed woven bone formation. Site-specific 

changes in the expression of sclerostin could also affect the loading response. PTH-

mediated decrease in osteocytic sclerostin expression has been demonstrated to relate to 

the modelling-related bone formation response on the periosteal surface [702]. The distal 

tibial cortical bone does not normally respond to axial compressive mechanical loading [7, 

8, 11], despite finite element modelling suggesting sufficient strains exist to permit 

formation. Interestingly, in addition to minimal bone formation, expression of sclerostin 

in the distal tibia does not change with loading [8]. This suggests that it could be the down-

regulation of sclerostin mediated by PTH treatment combined with the reduced resorptive 

drive seen with RIS treatment which facilitates the observed periosteal woven bone 

response seen with loading in these aged mice. Furthermore, control of sclerostin 

expression has also recently been implicated in the osteogenic response to mechanical 

loading. Two separate studies have demonstrated an improved response to mechanical 

loading following either genetic deletion of sclerostin, or inhibition of sclerostin using an 

anti-sclerostin antibody [33, 372]. This further supports the suggestion that sclerostin 

could be involved in the site-specific differences in the loading response in mouse tibias. 

In summary, treatment with PTH promoted an anabolic response in old female mice, 

which was additively improved by concurrent treatment with RIS. The loading response, 

despite being diminished by aging, was similarly not negatively affected by treatment with 

PTH and/or RIS. Combined treatment with PTH and RIS may have site-specifically 

improved the response to loading in the distal tibia, with increases in Tt.Ar suggesting an 
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improved periosteal response to loading. To the extent that these findings in experimental 

animals can be extrapolated to humans, from this study combined treatment with RIS and 

PTH appears to be beneficial for bone mass and the effects of concurrent physical activity 

should remain unaffected in the face of pharmaceutical management with combined 

anabolic and anti-resorptive therapy. 

7.6 Conclusions 

1. In very old (22-month-old) mice, PTH increased bone mass, as did RIS. The effects 

of PTH and RIS on Ct.Ar and Ct.Ar/Tt.Ar (following single site analysis) and PMI and 

Imin (following SSA) were additive. This suggests that osteoclastic resorption is not 

required for the anabolic effects of PTH, although this requires further 

investigation. 

2. The osteogenic response to loading in these very old mice was lower than in 19-

month-old mice. Neither PTH nor RIS alone, or in combination impaired the 

magnitude of the observed loading response. This is consistent with several earlier 

studies which have shown that bisphosphonate treatment does not impair bone’s 

anabolic response to PTH or loading.  

3. There may be some synergistic effect of combined treatment on bone’s 

osteogenic response to loading in a site-specific manner, with the distal cortical 

bone demonstrating a greater periosteal woven bone response to loading 

following combined treatment that was not evident following monotherapy with 

either agent. This observation needs further investigation to confirm the finding, 

and if repeatable, to establish the mechanisms behind it. 

4. Site-specificity analysis provides an added tool to explore the adaptive loading 

response in murine cortical bone which allowed detection of subtle, but significant 

changes in bone mass/architecture that were not identified by traditional single-

site analysis. 

5. The clinical implication of this finding is that any potential beneficial effects of 

exercise in the elderly will not be abrogated by PTH, RIS or a combination of both 

therapies. 
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Chapter 8 - General Discussion 

Studies described in this thesis have aimed to address the general hypothesis that altering 

the context within which mechanical loading is applied, either physically and/or 

pharmacologically, may affect the magnitude of the impaired adaptive response to 

mechanical loading in the aged skeleton, that normally provides a site-specific, and 

structurally appropriate, controlling influence on bone mass and architecture.  

8.1 Optimising murine tibial loading models to study the effect of altering 

the loading context in old mice. 

Since the primary goal of this thesis was to determine if altering the context on which 

loading was provided would alter the adaptive response to loading in old mice, we first 

needed to determine the optimal time points at which to examine the peak response to 

loading, both with respect to the “complete” adaptive loading response using μCT and 

also the optimal time point to examine peak cellular activity for bone formation, using 

dynamic histomorphometry. Most commonly, loading experiments load mouse bones for 

two weeks, as significant bone formation is present at this time point [1, 8, 29, 34, 285, 

287, 531, 582, 606, 608, 609]. We sought to determine at which point the adaptive 

response to loading reached a plateau in cortical bone, suggesting it had “habituated” to 

the newly applied load. Despite the reported study being a pilot study, we demonstrated 

that examining bone mass and architecture changes with μCT 3 weeks after the onset of 

loading provided no less bone mass change than that reported after 4 weeks, suggesting 

that exploring the loading response after 3 weeks loading establishes the level of adaptive 

response once it has “plateaued” or “habituated”. Although a previous report determined 

that the adaptive response for trabecular bone following tail vertebral loading was 

significantly longer (10 weeks) than for our findings in cortical bone [586], our primary 

endpoint was to assess the cortical bone adaptive changes. For this reason, we selected 

14-16 days of loading for the experiments included in the latter parts of this thesis, to 

permit a robust loading response which allowed for some further osteogenic response to 

be stimulated by the additional interventions planned in these studies.  
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Our study also demonstrated delayed onset bone resorption endosteally in response to 

continued mechanical loading, in a site-specific manner, with bone at the neutral axis of 

the cortical bone cross-section displaying evidence of bone resorption, despite a 

concurrent robust formation response in regions of increased strain according to FEM. 

Recent work using in vivo μCT has demonstrated that the endosteal surface in mice tibias 

is more mechano-responsive than the periosteal surface and confirmed that resorption 

sites are associated with areas of low strain [529] supporting our conclusion. Ongoing 

collaborations with Professor Pivonka at the Queensland University of Technology aim to 

help identify if the adaptive response to loading can be predicted by modelling the 

expected strain and strain energy density. This new analysis tool may then help identify if 

the age-associated deficiency in the loading response is associated with reduced 

responsiveness to strain, without the need for in vivo μCT. Recent in vivo μCT evidence 

suggests that the mechanosensitivity of bone becomes dysregulated with age, with 

reduced ability to inhibit resorption or initiate formation [30]. 

The rate of bone formation in our study peaked in the second week of loading (between 

7 and 14 days) periosteally, but was consistent throughout the experiment on the 

endosteal surface despite medullary area decreasing only after 2 weeks, then normalising 

back to control limb levels again at 3 weeks. It must be borne in mind that we only 

examined the most load responsive region of the cortical bone cross section in this 

experiment (posteriolateral cortex at 37% of the length of the bone measured from the 

proximal end). Notwithstanding, in experiments where the osteogenic cellular response is 

assessed, it appears that the optimal timepoint to assess the cellular 

proliferative/formation response to continued loading is in the second week of loading. 

We initially planned to explore mechanistic cellular responses to loading using DH in latter 

experiments of the thesis, however due to the negative results yielded from Chapter 4, 

we did not pursue these mechanistic endpoints. 

Although still able to provide valuable information on the appropriate timing of sampling 

following the onset of loading in mice, this pilot study was not sufficiently powered to 

permit robust evaluation of the temporal response of the murine tibia to repeated 
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loading. It was also unable to absolutely confirm that formation had plateaued by 4 weeks 

following loading. Greater group size and a further, later time point after onset of loading 

would have helped mitigate these experimental limitations. Furthermore, the use of serial 

imaging via in vivo μCT for this experiment could potentially have provided a further 

mechanism to provide measures of dynamic indices of bone formation and could have 

provided accurate and site-specific indices of resorption as seen in recent publications 

from the Julius Wolff Institute [33, 529, 612].  

As we induce disuse in mice using a surgical procedure to transect the sciatic nerve, we 

wanted to ensure that a surgical insult alone was not sufficient to result in altered 

Receptor Activator for Nuclear Factor κB Ligand (RANKL) expression. We did this because, 

as well as being an essential signalling factor for osteoclasts, and an apparently important 

factor in the bone loss associated with disuse [21], RANKL is also involved in several other 

pathways involved in inflammation [140]. Therefore, we performed a contralateral sham 

surgery in mice that underwent unilateral sciatic neurectomy to control for any potential 

effect surgery alone would have on RANKL expression. Before we examined this, we first 

needed to ensure that the act of sham surgery did not affect the degree of unilateral bone 

loss. Our further experiment exploring the effect of unilateral SN and contralateral sham 

surgery confirmed unilateral bone loss of similar magnitude to that previously reported 

[8, 11, 613]. The changes were also similar to the losses reported following tail suspension 

[614] and Botox injection [467]. Based on the results of this experiment, contralateral 

sham surgery performed concurrently to unilateral SN is unlikely to affect the contralateral 

limb’s bone mass or architecture. For subsequent experiments in this thesis we therefore 

included sham surgery in our experimental design.   

8.2 RANKL expression is unaffected in murine cortical bone following 

increased or decreased loading. 

In addition to experiments aimed at determining if altering the context on which loading 

is provided can affect the adaptive loading response in old mice, we also sought to 

determine if the immediate cellular response to mechanical loading and disuse could be 
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used to help provide mechanistic insights to the deficient adaptive response in old mice 

and if these responses were affected once the loading context was changed. Work 

published at the time of conception of the experiments for this thesis demonstrated for 

the first time, that it is osteocytes, and not osteoblasts, as previously thought, that 

produce the RANKL necessary for the bone loss associated with disuse [21, 22]. This led us 

to hypothesise that the osteocytic expression of RANKL would be increased following 

disuse and decreased following loading, and that RANKL may be involved in the age-

related impairment of the loading response. To explore this, we first developed a new 

protocol for the immunolocalisation of osteocytic RANKL in collaboration with Professor 

Larry Suva at the University of Arkansas for Medical Sciences and were able to identify 

multiple different suitable positive control cell populations in bone sections. Despite 

significant reductions in bone mass and the concurrent increase in the expression of 

sclerostin, disuse was not associated with changes in osteocytic RANKL protein expression 

in tibial cortical bone of young mice.  

The original hypothesis that changes in loading may alter RANKL expression is supported 

by other studies published after this project was started. Pichler et al [645] demonstrated 

a decrease in RANKL expression in tibial trabecular osteoblasts following whole body 

vibration, whilst Plotkin et al [461] demonstrated an increase in RANKL positive osteocytes 

in vertebral bone following tail suspension (disuse). Both evaluations were, however, 

performed in primarily trabecular bone of young mice. We evaluated changes in 

diaphyseal cortical bone following SN or axial tibial loading as we were interested in the 

cortical bone adaptive response. This shows that there can be compartment specific 

(trabecular vs cortical) responses to the mechanical environment. 

RANKL mRNA expression was also unaffected following both disuse and loading, despite 

changes in the expression of sclerostin. Other reports have demonstrated increases in 

RANKL mRNA expression following disuse [21, 614, 630] but these studies have examined 

the response in trabecular bone following tail suspension. The findings of the experiments 

described in Chapter 4, combined with existing studies suggest that regulation of RANKL 

expression in trabecular bone appears more important to the remodelling response than 
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changes in diaphyseal cortical bone. Further work exploring the effect of disuse on RANKL 

expression between several different sites will help elucidate any site-specificity to the 

changes seen following unloading. 

However, as the expression of RANKL, in cortical bone at least, using the experimental 

techniques reported in this chapter, did not change in response to either increased or 

decreased levels of mechanical loading, we chose not to pursue RANKL as an endpoint for 

analysing the cellular response to loading and unloading in cortical bone for further 

studies described in this thesis. The investigation of mechanisms involved in bone biology 

has been dominated in recent years by cell-specific conditional mutation of certain genes 

to help prise apart the details of the pathways concerned. Further studies on the 

mechanical-load associated regulation of formation and resorption particularly focused 

on RANKL expression will be best pursued using genetically manipulated mice, and in 

particular, conditional knockout strains to help dissect the mechanisms involved in the 

regulation of the mechanostat. 

8.3 Disuse “rescues” the age-impaired osteogenic response to loading in 

old mice. 

Prior to evaluating the effect of prior disuse on the loading response in old female mice, 

we used the recently developed Site-Specificity Analysis (SSA) software [7] to describe the 

bone-wide effects of 3 weeks of SN on the tibias of old female mice. This novel tool helped 

define an increase in bone loss, with subsequent increase in cortical porosity, primarily in 

the proximal cortical bone, demonstrating the usefulness of SSA in defining the response 

to treatment in old mice although some limitations were evident in particularly porous 

bone, as discussed in the original publication [7]. 

Our finding that prior and concurrent disuse improves the magnitude of the loading 

response in mice is not novel [35], however, our demonstration that the age-impaired 

loading response can be rescued by preceding loading with a short period of disuse 

engendered by SN is both novel and important. It suggests that the impairment of the 

loading response is not due to an intrinsic failure of the mechanisms involved in bone 
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formation seen following mechanical loading, but rather a rescuable reduction in the 

efficacy of these mechanisms that are effective in the young, healthy skeleton. 

Additionally, the rescue response is primarily due to an increase in the periosteal 

formative response, which directly improves the resistance to bending force better than 

the endosteal formation which is primarily stimulated in loading of normally ambulatory 

old mice [29]. 

Our results are supported by the findings of a recent study exploring the effect of 

prolonging the duration of disuse prior to loading in aged mice, which confirmed prior SN 

resulted in the “rescue” of age-impaired loading response, and that a longer duration of 

disuse (100d vs 5d) resulted in more robust increases in load-induced cortical bone 

formation in old mice [657]. Furthermore, in this study the trabecular bone loading-

response was not rescued by prior disuse of any duration, similar to our findings.  

The results of our study were limited by statistical power due to low experimental 

numbers, high experimental variability and experimental losses. However, our findings are 

supported by those of Meakin [4]. These experimental findings have been subsequently 

combined to yield the publication included in Appendix 4 [9], in which the author was joint 

primary author. Furthermore, the rescue phenomenon reported was also evident in the 

results of the experiment included in Chapter 6. 

That reducing habitual loading of the tibia in aged mice by SN increases the periosteal 

osteogenic response to short periods of dynamic artificial loading suggests that the strain-

related stimulus arising from ongoing normal ambulatory loading may modify the 

magnitude of the response to short periods of abnormal osteogenic stimulation. These 

results also suggest that there is no absolute inherent age-related impediment, either to 

the accurate assessment of strain and subsequent perception of strain, or to loading-

related periosteal expansion in response to appropriate loading. As far as the data from 

old mice can be extrapolated to old humans, modification of the pattern of loading of 

bone may be able to improve the osteogenic response to loading and thus bone mass, 

although further studies which modify the pattern of loading applied to the bones of the 

elderly, to determine the effect on the adaptive loading response are necessary. Whilst 



Chapter 8 - General Discussion 

 

343 
 

intentionally promoting disuse as an amplifier of the mechanostat cannot be advocated 

for human activity programmes, modified exercise programmes which alter the pattern of 

experimental loading to take advantage of the proposed strain-averaging mechanisms 

underlying the observed rescue should be considered.  

8.4 Disuse-mediated “rescue” of the age-impaired adaptive loading 

response is not mediated by remodelling associated with prior disuse 

The bisphosphonate, risedronate was shown to result in increased cortical bone mass and 

thickness, but to have no effect on trabecular bone. This was different to the effects 

reported in young mice [34]. This suggests that caution should be exercised in 

extrapolating age-sensitive results from experiments in young animals. Despite the age-

specific differences in risedronate effects on control bones, the response to mechanical 

loading in old mice, as in young mice, was not affected by concurrent treatment with the 

anti-resorptive treatment, risedronate. This suggests that the anabolic response to 

loading, although diminished in old mice, is probably mediated by a bone modelling 

response, as in young mice [34]. 

The lack of effect of risedronate on the loading response in SN mice also suggests that an 

increase in basal remodeling associated with prior disuse is not involved in the observed 

“rescue” of the osteogenic response to loading seen in these old animals and that the 

likely mechanism involved in the observed rescue does not involve the processes of 

osteoclast:osteoblast coupling. This is consistent with our primary hypothesis that the 

observed rescue is mediated by a reduction in the strain-related stimulus normally 

associated with habitual loading permitting a more robust response to exogenously 

applied load and is inconsistent with the remodelling-based hypothesis.  

Although this experiment has helped better define the mechanisms involved in the 

observed “rescue” seen following prior disuse in mice, quantification of osteoclast activity, 

using histochemical techniques, such as TRAP staining, and dynamic histomorphometric 

parameters, using fluorochrome labelling or in vivo μCT scanning, could have provided 

further mechanistic insight into this phenomenon. Our original intent was to evaluate the 
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relationship of RANKL expression to the observed effect, but due to our lack of observed 

response in chapter 4, this objective was not pursued. 

To the extent that the situation in old mice can be extrapolated to old humans, the 

benefits of risedronate treatment in maintaining bone mass are achieved without any 

impairment on the bone gain potentially conferred by increased loading. As remodeling is 

a more prevalent part of the adaptive response in humans, compared to that in mice, it is 

possible that the response in humans could be different to that in mice. As an extension 

of the proposed exercise programmes mentioned at the end of section 8.3, including 

humans who are treated with either bisphosphonates, or a placebo could help distinguish 

if any effect on the loading-related adaptive response engendered by the pattern of 

mechanical load applied is mediated by bone remodeling. 

8.5 The anabolic response to PTH treatment is maintained following 

impairment of resorption in old mice. 

In addition to mechanical loading in mice, parathyroid hormone (PTH) is one of the few 

stimuli which has been shown to reliably act as an anabolic treatment for bone. As we had 

demonstrated that mechanical loading and the associated rescue of the age-impaired 

loading response in old mice was mediated through a modelling-based bone formation, 

we next chose to investigate the effect of another potently anabolic treatment, PTH, on 

bone mass in old mice, and the effect of concurrent treatment with the anti-resorptive 

drug, risedronate. PTH resulted in potent anabolism with periosteal bone apposition, but 

marked increase in cortical porosity, consistent with the findings of our recent publication 

[388]. When combined with risedronate, bone mass was additively increased with 

consequent increases in moments of inertia. Inhibiting resorption through use of 

risedronate does not appear to impair the anabolic effect achieved by intermittent 

administration of PTH in old mice. Furthermore, despite observing a limited loading 

response in these very old mice, we have also demonstrated that neither PTH, nor 

risedronate, negatively affected the magnitude of the loading response, and in fact, PTH 

treatment resulted in a mild improvement load-related change in periosteal area in the 
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proximal bone of very old (22-month-old) mice, supporting the findings previously that 

both PTH and Risedronate act additively to the anabolic stimulus of loading to further 

improve cortical bone mass [34, 388]. This suggests that active resorption is not necessary 

to permit the anabolic activity of PTH to proceed.  

The present study was performed in very old (22m old) mice, older than the mice used in 

the previous experiments involving old female mice in this thesis, and also older than the 

mice used in other experiments performed by our laboratory using old mice, which were 

all 19-months-old [7, 9, 29, 285, 388, 396, 413, 686]. This increase in age was due to an 

unavoidable operational complication which delayed the start of the planned experiment 

by 3 months, but unfortunately limits the ability to compare to previous studies in this 

thesis and also in our other studies. Regardless, it demonstrates the further deterioration 

in the integrity of the loading response with advancing age. Additionally, we reduced the 

loading target strain to 1800με, from 2500με in prior experiments, although this was to 

ensure that we did not saturate the anabolic response, given we were also administering 

the potently anabolic PTH. Furthermore, the study by Meakin et al [388] used a target 

strain of 1800με and still achieved a significant loading response in 19m-old mice. To 

further confirm the anti-resorptive effect of risedronate, evaluation of osteoclast activity 

using TRAP staining to evaluate osteoclast numbers and serum evaluation of Collagen type 

1 cross-linked N-telopeptide to evaluate bone resorption. This would help increase 

confidence in the findings of the experiment.  

There has been increasing clinical interest in the combined use of drugs licensed for 

treatment of osteoporosis in recent years. The prospect of both improving bone 

formation, and reducing bone resorption through subsequent uncoupling of the 

remodelling pathway holds promise. Combined use of anti-resorptives and anabolic 

therapies has, however, demonstrated variable success. Recent meta-analysis of clinical 

trials exploring combined treatment of PTH with bisphosphonates has demonstrated that 

the sequence of treatment is important in the observed effect. Although there may be 

some degree of impairment in the anabolic effect of PTH in certain trabecular skeletal 

locations if its use is preceded by bisphosphonate treatment, in general PTH treatment 



Appendix 4 

 

346 
 

used prior to, or concurrently to bisphosphonates (or other anti-resorptives) generally 

results in additive positive effects to bone mass – particularly in the hip and spine [382]. 

Therefore, pursuit of strategies that combine individual treatment to maximise the net 

benefit to bone mass, and more importantly, fracture risk will become increasingly more 

important as the average age of the population of the developed world increases. 

There may be some synergistic effect of combined treatment with PTH and risedronate 

on bone’s osteogenic response to loading in a site-specific manner, with the distal cortical 

bone demonstrating a greater periosteal woven bone response to loading following 

combined treatment that was not evident following monotherapy with either agent. This 

observation needs further investigation to confirm the finding, and if repeatable, to 

establish the mechanisms behind it. Use of site-specific cellular histomorphometry, such 

as immunohistochemistry of key osteoregulatory proteins such as sclerostin Connexin 43 

and periostin to determine the cellular mechanisms behind this periosteal proliferative 

response could help delineate the pathways involved in this apparent synergism of loading 

with combined PTH/risedronate treatment.  

The clinical implication of the findings of this experiment are that any potential beneficial 

effects of exercise in the elderly should not be abrogated by PTH, risedronate or a 

combination of both therapies, however human trials exploring the effects of combined 

treatment with exercise/loading are lacking. 

8.6 Conclusions and implications 

The studies described in this thesis explored the effect of altering the context on which 

mechanical loading was applied to determine their effects on the age-impaired adaptive 

loading response in old mice.  

1. Loading for between 2 and 3 weeks provides the optimal duration of loading to 

evaluate both histomorphometric and μCT parameters in murine bone. The 

magnitude of unilateral bone loss associated with disuse engendered by SN is not 

affected by concurrent contralateral sham surgery. 
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2. RANKL expression is unchanged following both disuse and increased loading in 

female mice, suggesting changes in its expression are not necessary for the 

adaptive changes associated with altered mechanical loading. Secondly, as 

changes in its expression were not identifiable, its use as an experimental endpoint 

to evaluate response to mechanical loading is not recommended. 

3. Prior disuse “rescued” the impaired response to mechanical loading in old female 

mice, suggesting that recent mechanical loading history modulates the response 

to loading and can restore the deficient response evident in old mice. 

4. Risedronate treatment provided additive effects to mechanical loading in cortical 

bone of old female mice and concurrent risedronate treatment with disuse 

induced by SN did not impair the observed “rescue” phenomenon, suggesting that 

the mechanism behind the observed “rescue” is not based on an increase in the 

basal rate of remodelling promoted by disuse, but rather is associated with the 

nature of the existent strain environment. 

5. Risedronate treatment does not impair the anabolic effect of PTH, nor does it 

affect the magnitude of the (already age-impaired) loading response in old female 

mice. This suggests that the anabolic effect of PTH on bone in old mice is not 

dependent on the increased bone remodelling activity promoted by its use.  

 

Implications and further work 

Although apparently essential for the bone loss associated with disuse, due to our failure 

to identify any detectable change in its expression following either disuse or increased 

loading, use of RANKL expression as an endpoint in later chapters was abandoned for this 

thesis. It appears, however, that the response of RANKL expression to mechanical loading 

may be different between the trabecular bone, and cortical bone, although no direct 

studies exist comparing the response to loading of both regions with the relative 

expression of RANKL. Combining longitudinal in vivo μCT of both trabecular and cortical 

bone with histomorphometry and RANKL immunostaining may help determine if there is 

a site-specific difference in the response to changes in mechanical loading.  
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With respect to the potential clinical relevance of the pre-clinical findings in old mice from 

chapters 5-7, modifying the activity regimen of patients to incorporate reduced frequency 

but higher impact activity, instead of frequent low-impact activity may provide a non-

pharmaceutical strategy to increase bone mass in a structurally appropriate manner. 

Bisphosphonates are commonly used as a frontline treatment for patients with low bone 

mass and increased risk of fragility fractures. As far as the results of experiments in old 

mice can be extrapolated to old people, use of risedronate should not affect the beneficial 

effects of mechanical loading, and if used in conjunction with PTH, should provide additive 

effects on cortical bone mass, without affecting the response to mechanical loading.  

As mechanical loading provides a structurally appropriate adaptive response by providing 

strength where it is most needed, further studies leading on from the work reported in 

this thesis should focus on strategies which rescue the impaired mechanical loading 

response, such as altering the habitual strain environment with prior disuse, and the 

molecular mechanisms which underpin these phenomena. By exploring the molecular 

mechanisms underlying these observed “rescue” phenomena, further detail may be 

gleaned which aids the understanding of the loading-responsive pathways affected by 

aging. 

Technically, use of in vivo longitudinal μCT techniques, and other global bone assessment 

techniques such as SSA should be used to give a “whole-bone” assessment of the effects 

of given interventions which will permit a better global assessment of the effect of 

interventions and allow their correlation to computed endpoints, such as finite element 

modelling. Furthermore, following identification of potential candidate genes involved in 

these “rescue” strategies, the use of conditional cell-specific knockout strains of mice will 

help further dissect the complex cellular mechanisms involved in the age-related 

impairment of loading response. Further appreciation of these cellular mechanisms will 

also help identify selected strategies which could further augment the age-impaired 

response.  

In addition to PTH, another anabolic therapy of particular interest to our laboratory is 

sclerostin antibody, which will hopefully be available for clinical use shortly, although it is 
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currently still in Phase III clinical trials with the US and European regulatory authorities. It 

appears there is a repeatable benefit to the magnitude of the loading response following 

reduction in sclerostin. Genetic deletion of osteocytic sclerostin, and its inhibition with 

antibodies alone have both been shown to be anabolic in mice but have also been shown 

to augment the adaptive response to mechanical loading in young mice [33, 372]. To 

confirm that the mechanostat in old animals can also be stimulated to improve the 

magnitude of its response to loading, future studies should explore the effect of sclerostin 

inhibition on the age-related impairment of the adaptive loading response in old mice as 

this could provide another avenue to “rescue” the impaired loading response. These 

studies, in addition to having strong clinical implications for patients with low bone mass, 

would also provide strong evidence that sclerostin is important in the pathways involved 

in the mechanostat and could be, at least in part, responsible for the impaired response 

to mechanical loading in old mice. Further human clinical trials should explore the effect 

of sclerostin antibody on the response to exercise/mechanical loading in osteoporotic 

people to see if the diminished response can be rescued. 

Considering their reported involvement in bone’s response to mechanical loading, further 

investigation of Periostin [630, 662] and Connexin 43 [606, 659] as potential mechanistic 

signalling steps involved in the age-impaired loading response may help provide further 

targets and potential strategies to “rescue” the impaired loading response should also be 

considered. Pursuing these strategies to improve the loading response by combining 

treatments in old mice could provide “smart” anabolic strategies which improve bone 

mass and strength in areas where it is needed to effectively and efficiently combat age-

related osteoporosis and other age-related bone disease. 
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Appendix 1 

CTAn μCT analysis task lists 

 

Step number Procedure 

1 

Thresholding – Binarising images 
Mode,Global 
Lower grey threshold: 100  
Upper grey threshold: 255  

2 

Despeckle 
Type: Remove white speckles (2D 
space) 
Area: less than 100 pixels 
Apply to: Image 

3 

Despeckle 
Type: Remove black speckles (3D space) 
Volume : less than 20 voxels 
Apply to: Image 

4 

ROI shrink-wrap 
Mode : Shrink-wrap (2D space) 
Stretch over holes with a diameter in 10 
pixels 

5 2D analysis 
 

Table A1. 1 - CTAn tasklist for analysis of cortical bone parameters in young mice tibias 
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Step number Procedure 

1 

Thresholding – Binarising images 
Mode,Global 
Lower grey threshold: 100  
Upper grey threshold: 255  

2 

Despeckle 
Type: Remove white speckles (3D 
space) 
Area: less than 20 voxels 
Apply to: Image 

3 

Despeckle 
Type: Remove black speckles (3D space) 
Volume : less than 10 voxels 
Apply to: Image 

4 

ROI shrink-wrap 
Mode : Shrink-wrap (2D space) 
Stretch over holes with a diameter in 26 
pixels 

5 2D analysis 
 

Table A1. 2 - CTAn tasklist for analysis of cortical bone parameters in old mice tibias 
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Step number Procedure 

1 

Thresholding – Binarising images 
Mode,Global 
Lower grey threshold: 100 
Upper grey threshold: 255 

2 

Despeckle 
Type: Sweep (3D space) 
Remove: all but the largest object 
Apply to: Image 

3 Bitwise operations 
<Clipboard> = COPY <Image> 

4 

Morphological operations 
Type: Closing (2D space) 
Kernel: Round 
Radius:   7 
Apply to: Image 

5 

Despeckle 
Type: Remove black speckles (2D space) 
Area: less than 400 pixels 
Apply to: Image 

6 

Despeckle 
Type: Sweep (3D space) 
Remove: all except the largest object 
Apply to: Image 

7 Bitwise operations 
<Region of Interest> = COPY <Image> 

8 Bitwise operations 
<Image> = COPY <Clipboard> 

9 3D Analysis 
 

Table A1. 3 - – CTAn tasklist for analysis of cortical bone porosity 
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Table A1.4  

Step number Procedure 

1 

Thresholding – Binarising images 
Mode,Global 
Lower grey threshold: 100 
Upper grey threshold: 255 

2 

Despeckle 
Type: Sweep (3D space) 
Remove: all but the largest object 
Apply to: Image 

3 Bitwise operations 
<Clipboard> = COPY <Image> 

4 

Morphological operations 
Type: Closing (2D space) 
Kernel: Round 
Radius:   7 
Apply to: Image 

5 

Despeckle 
Type: Remove black speckles (2D space) 
Area: less than 1000 pixels 
Apply to: Image 

6 

Despeckle 
Type: Sweep (3D space) 
Remove: all except the largest object 
Apply to: Image 

7 Bitwise operations 
<Region of Interest> = COPY <Image> 

8 Bitwise operations 
<Image> = COPY <Clipboard> 

9 3D Analysis 
 

Table A1. 4 – CTAn tasklist for analysis of trabecular and cortical bone porosity in 
proximal tibial metaphyseal bone of mice 
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Table A1.5  

Step number Procedure 

1 

Thresholding – Binarising images 
Mode,Global 
Lower grey threshold: 100  
Upper grey threshold: 255  

2 

Despeckle 
Type: Remove white speckles (3D 
space) 
Area: less than 10 voxels 
Apply to: Image 

3 

Despeckle 
Type: Remove black speckles (3D space) 
Volume : less than 10 voxels 
Apply to: Image 

4 3D analysis 
 

Table A1. 5 – CTAn tasklist for analysis of trabecular bone parameters in old mice tibias 
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Appendix 2 

Immunohistochemistry Protocols 
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IHC Staining protocol for mouse RANKL on parrafin-embedded bone 

Step Procedure Location Time Temp Done 
1 XYLENE In slide rack 5 min room temp   
2 XYLENE In slide rack 5 min room temp   
4 100% EtOH In slide rack 5 min room temp   
5 100% EtOH In slide rack 5 min room temp   
6 80% EtOH In slide rack 5 min room temp   
7 70% EtOH In slide rack 3 min room temp   
8 DISTILLED WATER In slide rack 10 min room temp   
9 PBS pH 7.6 Hellendahl Jar 5 min room temp   

11 
Citrate Buffer 10mM pH 6.0 (Place slides in 
when hot then leave at room temp to cool) Coplin Jar 2 hours 

Microwave 
(~90°C)   

12 PBS pH 7.6 Hellendahl Jar 5 min room temp   

13 
Peroxidase Blocking Solution (keep in 
dark) Hellendahl Jar  5 min room temp   

14 PBS pH 7.6 Hellendahl Jar 5 min room temp   
14 PBS pH 7.6 Hellendahl Jar 5 min room temp   

15 
Apply PAP pen (control sections on each 
slide)         

16 BLOCKING SERUM 1.5% on slides in 
box 1 Hour room temp   

  Shake excess from slides     room temp   

17 
primary antibody/negative(diluent) RANKL 
ab (Santa Cruz 1:50) 

on slides in 
box overnight   @ 4oC   

  

while slides are coming to room 
temperature prepare the secondary 
antibody         

  in accordance with preparation sheet.         
18 PBS pH 7.6 Hellendahl Jar 5 min room temp   
19 PBS pH 7.6 Hellendahl Jar 5 min room temp   
20 PBS pH 7.6 Hellendahl Jar 5 min room temp   

  
Prepare ABC solution as per prep sheet;let 
stand at RT     room temp   

  for 30 minutes before using.         

21 Apply Biotinylated Secondary Ab (Kit) on slides in 
box 30 min room temp   

22 PBS pH 7.6 Hellendahl Jar 5 min room temp   
23 PBS pH 7.6 Hellendahl Jar 5 min room temp   
24 PBS pH 7.6 Hellendahl Jar 5 min room temp   

25 Apply ABC to sections and incubate on slides in 
box 30 min room temp   

26 
prepare DAB in accordance with solution 
preparation sheet.         

27 PBS pH 7.6 Hellendahl Jar 5 min room temp   
28 PBS pH 7.6 Hellendahl Jar 5 min room temp   
29 PBS pH 7.6 Hellendahl Jar 5 min room temp   

30 Apply DAB and incubate for on slides in 
box 

30 sec-
10 min room temp   

31 Distilled Water Hellendahl Jar 5 min room temp   
32 Distilled Water Hellendahl Jar 5 min room temp   
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SOLUTION PREPARATION FOR PROCEDURE.   
Solution Amt Needed 
Phosphate Buffered Saline (Sigma) Mix Distilled Water 800 ml with 1 pck of  1-2 Liters 
Phosphate Buffered Saline (Sigma) packet. QS to 1000 ml with distilled water.   
    
10.0 mM Citric Acid pH 6.0 ( Dako Antigen Retrieval Solution)  100ml/8 slides 
Peroxidase Solution :  10 ml of 30% Hydrogen Peroxide and 90 ml of Methanol 100ml/8 slides 
    
Blocking Serum Solution 1.5%: In mixing bottle 1 (blue cap), combine    
75ul normal blocking serum stock with 5 ml PBS 800ul/slide 
   
Primary Antibody: Santa Cruz RANKL Antibody (N-19): sc-7628 - Dilute 1 in 50 
with  200ul/slide 
dilute blocking serum solution initially. May need higher dilution.  
   
for negative control use blocking serum 1.5%. Could add 1:50 goat IgG   
    
Biotinylated Secondary Antibody:  In mixing bottle 2(green cap) combine 75ul   
normal blocking serum stock, 5 ml PBS and 25ul biotinylated secondary anti- 200ul/slide 
body stock   
ABC reagent: In AB mixing bottle (purple cap) combine 50ul reagent A 
(avidin), 200ul/slide 
50ul reagent B (biotinylated HRP and 2.5 ml PBS. Mix and let stand for 30 
minutes   
Use after 30 minutes of standing.   
    
Peroxidase substrate:(substrate mixing bottle yellow cap) combine 1.6 ml   
distilled water, 5 drops 10x substrate buffer, 1 drop 50x DAB chromagen and   

1 drop 50X peroxidate substrate (sufficient for 15-20 slides) 
1-5 drops per 
section 

    
Mayer's Hematoxylin 300 ml 
Scott's Water 300 ml 

 

33 Dako DAB Enhancer (Optional) on slides in 
box 2 min room temp   

34 Distilled Water Hellendahl Jar 5 min room temp   
35 Distilled Water Hellendahl Jar 3 min room temp   

36 Mayers Hematoxylin on slides in 
box 45 sec room temp   

37 RTW In slide rack 2 min room temp   
38 Scott's Water In slide rack 45 sec room temp   
39 RTW In slide rack 5 min room temp   
40 80% EtOH In slide rack 30 sec room temp   
41 95% EtOH In slide rack 30 sec room temp   
42 100% EtOH In slide rack 30 sec room temp   
43 100% EtOH In slide rack 1 min room temp   
44 Xylene In slide rack 3 min room temp   
45 Xylene In slide rack 3 min room temp   
46 Xylene In slide rack 3 min  room temp   
47 Mount with Permount         

Table A2. 1 – Immunostaining protocol for RANKL 
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IHC Staining protocol for mouse RANKL on parrafin-embedded bone 

Step Procedure Time Temp Done 
1 XYLENE 5 min room temp   
2 XYLENE 5 min room temp   
3 XYLENE  5 min room temp   
4 100% EtOH 5 min room temp   
5 100% EtOH 5 min room temp   
6 95% EtOH 5 min room temp   
7 80% EtOH 3 min room temp   
8 70% EtOH 3 min room temp   
9 Distilled Water 3 min room temp   
10 PBS pH 7.6 5 min room temp   

11 Peroxidase Blocking Solution  5-10min Room Temp   

12 PBS pH 7.6 5 min room temp   
13 PBS pH 7.6 5 min room temp   
14 PBS pH 7.6 5 min room temp   
15 APPLY PAP PEN       
16 10% Rabbit Serum 1 Hour room temp   
17 Blot excess from slides   room temp   

18 
primary antibody/negative(diluent)Sclerostin ab(R&D Goat 
Anti Mouse SOST 1:200) overnight   @ 4oC   

19 
while slides are coming to room temperature prepare the 
secondary antibody in accordance with preparation sheet       

20 PBS pH 7.6 5 min room temp   
21 PBS pH 7.6 5 min room temp   
22 PBS pH 7.6 5 min room temp   
23 Prepare ABC solution as per prep sheet;let stand at RT    room temp   
24 for 30 minutes before using.       

25 
Apply Biotinylated Secondary Ab (Dako Rabbit anti Goat 
1:400) 30 min room temp   

26 PBS Triton 5 min room temp   
27 PBS Triton 5 min room temp   
28 PBS Triton 5 min room temp   
29 Apply ABC to sections and incubate 30 min room temp   

30 
prepare DAB in accordance with solution preparation 
sheet.       

31 PBS Triton 5 min room temp   
32 PBS Triton 5 min room temp   
33 PBS Triton 5 min room temp   

34 Apply DAB and incubate for 30 sec-10 
min room temp   

35 Distilled Water 5 min room temp   
36 Distilled Water 5 min room temp   
37 1% Light Green Solution 45 sec room temp   
38 Running tap water 5 min room temp   
39  80% EtOH 30 sec room temp   
40  95% EtOH 30 sec room temp   
41 100% EtOH 30 sec room temp   
42 100% EtOH 1 min room temp   
43 Xylene 3 min room temp   
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44 Xylene 3 min room temp   
45 Mount with Permount       
SOLUTION PREPARATION FROM R & D USING R& D GOAT HRP-DAB KIT.   
Solution Amt Needed 
Phosphate Buffered Saline (Sigma) Mix Distilled Water 800 ml with 1 pck of  1-2 Liters 
Phosphate Buffered Saline (Sigma) packet. QS to 1000 ml with distilled water.   
    
PBS/Triton mix - 2.5ml Triton 100 to 500ml PBS   
    
Citrate Buffer pH 6.0 10mM   
1.47g in 500ml PBS with 0.5ml TWEEN 20 - adjusted to pH 6.0   
    

Peroxidase Solution :  10 ml of 30% Hydrogen Peroxide and 90 ml of Methanol 
100 -200 ul / 
section 

    
Rabbit Serum 10%    

75ul normal blocking serum stock with 5 ml PBS 
1-3 
drops/section 

    
PRIMARY ANTIBODY DILUTION:  R&D Sclerostin 1:200   
1.0ul Sclerostin Ab                                     X ____________=total amt.__________   
199.0ul Blocking Serum Solution                X ___________ =total 
amt.__________   
mix well keep on ice.   
    
Biotinylated Secondary Antibody: Dako Polyclonal Rabbit Anti Goat- E0466   

1.0ul 2ry Ab                                              X ____________=total amt.__________ 
1-3 
drops/section 

399ul Blocking Serum Solution                X ___________ =total amt.__________   
    
ABC reagent:    

Add 2 drops Reagent A to 5ml Buffer then add 2 drops of reagent B. 
100-
200ul/section 

Mix well and let stand for 30 minutes before use.   
    
Peroxidase substrate: Vector DAB - 2 drops Buffer stock to 5 ml distilled H2O - 
Mix Well   
4 drops of DAB Stock Solution - Mix Well 4ml/10 slides 
2 drops Hydrogen peroxide solution - Mix well.   
    
1% Light Green solution -  300 ml 
for negative control use blocking serum 1.5%.   
RANKL Antibody diluted with blocking serum as per protocol.    

 
 
Table A2. 2 – Immunostaining protocol for Sclerostin 
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Appendix 3 

Experimental data tables 

Chapter 3 

Loading group 2 weeks 3 weeks 4 weeks 
Mouse weight (g) 22.4 ± 0.93 21.92 ± 0.67 22 ± 0.45 
    
Tibial length 
(mm) 

Control 17.86 ± 0.17 17.62 ± 0.25 17.95 ± 0.11 
Loaded 17.98 ± 0.22 17.67 ± 0.3 18.1 ± 0.1 

Cortical bone (37% site)    
Tt.Ar (mm2) Control 1.07 ± 0.01 1.07 ± 0.04 1.13 ± 0.02 

Loaded 1.17 ± 0.02 1.34 ± 0.06 1.39 ± 0.05 

Ct.Ar (mm2) Control 0.63 ± 0.01 0.64 ± 0.02 0.68 ± 0.02 
Loaded 0.8 ± 0.02 0.92 ± 0.05 0.93 ± 0.04 

Ma.Ar  Control 0.44 ± 0.01 0.43 ± 0.02 0.45 ± 0.01 
Loaded 0.38 ± 0.01 0.42 ± 0.02 0.46 ± 0.03 

Ct.Th (mm) Control 0.14 ± 0.005 0.149 ± 0.007 0.147 ± 0.004 
Loaded 0.15 ± 0.001 0.161 ± 0.004 0.174 ± 0.004 

PMI Control 0.23 ± 0.01 0.22 ± 0.03 0.26 ± 0.01 
Loaded 0.31 ± 0.01 0.34 ± 0.03 0.39 ± 0.02 

Trabecular bone site    
BV/TV Control 6.76 ± 1.24 8.55 ± 1 8.32 ± 0.66 

Loaded 10.25 ± 1.68 15.12 ± 1.01 13.07 ± 0.99 
Tb.Th (mm) Control 0.048 ± 0.002 0.047 ± 0.002 0.05 ± 0.002 

Loaded 0.057 ± 0.002 0.066 ± 0.003 0.06 ± 0.005 
Tb.Sp (mm) Control 0.28 ± 0.04 0.23 ± 0.01 0.26 ± 0.01 

Loaded 0.26 ± 0.04 0.22 ± 0.01 0.24 ± 0.01 
Tb.N (/mm) Control 1.4 ± 0.22 1.82 ± 0.17 1.68 ± 0.14 

Loaded 1.78 ± 0.23 2.3 ± 0.15 2.18 ± 0.09 
Tb.Pf Control 28.4 ± 3.15 28.02 ± 2.25 27.92 ± 1.4 

Loaded 22.44 ± 2.8 19.11 ± 0.95 20.11 ± 0.46 
SMI Control 2.04 ± 0.18 2.02 ± 0.06 2.17 ± 0.07 

Loaded 2.11 ± 0.23 2.06 ± 0.1 2 ± 0.11 
Table A3. 1 – The effect of loading duration on µCT parameters in tibial bone of young 
adult female mice following axial tibial loading.  

Values represent mean ± SEM  
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2 weeks 3 weeks 4 weeks 

Ct.Ar Control 0.23 ± 0.01 0.24 ± 0.01 0.24 ± 0.01 
Loaded 0.32 ± 0.01 0.38 ± 0.03 0.4 ± 0.03 

Ct.Th Control 162.4 ± 5.4 166.7 ± 5.5 169.5 ± 5.9 
Loaded 202 ± 6.1 249.7 ± 24.8 283.7 ± 20.9 

Ec.Ir.L.Th Control 8.02 ± 0.91 15.06 ± 8.61 17.02 ± 3.22 
Loaded 25.57 ± 1.6 37.63 ± 6.58 45.31 ± 7.25 

Ec.MAR Control 0.73 ± 0.08 0.84 ± 0.48 0.68 ± 0.13 
Loaded 2.78 ± 0.5 2.09 ± 0.37 1.81 ± 0.29 

Ec.BFR.Bs Control 0.67 ± 0.08 0.73 ± 0.46 0.67 ± 0.14 
Loaded 2.68 ± 0.32 2.05 ± 0.43 1.77 ± 0.29 

Ps.Ir.L.Th Control 3.83 ± 2.94 1.81 ± 1.81 0 ± 0 
Loaded 45.22 ± 2.53 67.32 ± 9.79 80.63 ± 15.07 

Ps.MAR Control 0.35 ± 0.27 0.1 ± 0.1 0 ± 0 
Loaded 4.97 ± 1.06 3.74 ± 0.54 3.23 ± 0.6 

Ps.BFR.Bs Control 0.16 ± 0.15 0.03 ± 0.03 0 ± 0 
Loaded 3.99 ± 0.94 3.11 ± 0.45 2.79 ± 0.46 

Table A3. 2 Dynamic histomorphometry indices following axial tibial loading in young 
adult female mice for 2, 3 or four weeks.  
17w female mice were loaded for three time weekly for 2, 3 or 4 weeks. Fluorochromes 
were administered as specified in  

Table 1. The first and last fluorochrome administered for each group were used to 
calculate the overall value for each parameter for each group. Values represent mean ± 
SEM 

 

 
0-7 DAYS (n=11) 7-14 DAYS (n=8) 14-21 DAYS (n=4) 

Ec.Ir.L.Th 12.87 ± 0.75 17.55 ± 1.96 10.4 ± 3.31 
Ps.Ir.L.Th 14.84 ± 0.85 36.14 ± 3.21 17.43 ± 5.81 
Ec.MAR 1.84 ± 0.11 2.51 ± 0.28 1.49 ± 0.47 
Ps.MAR 2.12 ± 0.12 5.16 ± 0.46 2.49 ± 0.83 
Ec.BFR.Bs 1.66 ± 0.07 2.4 ± 0.3 1.39 ± 0.51 

Ps.BFR.Bs 1.82 ± 0.07 4.93 ± 0.65 2.78 ± 1.12 

Table A3. 3 - Dynamic histomorphometric indices for the first, second and third week 
following induction of axial tibial loading in young adult female mice.  

17w old female C57BL/6 mice were loaded 3 times weekly for up to 28 days. 
Fluorochromes were administered on day 0, 7, 14, 21 and histomorphometric indices 
calculated for each 7 day interval. Values represent mean ± SEM  
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25% site 37% site 50% site 75% site 

T.Ar Left Sham 1.36 ± 0.02 1.11 ± 0.03 0.96 ± 0.01 0.74 ± 0.01  
Right SN 1.3 ± 0.03 1.14 ± 0.03 0.95 ± 0.02 0.72 ± 0.01 

B.Ar Left Sham 0.78 ± 0.01 0.63 ± 0.01 0.58 ± 0.01 0.54 ± 0.01  
Right SN 0.66 ± 0.02 0.53 ± 0.01 0.5 ± 0.01 0.49 ± 0.01 

M.Ar Left Sham 0.58 ± 0.02 0.69 ± 0.02 0.38 ± 0.01 0.2 ± 0.01  
Right SN 0.64 ± 0.02 0.61 ± 0.01 0.45 ± 0.01 0.22 ± 0.01 

PMI Left Sham 0.346 ± 0.008 9.189 ± 0.085 0.13 ± 0.003 0.081 ± 0.003  
Right SN 0.296 ± 0.012 9.709 ± 0.176 0.115 ± 0.004 0.075 ± 0.002 

Cs.Th Left Sham 0.145 ± 0.003 0.846 ± 0.006 0.18 ± 0.003 0.21 ± 0.003  
Right SN 0.121 ± 0.002 0.821 ± 0.007 0.154 ± 0.004 0.192 ± 0.005 

Table A3. 4 – Effect of 3 weeks of right unilateral SN and left sham on cortical µCT 
parameters in 20w old female mice.  

17w-old female mice underwent SN and were killed 3 weeks later then tibias were 
scanned using µCT. Values represent mean ± SEM (n=6). 

 

 

Chapter 4 

 

 

Table A3. 5 - The effect of SN and contralateral sham surgery on sclerostin and RANKL 
expression in osteocytes of the mouse tibia.  

** = p<0.01 versus control limb. Comparisons were made using mixed design two-way 
ANOVA with LSD post-hoc corrections for multiple comparisons. N=4. Values represent 
mean ± SEM 

  

 Sclerostin (n=4) RANKL (n=4) 
Control Disuse Control Disuse 

SN only 64.67 ± 3.29 85.02 ± 3.05** 62.83 ± 3.64 65.53 ± 1.71 
Sham+SN 63.24 ± 5.25 85.9 ± 2.31** 61.5 ± 4.49 61.36 ± 0.69 
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Time point 6h 12h 24h  
Control Loaded Control Loaded Control Loaded 

RNA 
Concentration 

93.14 ± 
8.82 

110.68 ± 
9.86 

98.1 ± 
14.88 

114.38 ± 
22.67 

121.74 ± 
19.24 

123.27 ± 
12.15 

Relative RANKL 
Expression 

0.0064 ± 
0.0007 

0.0057 ± 
0.0008 

0.0042 ± 
0.0004 

0.0035 ± 
0.0003 

0.0051 ± 
0.0008 

0.0054 ± 
0.0009 

Relative OPG 
Expression 

0.0412 ± 
0.0045 

0.0577 ± 
0.0112 

0.0342 ± 
0.0089 

0.0382 ± 
0.0045 

0.0308 ± 
0.0043 

0.0345 ± 
0.0045 

RANKL:OPG 0.1658 ± 
0.0244 

0.1116 ± 
0.0172 

0.162 ± 
0.0318 

0.0972 ± 
0.0098 

0.1752 ± 
0.0238 

0.1767 ± 
0.0351 

Relative SOST 
expression 

0.0898 ± 
0.0087 

0.0557 ± 
0.0077 

0.0665 ± 
0.009 

0.047 ± 
0.0082 

0.0526 ± 
0.0066 

0.0429 ± 
0.0039 

Table A3. 6 – Experiment 1 - The temporal effect of unilateral tibial loading on expression 
of cortical bone RANKL, OPG and SOST.  

Values represent mean ± SEM 
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Appendix 4  

Peer-reviewed papers/conference abstracts.  

Site Specificity Analysis Paper – Frontiers in Endocrinology 
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RANKL – Disuse ASBMR Abstract 
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Disuse rescues the age-impaired adaptive loading response – Osteoporosis 
International 
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Risedronate-loading in aged mice – ASBMR Abstract 2015 

 

 

Risedronate-loading in aged m
ice – ASBM

R Abstract 2015 




