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Abstract 

Prostate cancer is the second most common cancer in males worldwide and the fifth most 

common cause of cancer death among men. Identifying drugs which prevent prostate cancer 

initiation and development is a major goal in the field of cancer research, with a large focus on 

repositioning established medicines to reduce the time and cost of drug development and 

decrease adverse side effects in patients. Epidemiological and in vitro studies suggest that 

aspirin (NSAID) and metformin (first-line agent in type II diabetes) are negatively associated with 

prostate cancer risk and mortality although considering their overlapping function, it is perhaps 

surprising that little is known about using these drugs in combination for the prevention or 

treatment of prostate cancer.  

The aim of this PhD thesis was to assesses the effect of aspirin and metformin on prostate cell 

proliferation and migration to determine whether the drugs in combination have the potential 

to reduce tumour growth and prevent the formation of secondary cancer sites. Four prostate 

cell lines: prostate epithelial cells, PNT2 and three cancer cell lines; PC3, DU145 and LNCaP were 

treated with therapeutic concentrations of aspirin (up to 2 mM) and metformin (up to 30 µM). 

Cell counting, tritiated thymidine incorporation assays and western blotting measured changes 

in cell growth and markers of proliferation, while annexin V and Q-VD-OPh assays measured 

apoptosis. In addition, PC3 cells were grown as 3D spheroids to observe the effect of the drugs 

in a model which better represents the cell to cell interactions and surrounding environment 

seen in vivo. Wound healing assays were used to examine drug induced changes in cell migration 

and western blotting and qPCR assessed associated changes in key signalling molecules.  

The results show that aspirin alone was highly effective at inhibiting 2D culture cell proliferation 

and inducing cell death in the androgen dependent, p53 positive LNCaP cell line while 

therapeutic concentrations of metformin had no effect on either of these outputs. In the more 

advanced androgen independent, p53 negative, PTEN negative PC3 cell line treatment with 

aspirin alone decreased cell proliferation while cells were unresponsive to metformin. Together 

the drugs additively inhibited cell proliferation in 2D culture and importantly the combination 

decreased spheroid growth in 3D cell culture more than when dosed with each drug individually. 

With the non-tumorigenic PNT2s, neither metformin nor aspirin significantly affected cell 

proliferation or apoptosis, highlighting the possibility that the drugs more readily target cancer 

cells as reported in other studies. Both aspirin and metformin reduced the migratory capacity of 

the highly invasive PC3 cells, promoting a more epithelial phenotype as seen with an increase in 

E-cadherin and a decrease in N-cadherin, Slug and MMP-9. This effect was enhanced when the 

drugs were used in combination although it was not additive.  
 

In conclusion, the data presented in this thesis supports the use of aspirin and metformin in 

combination to reduce prostate cancer proliferation and cell migration in a subset of cancers. 

As aspirin and metformin appear to target two distinct cancer hallmarks they have a greater 

chance of efficacy in heterogenous tumours, creating a strong therapeutic argument for this 

drug combination. 
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1.1 The prostate gland 
 

1.1.1 The structure of the prostate gland 
 

The prostate is a walnut sized gland found in men, situated under the bladder and surrounding 

the urethra. Its main function is to produce the fluid portion of semen which contains the 

proteins and minerals that will nourish sperm. The prostate is formed during late 

embroyogenesis from the urogenital sinus epithelium (UGE) in a process that is dependent on 

androgen synthesis (1). While the androgen receptor (AR) is not initially required for 

development it is necessary for epithelial differentiation and expression of secretory proteins. 

Several other signalling pathways which mediate interactions during prostate organogenesis 

include the Wnt, fibroblast growth factor (FGF) and Hedgehog pathways. Inhibition of 

noncanonical Wnt5a signalling have been shown to lead to defects in ductal formation (2) and 

mutants for FGF-10 lack prostate budding (3). Similarly, the Shh ligand of the Hedgehog pathway 

is expressed in the UGE and loss of its signalling leads to defective prostate formation (4).  

Histologically, the gland is composed of three differentiated epithelial cell types; luminal, basal 

and neuroendocrine which are supported by the surrounding stroma (Figure 1.1). The luminal 

cells form an epithelial layer which expresses characteristic luminal markers such as Nkx3.1, 

cytokeratins 8 and 18 and the androgen receptor (5). They also produce prostate-specific 

antigen (PSA), a protease which breaks down the seminal coagulum high molecular weight 

polypeptides into smaller proteins and causes the semen to become more liquid. PSA is also 

found in serum and so can be measured in the blood. Basal cells are situated between the 

luminal epithelium and the basement membrane and express p63, cytokeratins 5 and 14 and 

low or undetectable levels of AR. Some rare basal cells have unique marker expression 

comprising of cytokeratins 5, 14, 8, 18, and 19, GSTpi, and p63 (6) and high expression of α2β1-

integrin (7) which make them candidates for epithelial stem cells (1), however there is much 

controversy over this with studies originally suggesting that luminal cells are the cells of prostate 

cancer origin (8) (9). Neuroendocrine cells are very sparse within the prostate and express 

endocrine markers such as chromogranin A and are AR negative. Together these cells cause the 

prostate to have a zonal structure consisting of the central, periureteral transition and 

peripheral zones surrounded by stroma (10).  

 

 

http://www.macmillan.org.uk/information-and-support/prostate-cancer/early-prostate-cancer/diagnosing/how-cancers-are-diagnosed/psa-test/index.html#161352
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Figure 1.1: Prostate Gland Structure 

In a benign prostate gland luminal, basal and neuroendocrine cells are surrounded by the stroma 
composed of smooth muscle tissue, fibroblasts, nerves and lymphatics. The secretory luminal cells 
produce prostate specific antigen (PSA) and prostatic acid phosphatase (PAP). The prostate tissue is 
formed of interconnected glands. Figure adapted from graphic created by Rybak et al, 2015 (11). 
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1.1.2 Functional regulation of the prostate gland 
 

The prostate requires androgens, male hormones, which are essential for prostatic development 

and male sex characteristics to function properly. The Leydig cells in the testes produce 

approximately 90% of androgens which are secreted as testosterone. The other 10% are 

produced by the adrenal cortex as dehydroepiandrosterone (DHEA) which can be converted to 

testosterone in other tissues. Testosterone is the main male hormone and it circulates around 

the body bound primarily to either albumin or sex hormone-binding globulin (SHBG) (12). Only 

1-2% is free (13). When it reaches the prostate, it enters cells either through passive or active 

diffusion (14). Free testosterone or testosterone which has dissociated from albumin enters 

passively while testosterone which is bound to SHBG requires a membrane receptor to enter. In 

the cytoplasm it will either remain as testosterone or will be reduced to a more potent androgen, 

dihydrotestosterone (DHT), by 5α-reductase (5-AR) (15). Both testosterone and DHT can bind to 

the androgen receptor (AR), a commonly expressed receptor in the prostate, which will bind to 

specific DNA segments in promoters of hormone regulated genes called androgen response 

elements (AREs). The receptor-DNA complex associates with co-activators and transcriptional 

elements to control prostate cell division and production of PSA (Figure 1.2). Activation of this 

receptor in androgen dependent cells, such as those of the prostate, enhances the activity of 

cyclin-dependent kinases and down regulates cell cycle inhibitors such as p16 and p21 which 

leads to increased cell proliferation. Androgens can also block apoptosis through inhibition of 

caspase activity, promoting cell survival (16). Therefore, androgen receptor stimulation leads to 

prostatic growth and maintenance (17).  
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Figure 1.2: Androgen receptor activation in androgen dependent prostate cells.  
Testosterone circulates in the blood bound to SHBG. In androgen dependent cells some of the free 
testosterone is converted to DHT by 5α-reductase. Testosterone or DHT binds to the androgen receptor 
which causes the androgen receptor to dissociate from the heat shock factor proteins (HSP) to which it is 
bound and becomes phosphorylated. The androgen receptor dimerizes and is translocated to the nucleus 
where it binds to AREs and increases expression of genes involved in cell proliferation and PSA production.  
 

 

DHT also activates several other growth factors, including insulin like growth factor-1 (IGF-1) and 

epidermal growth factor (EGF) to drive cell division in the prostate (18). Other male androgens 

which are important for prostate development and maintenance include androstenedione, 5α-

androstenedione and dehydroepiandrosterone which are converted to higher potency sex 

steroids and act directly on the prostate.  The normal prostate gland undergoes two growth 

phases during the a man’s lifetime (19). The first is at birth, when the prostate proliferates until 

it reaches the full adult size, and the second is where the prostate ceases its net growth and only 

proliferates for prostatic maintenance. At this stage the rate of cell turnover is balanced by the 

rate of apoptosis. Any imbalances to this cycle, such as androgen receptor activation, will result 

in abnormal growth and potentially prostate cancer progression. In the later stages of prostate 

cancer, the androgen receptor can be activated even in androgen deprived conditions, leading 

to uncontrolled tumour proliferation (20).   
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1.2 The hallmarks of cancer 
 

Cancer cells are characterised by specific traits which distinguish them from normal cells (21). 

Acquiring these traits is a multi-step process, with a build-up of genetic and epigenetic 

alterations conferring growth advantages and resistance to cell death. These traits are 

commonly known as the hallmarks of cancer. Originally six traits were identified, including; 

sustained proliferative signalling, evading growth suppressors, resisting cell death, triggering 

migration and invasion, enabling replicative immortality, and inducing angiogenesis and 

vascularization (Figure 1.3) (21). However, since the original hallmarks of cancer paper was 

published in 2000 other traits have been acknowledged, including; deregulating cellular 

energetics, evading immune responses, tumour promoting inflammation, genome instability 

and mutation (22)  and creating a tumour microenvironment (23). Each of these traits 

contributes to the transformation of normal cells to malignant ones and promotes cancer 

development and survival. In this thesis, three of the cancer hallmarks are focused on; sustained 

proliferative signalling, resisting cell death and triggering migration and invasion.  

 

 

Figure 1.3: The hallmarks of cancer. 
The development of cancer is a multi-step process originally defined by the cells acquisition of six 
biological capabilities. An additional five hallmarks have since been included, adding to the complexity 
that is cancer. 
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1.2.1 Sustained proliferative signalling 
 

Cell proliferation is a requirement for normal tissue maintenance and development. It is a 

carefully regulated process, with signals which both promote and inhibit the cell cycle when 

necessary, carefully balancing the need for growth and repair whilst preventing uncontrolled 

expansion. In cancer cells however, this regulation is lost and the cells continue to proliferate 

even when division is no longer required. Uncontrolled growth can occur in a number of ways 

in cancer, most commonly because cells stop responding to inhibitory signals, they upregulate 

growth promoting factors, signalling receptors become overactive or receptor expression is 

increased (24). Cancers can also become growth factor independent, no longer requiring ligand 

stimulation by activating pathways downstream of the receptor. Usually these alterations are 

caused by mutations in genes encoding tumour suppressors or oncogenes or mutations to the 

receptors themselves. Retinoblastoma protein (Rb), p53 and breast cancer 1 (BRCA1) are 

commonly mutated tumour suppressor proteins as these proteins are fundamental for cell cycle 

control and regulation of apoptosis (25). Rb is expressed in every cell type, acting on the cell 

cycle to prevent a cell advancing to S phase from G1. Normally Rb binds to the E2F transcription 

factor, inactivating it, but loss of Rb causes E2F to bind to the promoter of the cyclin E gene, 

resulting in synthesis of Cdk2-cyclin E complexes which drive cell cycle progression (26). 

Mutations in genes such as cyclin D or CDK4 which control Rb phosphorylation can also mimic 

the effect of Rb loss. p53 is the most commonly mutated gene in cancer, deregulation of which 

is found in almost every cancer type. In response to DNA damage and stress p53 activates p21, 

a cyclin dependent kinase (cdk) inhibitor gene, which binds to various cdks to inhibit cell 

proliferation (27). p53 also induces apoptosis by regulating transcription of the pro-apoptotic 

members of the BCL-2 family amongst others (28). BRCA1/2 act to maintain genomic integrity 

and are nuclear proteins which co-localize with RAD-51 at sites of DNA damage to cause 

homologous recombination repair of double stranded DNA breaks. BRCA1 mutations cause 

problems with cell cycle checkpoints, chromosome duplication and DNA damage repair leading 

to genomic instability thereby exposing the cells to a high risk of malignant transformation (29). 

Oncogenes such as Ras are often activated in cancers causing enhanced proliferative signalling 

due to activation of pathways such as the mitogen-activated protein kinase (MAPK), 

phosphatidylinositol 3-kinase (PI3K) and the Rac/Rho signalling pathways (30).  
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1.2.2 Evading growth suppressors  
 

Evading growth suppressors is a fundamental trait of cancer cells and connects to their ability to 

sustain proliferative signalling. Often, growth suppression is avoided through mutations to 

tumour suppressor genes as discussed above. However, cancer cells can also avoid growth 

suppression by preventing contact inhibition, a process by which cells inhibit proliferation when 

they become confluent, preventing the formation of dense populations and ensuring normal 

tissue homeostasis within the monolayer. One of the ways in which cancer cells do this is 

through inactivation of the neurofibromatosis type 2 (NF2) tumour suppressor gene. The NF2 

gene encodes the protein product Merlin which is a downstream component of the hippo 

pathway and localized at the cell to cell contacts (31). Loss of NF2 causes Merlin to couple cell-

surface adhesion molecules such as E-cadherin to transmembrane receptor tyrosine kinases 

such as the epidermal growth factor receptor (EGFR), strengthening the cadherin mediated cell 

to cell contacts and preventing contact inhibition.  
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1.2.3 Resisting cell death 
 

When cells become damaged they are destroyed in a genetically regulated process called 

apoptosis. This programmed cell death prevents the propagation of DNA errors in cells with 

damaged DNA and limits growth. Apoptosis can be activated by two pathways; the intrinsic 

(mitochondrial) or extrinsic (death receptor) pathways (Figure 1.4) (32). For both pathways 

caspases are central to the mechanism, initiating (caspase-2, -8, -9, or -10) but also executing 

(caspase-3 or -7) the process. In the extrinsic pathway extracellular ligands such as Fas or 

Tumour necrosis factor (TNF) bind to cell surface receptors which triggers the formation of a 

death-inducing signal complex (DISC) and activates initiator caspases 8 and 10. In the intrinsic 

pathway, following an intrinsic lethal stimulus such as genomic stress, BH3-only proteins such 

as BCL-2 interacting mediator of cell death (BIM), BH3-interacting domain death agonist (BID) 

and BCL-2 associated agonist of cell death (BAD) are activated which leads to oligomerization of 

BCL-2 associated X protein (BAX) or BCL-2 homologous antagonist killer (BAK). This triggers 

mitochondrial outer membrane permeabilization (MOMP) and causes the release of pro-

apoptotic proteins cytochrome c and second mitochondria-derived activator of caspases (SMAC) 

into the cytoplasm. Cytochrome c then binds to apoptotic protease activating factor (APAF-1) to 

form the apoptosome which is a caspase 9 activating complex (33). SMAC increases caspase 

activation by binding and neutralizing X-linked inhibitor of apoptosis protein (XIAP) which is an 

inhibitor of caspase 3, 7 and 9. Anti-apoptotic members e.g. BCL-2, B-cell lymphoma extra-large 

(BCL-XL) and myeloid leukaemia cell differentiation protein (MCL-1) sequester pro-apoptotic 

family members, counteracting this process. The balance between pro and anti-apoptotic BCL-

2 members is essential for the initiation of MOMP (34). 

While these pathways work well in normal cells, cancer cells are constantly under stress due to 

genomic instability, hypoxia and oncogene activation and so must avoid the intrinsic apoptotic 

pathway to survive. Cancer cells can bypass the apoptotic response either transcriptionally, 

translationally or post-translationally. An upregulation of anti-apoptotic and downregulation of 

pro-apoptotic gene expression confers apoptotic resistance by reducing the signalling for cell 

death. In normal cells, p53 controls the activation of many pathways involved in apoptosis 

following cellular stresses including APAF-1, BAX, p53 upregulated modulator of apoptosis 

(PUMA) and NOXA. Similarly, cancer cells can induce stabilization or destabilization of pro and 

anti-apoptotic proteins. While BCL-2 and BCL-XL are relatively stable, MCL-1 is rapidly turned 

over, with its protein levels quickly dropping once the apoptotic response has begun (35). Its 

transcription is activated by pro-survival factors such as cytokines and its rapid turnover has 
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been shown to be reduced in cancer cells, preventing the intrinsic apoptotic process. Post 

translational modifications such as ubiquitination or phosphorylation can also change the 

functions of pro or anti-apoptotic proteins. Ribosomal s6 kinase (RSK), a family of proteins which 

are increased in ~50% of prostate cancers compared to normal tissue (36) have been shown to 

phosphorylate APAF-1, preventing its activation and activation of downstream executer caspase 

9.  

The ability of cancer cells to dampen the apoptotic response promotes cell survival and makes 

the cells more resistant to therapies such as chemo or radiotherapy, allowing the cancer to 

survive even when the treatment induces cellular stress and injury. 

 
 

 

 

 

 

 

 
 

 
 
Figure 1.4: The extrinsic and intrinsic apoptosis pathways.  
The extrinsic pathway is a receptor mediated programmed cell death pathway while the intrinsic pathway 

is initiated by intrinsic lethal stimuli such as DNA damage, ER stress, hypoxia and metabolic stress. Both 

pathways lead to the activation of initiator and executer caspases resulting in cell death. Image adapted 

from graphic created by Marquez et al, 2013 (37).  
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1.2.4 Invasion and migration  
 

Cell invasion and migration is a multi-step process by which tumour cells move out from the 

primary tumour and enter the circulatory and lymphatic systems to form a new tumour at a 

distant site. This occurs via a decrease in expression of cell-cell adhesion and attachment 

proteins and an increase in expression of migratory and invasive molecules in a process known 

as the epithelial to mesenchymal transition (EMT) (38).  

 

The change from an epithelial cellular profile to a more mesenchymal one is seen normally in 

the development of structures such as neural tube formation and in wound healing but is also 

upregulated in cancer (39). The transition is mediated by key genes, most importantly E-

cadherin, N-cadherin, vimentin, claudins, occludin, fibronectin, matrix metalloproteinases 

(MMPs) and a variety of transcription factors (Figure 1.5). Epithelial (E)-cadherin forms tight 

junctions with neighbouring cells, holding the cells firmly together. Its expression is frequently 

lost in cancer progression, loosening contact with adjacent cells and allowing the cells to migrate 

away from the primary tumour. The repression of genes encoding claudins, occludin and 

desmoplakin accompanies the downregulation of E-cadherin, loosening contact with the apical 

tight junctions (40). Conversely, Neural (N)-cadherin is frequently upregulated in cancer, 

enhancing cell migration and invasion and promoting cell survival. It does this by inducing 

cellular polarity and organising the actin cytoskeleton to form actin bundles for migration. The 

alteration in gene expression to promote EMT requires multiple transcription factors, including 

SNAIL, homodimeric and heterodimeric basic helix–loop–helix (bHLH) and zinc-finger E-box-

binding (ZEB) transcription factors. Each of these transcription factor families contains several 

transcription factors including SNAI1 (Snail) and SNAI2 (Slug) for the SNAIL group, E12, E47, and 

TWIST1/2 for the bHLH group and ZEB1/2 for the ZEB group (41). Their expression is activated 

early in EMT and they play a central role in development, fibrosis and cancer (40). Together they 

regulate the expression of each other and the expression of genes involved in EMT, repressing 

epithelial associated genes and activating mesenchymal genes. 
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Figure 1.5: Cellular changes in the epithelial to mesenchymal transition. 
Epithelial cells have an intact basement membrane (BM) and high expression of epithelial, cell adhesion 

and junction proteins. As the EMT process begins, these proteins decrease and matrix metalloproteinases 

(MMP2,3 and 9) increase to degrade the BM. EMT transcription factors also increase as do mesenchymal 

markers. In the final stages of EMT there is loss of cellular polarity resulting in increased cell migration. 
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1.2.5 Enabling replicative immortality 
 

In normal tissue, cells undergo cell growth and division to repair and expand damaged tissues. 

Cells only pass through a limited number of division cycles before they either become senescent, 

remaining viable but entering a non-proliferative state, or die. In cancer however, cells require 

unlimited replicative potential to generate tumours and manage to overcome this state of crisis, 

becoming immortal. Evidence supports the notion that telomeres which protect the ends of 

chromosome are involved in this transition to immortality (42). Telomeres are composed of 

many hexanucleotide repeats which shorten with each cell division. Dysfunctional telomeres 

resulting from telomere shortening, activate DNA damage responses (DDRs) leading to cellular 

senescence (43). Therefore, the length of telomeric DNA determines how many cell divisions 

can take place. In cancer the oncogenic alterations allow the cells to bypass senescence, 

continuing to divide and shortening the telomeres. Critically shortened telomeres can undergo 

breakage-fusion-bridge (BFB) cycles where two sister chromatids which lack telomeres fuse 

together (44). During anaphase the chromatids are pulled apart leading to uneven chromatids 

and genomic instability. The absence of a functional p53 gene in cancer has been shown to allow 

cancer cells to survive despite telomere erosion leading to chromosomal BFB cycles (45), 

increasing the mutations within the tumour and accelerating the acquisition of mutant 

oncogenes and tumour suppressors. In addition, cancer cells activate the human TERT gene 

(hTERT) which encodes telomerase, a DNA polymerase which is absent in normal cells but is 

expressed in almost 90% of human cancers (46). Telomerase adds TTAGGG repeats to the end 

of the telomere by using its RNA as a template for reverse transcription (47) thereby preventing 

senescence and cell death. Two cancer specific hTERT promoter mutations have been identified 

(48) which leads to increased telomerase activity, making hTERT a potential therapeutic target 

for cancer. Additionally, the role of the epidermal growth factor receptor (EGFR) pathway as an 

important regulator of telomerase activity is becoming more apparent. The binding of a ligand 

to the EGFR activates three pathways which are often associated with increased proliferation; 

the MAP kinase pathway, the PI3K pathway and the JAK/STAT pathway. In recent studies, EGFR 

activation also induces overexpression of hTERT promoting telomerase expression and driving 

cancer progression (49). Therefore, drugs which target the EGF pathway may reduce cancer 

immortality as well as proliferation. 
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1.2.6 Angiogenesis and vascularization 
 

Vascularization and angiogenesis are important to all tissues, generating new blood vessels to 

provide nutrients and oxygen and to remove metabolic wastes and carbon dioxide. These 

processes are activated during embryogenesis, causing vascular endothelial cells to assemble 

into tubes and sprout new vessel branches. After this, vascularization and angiogenesis are only 

activated transiently in adulthood, during wound healing or female reproductive cycling. In 

tumours however, normally quiescent vasculature begins to grow, in a process known as the 

angiogenic switch, helping to sustain and expand cancerous growths. In animal models and 

humans, angiogenesis is induced early on during cancer development. The angiogenic switch is 

controlled by factors such as signalling proteins which bind to stimulatory or inhibitory receptors 

to either induce or prevent angiogenesis. Vascular endothelial growth factor-A (VEGF-A) is a 

well-known inducer of angiogenesis, encoding ligands to generate new blood vessels (Figure 

1.6). VEGF signalling can be upregulated by hypoxia and oncogenic signalling. Conversely, 

thrombospondin-1 (TSP-1) is a well-known inhibitor of angiogenesis which binds to receptors 

displayed by vascular endothelial cells to promote suppressive signals which reduce endothelial 

cell migration and proliferation necessary for vessel formation (50). In some tumours, 

oncogenes within tumour cells such as Myc and Ras can also increase proangiogenic factors 

through downregulation of TSP-1 (51) and indirectly promoting hypoxia to induce VEGF 

activation (52). Cells within the bone marrow such as neutrophils, macrophages and myeloid 

progenitors are also important for angiogenesis, helping to induce the angiogenic switch and 

sustain the formation of new blood vessels. Often the blood vessels produced by tumours 

display leakiness, erratic blood flow, convoluted and excessive vessel branching, distorted and 

enlarged vessels and are prone to microhemorrhaging due to the aberrant pro and inhibitory 

angiogenic signalling. Despite this, vascularization within a tumour supports cancer growth and 

survival. 
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Figure 1.6: Activation of VEGFR1-3 and NIPR1/2 promotes angiogenesis and vascularization.  
Epigenetic and genetic induction causes production of VEGF-A leading to activation of VEGFR1/2 and 

inducing vasculogenesis and angiogenesis.  
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1.3 Prostate Cancer - Initiation and development 
 

Prostate cancer is the second most common cancer in males worldwide and the first among men 

in 84 countries (53). Its incidence is rising, with over 1.1 million new cases diagnosed in 2012 

alone (54) and although this is in part due to new and improved screening methods and more 

frequent testing, the numbers are still staggering. 

As the prostate develops, genes such as NKX3.1, FOXA1, and the AR are required for cellular 

differentiation during gland formation and maturation (55). However, deregulated activation of 

these genes within a differentiated prostate can promote excessive proliferation and the 

development of prostate cancer. Prostate cancer development is a multifactorial process, driven 

by the interplay of genetic and epigenetic aberrations which cause abnormal gene regulation. 

High grade prostatic intraepithelial neoplasia (PIN) is one of the most established precursors for 

prostate cancer with many studies identifying a strong association between PIN and 

adenocarcinoma (56) (57). PIN is characterized by increased cellular proliferation within the 

ducts of the prostate gland which results in an increase in cellular proliferation markers, luminal 

epithelial hyperplasia, enlargement of nuclei, cytoplasmic hyperchromasia and a reduction in 

basal cells (58). It shares many similar genetic alterations with prostate cancer such as the 

frequent 8p12-21 allelic loss, loss of heterozygosity at chromosomes 6 and 8, gain of 

chromosomes 7, 8, 10, and 12 and decrease in telomere length. However, when PIN progresses 

to cancer there is an elimination of basal cells which can be confirmed by the absence of basal 

cell markers such as p63 and cytokeratins 5 and 14 in biopsy specimens (59). Once the cancer 

has formed, other genetic alterations including myc upregulation, TMPRSS2-ERG translocations, 

PTEN inactivation and EZH2 overexpression promote further cancer progression driving the 

disease to the metastatic form (5) (Figure 1.7).  
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Figure 1.7: Genetic alterations and processes which promote prostate cancer development. 
The development of prostate cancer is a multi-step process by which cells become malignant through a 
series of genetic alterations and processes.  

 

The genetic alterations that occur during prostate cancer development also cause deregulation 

of key signalling pathways involved in tissue homeostasis. These pathways include the PI3K/AKT, 

Wnt/β-catenin, NFKB, JAK/STAT, mitogen activated protein kinase (MAPK) pathways and growth 

factor and androgen receptor signalling (60).  

The PI3K/AKT pathway has been shown to be increased in about 30-50% of prostate cancer 

patients primarily due to loss of the tumour suppressor phosphate and tensin homolog (PTEN) 

which inhibits PI3K/ATK signalling by dephosphorylation of PIP3, a lipid second messenger (61). 

It has also been shown that PI3K/AKT signalling also favours androgen independent growth 

which occurs in the more advance stages of the disease by disturbing the action of ERKs. This 

results in increased cell proliferation despite androgen withdrawal. PI3K/AKT is also known to 

enhance prostate cancer invasion and metastasis by increasing the expression of 

metalloproteinase receptors MT1-MMP, promoting the development of metastatic cancer (62). 

Aberrant AKT signalling as well as mutant forms of β-catenin which have been identified in 

prostate cancer (63) are known to cause phosphorylation and inactivation of glycogen synthase 
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kinase 3 (GSK3) resulting in β-catenin stabilization and nuclear localization (64). Upregulation of 

Wnt pathway members such as frizzled-4 (FZD4) in prostate cancer (65) are correlated with 

higher Gleason scores, increased PSA and metastasis. 

The NFKB pathways also plays a large role in prostate cancer progression and is often found to 

be activated due to increased expression of receptors such as tumour necrosis factor (TNF) 

receptor 1/2 which increases IkB degradation. The NF-KB signaling pathway has an essential role 

in inflammation and innate immunity and has increasingly been recognized as a central player 

in cancer initiation and development (66). Crosstalk between this pathway and transcription 

factors such as p53 and STAT3 modulate NFKB activity, causing an increase in the immune 

defense but can also lead to constitutive activation of NFKB and a pro-tumorigenic effect (67). 

The p65 subunit of NFKB is also reported to increase AR expression (68), and NFKB expression is 

increased at both the mRNA and protein level in androgen independent prostate tumours (69).  

The JAK/STAT3 pathway has long been implicated in prostate cancer development, with the DNA 

repair gene BRCA1 shown to increase cell proliferation and survival through interaction with 

JAK1/2 and STAT3 phosphorylation. In addition, amplification of the STAT5A/B locus and 

activation of STAT3 in prostate cancer results in increased expression and nuclear localization of 

STAT5 and are associated with cell cycle progression, cell survival, angiogenesis and tumour 

invasion.  

Overexpression of IGF, FGF, EGF and KGFs in prostate cancer often results in the activation of 

endogenous Ras and MAPK pathways. Both pathways have been shown to induce prostate 

cancer cell growth independently of the AR by activating transcription factors such as c-myc and 

AP-1, leading to the development of castration resistant prostate cancer (70) (71). Abnormal 

signalling within these pathways promote cancer progression, making these pathways attractive 

therapeutic targets. 
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1.4 Prostate cancer grading and staging 
 
Prostate cancer develops when cells in the prostate lose the ability to regulate growth. The cells 

grow and divide at varying rates, but prostate cancer is often a slow developing cancer contained 

in small foci within the prostate. This slow progression can allow men to live for decades without 

displaying any symptoms or requiring treatment but the risk of developing the disease increases 

with age, with 60% of cases occurring in men over the age of 65 (72). While some cases progress 

slowly, others develop rapidly and are only identified once they have become metastatic and 

localized treatment is no longer an option. Using drugs which could be given before diagnosis 

without affecting a person’s quality of life to slow down cancer progression could benefit these 

cases, giving more time to identify the cancer in its earlier stages. 

 

Prostate cancer is divided into stages depending upon its location and how advanced it is, most 

commonly using the American Joint Committee on Cancer (AJCC) TNM system. This system 

separates cancers depending on five key points; the main tumour (T) ( 

Table 1-1), whether the cancer has spread to nearby nodes (N) (Table 1-2), whether the cancer 

has metastasised to other parts of the body (M) (Table 1-3), the PSA level at time of diagnosis 

and the Gleason score taken during a biopsy or surgery.  Once the stage for each category has 

been determined they can be combined to give the overall cancer stage (73). 
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Table 1-1: Stages of prostate cancer according to the size and localization of the main tumour. 

 

Tumour (T) stage Explanation 

TX The main cancer site cannot be assessed. 

 

T0 There is no sign of cancer. 

 

T1a Cancer is usually found during surgery for benign prostatic 
hyperplasia but is in no more than 5% of the tissue removed 
during surgery. 
 

T1b Cancer is found during surgery for benign prostatic hyperplasia 
but is in more than 5% of the tissue removed. 
 

T1c Cancer is found by needle biopsy that was done because of an 
increased PSA. 
 

T2a Cancer is in half of one side of the prostate gland. 

 

T2b Cancer is in more than half of one side of the prostate gland. 

 

T2c Cancer is in both sides of the prostate gland. 

 

T3a Cancer has broken through the capsule of the prostate gland. 

 

T3b Cancer has spread to the seminal vesicles. 

 

T4 Cancer has spread to other organs nearby. 
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Table 1-2: Stages of prostate cancer depending on whether the cancer has spread to the lymph nodes. 

 

Node (N) stage Description 

NX The lymph node cannot be assessed. 

 

N0 There are no cancer cells in nearby lymph nodes. 

 

N1 There are cancer cells in lymph nodes near the prostate. 

 

 

 

Table 1-3: Stages of prostate cancer depending on whether the cancer has metastasised and its location.  

  

Metastatic (M) 

stage 

Explanation 

M0 Cancer has not spread to other organs. 

 

M1a There are cancer cells in the lymph nodes outside the pelvis. 

 

M1b There are cancer cells in the bone. 

 

M1c There are cancer cells in other places. 

 

 

PSA is a protein produced by both normal and cancerous prostate cells so in males it is normal 

to have small amounts of PSA in the blood. A raised PSA level can be indicative of prostate cancer 

and as a rough guide men with a PSA level of above 3 ng/ml in the age group 55-60 are often 

sent to a specialist for further testing (74). However due to a high number of false positive or 

false negatives results, the use of PSA as a biomarker for prostate cancer is controversial. Indeed, 

in a recent randomized control trial examining the use of PSA screening intervention vs standard 

practice the study did not support the use of PSA testing for population-based screening (75). 

Similarly, the prostate, lung, colorectal and ovarian (PLCO) Cancer Screening Trial in 2009 

indicated no difference in mortality between the PSA screening and control group after a 7 to 

10 years follow-up (76). Contradictory to this, the European Randomized study of Screening for 
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Prostate Cancer trial showed a 27% decrease in mortality for those who had undergone PSA 

testing after a follow-up of 13 years (77). While the benefit of PSA testing is debated, it has been 

the most prominent screening tool for prostate cancer since the 1980s (78) and is still 

recommended to be used before further testing.  

A Gleason score is a prostate cancer grade between 1 and 5 given by pathologists when they 

examine cancerous cells taken during a biopsy or surgery (Figure 1.8). Since not all areas of the 

prostate will be the same, two scores are given, the first describes the most common grade that 

the tumour is made up of and the second score is the second most common grade (79). Grades 

1 and 2 are not commonly used for biopsies as the biopsy is only taken when there is an 

indication of cancer and so most samples tend to score a 3 or higher. The two scores are added 

together to give the Gleason score.   

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.8: Gleason scoring in prostate cancer.  
A score of 1 usually represents normal prostate tissue whereas the closer the score is to 5 the more 
advanced the cancer is. 1- The cells are well differentiated with small, uniform glands. 2- There is more 
space between the glands. 3- There is infiltration of cells from glands at the margins. 4- There are irregular 
masses of neoplastic cells with few glands. The cells are poorly differentiated. 5- There are sheets of cells 
with no or only the occasional gland. Figure adapted from figure on the prostate conditions education 
council website (80)  

Normal tissue Advanced cancer 

1 2 3 4 5 

Gleason scoring of prostate cancer  
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While the TNM grade system is commonly used to characterise prostate cancer, prostate cancer 

can also be more simply divided into three stages; localized to the prostate, locally advanced 

and metastatic prostate cancer (81) (Table 1-4).  

 

Table 1-4: Stage of prostate cancer compared to TNM staging. 
 

Stage of cancer TNM staging 

Localized T1, N0, M0 
T2, N0, M0 
 

Locally advanced T3, N0, M0 
T4, N0, M0 
Any T, N1, M0 
 

Metastatic  Any T, any N, M1 
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1.5 Prostate cancer risk factors  
 
The risk of prostate cancer and whether it develops to a clinically relevant disease is influenced 

by many genetic, lifestyle and environmental factors with the most prominent risk factor being 

age (Figure 1.9). The risk of developing prostate cancer increases with age, with over 60% of 

cases being diagnosed in men over 65 (72).  

 

 

Figure 1.9: Prostate cancer incidence by age.  
Graph created from data obtained from Cancer Research UK. Original data was provided by the Office for 
National Statistics, July 2017, ISD Scotland, August 2017, the Welsh Cancer Intelligence and Surveillance 
Unit, Health Intelligence Division, Public Health Wales, October 2017 and the Northern Ireland Cancer 
Registry, July 2017 (82).  
 
 

Most cases of prostate cancer are not caused by inherited genes and occur due to somatic 

mutations which build up naturally over time due to DNA damage. However, inherited 

mutations found in the breast cancer 1 (BRCA1), breast cancer 2 (BRCA2) and homeobox 13 

(HOXB13) genes do account for about 3% of the hereditary cases (83) (84) (85). Lifestyle and 

environmental factors also play a large role in the development of the disease, influencing 

overall health and exposure to risk factors. Studies have shown that the cancer risk for second 

generation migrants shifts after adopting the lifestyle of the country they have moved to (86). 

In 2004, the The Multiethnic Cohort (MEC) Study examined cancer rates in Japanese migrants 

who had moved to Hawaii, comparing colorectal, breast and prostate cancer rates in the 

Japanese, Hawaiian Caucasians and Japanese’s migrants (87). The study found that Japanese 
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cancer rates were lower than in Hawaiian Caucasians but that cancer rates in first and second-

generation Japanese migrants who had moved to Hawaii were similar to those of Hawaiian 

Caucasians. Other migration studies have also highlighted the effect of lifestyle and 

environmental exposure on cancer rate (88). In addition, ethnicity has also been shown to play 

a role in prostate cancer risk with men of African origin having a higher risk of prostate cancer 

than White and Asian males (89). Comparing age standardised rates for each group, White, Black 

and Asian males have a rate of prostate cancer of 96-66, 120.8- 247.9, and 28.7-60.6 per 100,000 

men respectively (82). It is thought that genetic and epigenetic differences contribute to the 

differences in risk  however no clear molecular basis has been identified (90).  
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1.6 Prostate cancer treatment  
 
Prostate cancer treatment is selected depending on the grade and stage of the cancer with the 

main treatment options including surgery, radiotherapy, chemotherapy and hormone therapy 

(91) (Table 1-5).  As these options can have long-term side effects, doctors tend to avoid 

treatment if it is low risk, localized prostate cancer and suggest active surveillance unless it is 

unsafe to do so. Regular tests such as PSA testing, digital rectal examinations, prostate biopsies 

and MRI scans are conducted to monitor the cancer (92). Treatment occurs if tests show that 

the cancer is growing or if the person requests treatment. However, once the cancer has 

progressed to advanced localized or metastatic, treatment is necessary.  

 

Table 1-5: The most commonly used treatments for prostate cancer. 

 

A radical prostatectomy is an option for men who have localized or advanced localized prostate 

cancer and in this procedure the prostate is completely removed. This aims to remove all 

cancerous cells to reduce recurrence, however, the side effects can include problems urinating 

and impotence as the nerves surrounding the prostate may be damaged.  

For treatment with radiotherapy the structure of the prostate is mapped out and radiotherapy 

and in the UK is given in 20 fractions over 4 weeks (93). This treatment is much less invasive than 

the prostatectomy allowing the person to carry on with normal activities while having 

treatment, but the procedure has side effects and if the cancer comes back or spreads surgery 

may no longer be possible. 

Hormone replacement therapy is often used in combination with other treatments and causes 

the patient’s body to stop producing androgens or prevents them from reaching the cancer cells 

(94). Luteinizing hormone-releasing hormone (LHRH) agonists, gonadotrophin releasing 

Surgery- Radical 
prostatectomy 

Radiotherapy Hormone Therapy Chemotherapy Other 
treatments 

Laparoscopy 
(keyhole surgery) 

External Beam 
radiation 

Adrenal inhibitors 
e.g. Abiraterone 
Acetate 
 

Docetaxel Radium 223 

Robotic 
prostatectomy 

Brachytherapy 
(internal 
radiation) 

Androgen receptor 
inhibitors e.g. 
enzalutamide 

Cabazitaxel High-intensity 
focused 
ultrasound 
(HIFU) 
 

https://prostatecanceruk.org/prostate-information/treatments/hifu
https://prostatecanceruk.org/prostate-information/treatments/hifu
https://prostatecanceruk.org/prostate-information/treatments/hifu
https://prostatecanceruk.org/prostate-information/treatments/hifu
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hormone (GnRH) agonists and anti-androgens are the most common forms of hormone 

treatment. LHRH agonists bind to the LHRH receptor to stimulate the pituitary gland to produce 

luteinizing hormone (LH) which in turn stimulates the production of testosterone by the testes 

(95). Negative feedback due to high levels of LH prevents LH production and causes a reduction 

in testosterone. Similarly, GnRH blockers bind to GnRH receptors in the pituitary gland which 

block the production of LH. Anti-androgens such as bicalutamide antagonize the AR by binding 

to a binding pocket next to the hormone binding site which distorts the coactivator binding site 

and prevents gene transcription (96). While hormone therapy will not remove the cancer, it will 

delay symptoms and cancer growth. However, over time prostate cancer cells can become 

androgen independent, continuing to grow even during androgen deprivation (20). At this stage 

hormone therapy will no longer be beneficial. The side effects can also negatively impact on a 

person’s standard of life causing changes such as, extreme tiredness, weight gain, bone thinning 

and alterations in mood.  

Chemotherapy is a treatment often used alongside hormone therapy or after hormone therapy 

has been given, most often to treat advanced prostate cancer. It uses anti-cancer drugs to target 

all the rapidly dividing cells in the body with the aim of shrinking the cancer and slowing its 

growth. The most commonly used chemotherapeutic drug for prostate cancer is docetaxel 

which binds to microtubule binding sites to increase microtubule assembly and stabilize 

polymers to prevent cell division (97). This causes cell cycle arrest and apoptosis. Other taxels 

such as Cabazitaxel and paclitaxel are also commonly used in prostate cancer treatment (98), 

disrupting microtubule dynamics and inhibiting mitosis. Unlike taxels, mitoxantrone intercalates 

with DNA causing single and double stranded breaks and suppresses DNA repair by inhibition of 

topoisomerase II, sending the cells into programmed cell death (99).While chemotherapy is 

beneficial in controlling symptoms, it is not a localized treatment and has side effects such as 

hair loss, tiredness and sickness.  

Although these are the main treatment options others are sometimes selected depending on 

the person’s requirements. Each option is different, but all have their own advantages and 

limitations. While men can live for decades with localized prostate cancer identifying drugs 

which can delay the need for treatment or help to control the cancer without such a large effect 

on the person’s health is an extremely important goal.   
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1.7 Drug repurposing for cancer treatment 
 
Drug repurposing is the application of an existing therapeutic to the treatment of a new disease 

or indication (100). It is an attractive prospect due to the expense and time it takes to bring a 

drug to market which is usually 10-15 years (101).  Furthermore, most non-repurposed drugs 

fail during clinical trials with less than 15% of drugs that undergo clinical development receiving 

approval (102). For drug repurposing computational screening identifies the most promising 

candidate for a disease while high-throughput testing examines the effect of many drugs at 

once. Identifying new uses for drugs which are known to be well tolerated brings benefits to 

patients much more quickly and without the risks of a new, unfamiliar drug. In cancer treatment, 

repurposing drugs may delay the need for aggressive treatments such as chemo- and 

radiotherapy and improve patient survival without adding unknown risks (103). Two such drugs 

which have been suggested to possess anti-cancer effects are aspirin and metformin. While 
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studies have shown that both drugs may reduce cancer progression, their mechanism of action 

is still not fully understood as discussed in Sections 1. 4 and 1.5.  
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1.8 Aspirin  
 
Aspirin (acetylsalicylic acid) is a non-steroidal anti-inflammatory drug (NSAID), exerting its anti-

inflammatory effects by interfering with the production of prostaglandins and thromboxanes 

through the inhibition of cyclooxygenase 1 and 2 (COX 1 and 2) enzymes (Figure 1.10) (104). 

What differentiates aspirin from other NSAIDs, such as ibuprofen, is that it is an irreversible COX 

inhibitor, acetylating the active site serine residues of the COX enzymes, serine 530 (COX-1) and 

serine 516 (COX-2). This prevents arachidonic acid from binding to the catalytic site, inhibiting 

its metabolism and the formation of prostaglandins. There are four principal prostaglandins 

generated in vivo: prostaglandin D2 (PGD2), prostaglandin (PG) E2 (PGE2), prostaglandin 

F2α (PGF2α) and prostacyclin (PGI2) (105). Aspirin is most commonly prescribed for its anti-

inflammatory and analgesic properties as well as its ability to prevent blood clotting and reduce 

fever. Numerous clinical trials have identified aspirin as a novel candidate for the treatment of 

a variety of different diseases including cardiovascular disease (106) and arthritis (107). 

However, in the past few decades it has also been suggested to possess anti-cancer effects, with 

the potential to be used as a cancer treatment.  

 

Figure 1.10: Aspirin inhibits COX1/2 to prevent the production of thromboxane’s and prostaglandins. 

Membrane phospholipids are acted upon by phospholipase A2 to form arachidonic acid. Aspirin 

acetylates COX1 and 2 enzymes, inhibiting arachidonic acid from binding to the COX catalytic 

site and preventing the synthesis of thromboxanes and prostaglandins 
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1.8.1 Epidemiological studies examining aspirin and cancer treatment 
 

Aspirin is one of the most commonly used drugs in the world which makes epidemiological 

studies extremely powerful in providing evidence to determine whether aspirin is beneficial for 

cancer prevention and treatment or not. In a study that pooled data from seven randomised 

trials to collect information on 23,535 patients it was seen that after 5 years of aspirin use the 

risk of cancer death was 20% lower in the aspirin groups than in the control groups (108). This 

risk remained lower after 20 years and the benefit of aspirin increased with the duration of the 

trial treatment. For stomach, colorectal and prostate cancers the effect of aspirin on cancer 

death was more delayed than for oesophageal, pancreatic, brain and lung cancers. This study 

also determined that the cancer benefit did not increase when doses beyond 75 mg of aspirin 

were taken daily. Currently aspirin is used at a range of doses depending on what the treatment 

is for. Generally, the doses are around 75 mg for antiplatelet activity, 325-600 mg for analgesic 

properties, and 1200 mg for anti-inflammatory action (109). The fact that a benefit with aspirin 

treatment at doses as low as 75 mg has been seen is encouraging, indicating that anti-cancer 

effects occur at doses which are known to be well tolerated. A number of other population 

studies have also supported the idea that aspirin possesses anti-cancer effects and have 

stimulated huge interest in aspirin’s association with cancer risk (110) (111) (112) (113) (114).  

Epidemiological studies examining the effect of aspirin specifically on prostate cancer have also 

found an inverse association with aspirin consumption and prostate cancer risk. In a meta-

analysis involving 24 studies, 14 case-control and 10 cohort studies that assessed the effect of 

NSAIDs on prostate cancer risk they concluded that taking aspirin regularly was associated with 

a reduction in overall and advanced prostate cancer risk (pooled RR= 0.86, 95% CI =0.81–0.92; 

pooled RR= 0.83, 95% CI= 0.75–0.91, respectively) (115). This reduction in risk became stronger 

when patients took aspirin for 4 or more years indicating that the benefit increases with a longer 

duration of use. Other meta-analyses have also found similar benefits (116). Interestingly, it has 

also been seen that the associations been aspirin use and prostate cancer mortality were 

stronger before PSA testing was common (117). PSA testing has led to earlier prostate cancer 

diagnosis, on average by 11 years. This change in strength of association may indicate that the 

benefit of aspirin occurs later in the disease progression and so with more people being 

diagnosed in the earlier stages of prostate cancer by PSA, less of an effect with aspirin is seen.   

Cancers which have shown an inverse association with aspirin consumption include pancreatic 

(118), prostate (111), breast (119), squamous cell carcinoma of the oesophagus (120) and 

ovarian (121) cancers. 
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While the bulk of studies indicate a benefit of aspirin in the reduction of prostate cancer risk 

other studies have found no association. In a nested case-control study which examined the 

effect of five classes of NSAIDs on prostate cancer risk, propionates were seen to cause a modest 

reduction in prostate cancer risk but no effect of aspirin was observed (OR= 1.01; 95% CI =0.95–

1.07) (122). It has been suggested that as aspirin is metabolised extensively in the liver a lower 

concentration reaches the prostate gland, limiting the effect of aspirin. 

Current recruitment is underway for a large clinical trial, Add-Aspirin, which aims to assess 

whether regular aspirin use in patients after treatment for early stage solid tumours prevents 

recurrence and prolongs survival (123). It is a phase 3, double-blind, randomized trial and 

examines patients with breast, colorectal, prostate and gastroesophageal cancers who have 

undergone standard therapy. These patients will take placebo, 100 mg or 300 mg of aspirin daily 

for 5 years. The data obtained will provide large scale information on the regular use of aspirin 

from centres across the UK, republic of Ireland and China and will aid in determining whether 

aspirin is beneficial in post prostate cancer treatment.  
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1.8.2 Molecular mechanism of aspirin in cancer treatment 

 
While epidemiological evidence strongly supports an association between aspirin use and a 

reduction in cancer risk, in vitro and in vivo work aims to test this claim in a more standardized 

condition. This allows variables in the experiment to be controlled and so reduces the complexity 

of the system to give a clearer picture of what effect altering one of the variables will have. In 

vitro and in vivo work also attempts to identify the signalling pathways involved to understand 

the mechanisms behind how the drug is exerting its anti-cancer effects. Aspirin and metformin 

are pleiotropic drugs in that they impact many different signalling pathways. However, the focus 

in research has mainly been on the effect of aspirin or metformin on cell proliferation, cell 

survival and cell migration and invasion as well as testing whether using the drugs in 

combination with other treatments such as radio and chemotherapy improves patient outcome.   

 

1.8.2.1 The effect of aspirin on cell proliferation  

 
Cox dependent mechanisms  
 
The mechanisms behind aspirins anti-cancer effects are often divided into cyclooxygenase 

(COX)-dependent and COX-independent pathways. The COX pathway is one of the most well-

known targets of aspirin, with the drug irreversibly inhibiting COX-1 and COX-2 (Chapter 1, 

Section 1.8), disrupting the generation of molecules which play a key role in the generation of 

the inflammatory response. Chronic inflammation has been suggested to be an important factor 

in promoting prostate cancer progression and is a common problem in men with prostate 

cancer, causing unpleasant symptoms due to enlargement of the prostate (124). Indeed, COX-2 

has been shown to be up-regulated in several cancers including, breast, colorectal, pancreatic, 

head and neck and prostate cancer (125). In a study that examined the expression of COX-1 and 

2 in tumour specimens it was seen that human prostate carcinoma tissue had higher levels of 

COX-2 expression than benign prostatic hyperplasia, prostatic intraepithelial neoplasia and 

normal prostate tissue (126). It is thought that the prostaglandins produced by this enzyme, 

particularly prostaglandin E2 (PGE2) can promote cell proliferation and migration. PGE2 can bind 

to four G-protein-coupled receptors: EP1, EP2, EP3 and EP4. Receptors EP2 and EP4 couple to 

stimulative G proteins and increase intracellular cAMP while EP3 binds to an inhibitory G protein 

and decreases cAMP. Previously, aspirin has been shown to upregulate EP3 expression which 

suppresses LNCaP prostate cell proliferation and downregulates the androgen receptor, 
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preventing progression to castration resistant prostate cancer (127). Furthermore, in mice 

injected with PC3 prostate cancer cells treatment with a COX-2 inhibitor, NS938, reduced 

tumour cell growth and a regression of existing tumours (128). This was due to an increase in 

apoptosis and a reduction in VEGF expression and MVD, indicating that through COX inhibition 

aspirin reduces both cell proliferation and angiogenesis.  

 

 

Cox independent mechanisms  
 
In addition to its COX dependent effects aspirin also has been proposed to exert its anticancer 

action through multiple other signalling pathways. Aspirin is known to interfere with the 

AKT/PI3K pathway, a major pathway involved in regulating cell metabolism, growth, 

proliferation, survival and migration. The AKT/PI3K pathway is activated by stimulation of 

receptor tyrosine kinases, G-protein coupled receptors, integrins, cytokine receptors and other 

stimuli which induce the production of PIP3 by PI3K. These activate AKT, a protein which controls 

the expression of several proteins including AMPK, mTOR, cell cycle proteins and FOXO, and is 

often aberrantly activated in cancer. Aspirin has been shown to reduce mTOR signalling in 

colorectal cancer cells by inhibiting its effectors, s6K1 and 4E-BP1, causing mTOR induced 

autophagy (129). In addition, aspirin alters nucleotide ratios in the cells, activating the energy 

sensor AMPK which has an inhibitory effect on mTOR. Knockdown of AMPK confirms that aspirin 

inhibits mTOR both in an AMPK dependent and independent manner. This strong inhibition of 

mTOR is extremely valuable for cancer treatment as mTOR is a key gene involved in protein 

synthesis and cell proliferation. In another study which examined the effect of aspirin in murine 

H22 hepatocarcinoma and S180 models it was seen that aspirin decreased angiogenesis and 

promoted autophagy in tumours (130). p-mTOR, HIF-1α, and VEGF-A expression were decreased 

while ULK1 and LC3A expression were increased with treatment. This change in protein 

expression was thought to contribute to the phenotypic effects observed. Aspirin has been 

shown to activate AMPK/PI3K signalling or inhibit its downstream effector mTOR in multiple 

other studies (131) (132). 

 

Deregulation of the Wnt/β-catenin signalling pathway is a common occurrence in many types of 

cancer and has been suggested to be an early event in tumorigenesis. Target genes of the Wnt/ 

β-catenin pathway include those which regulate cell proliferation and apoptosis. Studies have 

shown an up-regulation of Wnt1 expression in several prostate cancer cell lines and tissues as 
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well as aberrant β-catenin localization which provides evidence of an important role of Wnt/β-

catenin signalling in prostate carcinogenesis (133).  Aspirin has long been known to target the 

Wnt/ β-catenin pathway and in a study which looked at levels of Wnt/β-catenin signalling in 

different prostate cell lines, it was seen that the highly invasive cancerous cell lines, DU145s and 

PC3s, exhibited higher levels of Wnt signalling than the less invasive LNCaPs and the non-

cancerous cell lines (133). When cells were dosed with a nitric oxide donating aspirin derivate 

cell proliferation was inhibited and this was in part through the Wnt/β-catenin pathway. Wnt/β-

catenin signalling has also been demonstrated to activate the androgen receptor to promote 

prostate cell proliferation (134).  A specific interaction between β-catenin and the androgen 

receptor has also been demonstrated in both prostate and neuronal cells(135). In this, β-catenin 

translocates from the cytoplasm to the nucleus bound to the androgen receptor. This movement 

is stimulated by exogenous androgens and is independent of Wnt molecules.  

 

The NFĸB and STAT3 pathways are two major pathways implicated in cancer development, and 

are both activated due to inflammation, stress and cytokines. Epidemiological evidence has 

identified a link between inflammation and a predisposition to cancer and has indicated that 

inflammation can create a microenvironment more suitable for tumour initiation (136). The 

NFĸB pathway has an essential role in inflammation and innate immunity and has increasingly 

been recognized as a central player in cancer initiation and development (66). Crosstalk between 

this pathway and transcription factors such as p53 and STAT3 modulate NFĸB activity, causing 

an increase in the immune defense but also can lead to constitutive activation of NFĸB and a 

pro-tumorigenic effect (67). Aspirin inhibits the canonical NFĸB pathway, preventing 

phosphorylation of IĸB kinase (IKK) α/β and IκB-α degradation as well as p65 nuclear 

translocation (137) (138).  Studies have shown that aspirins inhibition of IĸB phosphorylation 

induces apoptosis in cancer cells (139).This is also seen in in vivo animal models of colorectal 

cancer after dosing with 40 mg/kg, a concentration which is pharmacologically relevant to 

humans (140).  
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1.8.2.2 The effect of aspirin on cell migration  

 
Cox dependent mechanisms  
 
As well as suppressing the production of prostaglandins, aspirin is also known to affect platelet 

function through inhibition of the COX enzymes, specifically COX-1 (141). Inhibition of COX-1 

suppresses thromboxane A2 (TXA2) synthesis which inhibits platelet aggregation. Platelet activity 

has been shown to be increased in cancer patients with extensive evidence demonstrating that 

platelets play a crucial role in the survival of tumour cells within the vasculature while also 

supporting the formation of tumour metastases (142). Platelets also facilitate vascular adhesion, 

growth factor production such as platelet derived growth factor (PDGF), immune evasion by 

natural killer T (NKT) cells, and pro-angiogenic proteins such as VEGF and thrombospondin-1 

(TSP-1). Inhibition of COX enzymes by aspirin prevents angiogenesis and platelet assisted 

metastasis of tumour cells (Figure 1.11) (143). Co-culturing HT29 colorectal cancer cells with 

platelets leads to an increase in markers for EMT characterised by a downregulation of E-

cadherin and an upregulation of the transcription factor Twist (144). In mice injected with 

platelet primed HT29 cells, treatment with aspirin prevented the platelet increased rate of 

metastasis and production of TXA2 and PGE2. Aspirin is very effective at inhibiting platelets as 

they do not contain a nucleus and are unable to resynthesize the COX-1 enzyme as rapidly as 

nucleated cells (145). Consequently, this allows lower doses of aspirin as well as fewer dosing 

periods to remain effective. 

 

 

 
Figure 1.11:  COX dependent effects of aspirin on tumour cells 
COX1/2 metabolize arachidonic acid to PGH2 which promotes the synthesis of thromboxane A2 (TXA2), 
prostacyclin (PGI2), and PGE2. Aspirin inhibits the COX enzymes and prevents PGE2 induced tumour cell 
proliferation, migration, apoptosis and angiogenesis. Aspirin also prevents PGI2 and TXA2 
induced platelet aggregation and vasoconstriction in blood vessels and platelet facilitated tumour 
migration.  

https://en.wikipedia.org/wiki/Platelet_aggregation
https://en.wikipedia.org/wiki/Vasoconstriction
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Cox independent mechanisms  
 
Aspirin has also been shown to target other pathways involved in cell migration such as the NFKB 

pathway. In a study by Shi et al,  through inhibition of NFKB aspirin suppressed invasion and 

attachment of prostate cancer cells by reducing matrix metallopeptidase 9 (MMP-9) and 

upregulating TIMP metallopeptidase inhibitor 1 (TIMP-1), two proteolytic enzymes involved in 

degrading the extracellular matrix which allows cells to migrate and invade (146). Inhibition of 

NFKB by aspirin in highly invasive PC3 prostate cancer cells has also been demonstrated to 

suppress the secretion of urokinase-type plasminogen activator (uPA), a molecule which 

degrades the extracellular matrix and reorganises the actin cytoskeleton, resulting in decreased 

PC3 cell migration and adhesion (147). In non-small cell lung cancer aspirin has also been shown 

to prevent activation of NFKB and as a result downregulates Slug transcription, preventing Slug 

induced EMT and diminishing the metastatic potential of mutant K-Ras cells (148). In addition, 

aspirin causes ERK pathway inhibition by preventing the binding of c-Raf, a proto-oncogene, to 

Ras, another oncogene which is often overactive in cancer. Mutations that permanently activate 

Ras are found in around 20-25% of all human tumours (149) and evidence is accumulating 

showing that Ras contributes to the invasive responses of cancer cells. Cancers which support a 

mutation in the Ras allele are often highly aggressive and have a poor prognosis. 
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1.9 Metformin 
 

Metformin (1,1-dimethylguanidine) is an oral antidiabetic drug and the most commonly 

prescribed medicine for the treatment of type II diabetes mellitus (150). It is of the biguanide 

class, found naturally in the French Lilac, but first synthesized in the 1920s (151). However, while 

metformin has been prescribed since 1957 in Europe for its glucose lowering effect, it is only 

recently that its mechanism of action is beginning to become understood (152). Because of this, 

while it is considered a well-established drug for the treatment of type II diabetes, metformin 

has quite recently sparked interest in the field of cancer research with the realization that its 

effects could suppress cell growth and development, key to cancer progression (153). 

Metformin is not metabolized and is excreted into the urine unchanged, with a half-life of ~5 

hours. It is widely distributed around the body’s tissues through uptake via organic cation 

transporters, most commonly Organic Cation Transporter 1 (OCT1).  Because of this it is thought 

to be beneficial for the treatment of a number of different cancers with breast, prostate and 

colon cancers suggested to receive the most benefit (152).  
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1.9.1 Epidemiological studies examining metformin and cancer treatment 
 
 
It was first proposed that metformin may possess anti-cancer properties when epidemiological 

data showed that patients who were prescribed metformin for the treatment of type II diabetes 

seemed to have decreased overall cancer related mortality and cancer occurrence.  In a meta-

analysis of 24 studies; 11 observational cohort studies, 3 randomized control trials (RCTs) and 

10 case-control studies the use of metformin was associated with a significantly lower risk of 

cancer mortality and incidence than the non-metformin users (154). The large number of studies 

assessed in this review as well as the large sample sizes of up to 998,947 patients fully support 

the use of metformin in cancer treatment. Numerous other population studies have produced 

similar results, providing the rationale to look further into the mechanism behind metformin’s 

anti-cancer effects.  In a study which focused on the use of metformin and prostate cancer and 

included data from 12 epidemiological studies and 14 datasets, it was found that metformin use 

was significantly associated with a decreased prostate cancer risk (14 datasets, 963991 male 

subjects, odds ratio: 0.91, 95% CI: 0.85–0.97) and biochemical recurrence (6 datasets, 2953 

patients, hazard ratio: 0.81, 95% CI: 0.68–0.98). However, no significant effect was found to be 

associated with metformin use and the all-cause mortality of patients (5 datasets, 9241 patients, 

hazard ratio: 0.86, 95% CI: 0.64–1.14) (155). This implies that metformin delays the development 

of prostate cancer and aids in preventing recurrence after treatment but that once the cancer 

has developed to a certain point its effects are reduced.  

 
While studies such as these and others provide strong evidence for the statement that 

metformin reduces prostate cancer risk there are others that disagree. In a study which 

examined the effect of metformin on overall risk of colorectal, lung, breast and prostate cancer 

in diabetic patients no protective effect was identified between metformin use and cancer 

incidence. It followed patients for a mean follow-up of 4.8 years and compared metformin users 

to users of sulfonylurea or insulin (156).  Another study published in Nature examined 8 cohort 

studies and 1 nested case-control study and found that metformin was marginally associated 

with a decrease in risk of biochemical recurrence for prostate cancer but was not associated 

with metastases, all-cause mortality and prostate-specific mortality (157). It concluded that 

metformin may reduce the risk of biochemical recurrence in prostate cancer but with such a 

minor effect that many more studies are needed before it is possible to claim metformin 

provides an anti-cancer benefit.  
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In addition, there is also some dispute over which confounders are considered when examining 

the use of metformin for cancer treatment which may affect the results of epidemiological 

studies. Epidemiological evidence suggests that people with diabetes are at higher risk of 

developing certain types of cancer than nondiabetic individuals (158) and that a longer duration 

of diabetes may be associated with higher cancer incidence (159) . Therefore, when comparing 

metformin users, of whom the majority are diabetic, with a control group factors such as the 

duration of diabetes, BMI, modification of cancer treatment due to diabetes and comorbidities 

must be considered (160). Observational studies are often subject to selection bias and so 

randomised control trials are needed for a more robust answer.  Despite this, current evidence 

leans towards the benefit of metformin use in cancer prevention with more studies identifying 

a reduction in cancer risk for patients taking metformin than not.  
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1.9.2 Molecular mechanism of metformin in cancer treatment 

 
1.9.2.1 The effect of metformin on cell proliferation 
 

Studies have shown that metformin has both direct and indirect effects on cancer cells with its 

indirect effect mainly acting on insulin, a mitogen which regulates the metabolism of fats and 

carbohydrates (Figure 1.12). Insulin promotes pathways involved in cell proliferation and 

survival such as the PI3K pathway and metformin acts by inhibiting hepatic gluconeogenesis and 

increasing insulin sensitivity. This lowers circulating insulin levels, reducing activation of its 

downstream pathways and reducing cell growth (161). Its direct effects are the result of an 

interaction between multiple mechanisms, but the drug largely works through inhibition of 

complex 1 in the respiratory chain of the mitochondria. This leads to a transient change in the 

cells energy status, increasing the AMP: ATP ratio and sending cells into energetic stress. 

Increased levels of AMP lead to the activation of a key energy sensor, AMPK, which regulates 

many signalling cascades to maintain a normal energy balance. It’s seen that this activation of 

AMPK switches off anabolic ATP-consuming pathways such as those involved in glucose, protein, 

and lipid synthesis and switches on ATP generating pathways such as fatty acid oxidation (162). 

AMPK is also a key regulator of several proteins implicated in cancer development including 

those involved in protein synthesis and growth such as mTOR, cell cycle proteins such as p53 

and cyclinD1 and inflammation pathways such as NFKB and STAT3.  

 

Figure 1.12: Direct and indirect effects of metformin on tumour cells 
Metformin has both indirect and direct effects on tumour cells, leading to a reduction in activation of the 
PI3K pathway and its downstream proliferation promoting pathways as well as activation of AMPK, the 
energy sensor of the cell.  
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AMPK is the most well-known target of metformin and many studies have been conducted 

elucidating how exactly metformin activates AMPK and what this activation does to tumour 

cells.  In a study which examined what effect inactivating AMPK would have on cancer cell either 

by introducing a stable dominant negative mutant of AMPK into cell lines or its shRNA, it was 

seen that AMPK inactivation promoted tumorigenic properties (163). Cell proliferation was 

accelerated and cells became more aggressive, with an increase in migration and anchorage-

independent growth. This was associated with a decrease in p53, p21 and an increase in S6K, 

IGF1R and IGF-1. Use of an AMPK activator, AICAR, caused opposite changes, strengthening the 

suggestion of AMPK activators, such as metformin, as antitumor agents. Metformin has also 

been shown to decrease cell number and caused G0/G1 cell cycle arrest but not apoptosis in 

DU145, PC3 and LNCaP cancerous prostate cell lines (164). There was less of an effect on a 

normal prostate cell line, P69, with only a 20% decrease in cell viability compared to 52%, 54% 

and 38% for LNCaP, DU145 and PC3s respectively, indicating that the drug is more effective on 

abnormal or cancerous cells. In mice bearing LNCaP xenografts metformin caused a 50% and 

35% reduction in tumour growth with oral and intraperitoneal treatment respectively. However, 

while metformin was shown to activate AMPK this growth inhibition was not only dependent on 

AMPK as the anti-proliferative effect remained even with AMPK knockdown. In both the in vitro 

and in vivo work a strong reduction of the cell cycle protein cyclin D1 was seen, indicating that 

metformins inhibition of the cell cycle progression may contribute to its anti-tumour effects.  

 

The IGF axis is a critical pathway involved in cell growth, development and survival and is 

commonly deregulated in cancer. Upon binding the IGF ligand the IGF-1R is activated and 

activates the insulin receptor substrate 1 (IRS-1). This in turn activates PI3K, resulting in the 

activation of the PI3K/AKT pathway, a key pathway in cancer progression. In parallel, the IGF-1R 

also activates the Ras/MAPK pathway, another major oncogenic pathway, leading to additional 

cell growth (165).  In a study which examined the effects of metformin on prostate cells it was 

seen that metformin inhibited proliferation, migration, and invasion as well as decreased IGF-IR 

mRNA and protein expression in PC3 prostate cells (166). Metformin inhibited IGF-1 stimulation 

of the ERK and AKT pathways, and it was proposed that this inhibition contributed to the anti-

proliferative effects of the drug.  IGF-IR is frequently overexpressed in tumours and is often 

associated with higher Gleason scores. It is also often upregulated in androgen receptor positive 

cell lines. This study was carried out in PC3s, an androgen independent cell line, and so 

metformins inhibition of proliferation by decreasing the expression of this receptor could be 

even stronger in androgen positive cell lines. Insulin, a hormone similar in structure to IGF-1, 
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also acts to promote cell metabolism and growth and is often implicated in cancer progression. 

Signaling pathways do not act alone but interact with other pathways to form intricate signaling 

networks. It has been shown that crosstalk between the IGF-1/insulin receptors and G protein 

coupled receptors (GPCRs) promotes mitogenic signaling and could lead to cancer development. 

This point of convergence has been suggested to be at mTOR (168), a protein which promotes 

protein synthesis and cell growth and is a downstream target of metformin (Figure 1.13). In a 

review which examined the effect of metformin on the interaction between IGF-1R/insulin and 

GPCRs in pancreatic cancer, it was stated that recent studies had shown that metformins 

activation of AMPK also disrupted the crosstalk of these proteins in pancreatic cancer cells and 

this interaction could be a novel target for metformin (169). These studies also showed that 

metformin inhibited the growth of pancreatic cancer cells in xenograft models (167). GPCRs are 

implicated in the formation of solid tumours of several cell types including colon, prostate, 

breast and pancreas and so a similar crosstalk may be disrupted in these cell types.  

 

 

 

Figure 1.13: Metformin disrupts crosstalk between IGF pathway and G protein coupled receptors. 
Crosstalk between the IGF pathway and GPCRs lead to mTOR activation and increased protein synthesis, 
cell proliferation and cell survival. Metformin has been shown to disrupt this crosstalk in a potential anti-
cancer mechanism.  
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Metformin also inhibits proliferation via downregulation of the androgen receptor. In a study 

which examined the effect of metformin in prostate cancer cell lines it was seen that metformin 

decreased prostate cell viability and increased apoptosis by targeting androgen receptor 

signaling (170). Metformin decreased androgen receptor mRNA rather than causing androgen 

receptor protein destabilization or degradation, however the mechanism was unknown. In 

another study, metformin decreased androgen receptor expression and did this via disruption 

of the translational MID1-α4 regulator complex which caused the androgen receptor mRNA to 

dissociate (171). This downregulation of the androgen receptor could be mimicked by 

knockdown of MID1 or α4 and resulted in reduced growth. Metformin also possessed androgen 

receptor independent effects as it caused inhibition of proliferation in androgen receptor 

negative cell lines, but to a lesser extent than in androgen positive cell lines (172).   

 

Triple negative breast cancers are often more aggressive than other types of breast cancer and 

frequently express mutated p53 and an upregulation of STAT3 and IL-6. It has also been noted 

that these cancers are particularly sensitive to metformin, indicating that this drug might target 

the STAT3 pathway. In a study which examined the effect of metformin in triple negative breast 

cancer it was seen that metformin inhibited STAT3 activation at two residues, Tyr705 and 

Ser727, and this led to growth inhibition and the induction of apoptosis (173). Overexpression 

of STAT3 reversed the effect and knockdown of STAT3 increased metformins antiproliferative 

activity. A STAT3 inhibitor synergized with metformin while an mTOR inhibitor showed that the 

interaction between metformin and STAT3 was not dependent on mTOR. Metformin has also 

been shown to cause inhibition of STAT3 in other types of cancer including oesophageal 

squamous cell carcinoma (174), lung adenocarcinoma (175), pancreatic cancer (176) and 

bladder cancer (177).  
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1.9.2.2 The effect of metformin on cell migration 
 

While AMPK activation by metformin is known to inhibit cell proliferation, it has also been shown 

to inhibit cell invasion. In a study which examined the effect of metformin on melanoma cell 

invasion it was seen that metformin inhibited cell invasion but did not affect cell migration or 

proliferation. This study by Cerezo et al examined the invasive ability of cells dosed with 

metformin using a number of methods including Boyden chambers, western blot analysis and 

3D cell culture where 3D spheroids invasion into agar was measured (178). It was seen that when 

metformin was present, cells were less invasive and this correlated with expression of EMT 

markers such as Slug, N-cadherin SPARC, Snail and fibronectin becoming more epithelial in 

expression. Metformin also inhibited tumour metastasis in mouse extravasation and metastasis 

models. This inhibition of invasion was shown to be dependent on AMPK activation and the 

tumour suppressor p53.  

 

Metformin has also been reported to inhibit cell metastasis through multiple other signaling 

pathways. In a paper that examined the antimigratory ability of metformin in prostate cancer 

cell models, metformin hindered cell motility of DU145 and PC3 prostate cancer cells in vitro 

and in vivo (179). This paper examined the effect of metformin on 3D cell culture, growing 

DU145 spheroids using the liquid overlay technique. It was seen that untreated spheroids could 

invade into the adjacent matrigel whereas spheroid treated with 5 mM metformin were unable 

to do so. Metformin also interfered with cytoskeleton organization, inhibiting Rac1 GTPase 

activity by interacting with its upstream regulators including P-Rex1, cAMP and CXCL12/CXCR4. 

Alteration of cytoskeleton organization is a key process in tumour cell migration. For cells to 

migrate they undergo many changes to their structural organization, leading to cell extension, 

formation of new adhesions and detachment from the previous site. Rho proteins are involved 

in all of these steps and overexpression of P-Rex, a protein which regulates Rho GTPases, has 

been observed in both breast and prostate cancers (180). This inhibition of Rac1 GTPase by 

metformin prevents alteration of the cells structural organization, decreasing cell movement.  

 

Metformin also modulates the tumour inflammatory environment. In two recent studies, 

metformin was shown to both reduce tumour-infiltrating Treg (Ti-Treg) cells which act as a 

negative regulator for T cell mediated antitumor immunity (69) and to alleviate the fibro-

inflammatory microenvironment in diabetic individuals. This reduction in inflammation was 
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correlated with reduced cancer progression and a reduction in extracellular matrix remodelling 

which is essential for tumour metastasis.  

 

What is clear from in vitro and in vivo studies is that both aspirin and metformin are pleotropic 

and affect many different signalling pathways and proteins. It is thought that the accumulation 

of these effects causes the anti-cancer action of the drugs, primarily through inhibition of cell 

proliferation and cell migration which are fundamental for cancer growth and development. 

While in vitro and in vivo work strongly support the use of metformin as an anti-neoplastic agent 

most of the concentrations used in research are well above the therapeutic range that would be 

possible to give patients. In the studies mentioned in this chapter, metformin is used at 

concentrations which are well above the clinical range, with four of the studies using a 

concentration of 20 mM or higher in vitro. Most commonly concentrations of 1- 10 mM were 

used. While there is much controversy over translating human doses to cell culture there is also 

the debate about what concentration the site of interest will be exposed to. The liver and gut 

have been shown to experience high concentrations of metformin following oral administration 

due to a high concentration of the drug in the portal circulation as well as high expression of 

OCT1 transporters on liver cells which increase cellular uptake of the drug (181). Following 

administration and hepatic uptake, metformins systemic plasma concentration has been 

reported to be reduced to a low as 10-40 µM in animals and humans (182). However, it has also 

been reported that metformin accumulates in the mitochondria over time due to its positive 

charge and so patients might experience higher concentrations with a longer duration of 

treatment (183). Conversely, aspirin has a much shorter serum half-life of ~20 minutes (184) 

before it is metabolised to salicylate which has a half-life of 3-5 hours (185). Human plasma 

aspirin levels are around 1 mM (7) and 2.5 mM (8) when therapeutic doses of aspirin are given. 

This study aims to use concentrations of aspirin and metformin that are clinically relevant to 

identify the anticancer activity of the drugs in cancer treatment. While the use of aspirin and 

metformin has been examined in many types of cancer, information on prostate cancer is 

limited. More research will be beneficial in understanding the mechanism behind aspirin and 

metformins anti-cancer effects in the prostate.   
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1.10    Evidence to support the use of aspirin and metformin in       

combination  
 

Both aspirin and metformin act upon many signaling networks which regulate key pathways 

involved in cancer proliferation, migration, invasion and cell survival. Because of the overlap 

between their signaling pathways it is thought that combining the drugs could increase the 

efficacy of their anti-cancer effects. 

Several studies have looked at combining aspirin and metformin for cancer treatment, and in a 

study that examined their effect on the transcriptome of pancreatic cancer cells, a synergistic 

effect was seen when both drugs were used together (186).  When each drug was used alone 

there was only a modest change in gene expression, 12 genes with aspirin treatment and 149 

genes with metformin treatment. However, when the drugs were used in combination 1,105 

genes were affected. This large change in the transcriptome profile indicated that three major 

pathways were altered which included pathways involved in cell cycle: G1/S checkpoint 

regulation, cholesterol biosynthesis and axonal guidance signaling. This suggests that when used 

together the drugs could have a greater effect on cell proliferation and membrane formation, 

both of which are important factors in cancer progression. Another study looked at the effect of 

combining both drugs on pancreatic cells and examined cell viability, apoptosis and cell 

migration (187). The combination of aspirin and metformin decreased cell viability, increased 

apoptosis and prevented cell migration more than when the drugs were used individually or 

compared with the control. Anti-apoptotic proteins were downregulated, and pro-apoptotic 

proteins were upregulated, indicating that used in combination the drugs induced cell death and 

prevented cell proliferation. Furthermore, in mouse xenograft models, there was a reduction in 

pancreatic tumour volume when aspirin and metformin were used together. However, while 

this study showed a clear synergy of the drugs, extremely high concentrations of metformin and 

aspirin were used which are not therapeutically achievable. The lowest concentration of 

metformin was 1 mM while the highest was 100 mM, much higher than the 10-40 μM 

concentration expected to be in the systemic circulation. For aspirin, the lowest dose used was 

0.25 mM which is within the proposed therapeutic range, but doses went up to 20 mM aspirin.  

Currently around 2.5 mM aspirin is considered the maximum dose for in vitro studies. While 

these doses are useful to see an enhanced effect of the drug, they are unrealistic to give patients 

and could produce effects which don’t occur at lower concentrations.  



Introduction 

 

 

48 
 

No studies to date have looked at the effect of aspirin and metformin in combination for 

prostate cancer, however, one study has examined the effect of metformin and the metabolite 

of aspirin, salicylate. In this paper which used both prostate and lung cells, salicylate activated 

AMPK and phosphorylated Acetyl-CoA carboxylase  (ACC), an effect which was increased with 

metformin administration (188). Salicylate decreased clonogenic survival and together the drugs 

decreased cell proliferation in an additive or synergistic manner depending on the cell line and 

drug concentrations. Doses reached a maximum concentration of 3 mM metformin and 5 mM 

salicylate but were normally used at 100 µm metformin and 1 mM salicylate when in 

combination. This effect on clonogenic survival was thought to be through inhibition of de novo 

lipogenesis as proliferation was restored with the addition of cholesterol reserves or fatty acids 

in the presence of the drugs.  

In summary, aspirin and metformin have been shown to affect many different signaling 

pathways which often overlap and interlink. While studies have started to examine the effect of 

using both drugs together there are still many other signaling pathways to consider. Whether 

the effect of the drugs is due to a combination of pleiotropic acting agents or through the 

enhancement of specific pathways remains to be determined.    
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1.11    The benefits of using aspirin and metformin for cancer 

treatment 
 

Aspirin and metformin have many properties which make them attractive candidates for cancer 

treatment. Aspirin is commonly used to prevent cardiovascular disease, lower blood pressure 

and reduce inflammation and can be bought easily over the counter. Metformin is the first line 

agent to treat type II diabetes with 91% of people newly diagnosed with type II diabetes being 

prescribed metformin in the UK in 2013 (189). Since both drugs are already in use, and have 

been for many years, they have a well-established toxicity profile, with most of their side effects 

being well known and documented and making them relatively safe drugs to prescribe. The most 

adverse side effects of aspirin include gastrointestinal ulcers and stomach bleeding and for 

metformin they include gastrointestinal irritation and lactic acidosis which is produced by a 

build-up of lactate in the blood. However, these drugs are well tolerated by most patients which 

makes conducting clinical trials much easier than with a new, untested drug for which a safe 

dose has not yet been established. Furthermore, people tend to be more comfortable about 

taking part in studies where they are familiar with the drug and so this allows controlled trials 

with large samples sizes. As there are already many people who have been prescribed the drugs 

for the treatment of other illnesses it is also possible to obtain large amounts of data about their 

effect on cancer risk in population studies.  

 

One of the major advantages of aspirin and metformin is that taking the drugs causes little 

change to a person’s lifestyle unlike other forms of treatment. With surgery, the recovery time 

can be lengthy, and side-effects can last for years. Radiotherapy and chemotherapy can leave 

people feeling weak or ill during treatment and require them to attend frequent hospital visits. 

While aspirin and metformin aim to prevent cancer progression rather than treat cancer, 

prolonging the time before conventional treatment is necessary is extremely important. Aspirin 

and metformin allow people to carry on with their normal day to day activities without any 

hindrance and they can take the drugs at home. Both drugs can be self-administered orally, and 

this has the added benefit that it is easy to administer, with no machines, injections or medical 

skills needed. 

One of the major problems for the drug industry is supplying drugs at a low cost whilst trying to 

recoup the enormous sums spent bringing a drug to market. With aspirin and metformin, they 

are already developed, cheap and quick to produce, making them more readily accessible to the 

public.  
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Additionally, there is much interest in the use of aspirin or metformin in combination with 

conventional treatments such as chemotherapy, radiotherapy and surgery with studies showing 

that they could enhance the efficacy of these regularly used treatments. One significant problem 

with chemotherapy, also seen in radiotherapy, is that there often is a population of cells that 

remain resistant to the treatment and cancer can recur. Accumulating evidence suggests a major 

role of stem cells in these recurrences with their ability to repopulate the tumour (190). Indeed 

in a study which examined the recurrence of breast cancer after chemotherapy it was seen that 

a combination of common chemotherapy drugs (5-fluorouracil, doxorubicin, and 

cyclophosphamide) generated an inflammatory environment that induced multidrug resistance, 

conferred stem-ness to non-stem cells and boosted the migratory capacity of the cells (191). 

However, treatment with aspirin prior to chemotherapy suppressed the acquisition of 

chemoresistance and sensitized stem cells to chemotherapy. This was accomplished through 

disruption of the NFKB-IL6 feedback loop that generated the inflammatory environment after 

chemotherapy. Similarly, in a study which examined the combination of metformin and a 

chemotherapeutic, 5-FU, in esophageal cancer, metformin sensitized the cells to the cytotoxic 

effect of 5-FU (192) by targeting cancer stem cells and proteins involved in mTOR signaling. This 

also occurred in breast, prostate, and lung cancer cells in combination with doxorubicin where 

the combination was more effective at blocking tumour growth than either drug alone (193). 

Chemotherapy is a common form of cancer treatment but there is large variability in clinical 

response for patients. Currently there are more than 30 ongoing cancer trials which are 

examining the effect of combining metformin and chemotherapeutics (194).  

 

Likewise, aspirin and metformin improve patient outcome when used in combination with 

radiotherapy. Aspirin has been shown to reduce the risk of distant metastases and improve 5- 

year overall survival (885 vs. 37% p= 0.03) in men who take aspirin for at least 5 years while 

undergoing radiation therapy for prostate cancer (195). In prostate and colorectal xenografts 

improved tumour oxygenation by metformin leads to improved radiation responses when 

metformin is given immediately before irradiation (196). Interestingly aspirin has also been 

shown to improve outcome after surgery. In a study which examined the risk of cancer in men 

who underwent a radical prostatectomy or radiotherapy while receiving anti-coagulants, 

including aspirin, it was seen that the risk of prostate specific mortality was significantly lower 

in the anti-coagulant users than in the non-user group (3% v 8% at 10 years; P < 0.01) (163) 

(162). Improving the effect of conventional treatments with such well-tolerated, easily 

administered drugs such as aspirin and metformin is a very attractive prospect and may allow 
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a lower dose of the drug to be effective, reducing side effects and complications. While not 

many studies have been conducted examining the use of aspirin or metformin with conventional 

treatments for prostate cancer it is hoped that the drugs can help target cells which become 

resistant to treatment and create environments where treatment becomes more effective to 

aid in controlling cancer progression, prevent recurrence and greatly improve patient prognosis. 

 

Due to their high safety profile and widespread use there is little apprehension in prescribing 

either aspirin or metformin. The strong evidence indicating a positive effect of these drugs in 

cancer treatment and in preventing progression demonstrates that they could work well to 

delay the time before more aggressive treatment is necessary. Further work is needed to 

understand the mechanism behind how they exert their anti-cancer effects and whether 

combining the drugs will be beneficial.    
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1.12 Project hypotheses and aims 
 

Epidemiological, in vitro and in vivo studies suggest that aspirin (NSAID) and metformin (first-

line agent in type II diabetes) are negatively associated with prostate cancer risk and mortality. 

While many studies have been conducted examining the benefit of aspirin treatment for colon 

cancer, reports of its actions in prostate cancer is limited. Current literature supports the use of 

either aspirin or metformin in prostate cancer treatment, however most in vitro studies use 

doses which are supra pharmacological and there is a lack of information regarding the effect of 

combining the drugs for prostate cancer treatment. Studies suggest that both drugs may 

synergise through overlapping signalling pathways, with a focus on the PI3K/AKT, NFKB, and 

Ras/MAPK pathways which both drugs target.  

We hypothesize that aspirin and metformin will prevent prostate cancer cell growth and survival 

at therapeutically achievable doses if given in combination. Furthermore, we propose that the 

combined administration of aspirin and metformin will inhibit prostate cancer cell migration, 

reversing EMT to reduce the mesenchymal molecular characteristics of the tumour cells.  

 

Specific aims:  

• To examine the effect of aspirin and metformin on cell proliferation in 2D cell culture. 

• To determine whether aspirin and metformin influence cell proliferation in 3D cell 

culture. 

• To investigate the potential for aspirin and metformin to reduce prostate cancer cell 

migration. 
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2.1 Cell culture 
 

2.1.1 Cell lines 
Cell lines were purchased from the American Type Culture Collection (ATCC) and stored at                

-1960C in liquid nitrogen. 

 

PNT2 cell line: This prostate epithelial cell line was established by transfection of normal adult 

prostate epithelium with a plasmid containing the SV40 genome with a defective replication 

origin to immortalize the cells. The cells possess a well differentiated morphology and are non-

tumorigenic in nude mice.  

 

LNCaP cell line: This cancerous prostate adenocarcinoma cell line was derived from the left 

supraventricular lymph node metastasis of a 50-year-old male in 1977. The cells have low 

metastatic potential and are androgen sensitive. They express prostate specific antigen (PSA) 

which is often used as a marker for prostate cancer diagnosis.  

 

DU145 cell line: This cancerous prostate epithelial cell line was derived from a metastatic site in 

the brain of a 69-year-old Caucasian male in 1978. These cells possess moderate metastatic 

potential, are androgen insensitive and do not express PSA.  

 

PC3 cell line: This cancerous prostate epithelial cell line was derived from a bone marrow 

metastasis of a 62-year-old Caucasian male in 1979. These cells have high metastatic potential. 

They do not express PSA but produce factors such as cytokines and growth factors that have 

been suggested to regulate the tumour microenvironment.  

 

H642/17 primary prostate cells: These prostate cells were derived from a prostate with benign 

prostatic hyperplasia and were a kind gift from Professor Norman Maitland and his research 

group at the Cancer Research Unit, University of York. 

 

Equipment 

Cryogenic vials     (Starlab, E3110-6122) 

Filters      (Starstedt, 83.1826.001) 

Haemocytometer    (Fischer Scientific) 

Incubator     (SANYO, MCO-18AIC) 
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21G microlance hypodermic needle  (BD Biosciences, 304432) 

Aspiration pipette     (Greiner Bio-One, 710183) 

10 and 25 ml serological pipettes  (Starstedt, 86.1254.001 and 86.1685.001) 

Syringe      (VWR, 10080264) 

7 ml bijou     (Greiner Bio-One, 189171)   

25 ml Universal tube     (Starstedt, 60.9922.243) 

50 ml Falcon tube     (Starstedt, 62.559.00)  

Eppendorf, 0.5 mL    (Sigma-Aldrich, Z666521-250EA) 

Muse cell analyser     (Merck) 

 

 

Solutions and reagents 

Growth Media (GM) – The DU145, PC3 and PNT2 cell lines were maintained in 25 mM, 4.5g 

glucose/L Dulbecco's modified Eagles Medium (DMEM, Sigma- Aldrich, D6429) supplemented 

with 10% Fetal Bovine Serum (FBS, Gibco, 10270-106) and 5% L- Glutamine (LG, Lonza Limited, 

BE17-605F). The LNCaP cell line was maintained in 25 mM, 4.5 g glucose/L Roswell Park 

Memorial Institute (RPMI) media (ATCC, ATCC-30-2001), with 5% LG and 10% FBS. The H642/17 

cells were maintained in keratinocyte serum free medium (Thermo Fisher, 17005042) 

supplemented with 50 μg/ml bovine pituitary extract (BPE, Thermo Fisher), 5 ng/ml epidermal 

growth factor 1-53 (EGF 1-53, Thermo Fisher), 5000 units/mL of penicillin and 5000 μg/mL of 

streptomycin (P/S, Gibco, 15070-003) and 5% FBS. 

 

Phosphate Buffered Saline (PBS) - PBS was prepared using PBS tablets (Merck Millipore, P4417-

50TAB) with 1 tablet/ 200 ml of ddH2O (pH 7.4). Tablets were diluted in distilled water, the bottle 

was autoclaved and then stored at room temperature.  

 

Trypsin-EDTA (ethylenediaminetetraacetic acid) (TE)- (Lonza, BE02-007E for PC3s and DU145s 

and Sigma-Aldrich, T4049 for LNCaPs and PNT2s). Trypsin was diluted from 10x to 1x with 

autoclaved water and was stored at -200. 

 

StemPro Accutase Cell Dissociation Reagent- (Sigma-Aldrich, A6964-100ML) Stored at -200C. 
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Trypan Blue (TB)-TB stain (Sigma-Aldrich, T8154) was diluted from 0.4% to 0.165% in PBS and 

added in a 1:1 ratio with cell suspension to stain cells to assess viability and number. Stored at 

room temperature.  

 

10% Dimethylsulfoxide (DMSO)- (Sigma-Aldrich, D4540) stored at room temperature. 

 

CryoStor cell cryopreservation media- (Sigma, C2999-100ML) stored at 4-80C. 

 

L-poly-lysine- (Sigma- Aldrich, P8920-500ML) stored at room temperature. 

 

Collagen, type I solution from rat tail- (Sigma-Aldrich, C3867) stored at 4-80C. 

 
Guava Instrument cleaning fluid (ICF)- (Merck, 4200-0140) stored at room temperature. 

 

Muse cell viability reagent- (Merck, MCH100102) stored at 4-80C. 
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2.1.2 Cell maintenance  
 
Stock cultures of DU145 and PC3 cells were grown in T175cm2 flasks (T175, Greiner bio-one, 

660175) and PNT2 and LNCaP cell lines were grown in T75 flasks (Appleton Woods Limited, 

BC301) to approximately 80-90% confluency before re-seeding. The H642/17 cells were grown 

on collagen coated petri dishes (Thermo Fisher, 172931). Cells were maintained in a 370C, 95% 

humidity, and 5% CO2 atmosphere.  

 

Resuscitation of frozen cell lines  
 

Cells stored in cryovials were removed from liquid nitrogen and put in a water bath at 370C to 

thaw. 1 ml of DMEM containing 20% FBS and 2 mM L-Glutamine (LG) was added to the vial and 

the cells were transferred to a universal tube with the addition of 9 ml of GM. The cells were 

spun at 1,000 rpm for 3-5 minutes to produce a pellet. The supernatant was aspirated and the 

pellet was resuspended in 5 ml of GM using a 21G needle and syringe. For the LNCaP cell line, 

cells were first resuspended in 1 ml of GM using a p1000 pipette, rather than using a needle and 

syringe as this is found to increase cell death, and then 4 ml of GM were added. The media was 

transferred to a T25 culture flask and incubated at 37ᵒC, 5% CO2. 

 

Cell passaging 
 

Cells were split when they reached ~80-90 % confluence. Growth media was aspirated and cells 

were washed with PBS that was then discarded. For PC3, DU145, LNCaP and PNT2 cells 1 ml of 

0.25% TE was added and the flask was incubated for 5 minutes at 37ᵒC, 5% CO2. For H642/17 

cells 2 ml of accutase were added to the plate and left at room temperature for 5-10 minutes. 

Cells were detached from the bottom by firmly tapping the flask and 10 ml of GM were added 

to deactivate the TE or accutase. Cell suspension was collected in a universal tube and 

centrifuged at 1,200 rpm for 3-5 minutes and the supernatant was aspirated and discarded. The 

pellet was resuspended in 5 ml of GM using a needle and syringe and of this 50 µl were added 

to an eppendorf for cell counting. From this the number of cells in the 5 ml suspension could be 

determined and the subsequent volume of cell suspension that was needed to be seeded. Cells 

were placed into either a T25, T75 or T175 flask with varying densities depending on the cell 

type (Table 2-1). Media was replaced every 2-3 days.  
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Table 2-1: Cell densities seeded in T25, T75 and T175 flasks for each cell line. 

 

Flask Cell line Cell density (x 106) Company 

 

T25 DU145/PC3 0.2 Greiner BioOne 

PNT2/LNCaP 0.4 Appleton Woods limited 

T75 DU145/PC3 0.3 Greiner BioOne 

PNT2 0.8 Appleton Woods limited 

LNCaP 1.0 Appleton Woods limited 

T175 DU145/PC3 0.5 Greiner BioOne 

 

Cell counting for stocks 
 

50 µl of cell suspension from the cell passaging were diluted at a 1:1 ratio with Trypan Blue (TB) 

working solution (0.165%). A 50 µl mix of cell suspension and stain were added to the top and 

bottom counting chambers of a haemocytometer and cells contained within the chambers were 

counted using a light microscope. Cells stained blue were non-viable whereas viable cells were 

colourless.  The TB dye enters the cell when the cell membrane becomes permeable during cell 

death but does not penetrate viable cells. The number of viable and non-viable cells was counted 

for both chambers, and then multiplied by 1 x 104 to calculate the number of cells per ml.  

 

Cell Freezing 
 

A cell suspension was made consisting of 3 x 106 cells for DU145, PC3 and PNT2 cell lines in 500 

µl of growth media and placed into a cryogenic vial. In a separate bijou 500µl of freezing mix 

was prepared consisting of 100 µl of 10% DMSO, 350 µl of GM, 50 µl of 5% FBS. 

When the DMSO is added to growth media an exothermic reaction takes place giving out heat 

which would kill the cells if added immediately so it was left for a few minutes to cool. The 

freezing mixture was added in a drop wise fashion to the cryogenic vial, giving a 1:1 ratio of cell 

suspension to freezing mixture, giving a total volume of 1 ml. For LNCaP cells, 6 x 106 cells were 

spun down, resuspended in 1 ml of cryoStor cell cryopreservation media and added to the 

cryogenic vial.  Cryogenic vials were placed in an insulating freezing container to reduce the 

temperature in a controlled manner and kept at -800C overnight. After 24 hours the cryogenic 

vials were moved to the liquid nitrogen tank or the -1500C freezer and their position was 

recorded in a log book.  
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2.1.3 Subculturing  
 

Coating plates  
 

The LNCaP cell line required 6 well and 24 well plates to be coated with L-poly-lysine for cells to 

attach. L-poly-lysine was diluted x10 with autoclaved water and 24 well plates were coated with 

500 µl while 6 well plates were coated with 1 ml. Plates were placed in the incubator for 1 hour 

and then the L-poly lysine solution was removed and plates were washed with autoclaved water 

and left to air-dry in the hood. Plates were used immediately.  

The H642/17 required petri dishes to be coated with collagen. Collagen was diluted with 

autoclaved water at a 1:100 dilution with enough volume to cover the petri dish. The dishes 

were left in the hood overnight to air-dry. Collagen coated plates were stored at 40C.  

 

Cell counting to seed for experiments 
 

Cells were counted either using the Muse cell analyser or the trypan blue dye exclusion assay. 

For the Muse cell analyser, the count and viability assay was used. The cell counter was cleaned 

using dH20 and Guava instrument cleaning fluid following the instructions of the Muse protocol. 

20 µl of cell suspension was mixed with 180 µl of cell viability reagent and read on the cell 

analyser. Viable cells were gated first by viability vs size and then by viability vs nucleated cells. 

Viable cells/mL, % viability, and the total cells/mL was reported. For the trypan blue dye 

exclusion assay the cell suspension was mixed at a 1:1 ratio with trypan blue and cells were 

counted on a haemocytometer. The live cells appear colourless whereas in the dead cells the 

trypan blue can enter through the disrupted membrane, staining the cells blue. This enabled the 

assessment of live and dead cells in each sample.   
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Experiment seeding densities 
 

All cells were seeded in growth media at suitable densities for cell culture vessel, cell type used 

and experiment time point (Table 2-2).  

 

Table 2-2: Cell densities for seeding for cell counting. 

 

Experiment Vessel Volume of 

media  

Number of cells per flask/well (x 106) 

PC3 DU145 LNCaP PNT2 

Cell proliferation- 

3H-thymidine 

incorporation 

24 well plate 500 µl 0.015 0.015 0.017 0.016 

Cell proliferation- 

cell counting and 

western blotting 

T75 flask 10 ml 0.4 0.4 2.0 0.5 

T25 flask 5 ml 0.2 N/A 1.0 0.4 

6 well plate 1 ml 0.075 0.075 0.14 0.12 

Cell migration-

qPCR 

T25 flask 5 ml 0.2 N/A N/A N/A 

Spheroid culturing 48 well plate 250 µl 40 cells N/A N/A N/A 

 

Cells were resuspended using a needle and syringe in the volume of growth media required so 

that that each well or flask had the appropriate number of cells and correct final volume. The 

cell suspension was pipetted gently down the side of the well and the plate was moved around 

so that cells were evenly distributed. For a flask the cell suspension was added to the flask and 

then the flask was topped up with growth media to the final volume. 
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2.2 Reconstituting aspirin and metformin 
 

2.2.1 Reconstituting aspirin 
 

Solutions and reagents  

Acetylsalicylic acid (aspirin)- (Sigma, A5376) stored at room temperature. 

 

Method 

Aspirin was weighed out at 2.8 mg/ml in growth media to give a stock concentration of 15.5 

mM. This was chosen due to aspirins solubility at 3 mg/ml at 250C. The stock concentration was 

diluted in growth media to give the desired concentrations. Solutions were kept at 40C for up to 

5 days.  

 

2.2.2 Reconstituting metformin  
 

Solutions and reagents  

1-1 Dimethylbiguanide hydro-chloride (Metformin)- (Sigma, D150959) stored at room 

temperature. 

 

Method 

Metformin was weighed out at 10 mg/ ml in growth media to give a stock concentration of 60.4 

mM. This was diluted 1:100 with growth media to give a second stock concentration of 604 µM. 

Both stock concentrations were diluted in growth media to give the desired concentrations. 

Solutions were kept at 40C for up to 5 days.  
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2.3 Cell proliferation and cell death assays 

 
 

2.3.1 Tritiated Thymidine (3H-thymidine) Incorporation Assay  
 
This technique incorporates a radioactive nucleoside, 3H-thymidine, into the strands of 

chromosomal DNA when the cell is dividing and so the output for 3H-thymidine incorporation, 

DPM, is a measure of DNA synthesis. Therefore, it can be used as a proxy for cell proliferation. 

The advantage of incorporation assays such as this is that it is a direct measure of proliferation. 

 

Equipment 

β-scintillation Counter     (Beckman, LS6500) 

Plate rocker platform    (Bellco Biotech) 

 

Solutions and reagents 

[3H]- Thymidine: 1 µCi/ml stock: (GE Healthcare) Stored at 40C  

 

1 M sodium hydroxide (NaOH): (Fisher Scientific 10142540) 20 g of NaOH were dissolved in 

500ml of dH2O and stored at room temperature 

 

5% w/v Trichloroacetic acid (TCA): (Merck, 100807) 5 g of TCA were added to 1 L of dH2O and 

stored at 40C.  

 

Scintillation fluid-Ultima Gold (Packard Bioscience Limited, GSQ1) 

 

Method 

Cells were incubated with 0.1 µCi [3H] Thymidine per well for the final 4 hours of the dosing time 

period at 370C.  After 4 hours incubation, supernatant was removed and cells were incubated 

with 500 µl of 5% w/v TCA at 40C for 10 minutes. TCA was aspirated and 500µl of 1 M sodium 

hydroxide were added to each well. Cells were incubated for 1 hour at room temperature on a 

plate rocker. The resulting suspension was placed into individual scintillation vials and 2 mls of 

scintillation fluid were added. Vials were shaken and samples were analysed using a Beckman 

Scintillation Counter. Data were recorded as disintegrations per minute (DPM). 
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2.3.2 Cell counting 
 
Equipment 

Muse analyser      (Merck) 

6 well plates      (CellStar, 657160) 

25 ml universal tube     (Starstedt, 60.9922.243) 

Eppendorf, 0.5 mL    (Sigma-Aldrich, Z666521-250EA) 

 

Solutions and reagents 

Trypsin-EDTA (TE)    (Lonza, BE02-007E or Sigma-Aldrich, T4049) 

Muse count and viability reagent   (Merck, MCH100102) 

 

Method  

Cells were trypsinized from the plate and added to the supernatant. The cell suspension was 

spun down and resuspended in the required volume of media to give 1 x 106 to 1 x 107 cells/ml. 

20 µl of cell suspension was mixed with 180 µl of Muse count and viability reagent and left for 5 

minutes before being read on the Muse analyser.  

The number of live and dead cells for each condition was recorded. Cell counting was used as a 

proxy for cell proliferation while the percentage of non-viable cells determined if the drugs 

induced cell death.    

  



Materials and Methods 

 

 

64 
 

2.3.3 Annexin V and Dead Cell assay 
 

Equipment 

Muse analyser     (Merck) 

6 well plates     (CellStar, 657160) 

25 ml universal tube     (Starstedt, 60.9922.243) 

Eppendorf, 0.5 mL    (Sigma-Aldrich, Z666521-250EA) 

 

 

Solutions and reagents 

Trypsin-EDTA (TE)    (Sigma-Aldrich, T4049) 

Muse Annexin V & Dead Cell Reagent   (Merck, MCH100105) 

  

At the end of the experiment the cells were trypsinised from the plate and added to the 

supernatant. The cell suspension was spun down and resuspended in the required volume of 

media to give 1 x 105 to 5 x 105 cells/ml. 100 µl of annexin V and dead cell reagent was mixed 

with 100 µl of cell suspension and left in the dark for 20 minutes before being read on the Muse 

analyser. Cells were gated as live (Annexin V negative and 7-AAD negative), early apoptotic cells 

(Annexin V positive and 7-AAD negative), late stage apoptotic and dead cells (annexin V positive 

and 7-AAD positive) and mostly nuclear debris (Annexin V negative and 7-AAD positive). When 

cells enter apoptosis, they externalize phosphatidylserine (PS) to the cell surface which is bound 

by annexin V. In this assay Annexin V is fluorescently labelled allowing identification of when it 

binds to cells. The membrane-impermeant dye 7-AAD is a dead cell dye which is used to 

distinguish dead cells from early apoptotic cells. 

 

 

 

 

 

 

 

 

http://www.merckmillipore.com/GB/en/product/Muse-Annexin-V-and-Dead-Cell-Assay-Kit,MM_NF-MCH100105?CatalogCategoryID=
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2.3.4 Q-VD-OPh assay 
 
Equipment 

Muse analyser      (Merck) 

6 well plates      (CellStar, 657160) 

25 ml universal tube      (Starstedt, 60.9922.243) 

Eppendorf, 0.5 mL     (Sigma-Aldrich, Z666521-250EA) 

 

 

 

Solutions and reagents 

Trypsin-EDTA (TE)     (Sigma-Aldrich, T4049) 

In solution Q-VD- OPh Non-O-methylated-Calbiochem (Merck, 551476) 

Muse count and viability reagent    (Merck, MCH100102) 

 

Method 

Q-VD-OPh is a cell permeable, irreversible broad-spectrum caspase inhibitor, inhibiting caspases 

1, 8, 9 and 3 (IC50 = 50, 100, 430, and <25 nM respectively). It prevents all major caspase-

mediated cellular apoptosis pathways and does not exhibit any cytotoxic effects, even when 

used at extremely high concentrations. After 96 hours of dosing, the cells were trypsinized from 

the plate and added to the supernatant. The cell suspension was spun down and resuspended 

in growth media. 20 µl of cell suspension was mixed with 180 µl of Muse Count & Viability 

Reagent and left for 5 minutes before being read on the muse analyser. The number of alive and 

dead cells for each condition was recorded.  
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2.4 Western Immunoblotting - Protein analysis 
 

2.4.1 Cell lysis 
 

Solutions and reagents 

Lysis buffer: consisted of 50 mM Sodium Chloride (Fisher, S/13120/63), 50 mM Sodium Fluoride 

(Sigma-Aldrich, S-6521) (2 g/L) to inhibit serine/threonine proteases, 15 mM Sodium 

Pyrophosphate (Sigma-Aldrich S-9515) to inhibit phosphatases (4 g/L), 10 mM Tris HCL (Sigma-

Aldrich, T3253-500G) (1.57 g/L), 5mM Ethylenediaminetetraacetic acid (EDTA, Acros Organics, 

147850010) to inhibit metalloproteases, 100 µM Sodium Orthovanadate (Sigma-Aldrich, 

205330500) to inhibit ATPases and phosphate transferring enzymes and 1% Triton x -100 (Sigma-

Aldrich,  X100) which is a mild non-denaturing detergent that replaces fat within the membrane. 

The lysis buffer was adjusted to pH 7.6 and was stored at 40C. 

 

To make up the 100 µM Sodium Orthovanadate, 36.8 mg Sodium Orthovanadate was added to 

20 ml dH2O to make a 10 mM solution. The pH was adjusted until it reached 10 and became 

active, the solution turned yellow. The solution was boiled until it became clear and was 

adjusted to pH 10 again.  

 

Phosphatase inhibitor cocktail: (Sigma-Aldrich, P5726-1ML) Kept at 40C. 

 

Protease inhibitor cocktail: (Sigma-Aldrich, P8340-1ML) Kept at -200C. 

 

Method 

Lysis buffer was prepared for use by adding 10 µl/ml of phosphatase inhibitor cocktail and 10 

µl/ml of protease inhibitor cocktail to 1 ml of lysis buffer solution. Lysis buffer was added to the 

cell pellet at a volume that was dependent on pellet size and the pellet was resuspended with a 

pipette on ice. The eppendorf was left at 40C for 20 minutes and then kept at -200C for short 

term use or -800C for long term. 

 
 
 
 
 
 
 

https://www.sigmaaldrich.com/catalog/search?term=9002-93-1&interface=CAS%20No.&N=0&mode=partialmax&lang=en&region=GB&focus=product


Materials and Methods 

 

 

67 
 

2.4.2 Protein Quantification 
 

To calculate total protein concentration within the cell lysates to ensure the samples are loaded 

at the same concentration for western blot analysis. 

 

Equipment 

iMark Microplate reader    (Biorad) 

 

Solutions and reagents 

For protein estimation the Pierce Bicinchoninic Acid (BCA) Protein Assay Kit Thermo Fisher 

Scientific, 23225) was used according to manufactures instructions. 

 

Lysis buffer- As described in section 2.3.8 

 

BCA reagent A- contains bicinchoninic acid, sodium carbonate and sodium titrate in 0.1 M 

sodium hydroxide. Stored at room temperature. 

 

BCA reagent B- contains 4% cupric sulphate. Stored at room temperature. 

 

Albumin Standard Ampules, 2 mg/ml- contains bovine serum albumin (BSA) at 2.0 mg/ml in 0.9% 

saline and 0.05% sodium azide.  

 

Standards were prepared using Albumin Standards (2 mg/ml) in Lysis Buffer (Table 2-3). Diluted 

standards were stored at -200C. 

 

Method  

Cell lysates were centrifuged at 13,000 rpm for 3 minutes at 40C and the supernatant was 

transferred to a new eppendorf. The cell debris was discarded. The protein samples were diluted 

with lysis buffer depending on the number of cells lysed to achieve a protein concentration 

within the standards range. 5 µl of standards (Table 2-3) and diluted lysates were placed into 96 

well plates in duplicate. Reagent A was mixed with reagent B at a 50:1 ratio and 200 µl were 

added to each well. The plate was incubated at room temperature for 30 minutes and then read 

via a spectrophotometer using a 540 nm filter and microplate manager software.  
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Table 2-3: Albumin standards preparation. 

 
 

Vial Standard Concentration 

(µg/ml) 

BSA (µl) Lysis Buffer (µl) 

A 2000  300 µl of stock 0 

B 1500 375 µl of stock 125 

C 1000 325 µl of stock 325 

D 750 175 µl of vial B 175 

E 500 325 µl of vial C 325 

F 250 325 µl of vial E 325 

G 125 325 µl of vial F 324 

H 25 100 µl of vial G 400 

 

In this assay, the reduction of Cu+2 to Cu+1 by the protein in the sample can be measured by the 

colorimetric detection of Cu+1 using a unique reagent containing bicinchoninic acid. The more 

protein that is present the stronger the purple colour of the reaction product. The complex 

exhibits absorption at 562 nm which can be detected by wavelengths from 540- 590 nm. The 

protein concentration can be determined by reading a standard curve, which plots each BSA 

standard vs. its concentration in µg/ml. 
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2.4.3 Protein Analysis by Electrophoresis  
 

Sample preparation 
 

Equipment  

AccuBlock Heating Block    (Labnet International Inc.) 

Micro centrifuge    (MSE) 

 

Solutions and reagents 

2x Laemmli sample buffer- (Sigma-Aldrich, S3401) Stored at -200C.  
 

 

Method 

Protein concentration was determined for each cell lysate from the protein assay and the 

volume required to give 30 µg protein was placed into an eppendorf. PBS was added to samples 

to ensure all samples were of equal volume. 2x sample buffer was added to each at a 1:1 ratio 

of sample buffer to lysate. Samples were boiled at 950C for 5-8 minutes to unfold the protein 

and then left to stand for a minute. Samples were centrifuged at 13,000 x g for 1 minute.  
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2.4.3.1 SDS - Polyacrylamide Gel Electrophoresis (SDS-PAGE) Preparation of 
Gels 

 

SDS-PAGE identifies proteins by separating them according to molecular weight. The 

polyacrylamide gel is split into two parts; the stacking and resolving sections which have 

different pore sizes and pH values. The stacking gel is less extensively polymerised than the 

resolving gel resulting in bigger pore sizes which causes the proteins to all concentrate in one 

band and enter the resolving section at the same time. The resolving gel separates the proteins 

according to molecular weight. Altering the percentage of acrylamide within the gel alters the 

resolution of proteins depending on their size i.e. decreasing the percentage of acrylamide 

allows for the resolution of larger proteins.  

 

Equipment  

1.5 mm glass plates    (Biorad) 

1.5 mm comb     (Biorad) 

Casting Base     (Biorad) 

Clamps      (Biorad) 

 

Solutions and reagents 

Ethanol- (Sigma, 34852-2.5L-M) Stored at room temperature. 

 

40% Acrylamide/ BIS (N, N-methylene bis acrylamide): (Geneflow limited, EC-891) Stored at 

room temperature. 

 

10% (w/v) Sodium dodecyl sulphate, pH 7.2 (SDS): (Fisher Scientific, BP166-500) 50 g 

electrophoresis grade SDS was dissolved in 400 mls distilled water. The pH was adjusted to 7.2 

before the solution was made up to 500 mls. It was filter sterilized and stored at room 

temperature.  

 

10% (w/v) Ammonium persulphate (APS): (Acros Organics, 201530010) 1 g was dissolved in 10 

mls of distilled water and stored at -200C. 

 

TEMED (N,N,N,N-tetramethyethylenediamine): (Fisher Scientific, T/P190/04) Stored at room 

temperature. 
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Resolving gel buffer (1.5 M Tris-HCl pH 8.8, 0.4% SDS):  181.71g Tris Base (Fisher Scientific, 

BP152-1) was dissolved in 800 ml distilled water. Hydrochloric acid (HCl) (Fisher Scientific,  

10467640) was used to adjust the pH to 8.8 and then the total volume was brought to 1 L with 

distilled water. Stored at 40C. 

 

Stacking gel buffer 0.5 M Tris-HCl pH 6.8, 0.4% SDS): 78.8 g Tris-HCL (Sigma, T3253-500G) was 

dissolved in 800 ml distilled water. Sodium hydroxide (NaOH) (Fisher Scientific, 10528240) was 

used to adjust the pH to 6.8 and then the total volume was brought to 1 L with distilled water. 

Stored at 40C. 

 

Method 

The glass plates were washed and dried to remove debris and then wiped with ethanol. Then 

they were inserted into a clamp, secured, and placed onto a casting base. A percentage for the 

gel was selected depending on the size of the proteins of interest (Table 2-4). The gel solutions 

were prepared (Table 2-5) omitting the APS and TEMED until just before pouring as both agents 

in combination act to polymerise the gel. The APS and TEMED were added to the resolving gel 

solution and this was poured between the glass plates until about a centimetre below to allow 

space for the well comb. Ethanol was pipetted on top of the resolving solution to level out the 

surface of the gel and allow the gel to set quickly by preventing its exposure to air. The gels were 

left to polymerize for approximately 30 minutes. Once set the ethanol was removed and the gel 

was washed with distilled water three times and then dried with filter paper. The APS and 

TEMED were added to the stacking gel solution and this was poured onto the resolving gel. A 

well comb was placed into the top of the gel and the gel was left to set for approximately 30 

minutes. Once set, the gels were either stored, wrapped in wet paper towel at 40C for up to 3 

days or used immediately. 

 

 

Table 2-4: Percentage of gel for optimum separation. 

 

Gel Percentage Optimum Separation Range (kDa) 
 

7.5% 40- 200 

10% 30- 150 
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Table 2-5: Reagents for making hand cast gels. 

 

Solutions 8% Resolving 10% Resolving 5% Stacking 

Distilled water 10.6 ml 9.6 ml 6 ml 

40% Acrylamide 4 ml 5 ml 1.2 ml 

Tris Buffer 5 ml            

 (1.5 M, pH8.8) 

5 ml  

(1.5 M, pH8.8) 

2.5 ml    

(0.5 M, pH6.8) 

10% SDS 200 µl 200 µl 100 µl 

10% APS 200 µl 200 µl 100 µl 

THEMED 20 µl 20 µl 15 µl 

 

 

2.4.3.2 SDS - Polyacrylamide Gel Electrophoresis (SDS-PAGE) Running Gels 
 
Equipment 

Gel Tank       (Biorad) 

Gel Cassette     (Biorad) 

Power Pack     (Biorad) 

 
Solutions and reagents 

10 x Running buffer- 30.3 g of 25 mM Tris Base (Fisher Scientific, BP152-1), 144 g of 190 mM 

glycine (Fisher Scientific BP381-5), 10 g of 0.1% SDS (Fisher Scientific, BP166-500) and dH2O to 

make the final volume up to 1 litre. The pH was adjusted to 8.3 if necessary. 1x running buffer 

was prepared by diluting this buffer by 10 times with dH2O and this dilution was used when 

running gels. Stored at room temperature. 

 
SeeBlue Plus 2 Pre-stained protein standard- (Geneflow limited, S6-0024) Stored at 40C. 

 
Method:  

The well comb was removed from the glass plates and the wells were rinsed with running buffer. 

The gels were inserted into a gel cassette and placed into a gel tank. Once the apparatus was set 

up the reservoir between the gel cassettes was filled with running buffer and checked to ensure 

there were no leaks. Then the main tank was filled with running buffer, making sure the top of 

the gel was fully covered. 4 µl of SeeBlue Plus 2 Pre-stained protein standard were loaded into 
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the first well and samples were added to the following wells. The tank was attached to the power 

pack and the gel was run at 140 volts for 80 minutes. 

2.4.3.3 Gel Transfer 
 

Equipment 

Transfer Cassette    (Biorad) 

Transfer Tank      (Biorad) 

Power Pack     (Biorad) 

Sponges     (Biorad) 

Filter Paper     (Biorad) 

Thick blotting paper    (Biorad) 

Nitrocellulose membrane   (Biorad) 

 

Solutions and reagents 

10x Transfer buffer, pH 8.3: 30.3 g Tris Base (Fisher Scientific, BP 152-1) and 144 g Glycine (Fisher 

Scientific, BP381-5) was made up to 1 litre with dH2O and dissolved. For 1 x transfer buffer 200 

ml of methanol (Fisher Scientific, M/4000/17) and 100 µl of 10 x transfer buffer was added to 

700 ml of dH2O to make 1 litre. Both transfer buffers were kept at 40C. 

 

Method 

The glass slides were opened up and the stacking portion of the gel was cut off and discarded. 

The resolving gel was placed into 1x transfer buffer to ensure it did not dry out. The filter paper, 

thick blotting paper, nitrocellulose membrane, and sponges were left to soak in the transfer 

buffer.  The transfer cassette was laid down on the bench with the red side at the bottom, black 

side at the top. A wet sponge was placed on top of the red side followed by 2 pieces of filter 

paper, and the membrane. The gel was placed onto the membrane and rolled to remove any 

bubbles. A piece of thick blotting paper was placed on top of the gel, followed by a sponge and 

the cassette was closed. The transfer cassette was placed into a transfer tank with the black face 

nearest the cathode (-ve, black) and an ice pack was added. 1 x transfer buffer was used to fill 

the transfer tank and the tank was placed into a cooler box, surrounded by ice. The tank was 

connected to the power pack and the gel was transferred at 100 volts for 90 minutes.  
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2.4.3.4 Immunoblotting 
 

In this process the membrane is blocked to prevent any nonspecific binding of antibodies to the 

membrane. Then it is probed with enzyme labelled antibodies which recognise the protein of 

interest. 

 

Equipment 

Agitator  

 

Solutions and reagents 

10 x Tris-buffered saline with Tween 20 (TBST) buffer: One tablet (Calbiochem, 524753) was 

dissolved in 500 mL of deionized water to yield 150 mM NaCl, 50mM Tris-HCl buffer, pH 7.6.  

  

Blocking buffer: Made of either 3- 5% bovine serum albumin (BSA) (Fisher Scientific, 11403164) 

in TBST or 3- 5% skimmed milk powder in TBST. Blocking buffer was kept at 40C for a maximum 

of a week. 

 

Method 

Blocking- After transfer the cassette was opened, the gel discarded and the membrane was cut 

depending on the location of the proteins of interest. The membrane sections were blocked in 

5% BSA for 1-2 hours at room temperature or overnight at 40C on an agitator. 

 

Primary Antibody- Antibody solutions were prepared depending on the protein of interest (Table 

2-6). The membrane was covered in primary antibody solution and left at 40C overnight.   

 

Secondary Antibody- The next day the membrane was rinsed 3 times in TBST for 5 minutes each 

time. The membrane was incubated with the HRP-conjugated secondary antibody solution for 

1-2 hours at room temperature and then rinsed 3-5 times in TBST for 15 minutes. 
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Table 2-6: Antibody solutions. 
 

Protein Source MW 
(KDa) 

Primary 
Antibody 

Secondary 
Antibody 

Condition Company, 
product number 

 
 

α-Tubulin Mouse 50 1:5000 1:5000 5% BSA  Millipore,       

05-829 

Cyclin D1 Rabbit 36 1:2000 1:2000 5% BSA   Abcam, 

ab134175 

E-cadherin Rabbit 135 1:1000 1:2000 5% BSA  Cell Signaling,  

3195  

GAPDH Mouse 35 1:5000 1:5000 5% BSA Millipore, 

MAB374 

N-cadherin Mouse 140 1:1000 1:2000 5% BSA  Cell Signaling, 

4061 

p-53 (DO-1) Mouse 53 1:1000 1:2000 5% BSA Santa Cruz, 

sc-126 

 

Phosphorylated 

p53 (Ser15) 

Rabbit 53 1:1000 1:2000 5% BSA Cell Signaling, 

9284 

PCNA Mouse 35 1:2000 1:2000 5% BSA  Millipore, 

MAB424 
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2.4.3.5 Detection 
 

This process allows for the detection of the proteins which have been labelled with the 

antibodies. The enzyme peroxidase which is bound to the secondary antibody acts upon the 

hydrogen peroxide formed by the decay of peroxide and in the presence of luminol produces 

light: this can be detected by an imager. 

 

Equipment 

ChemiDoc-It Imaging System    (Biorad) 

 

Solutions and reagents 

Western ECL clarity substrate kit (Biorad, 1705061): Consisting of luminol and peroxidase. Stored 

at room temperature. 

 

Method 

The chemiluminescent substrates, peroxidase and luminal, were applied to the membrane at a 

1:1 ratio and used to continually wash the membrane for 5 minutes. Chemiluminescent signal 

was detected using the ChemiDoc-It Imaging System.  
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2.5 Wound healing assay 
 

Equipment  

2 well cell culture inserts     (Thistle Scientific Limited, IB-80286) 

24 well plates      (Thermo Fisher Scientific, 930186)  

Tweezers  

 

Solutions and reagents   

Mitomycin C: 2 mg were resuspended in 200 ml of growth media and filter sterilized. It was kept 

in the dark at 40C (Sigma, M4287). 

 

Method 

At the end of 96 hours of dosing, cells were trypsinized from the flasks and counted. Ibidi 2 well 

silicone culture inserts with a defined cell free gap of 500 µm were placed into a 24 well plate 

using tweezers. The cells were seeded either side the 2 well ibidi insert at 0.04 x 106 in 70 µl per 

well in growth media with their respective concentration of drug.  The cells were left to attach 

for 22 hours and then the media was removed and media containing mitomycin C was added 

for a further 2 hours to inhibit cell proliferation. After this, the insert was removed using 

tweezers, the wells were washed with PBS, and media containing the appropriate concentration 

of drug was added. The scratch was imaged for the first time at 0 hours and then was imaged 

every 12 hours after this point in the same location. ImageJ was used to calculate the area of 

the gap (Figure 2.1: ImageJ calculated gap area..  
 

 

Figure 2.1: ImageJ calculated gap area. 
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2.6 qPCR 
 

Equipment 

Microcentrifuge  

Hot block  

NanoPhotometer    (Geneflow) 

ThermoCycler     (Biorad) 

ABI StepOne Plus PCR system    (Applied Biosystems) 

PCR machine     (Applied Biosystems) 

PCR tubes     (Alpha Laboratories, LW2340) 

 

Solutions and reagents 

Ribozol RNA extraction reagent   (VWR life sciences, N580) 

Chloroform     (Fisher Scientific, BP1145-1) 

Isopropanol     (Fisher Scientific, 19515-500 ml) 

Ethanol      (Sigma, 34852-2.5L-M)  

DEPC Treated Water    (Ambion, AM9906) 

High capacity RNA to cDNA kit   (Thermo Fisher, 4387406) 

SYBR Green Jumpstart Taq Readymix (20 mM Tris-HCL, pH 8.3, 100 mM KCL, 7 mM MgCl2, 0.4 

mM each dNTP (dATP, dCTP, dGTP, TTP), stabilizers, 0.05 unit/µl Taq DNA polymerase, 

JumpStart Taq antibody, and SYBR Green)  (Sigma- Aldrich, S4438-500RXN) 

Forward and reverse primers for GAPDH, E-cadherin, N-cadherin and Slug (10 µM stock) 
      (Sigma- Aldrich)   
QuantiTect Primer Assay-MMP9  (Qiagen, QT00040040)  

 
 
 

 

2.6.1 RNA extraction 
 
At the end of 96 hours of dosing the media was removed and the cells were washed with PBS. 

In a fume hood, 1 ml of Ribozol RNA extraction reagent was added and pipetted up and down 

to remove all the cells from the flask and then transferred to clean RNase/DNase free microfuge 

tubes and incubated for 5 minutes at room temperature to completely dissociate nucleoprotein 

complexes. Chloroform was added at 0.2 ml per 1 ml of Ribozol and then shaken for 15 seconds 

before incubation at room temperature for 10 minutes. The eppendorf was spun at 40C, 12,000 

rpm for 15 minutes to separate the mixture into 3 phases: a red organic phase which contained 
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protein, an interphase which contains DNS and a colourless aqueous phase which contains RNA. 

The top, aqueous layer was transferred to a new eppendorf and 500 µl of isopropanol was added 

and then left at room temperature for 10 minutes to precipitate the RNA. The eppendorf was 

spun for 10-15 minutes at 12,000 rpm, 40C and the supernatant was removed by pouring into a 

waste bottle, leaving a white RNA precipitate on the side of the tube. 1 ml of 70% ethanol was 

added and the eppendorf was vortexed. It was then spun for 10 minutes, 40C at 7,500 rpm and 

the supernatant was removed. 1 ml of ethanol was added to the pellet and the eppendorf was 

spun for 10 minutes, 40C at 7,500 rpm. The supernatant was removed and 20 µl hyclone water 

were added and the eppendorf was placed in a hot block at 580C for 5 minutes. This was stored 

at -800C. 

 

2.6.2  RNA quantification 
 

RNA was quantified using a Geneflow Implen NanoPhotometer using Micro Applications and 

then RNA quantification settings. The LabelGuardTM Microliter Cell was inserted into the cell 

holder and 1 µl of hyclone water was pipetted onto the measuring window for a blank. Each 

sample was measured in the same way and the concentration (ng/µl), the A260/A280, and the 

A260/A230 was recorded. The ratio of A260/A280 was used as an indicator of protein/phenol 

contamination while A260/A230 ration served as an indicator of organic solvents/isothiocyanate 

contamination. A ratio of 1.6-2 for the absorbance at 260/280 nm indicated that the RNA was 

of a good quality.  

 

2.6.3 DNase treatment 
 

DNase treatment was performed to remove contaminating genomic DNA from the RNA 

extraction. The DNase digestion mix was prepared by combining 1 µl of 10x Reaction Buffer with 

1µl of DNase. The 2 µl of the DNase digestion mix was mixed with 8µl of RNA samples in RNase-

free water and incubated for 15 minutes at room temperature. 1 µl of DNase Stop Solution was 

added to terminate the reaction. To inactivate the DNase the samples were incubated at 700C 

for 10 minutes and then chilled on ice before the reverse transcription step. 
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2.6.4  Converting RNA to cDNA 
 

RNA was converted to cDNA using the high capacity RNA to cDNA kit. For each sample 1 µl of 

enzyme and 10 µl of buffer were added to an eppendorf and kept on ice. 2000 ng of RNA and 

hyclone water were added to make the total volume up to 20 µl. The eppendorfs were placed 

into a ThermoCycler and run at 370C for 60 minutes, 950C for 5 minutes and then held at 40C 

infinitely. The cDNA was stored at -200C for up to 6 months. 

 

2.6.5  qPCR 
 
qPCR was performed using a SYBR Green Jumpstart Taq ReadyMix. The master mix was made in 

qPCR tubes consisting of SYBR Green, internal reference dye, forward primer, reverse primer 

and Hyclone water for each gene following the volumes in Table 2-7. Primer sequences are 

shown in Table 2-8. 

 

Table 2-7: Mastermix components for qPCR. 
 

 

In a 96 well plate 9 µl of master mix for each gene were added per well along with 1 µl of cDNA 

in duplicate. 1 µl of hyclone water was added to one well to use as a blank to check for possible 

contamination. The plate was covered with optically clear sealing tape and centrifuged for a few 

seconds to mix the cDNA and master mix. The plate was inserted into the qPCR machine and 

using ABI StepOne Plus Real-Time PCR system the programme was set: 

940C- 2 minutes 

940C- 15 seconds  

620C- 30 seconds 

 
The programme was run for 50 cycles and a melting curve at every 0.30C from 60 to 950C was 

measured to confirm the PCR products were specific. Double stranded products are generated 

as the reaction progresses which the SYBR Green dye intercalates into and fluoresces. Once 

enough products have accumulated to cause the fluorescence to rise above the background the 

Reagents Stock concentration Final concentration 
 

SYBR Green JumpStart     
Taq ReadyMix  

2x 1 x 

Internal Reference Dye  100 x 1 x 

Forward Primer  10 µM 0.4 µM 

Reverse Primer  10 µM 0.4 µM 

Hyclone water  To make final volume 9 µl 
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threshold cycle or CT is reached. mRNA levels were normalized to the housekeeping gene, 

GAPDH, using the 2-∆∆CT method (Pfaffl, 2001) to determine fold change in gene expression.
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Table 2-8: Primer sequences for qPCR.  

 

 

Protein (Gene) Forward primer Reverse primer 
 

Snail (SNAI1) GAAAGGCCTTCAACTGCAAA 
 

TGACATCTGAGTGGGTCTGG 
 

Slug (SNAI2) 
 

CTTCCTGGTCAAGAAGCA 
 

GGGAAATAATCACTGTATGTGTG 
 

Twist (TWIST1) CAAGTCTGCAGCTCTCGCCA CCAACGGCTGGCGCACAC 

E-cadherin (CDH1) TTGAACGAATGGGGCAATCG 
 

ACCAGCAACGTGATTTCTGC 
 

N-cadherin (CDH2) TCGCCATCCAGACCGACCCA TGAGGCGGGTGCTGAATTCCC 

Matrix metalloproteinase 9                  
(MMP-9, CLG4B) 

Primer sequence not provided by Qiagen  Primer sequence not provided by Qiagen 

Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) 

GATCATCAGCAATGCCTCCT TGTGGTCATGAGTCCTTCCA 
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2.7 3D Cell Culture- Spheroids 
 

2.7.1  Seeding and maintaining spheroid cultures 
 

Cells cultured in 2D grow as flat monolayers while cells cultured in 3D form spheroids, aggregates 

of cells which form solid or hollow spheres. 3D cell culture better represents the cell to cell 

interactions and cell to extracellular matrix signalling that is essential for differentiation, 

proliferation, and cell survival.  

 

Equipment 

Syringe  

21G Microlance hypodermic needle  (BD Biosciences, 304432) 

40-µm cell strainer 

48 well plates 

 

Solutions and reagents   

Advanced DMEM/F12 (ADF): 2 ml of 0.1% Sodium Bicarbonate (Sigma Aldrich, S6751-500G) 5 

mM LG, 2.5 ml of 10 mM HEPES buffer (Sigma-Aldrich, 83264) P/S was added to a 500 ml bottle 

of Advanced DMEM/F12 (Thermo Fisher scientific, 12634028). From this 48.5 ml was aliquoted 

into 50 ml tubes and stored at -200C. Before use the ADF was thawed and 500 µl of 1:100 N2 

supplement (Thermo Fisher scientific, 17502048), 1 ml of 1:50 B27 supplement (Thermo Fisher 

scientific, 17504044) and 100 µl of 1:500 N-acetyl-cysteine (Sigma-Aldrich, A9165) added. This 

media was made fresh at least every 2 weeks and stored at 40C. 

 

Keratinocyte medium: 25 mg of bovine pituitary extract (BPE, Thermo Fisher scientific), 2.5 µg 

of epidermal growth factor 1-53 (EGF) (Thermo Fisher scientific), P/S and 10 ml of FBS were 

added to a 500 ml bottle of keratinocyte serum free medium. Stored at 40C. 

 

Matrigel: Matrigel Basement membrane matrix phenol red free (Corning, 356321). Stored at -

200C. 

 

Calcein AM and ethidium homodimer-1 dyes: (Thermo Fisher Scientific, L3224). Calcein AM: 4 

mM in anhydrous DMSO. Ethidium homodimer-1: 2 mM in DMSO/H2 O 1:4 (v/v). Both stored at 

-200C. 
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4% Paraformaldehyde (PFA) in PBS- (Alfa Aesar, J61899) Stored at 40C. 

 

0.5% TritonX-100- 0.5 ml triton X-100 (Sigma-Aldrich,  X100) in 100 ml PBS. Stored at room 

temperature. 

 

Glycine rinse- 100 mM glycine (Fisher Scientific, BP381-5) in PBS, filter and store at room 

temperature. 

 

IF buffer-  0.1% BSA (Fisher Scientific, 11403164), 0.2% TritonX-100 (Sigma-Aldrich,  X100), 0.05% 

Tween 20 (Sigma-Aldrich, P7949), PBS. pH to 7.4 and store at room temperature. 

 

AlexaFluor 594 anti-mouse- (Fisher Scientific, A-11005) Stored at 4-80C. 1:50 ratio in IF buffer. 

 

AlexaFluor 488 anti-rabbit- (Fisher Scientific, A-11008) Stored at 4-80C. 1:50 ratio in IF buffer  

 

Method 

Cell preparation- Prior to starting work the required number of plates were placed into the 

incubator to warm. Cells cultured for at least 2 weeks were trypsinized from the flask, spun down 

and resuspended in PBS using a syringe and a 21G needle for PC3 and PNT2 cells and a p1000 

pipette for the H642/17 cells as use of a needle has been shown to increase cell death in this cell 

type. The cell suspension was passed through a 40 µm cell strainer into a 50 ml falcon tube and 

cells were counted.  

 
Seeding spheroids- On ice, cells were resuspended in Matrigel using pre-frozen tips. 20 µl of 

Matrigel and cells was reverse pipetted into each well of a pre-warmed 48-well plate as a blob 

in the centre. Cells were seeded in quadruplets in the centre of the plate, ensuring that there 

was a boarder of wells left empty around the edge of the plate. The plate was placed upside-

down in the incubator for the matrigel to solidify. Placing the plate upside-down reduced the 

number of cells that stuck to the bottom of the plate instead of remaining suspended in the 

matrigel and formed 2D culture rather than 3D. After 15 minutes 250 µl of Advanced DMEM F12 

(ADF) culture medium supplemented with N2, B27 and N-acetyl cysteine were added to each 

well for PC3 and PNT2 cells. 250 µl of keratinocyte medium supplemented with BPE, EGF, P/S 

and FBS were added to each well for the H642/17 cells. 500 µl of sterile PBS were added to all 

empty wells to help maintain internal humidity. 

https://www.sigmaaldrich.com/catalog/search?term=9002-93-1&interface=CAS%20No.&N=0&mode=partialmax&lang=en&region=GB&focus=product
https://www.sigmaaldrich.com/catalog/search?term=9002-93-1&interface=CAS%20No.&N=0&mode=partialmax&lang=en&region=GB&focus=product
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Spheroid maintenance- The plate was placed into a sandwich box containing a damp towel to 

maintain humidity. The media was replaced twice a week and the towel once a week for the rest 

of the culturing period.  

 

2.7.2 Imaging spheroids 
 

After 4 days spheroid area was assessed using Leica Application Suite X software on a widefield 

microscope. In this program spheroids were imaged on 5x magnification, taking images in the 

x,y and z planes to ensure all spheroids were picked up throughout the matrigel. 35 images were 

taken in the z axis, working from where the matrigel was attached to the plate upwards. These 

35 images formed a stack for each position in the well. 5 different positions were imaged per 

well (Figure 2-2). This was repeated at days 7, 11 and 14 for seeding density experiments. For 

dosing experiments to examine spheroid formation, cells were imaged at day 14 and for dosing 

experiments to examine spheroid growth cells were imaged at day 21.  

 

Figure 2.2: Plate layout for seeding spheroids and imaging 
C1-C6 represent the six different conditions, performed in quadruplet. For imaging 5 different positions 
within the matrigel blob were imaged per well, each containing multiple spheroids. This gave 20 images 
per condition. 
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2.7.3  Analysis of spheroids 
 

The stack of 35 images taken per position were compressed into 2D using Matlab and average 

spheroid area was calculated automatically on Matlab. This Matlab program was created by Dr 

Adam Chambers in collaboration with Dominic Alibhai at the Wolfson Bioimaging Centre, The 

University of Bristol. The spheroid area was checked manually to ensure spheroids were 

identified correctly. Matlab did not pick up spheroids which were partially cut out of frame and 

could distinguish when spheroids were growing into each other and separate them. Any 

spheroids that were not picked up correctly were excluded so as not to skew the data. For the 

PC3 spheroid they grew with long projections around the edge which were not always picked up 

by the Matlab software. As this occurred across all the conditions it was not considered a 

problem.  

 

Parameters on the Matlab program were altered depending on the cell line being imaged as it 

depended on the size and shape of the spheroid. Spheroids which had many protrusions such 

as the PC3s had an increased circular threshold compared to the rounded spheroids. 

 

The spheroid areas for each of the 5 positions per well were put into an Excel spreadsheet. All 

four duplicates were combined, giving 20 images per condition with multiple spheroids in each 

image. Data was plotted using Graphpad prism as box and whisker plots to show the spread of 

the data with the whiskers including the 5-95% percentiles. A Kruskal Wallis one-way ANOVA 

and Duns post hoc test was used to calculate pairwise significance.  

 

2.7.4  Staining spheroids with calcein AM and ethidium homodimer-1 
 

A live/dead viability/cytotoxicity kit, for mammalian cells (Thermo Fisher Scientific, L3224) was 

used to stain spheroids for live and dead cells. Spheroids were grown as stated in Chapter 2, 

section 2.7.1 and imaged. Media was removed from wells containing spheroids to be stained 

and 200 µl of fresh ADF media were added to each well. In the dark 0.5 µl of both the calcein 

AM and ethidium homodimer-1 dyes were added and the plate was incubated at room 

temperature for 30 minutes. Stained spheroids were imaged using the Leica Application Suite X 

software on a widefield microscope.  
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2.7.5 Immunofluorescence with spheroid cultures 
 

The immunofluorescent protocol for 2D cells was modified with the help of Professor Norman 

Maitland and his research group at the Cancer Research Unit, University of York. Media was 

removed from spheroids and spheroids were fixed in 4% PFA for 30 minutes at room 

temperature. Spheroids were rinsed twice with PBS and permeabilized with 0.5% Triton-X-100 

in PBS for 30 minutes. Spheroids were washed with glycine rinse three times for 15 minutes and 

then blocked with goat serum diluted 1:50 in IF buffer for 1 hour at room temperature in the 

dark on a tilting table. They were then incubated overnight at room temperature with the 

primary antibody in IF buffer. The next day, spheroids were washed 3 times with IF buffer for 15 

minutes and then incubated in the dark for four hours with the secondary antibody in IF buffer, 

either AlexaFluor 594 anti-mouse or AlexaFluor 488 anti-rabbit depending on the primary 

antibody. Spheroids were rinsed with IF buffer 3 times for 15 minutes and then stained with 

DAPI for four hours. Spheroids were washed with PBS and then imaged on a confocal microscope 

using the HCX PL Fluotar 10x 0.3 Dry objective. They were kept in PBS for up to a week.  

For the negative control spheroids followed the same immunofluorescence protocol but were 

not incubated overnight with the primary antibody.  
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2.8 Statistical analysis  
 

Graphpad prism software version 7.03 (Graph Pad, San Diego, California, USA) was used for 

statistical analysis. If the data was normally distributed a two-way ANOVA was used with either 

Dunnets post hoc test to compare the control to each condition or Tukeys post hoc test to 

compare each condition with each other. If the data was not normally distributed a Kruskal 

Wallis one-way ANOVA was used with Duns post hoc test. p-values below 0.05 were determined 

statistically significant.  
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3.1 Introduction 
 

3.1.1 Cell proliferation, the cell cycle and cancer 
 

Regulation of cell division is critical in human development and growth with the balance 

between cell proliferation and apoptosis essential for tissue homeostasis (198). The cell cycle is 

initiated by the presence of growth factors, however, once the cell passes a restriction point in 

G1 phase the cells are committed to the cycle and will continue even during growth factor 

deprivation (199) (Figure 3.1). The entire process requires an extensive cell cycle toolkit and 

proteins involved in cell proliferation are often used to assess where cells are in the cycle and 

whether drugs or other treatments impact their transition through it. While there are many 

markers of proliferation, the most commonly used include ki-67, p120, proliferating cell nuclear 

antigen (PCNA), minichromosome maintenance complex component-2 (MCM-2), cyclins, and 

cyclin dependent kinases (CDKs) (200). Expression of ki67, PCNA and p120 have been correlated 

with Gleason score, tumour differentiation, stage and prostatic specific antigen (PSA) levels in 

prostate carcinoma smears and are useful as indicators of tumour aggressiveness (201). Ki67 

and PCNA are now routinely used as prognostic makers in cancer diagnosis (202). Because of 

their role in cell cycle progression in this thesis PCNA and cyclin D1 are used to assess cell 

proliferation. PCNA is a protein which is highly expressed during G1 and S phases, and plays a 

major role in DNA replication, DNA repair, chromatin remodelling and cell cycle control (203). 

During DNA replication it plays an essential role in the DNA replication machinery, acting as an 

accessory protein for DNA polymerase δ and ε (204). PCNA also associates with a D-type cyclin 

and a CDC2 kinase inhibitor to control the cell cycle by preventing premature DNA synthesis 

during the G1 phase. Cyclin D1 levels vary throughout the cell cycle depending on which stage 

the cell is in. During G1 cyclin D1 levels are elevated due to growth factor exposure which 

consequently initiates DNA synthesis (205). In S phase cyclin D1 is suppressed, allowing efficient 

DNA synthesis and then in G2 phase cyclin D1 levels are elevated again. This fluctuation of cyclin 

D1 expression ensures that cells only proliferate when the extracellular environment is 

conducive for growth, with quiescent cells expressing extremely low levels of cyclin D1 (206). 

Indeed, in a study which assessed cyclin D1 expression in 85 patients who underwent radical 

prostatectomy for prostate cancer and 10 normal prostate tissue samples retrieved from 

autopsies it was seen that normal prostate tissues were negative for cyclin D1 and high-grade 

Gleason score (≥7) tumours had higher cyclin D1 expression than low-grade Gleason score 

tumours (207).  
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Figure 3.1: The stages of the cell cycle 
Cell proliferation is mediated by growth factors which activate different signalling pathways and direct 
cells which are in zero growth (G0) to enter the cell cycle. The cell cycle is regulated by a number of 
checkpoints and proteins such as cyclins and cyclin-dependent kinases that are expressed at different 
levels throughout the cycle.  

 

Evidence that aspirin and metformin affect cancer cell proliferation is extremely compelling with 

many studies showing that each drug inhibits proliferation pathways and causes cell cycle arrest 

(208) (209). However, the effect of both drugs used in combination on cell proliferation is less 

well understood and the mechanism by which they could enhance each other’s anti-proliferative 

effects is yet to be explored.  
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3.2 Hypotheses and aims 
 

In this chapter, the effects of aspirin or metformin alone and in combination on cell proliferation 

and cell death in 2D cell culture are described. 

 

Hypothesis: The literature suggests that aspirin and metformin reduce the proliferative capacity 

of cancer cells. In this study, it is hypothesised that low dose aspirin and metformin will reduce 

proliferation of the prostate cancer cell lines; PC3, DU145 and LNCaP. It is hypothesized that the 

combination of aspirin and metformin will have the greatest effect as both drugs target similar 

proliferation pathways.  

 

Aims and objectives:  

1. To examine the effect of aspirin and metformin individually on cell proliferation and cell 

death. 

2. To determine whether the drugs have synergistic effects. 
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3.3 Materials and Methods 
 

3.3.1 Cell seeding and dosing for experiments  
 

For the 3H-thymidine incorporation assay, cell counting, annexin V/7-AAD, Q-VD-OPh and 

western blotting experiments the cells were seeded as described in Chapter 2, Section 2.1.3. 

Aspirin and metformin were reconstituted as described in Chapter 2, Section 2.2.  The cells were 

dosed for a total of 72 hours for the 3H-thymidine incorporation assay and western blotting with 

p53 and phosphorylated p53 (Ser15). In all other experiments cells were dosed for 96 hours. The 

media was collected and replaced every 24 hours for all experiments. Statistical analysis was 

performed as described in Chapter 2, Section 2.8. 

 

3.3.2 Dosing protocol for 3H-thymidine incorporation assay 

PC3, DU145, LNCaP and PNT2 cells were dosed with 0, 10 and 30 µM metformin and 0, 0.5, 1, 

1.5 and 2mM aspirin. This ensured that doses were kept within the therapeutic range, 0-2 mM 

aspirin and 0-40 µM metformin, with a few higher concentrations to see an enhanced effect. 

Cells were dosed with each drug alone as well as a combination of the two drugs at each of the 

concentrations, resulting in 16 conditions. The 3H-thymidine incorporation assay was performed 

as described in Chapter 2, Section 2.3.1.  

 

3.3.3 Dosing protocol for PC3 and PNT2 cell counting to determine drug 
concentrations for combination experiments 

 

PC3 and PNT2 cells were dosed with 0, 10, 20, 30 and 5000 µM metformin and 0, 0.5, 1, 2, 4 and 

10 mM aspirin. Cells were counted following the protocol described in Chapter 2, Section 2.3.2. 

 

3.3.4 Dosing protocol for combination cell counting and annexin V, 7AAD 
staining 

 

Cells were dosed with 0, 10 and 30 µM metformin and 0, 0.5 and 2 mM aspirin alone and in 

combination, resulting in 9 conditions. The number of live and dead cells were counted following 

the protocol described in Chapter 2 section 2.3.2. Cells were stained with annexin V and 7-AAD 

and analysed on a Muse cell analyser as described in Chapter 2 section 2.3.3. 
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3.3.5 Dosing protocol for Q-VD-OPh and aspirin treatment  
 
LNCaP cells were dosed with either 20 μM Q-VD-OPh, 2 mM aspirin or a combination of 20 μM 

Q-VD-OPh and 2 mM aspirin as described in Chapter 2, Section 2.3.4. Cell counting was 

performed as described in Chapter 2, Section 2.3.2. 

 

3.3.6 Dosing protocol for western blotting 
 
For Western blotting with p53 and phosphorylated p53 (Ser 15) cells were dosed with 2 mM 

aspirin for 72 hours. After 72 hours the cells were dosed again and then were scraped off the 

flasks 0, 15, 30, 60 and 120 minutes after dosing and lysed. For western blotting with PCNA and 

cyclin D1 the cells were dosed with 0, 10, 20, 30 and 1000 µM metformin and 0, 0.25, 0.5, 1, 2 

and 4 mM aspirin and lysed after 96 hours. Western blotting was performed as described in 

Chapter 2, Section 2.4. 
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3.4 Results 
 

3.4.1 Optimisation of dosing concentrations for aspirin and metformin  
 

3.4.1.1 Proliferative response of PC3 and PNT2 cells to aspirin 
 
A preliminary dose response experiment was performed to characterize the effect of the drugs 

on cell proliferation and to select drug concentrations for dosing with a combination of aspirin 

and metformin. Concentrations to be selected were those that reduce cell proliferation 

compared to the control, but by less than 50% so that an enhanced effect could still be seen 

with the combination. For this experiment, a normal prostate cell line, PNT2, and a cancerous 

cell line, PC3, were selected to examine the effect of the drugs on a non-tumorigenic cell line 

and the most advanced cancerous cell line. 

When cells were dosed with either of the drugs there was a dose-dependent decrease in cell 

number (Figure 3.2 and Figure 3.3). The PC3s were more affected by aspirin than the non-

cancerous PNT2s with a 40% decrease in cell number at the highest clinically relevant 

concentration, 2 mM, whereas the same concentration only reduced cell number by 22% for the 

PNT2s. For both cell lines aspirin was toxic at 10 mM, killing all the cells as determined by trypan 

blue counting. 
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Figure 3.2: Dose response to aspirin for PNT2 and PC3 cells. 
(a) Change in PC3 and PNT2 cell number after dosing with aspirin every 24 hours for a total of 96 hours. 
Data represents one independent experiment. (b) Images of PNT2 and PC3 cells after dosing with aspirin 
for 96 hours. The field of view was randomly selected. Images were captured using a phase contrast 
microscope, 10x objective.  
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3.4.1.2 Proliferative response of PC3 and PNT2 cells to metformin 
 

Similar to aspirin, the PC3s displayed a dose-dependent decrease in cell number when dosed 

with metformin (Figure 3.3). They were also more affected than the non-cancerous PNT2s with 

a 19% decrease in cell number when dosed with 30 µM metformin compared to a 0% decrease 

for PNT2s. Even at 5000 µM metformin, which is well above the considered maximum 

therapeutic concentration of 30 µM, there were still some cells which remained alive. For the 

PNT2s this was the only concentration at which a decrease in cell number was observed.  
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Figure 3.3: Dose response to metformin for PNT2 and PC3 cells. 
(a) Change in PC3s and PNT2 cell number after dosing with metformin every 24 hours for a total of 96 
hours. Data represents one independent experiment. (b) Images of PNT2 and PC3 cells after dosing with 
metformin for 96 hours. The field of view was randomly selected. Images were captured using a phase 
contrast microscope, 10x objective.  



The effect of aspirin and metformin on cell proliferation and cell death in 2D cell culture 

 

 

99 
 

3.4.2 Proliferative response of PC3, DU145, LNCaP and PNT2 cells to aspirin 
and metformin: tritiated thymidine (3H- thymidine) incorporation  

 
From the previous experiment concentrations of up to 2 mM aspirin and 30 µM metformin were 

selected and the cancerous PC3, DU145 and LNCaP cells and non-cancerous PNT2 prostate cell 

lines were dosed with 0, 0.5, 1 and 2 mM aspirin and 10 or 30 µM metformin for 72 hours before 

performing a tritiated thymidine incorporation assay. 

For the PC3 cell line dosing with aspirin alone significantly reduced 3H-thymidine incorporation 

from 1 mM aspirin onwards (p= 0.001, <0.001 and <0.001 for 1, 1.5 and 2 mM aspirin) and dosing 

with metformin reduced DPM for both 10 and 30 µM (p =0.005 and 0.02 respectively) (Figure 

3.4 a). While the combinations of aspirin and metformin had the greatest effect on cell 

proliferation for all conditions, it was only significant when the cells were dosed with either 0.5, 

1 or 1.5 mM in combination with 30 μM metformin (p= 0.01, <0.001 and 0.03 respectively). This 

was the only cell line in which an additive effect of the drugs was seen with 3H-thymidine 

incorporation.   

As with the PC3 cell line, the DU145s experienced a significant decrease in cell proliferation with 

aspirin treatment from 1 mM onwards (p= 0.001, <0.001 and <0.001 for 1, 1.5 and 2 mM aspirin) 

but were not affected by dosing with metformin alone (Figure 3.4 b). There was no additive 

effect when the drugs were used in combination, indicating that the decrease in proliferation 

was solely due to aspirin.   

The LNCaP cell line was the most responsive to aspirin, with a sharp decrease in DPM of 46% ± 

SEM compared to the control (100%) when cells were dosed with 0.5 mM. There was a reduction 

in cell proliferation at all concentrations of aspirin tested (p<0.001 for 0.5-2 mM) (Figure 3.4 c). 

Similar to the DU145s, LNCaP cell proliferation was not affected by metformin and the decrease 

observed when the drugs were used in combination was solely due to aspirin.  

The PNT2 cell line was less sensitive to aspirin than the other cell lines, however there was an 

effect at high drug concentrations with a significant decrease in proliferation when dosing with 

1 mM aspirin onwards (p= 0.001, <0.001 and <0.001 for 1, 1.5 and 2 mM aspirin) (Figure 3.4 d). 

There was a slight decrease in DPM when cells were dosed with metformin, however this was 

not significant. The PNT2s were the least affected cell line by the combination of the aspirin and 

metformin and an additive effect was not observed. 

The decrease in proliferation was similar for each of the cell lines when dosed with a 

combination of the highest concentrations of the drugs, 2 mM aspirin and 30 µM metformin, 

with only around 20% of the cells continuing to proliferate.  
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c.  

 

d.  

 

Figure 3.4: The effect of aspirin and metformin on cell proliferation using 3H-thymidine incorporation. 
(a) PC3, (b) DU145, (c) LNCaP and (d) PNT2 cells were dosed with either aspirin and metformin alone or 
in combination every 24 hours for a total of 72 hours. Error bars represent the standard error of mean. 
Data were analysed using a one-way ANOVA and Tukeys test for multiple comparisons. Data represents 
three independent experiments each performed in triplicate.  
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3.4.3 Proliferative response of PC3, DU145, LNCaP and PNT2 cells to 
aspirin and metformin: cell yield 

 

To further examine the effect of combining the drugs on cell proliferation two concentrations of 

both aspirin and metformin were selected and all four cell lines were dosed for 96 hours and 

counted. The concentrations selected were 0.5 mM and 2 mM for aspirin and 10 µM and 30 µM 

for metformin. For the PC3 cell line, cell number was unaffected in response to 0.5 mM aspirin 

but was decreased when cells were dosed with 2 mM aspirin (p <0.008) (Figure 3.5). Neither 

concentration of metformin alone significantly altered cell number. When 2 mM aspirin was 

used in combination with either 10 or 30 µM metformin there was a significant reduction in cell 

number which was different to dosing with each drug alone, indicating that aspirin and 

metformin have an additive effect, p <0.001 and p <0.001 for 2 mM aspirin with 10 and 30 µM 

metformin respectively. There was no difference between using 2 mM aspirin with 10 or 30 µM 

metformin demonstrating that low metformin concentrations were able to exert the additive 

effect. As seen with 3H-thymidine incorporation, the PC3 cell line was the only one of the four 

where the drugs had an additive effect. 
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Figure 3.5: Cell counting following dosing with metformin and aspirin alone and the combination of the 
two in the PC3 cell line. 
PC3s were dosed with aspirin, metformin or a combination of the two drugs every 24 hours for a total of 
96 hours. Error bars represent the standard error of mean. Data were analysed using a one-way ANOVA 
and Tukey’s test for multiple comparisons. Where there is an asterisk but no significance bar the condition 
is compared to the control. * p <0.05, ** p <0.01, *** p < 0.001. Data represents three independent 
experiments each performed in triplicate.  
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Similar to the PC3s, DU145 cell number was unaffected by either 10 or 30 µM metformin and 

0.5 mM aspirin but was reduced when cells were dosed with 2 mM aspirin (p= 0.002) (Figure 

3.6). Unlike the PC3s, the combination of 2 mM aspirin and either 10 or 30 metformin did not 

significantly reduce cell number compared to dosing with 2 mM aspirin alone (p≤ 0.05). 

However, the combination of 2 mM aspirin and 30 µM metformin did cause the greatest 

reduction in cell number, a decrease of 53% ± SEM compared with the control. 

 

 

Figure 3.6: Cell counting following dosing with metformin and aspirin alone and the combination of the 
two in the DU145 cell line. 
DU145s were dosed with aspirin, metformin or a combination of the two drugs every 24 hours for a total 
of 96 hours. Error bars represent the standard error of mean. Data were analysed using a one-way ANOVA 
and Tukey’s test. Where there is an asterisk but no significance bar the condition is compared to the 
control. * p <0.05, ** p <0.01, *** p < 0.001. Data represents three independent experiments each 
performed in triplicate.  
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When the LNCaP cells were dosed with metformin no significant change in cell number was 

observed (Figure 3.7). Dosing the cells with aspirin caused a reduction of 34% ± SEM and 74% ± 

SEM in cell number for 0.5 and 2 mM aspirin respectively (p= 0.022 and p <0.001). This was the 

only cell line to exhibit a significant change in cell number at 0.5 mM aspirin, suggesting that the 

LNCaPs respond to lower concentrations of aspirin. It was also observed that the LNCaPs were 

the most sensitive to aspirin as when cells were dosed with 2 mM aspirin cell number was 

decreased the most compared to the other cell lines. This was a reduction of 74% (± 0.02), 

compared to 41% (± 0.07) for DU145s, 32% (± 0.09) for PC3s and 16% (± 0.06) for the non-

cancerous PNT2s. The combination of aspirin and metformin did not significantly decrease cell 

number compared to dosing with aspirin alone indicating that like the DU145s the effects 

observed were solely due to aspirin. 
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Figure 3.7: Cell counting following dosing with metformin and aspirin alone and the combination of the 
two in the LNCaP cell line. 
LNCaPs were dosed with aspirin, metformin or a combination of the two drugs every 24 hours for a total 
of 96 hours. Error bars represent the standard error of mean. Data were analysed using a one-way ANOVA 
and Tukey’s test. Where there is an asterisk but no significance bar the condition is compared to the 
control. * p <0.05, ** p <0.01, *** p < 0.001. Data represents three independent experiments each 
performed in triplicate. 
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The non-tumorigenic PNT2s were the least affected of all the cell lines with neither aspirin nor 

metformin alone or the combination causing a significant change in cell number (Figure 3.8).  

 
 

 

 

Figure 3.8: Cell counting following dosing with metformin and aspirin alone and the combination of the 
two in the PNT2 cell line. 
PNT2s were dosed with aspirin, metformin or a combination of the two drugs every 24 hours for a total 
of 96 hours. Error bars represent the standard error of mean. Data were analysed using a one-way ANOVA 
and Tukeys’s test. Data represents three independent experiments each performed in triplicate. 

 

For all four cell lines the combination of aspirin and metformin caused the greatest decrease in 

cell number. For 2 mM aspirin in combination with 30 µM metformin this was a decrease of 75%, 

53%, 46% and 21% for LNCaP, DU145, PC3 and PNT2 cells respectively.  

Change in PNT2 cell number when dosed with 

aspirin alone or in combination with metformin 
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3.4.4 Alterations in proliferation marker expression following dosing with 
aspirin and metformin 

 
 
Western blots were performed to examine basal protein abundance of markers of cell 

proliferation that included cyclin D1 and PCNA. Cyclin D1 is an important regulator of the G1 to 

S phase transition and is expressed in the G1 phase and then rapidly declines at the G1/S phase 

boundary (210). PCNA is a critical component of the DNA replication machinery and is often 

expressed in the nuclei of cells during the DNA synthesis (S) phase of the cell cycle. Examining 

expression of these proteins allows analysis of different phases of the cell cycle to determine 

whether drugs induce an anti-proliferative effect.  

 

A panel of prostate cell lines was used to examine PCNA and cyclin D1 abundance (Figure ). PCNA 

and cyclin D1 were expressed in all cell lines and as expected the non-tumorigenic epithelial 

prostate cell line, PNT2s had the lowest abundance of each. Surprisingly basal cyclin D1 

expression was also low in the DU145 cells.  

  

 

 

Figure 3.9: PCNA and cyclin D1 levels in prostate cancer and epithelial cell lines. 
Expression of PCNA (30 kDa) and cyclin D1 (35 kDa) in PC3, DU145, LNCaP and PNT2 cell lines. The 
housekeeping gene tubulin was used as a loading control. 
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For the PC3 cell line, dosing with aspirin (0.25- 4 mM) caused a slight decrease in PCNA and cyclin 

D1 levels (Figure 3.10), however the decrease was only significant for cyclin D1 when cells were 

dosed with 4 mM aspirin (p=0.01). This was different to cell counting in which a decrease in cell 

proliferation was observed when cells were dosed with 2 mM aspirin (Figure 3.5).  

 

 

 
Figure 3.10: Western blot analysis of markers of cell proliferation for PC3 cells dosed with aspirin.  
(a) Levels of markers of cell proliferation, PCNA and cyclin D1, in PC3 cells dosed with aspirin every 24 
hours for a total of 96 hours. (b) Densitometry was performed to quantify PCNA and cyclin D1 protein 
levels. Error bars represent the standard error of mean. Data were analysed using GraphPad Prism with a 
one-way ANOVA and Dunnett’s post hoc test. Representative of experiments repeated 3 times. * p <0.05, 
** p <0.01, *** p < 0.001. 

 

 



The effect of aspirin and metformin on cell proliferation and cell death in 2D cell culture 

 

 

110 
 

 

Dosing PC3 cells with metformin (10-1000 µM) caused a significant decrease in PCNA and cyclin 

D1 at 1000 µM (p=0.01 and p<0.001 respectively) (Figure 3.11). This indicates that in this cell 

line, metformin does not affect cell proliferation at clinically relevant concentrations (up to 30 

µM metformin) as was observed in cell counting. 

 

 

 

Figure 3.11: Western blot analysis of markers of cell proliferation for PC3 cells dosed with metformin. 
(a) Levels of markers of cell proliferation, PCNA and cyclin D1, in PC3 cells dosed with metformin every 24 
hours for a total of 96 hours. Blot is a representative of experiment repeated three times (b) Densitometry 
was performed to quantify protein levels. Error bars represent the standard error of mean. Data were 

analysed using Graphpad Prism with a one-way ANOVA and Dunnett’s post hoc test. Data for three 

independent experiments combined. * p <0.05, ** p <0.01, *** p < 0.001. 
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When the PC3 cell line was dosed with a combination of aspirin (2 mM) and metformin (30 µM) 

both PCNA and cyclin D1 decreased, p=0.04 and p=0.049 respectively (Figure 3.12).  

 

 

 

Figure 3.12:  Western blot analysis of markers of cell proliferation for PC3 cells dosed with aspirin and 
metformin alone and in combination. 
(a) Levels of markers of cell proliferation, PCNA and cyclin D1, in PC3 cells dosed with metformin every 24 
hours for a total of 96 hours. Blot is a representative of experiment repeated three times. (b) 
Densitometry was performed to quantify protein levels. Error bars represent the standard error of mean. 
Data were analysed using Graphpad Prism with a one-way ANOVA and Tukey’s post hoc test. 
Representative of experiments repeated 3 times. Data for three independent experiments combined. * p 
<0.05, ** p <0.01, *** p < 0.001. 

 

 

 



The effect of aspirin and metformin on cell proliferation and cell death in 2D cell culture 

 

 

112 
 

The LNCaP cell line was dosed with 0-4 mM aspirin as were the other cell lines, however, western 

blotting could not be conducted for cells dosed with 4 mM aspirin as at this concentration aspirin 

was toxic, killing most of the cells and not producing enough lysate. The cell counting 

experiments indicated that aspirin inhibited cell proliferation at 0.5 and 2 mM. In western 

blotting there was a decrease in both PCNA and cyclin D1 which was significant at 1 and 2 mM 

aspirin for PCNA, p= 0.44 and 0.001, and at 2 mM for cyclin D1, p <0.001 (Figure 3.13).  

 
 

 

Figure 3.13: Western blot analysis of markers of cell proliferation for LNCaP cells dosed with aspirin.  
(a) Levels of markers of cell proliferation, PCNA and cyclin D1, in LNCaP cells dosed with aspirin every 24 
hours for a total of 96 hours. Blot is a representative of experiment repeated three times. (b) 
Densitometry was performed to quantify protein levels. Error bars represent the standard error of mean. 
Data were analysed using GraphPad Prism with a one-way ANOVA and Dunnett’s post hoc test. 
Representative of experiments repeated 3 times. Data for three independent experiments combined.  * 
p <0.05, ** p <0.01, *** p < 0.001. 
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Metformin had no significant effect on either marker of proliferation at clinically relevant 

concentrations of metformin (<30 μM) in the LNCaP cell line (Figure3.14).  This corresponds to 

no effect of these concentrations on cell number (Figure 3.7). However, when dosed with 1000 

µM metformin there was a significant decrease in PCNA p= 0.04.  

 

 

 

 

Figure 3.14: Western blot analysis of markers of cell proliferation for LNCaP cells dosed with metformin.  
(a)Levels of markers of cell proliferation, PCNA and cyclin D1, in LNCaP cells dosed with metformin every 
24 hours for a total of 96 hours. Blot is a representative of experiment repeated three times. (b) 
Densitometry was performed to quantify protein levels. Error bars represent the standard error of mean. 
Data were analysed using GraphPad Prism with a one-way ANOVA and Dunnett’s post hoc test. 
Representative of experiments repeated 3 times. Data for three independent experiments combined. * p 
<0.05, ** p <0.01, *** p < 0.001. 
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When LNCaP cells were dosed with both aspirin (2 mM) and metformin (30 μM), there was a 

significant decrease in both PCNA (p < 0.001) and cyclin D1 (p= 0.004) abundance (Figure 3.15).  

However, this was not significantly different from the decrease observed when cells were dosed 

with 2 mM aspirin alone, indicating that the effect was solely due to aspirin. 

 

 

 

Figure 3.15: Western blot analysis of markers of cell proliferation for LNCaP cells dosed with aspirin 
and metformin alone and in combination. 
(a) Levels of markers of cell proliferation, PCNA and cyclin D1, in LNCaP cells dosed with metformin every 
24 hours for a total of 96 hours. Blot is a representative of experiment repeated three times. (b) 
Densitometry was performed to quantify protein levels. Error bars represent the standard error of mean. 
Data were analysed using GraphPad Prism with a one-way ANOVA and Tukey’s post hoc test. 
Representative of experiments repeated 3 times. Data for three independent experiments combined.  * 
p <0.05, ** p <0.01, *** p < 0.001. 
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There was no change in markers of cell proliferation in the non-cancerous PNT2 cell line (p >0.05) 

when cells were dosed with either aspirin or metformin (Figure 3.16 and Figure 3.17).  This was 

anticipated as there was also no change in cell yield when cell counting (Figure 3.8). 

 

 

 

Figure 3.16: Western blot analysis of markers of cell proliferation for PNT2 cells dosed with aspirin.  
(a) Levels of markers of cell proliferation, PCNA and cyclin D1, in PNT2 cells dosed with aspirin every 24 
hours for a total of 96 hours. Blot is a representative of experiment repeated three times. (b) 
Densitometry was performed to quantify protein levels. Error bars represent the standard error of mean. 
Data were analysed using GraphPad Prism with a one-way ANOVA and Dunnett’s post hoc test. 
Representative of experiments repeated 3 times. Data for three independent experiments combined.  * 
p <0.05, ** p <0.01, *** p < 0.001. 
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Figure 3.17: Western blot analysis of markers of cell proliferation for PNT2 cells dosed with metformin.  
(a) Levels of markers of cell proliferation, PCNA and cyclin D1, in PNT2 cells dosed with aspirin every 24 
hours for a total of 96 hours. Blot is a representative of experiment repeated three times. (b) 
Densitometry was performed to quantify protein levels. Error bars represent the standard error of mean. 
Data were analysed using GraphPad Prism with a one-way ANOVA and Dunnett’s post hoc test. 
Representative of experiments repeated 3 times. Data for three independent experiments combined.  * 
p <0.05, ** p <0.01, *** p < 0.001. 
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As expected from cell counting, combining aspirin and metformin also did not affect PCNA or 

cyclin D1 levels in PNT2 cells (p >0.05) (Figure 3.18).  

 

 

 
Figure 3.18: Western blot analysis of markers of cell proliferation for PNT2 cells dosed with aspirin and 
metformin alone and in combination. 
(a) Levels of markers of cell proliferation, PCNA and cyclin D1, in PNT2 cells dosed with metformin every 
24 hours for a total of 96 hours. Blot is a representative of experiment repeated three times. (b) 
Densitometry was performed to quantify protein levels. Error bars represent the standard error of mean. 
Data were analysed using GraphPad Prism with a one-way ANOVA and Tukey’s post hoc test. 
Representative of experiments repeated 3 times. Data for three independent experiments combined. * p 
<0.05, ** p <0.01, *** p < 0.001. 
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3.4.5 Cell death in PC3, DU145, LNCaP and PNT2 cells following dosing 
with aspirin and metformin 

 
 
To investigate whether the decrease in cell number was due a decrease in proliferation or an 

induction of death, the number of dead cells was assessed after treatment. For the PC3s, DU145s 

and PNT2s there was not a significant change in cell death when dosed with aspirin, metformin 

or a combination of the two drugs (p<0.05) (Figure 3.19). For the PC3 and DU145 cell lines this 

confirms that the decrease in cell number (Figure 3.5 and Figure 3.6) was due to the drugs 

inhibiting proliferation rather than promoting cell death. For the PNT2s there was no significant 

change in cell number when the cells were dosed with either the drugs alone or in combination 

(Figure 3.8), therefore as anticipated there was also no change in cell death.  

 

For the LNCaP cell line, there was no significant change in the percentage of cell death when 

dosed with metformin alone (Figure 3.20). There was also no change in cell death when dosed 

with 0.5 mM aspirin alone or in combination with metformin even though there was a reduced 

cell number in the previous experiment. In contrast, there was large increase in cell death when 

cells were dosed with 2 mM aspirin (p= 0.005) which was the same level of cell death when cells 

were treated with the combination of 2 mM aspirin with 10 or 30 µM metformin (p<0.001 for 

both conditions). This indicates that aspirin has dose-dependent effects, inhibiting cell 

proliferation at 0.5 mM and causing cell death at 2 mM. A summary of the drug induced effects 

on cell counting, which were dependent on cell type, are displayed in Table 3-1. 
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Figure 3.19: Percentage of cell death as determined by cell counting in the PC3, DU145 and PNT2 cell 
lines when dosed with aspirin, metformin or a combination of the two drugs. 
(a, b) PC3 (c, d) DU145, and (e, f) PNT2s were dosed with aspirin, metformin or a combination of the two 
drugs every 24 hours for a total of 96 hours. Error bars represent the standard error of mean. Data were 
analysed using a one-way ANOVA and Tukey’s test. Data represents three independent experiments each 
performed in triplicate.  
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Figure 3.20: Percentage of cell death following dosing with metformin and aspirin alone and in 
combination in the LNCaP cell line. 
LNCaPs were dosed with aspirin, metformin or a combination of the two drugs every 24 hours for a total 
of 96 hours. Error bars represent the standard error of mean. Data were analysed using a one-way ANOVA 
and Tukey’s test for multiple comparisons. Where there is an asterisk but no significance bar the condition 
is compared to the control. * p <0.05, ** p <0.01, *** p < 0.001.  Data represents three independent 
experiments each performed in triplicate.
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Table 3-1: Summary of the effect of aspirin or metformin alone and in combination on the cancerous cell lines from cell counting. 

 

 

Cell line 
 

10 or 30 µM metformin 
 

0.5 mM aspirin 
 

2 mM aspirin 
 

Either combination of aspirin 
and metformin 

 

LNCaP No significant effect Inhibits cell proliferation Inhibits cell proliferation and 
causes cell death. 

Inhibits cell proliferation and 
causes cell death solely due to 
aspirin. 

DU145 No significant effect No significant effect Inhibits cell proliferation Inhibits cell proliferation solely 
due to aspirin. 

PC3 No significant effect No significant effect Inhibits cell proliferation Additive effect 
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3.4.6 Aspirin induces apoptosis in LNCaP cells 
 

To further investigate whether the cell death was apoptosis, LNCaP cells were stained with 

annexin V and 7-aminoactinomycin (7-AAD) and treated with 2 mM aspirin for 96 hours. During 

apoptosis cells undergo characteristic changes in morphology. Among these alterations 

phosphatidylserine (PS) is externalized to the cell surface and is readily bound by Annexin V. A 

dead cell marker, 7-AAD, identifies cells in the later stages of apoptosis as it is an indicator of 

structural integrity. Cells that were not apoptotic were negative for both markers, early 

apoptotic cells were Annexin V positive and 7-AAD negative, late stage apoptotic and dead cells 

were positive for both markers and nuclear debris was Annexin V negative and 7-AAD positive.  

Cells were gated according to cell viability and Annexin V staining, producing an apoptosis profile 

(Figure 3.21). Analysis of the data showed no change in the percentage of live cells or cells 

undergoing apoptosis when the cells were dosed with 0.5 mM aspirin alone but a large increase 

in annexin V, 7-AAD positive apoptotic cells when dosed with 2 mM aspirin (Figure 3.22 a). When 

the cells were dosed with metformin, either 10 or 30 µM, there was no change in the percentage 

of live cells or dead cells (Figure 3.22 b). When dosing the cells with a combination of aspirin and 

metformin, 2 mM aspirin with either 10 or 30 µM metformin induced apoptosis, however this 

was the same as dosing with 2 mM aspirin alone. These results agreed with the previous data 

from the cell counting (Figure 3.7)  
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Figure 3.21: Plots representing the apoptosis profile of LNCaP cells stained with the Annexin V and 7-
AAD following dosing with aspirin, metformin or a combination of both drugs. 
LNCaP cells were dosed with aspirin, metformin or a combination of the two drugs every 24 hours for a 
total of 96 hours. Annexin V and 7-AAD staining indicated the percentage of live, early apoptotic, late 
apoptotic and dead cells. 
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Figure 3.22: Percent of LNCaP cells which are live, early apoptotic, late apoptotic or dead when stained with Annexin V and 7-AAD. 
Cells were dosed with (a) aspirin alone or in combination with metformin (b) metformin alone or in combination with aspirin. Data represents three independent 
experiments performed in triplicate. Where there is an asterisk but no significance bar the condition is compared to the control. Error bars represent the standard error of 
mean. Data was analysed using a one-way ANOVA and Tukey’s test for multiple comparisons. * p <0.05, ** p <0.01, *** p < 0.001. 
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3.4.7 Caspase inhibitor Q-VD-OPh rescues LNCaP cells from aspirin 
induced apoptosis 

 

Q-VD-OPh is a broad-spectrum caspase inhibitor and was used to assess whether aspirin induces 

caspase dependent apoptosis in the LNCaP cell line. When the LNCaP cells were dosed with 2 

mM aspirin cell viability was reduced to around ~30% (p <0.0001) (Figure 3.23). However, with 

the addition of 20 μM Q-VD-OPh to aspirin treated cells, cell viability was rescued, increasing 

cell viability to ~76% of control Q-VD-OPh treated cells. However, while cell viability was 

increased, it was not a full rescue, indicating that in this cell line aspirin induces apoptosis 

through caspase-dependent mechanisms but there may also be caspase-independent cell death. 

 

 

 

Figure 3.23: Cell viability as determined by cell counting for LNCaP cells dosed with aspirin and Q-VD-
OPh. 
Cells were dosed for 96 hours with 20 μM Q-VD-OPh, 2 mM aspirin and a combination of 20 μM Q-VD-
OPh and 2 mM aspirin with the media being replaced and collected every 24 hours. Data represents three 
independent experiments performed in triplicate. Error bars represent the standard error of mean. Data 
was analysed using a one-way ANOVA and Tukey’s test for multiple comparisons. * p <0.05, ** p <0.01, 
*** p < 0.001. Where there is an * but no bar the condition is compared to the control.  
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3.4.8 p53 is activated in LNCaP cells following aspirin treatment 
 

As the LNCaP cell line was the only one in which aspirin induced apoptosis it was suggested that 

this may be because it is the only cell line to express functional p53. p53 is a tumour suppressor 

and an important regulator of genome stability (211). Under stress the p53 protein can be 

stabilized and accumulates in the nucleus where it can be phosphorylated, acetylated or 

sumoylated (212). Phosphorylation on serine 15 leads to activation of p53 as a transcription 

factor where it activates expression of downstream genes which can cause apoptosis (213). 

Therefore, p53 and phosphorylated p53 (Ser15) serve as markers for apoptosis, with increased 

expression during programmed cell death.   

Through western blotting it was seen that the abundance of p53 and phosphorylated p53 (Ser15) 

were increased, reaching maximum levels at around 30 minutes after dosing with 2 mM aspirin 

(Figure 3.24). Expression then decreased, returning to approximately control levels after 2 

hours. The increase in phosphorylated p53 was greater than that of total p53.  
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Figure 3.24: Expression of p53 and phosphorylated p53 (Ser15) in LNCaP cells dosed with aspirin. 
(a) Cells were dosed with aspirin for 72 hours and then dosed with aspirin again and lysed at 0, 15, 30, 60 
and 120 minutes after dosing. The housekeeping gene GAPDH represents a loading control. Blot is 
representative of experiment repeated three times. (b) Densitometry from the three independent 
experiments combined. Error bars represent the standard error of mean. Data was analysed using a one-
way ANOVA and Dunnet’s test for multiple comparisons. * p <0.05, ** p <0.01, *** p < 0.001. 
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3.5 Discussion  
 

 
Upregulated and uncontrolled cell proliferation is a feature common to all types of cancer and 

has been a key focus in treatment regimens. In this chapter, the effects of aspirin and metformin 

alone and in combination on prostate cancer cell proliferation were examined. For all four cell 

lines a decrease in proliferation with each of the drugs was observed in the 3H- thymidine 

incorporation assay. The greatest decrease was when the drugs were used in combination, 

however the PC3 cell line, the most advanced of the four, was the only one in which aspirin and 

metformin had an additive effect. The non-tumorigenic PNT2s were the least affected which 

indicates that the drugs more readily target the rapidly dividing cancer cells, an observation also 

reported in other tissues (164) (214). In all cell lines and at all doses tested there remained some 

proliferating cells. Cancer recurrence is a major problem in treatment as even a few remaining 

cells can repopulate a tumour. It would be interesting to continue the experiment to see if long 

term treatment changes the phenotype.  

  

The results from cell counting were similar to those observed with the 3H-thymidine 

incorporation assay with a decrease in proliferation for the PC3s, DU145s and LNCaP cell lines. 

As with the 3H- thymidine incorporation assay, the non-tumorigenic prostate cell line, the PNT2s, 

were the least affected by the drugs and experienced a non-significant reduction in cell number. 

Prostate cancer normally occurs in men over the age of 50 and whilst ideally the drugs would 

have no effect on non-cancerous cells, at this age the prostate is fully developed and cells enter 

a more quiescent, G0, stage. In G0 cells do not proliferate except when they need to re-enter 

the cell cycle to repair damaged tissue (215). Because of this, the drugs suppression of 

proliferation in normal cells would not have an enormous impact on the fully developed 

prostate. However, it was noted that aspirin appeared to have a greater effect on the less 

aggressive cancer cells than the ones in the more advanced stages, inducing growth arrest and 

apoptosis in LNCaP cells but only inhibiting cell proliferation in the DU145s and PC3s. This may 

suggest that in terms of the effect of the drug on cell proliferation, people who are in the earlier 

stages of prostate cancer development will receive the most benefit from aspirin treatment. 

Interestingly, no significant change in cell number was observed in the PC3, DU145 and LNCaP 

cell lines when dosed with 10 or 30 µM metformin. In the DU145 and LNCaP cells cell number 

was significantly reduced when dosed with aspirin and the LNCaP cells were the most 

responsive, with a change in cell number at both 0.5 and 2 mM aspirin rather than just at 2 mM 

as seen with the DU145s.  
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When examining markers of cell proliferation, PCNA and cyclin D1, a decrease in the PC3 cell 

line was only observed at the highest concentrations of the two drugs, 4 mM aspirin and 1000 

μM metformin, concentrations that are above the realistic therapeutic range. For all the cell 

lines the drug induced changes in western blotting were less obvious than the effect of the drugs 

on cell yield. Western blotting determines generalized protein expression for the entire 

population of cells which will include cells at different stages of the cell cycle as they are 

continually cycling through it. Therefore, it is often a less sensitive assay than cell counting.  

 

In the LNCaP cell line, aspirin had dose-dependent effects, causing an inhibition of cell 

proliferation at 0.5 mM whilst both inhibiting cell proliferation and inducing cell death at 2 mM 

as seen with the cell counting and annexin V/7-AAD staining. Incubation of LNCaP cells which 

were treated with aspirin and Q-VD-OPh, a caspase inhibitor, returned cell viability almost to 

normal levels indicating that aspirin causes apoptosis through caspase mediated mechanisms. 

As aspirin has been shown to target cell proliferation the difference between the control and 

the cells dosed with aspirin and Q-VD-OPh could be due to a reduction in cell number but also 

could be through a caspase independent pathway. Indeed, aspirin has activated caspase 

independent cell death in other cancer types (216) (132).  

It is known that LNCaP cells carry wild type p53 protein while PC3s are p53 negative due to a 

frameshift mutation which leads to a premature stop codon (217) and the DU145s have a non-

functional mutated version as a result of two point mutations (218). p53 is the protein product 

of the TP53 gene and functions as a tumour suppressor, holding the cell in the cell cycle during 

cellular stress or initiating apoptosis if the damage is irreparable (219). Loss of this protein means 

that cells do not undergo apoptosis during cellular damage and survive, incorporating new 

mutations and propagating the cancer. It is thought that the TP53 gene is mutated in more than 

half of all cancers (220). In this study the LNCaP cell line was the only cell line to undergo 

apoptosis when dosed with 2mM aspirin. Due to the mutation status of the cells it was thought 

that this induction of apoptosis may be through the p53 pathway and so western blotting was 

performed to examine expression of p53 and a phosphorylated version of the protein. p53 is 

known to have a short half-life of around 5-20 minutes in most cell types, including those of the 

prostate (221). Mouse double minute 2 homolog (MDM2) is a negative regulator of p53, quickly 

ubiquitinating p53 and sending p53 to the proteasome to be degraded. However, upon cellular 

stress MDM2 is phosphorylated, blocking its binding to p53 and p53 accumulates in the nucleus 

where its half-life is increased by several fold (222). It then undergoes phosphorylation on three 

residues, Serine 15, Serine 20 and Serine 46 as well as acetylation and this promotes its 
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stabilization and activation of downstream targets for cell cycle arrest, senescence and 

apoptosis. Western blotting confirmed that in LNCaP cells both p53 and phosphorylated p53 

(Ser15) increased after dosing with 2 mM aspirin, reaching maximum expression after 30 

minutes and remaining elevated for over two hours. This suggests that aspirin causes p53 

stabilization and activation of its downstream pathways (223).  In liver, colon and breast cancer 

cell lines aspirin was shown to increase the binding of ribosomal protein to MDM2 which 

decreased MDM2s binding to p53 and led to its stabilization (224). Aspirin has also been shown 

to acetylate p53, activating its downstream targets (225). It could be that aspirin increases p53 

in prostate cells in the same manner. 

When aspirin and metformin were used in combination an additive effect of the drugs was 

observed for the PC3 cell line in all the assays; 3H- thymidine incorporation, cell counting and 

western blotting. An important consideration in these cells is their phosphatase and tensin 

homolog (PTEN) status. PTEN is a tumour suppressor gene that inhibits cell proliferation and 

growth via inactivation of the PI3K pathway (226). It is one of the most commonly lost tumour 

suppressors in cancer and is negative in both the PC3 and LNCaP cell lines (227). The DU145s 

however are heterozygous for this gene (228) and the PNT2s are PTEN positive (229). Mutations 

in PTEN lead to constitutive activation of AKT and mTOR (230), a downstream target of both 

aspirin and metformin. Since aspirin and metformin both target the PI3K pathway it was thought 

that they might be more effective to treat cancers where PTEN is lost. Indeed, in this study the 

3H- thymidine incorporation and cell counting data showed that the PC3 and LNCaP cell lines 

were more responsive to aspirin and metformin than the DU145s and PNT2s. It may be that the 

blockade of the PI3K pathway by aspirin and metformin is the reason an additive effect was 

observed in the PC3 cell line and should be examined in future experiments. 

Together the data from this chapter suggests that androgen dependent, p53 positive cells such 

as LNCaP cells are sensitive to aspirin treatment and experience inhibition of cell proliferation 

with low dose aspirin (0.5 mM) and induction of cell death with high dose aspirin (2 mM). The 

more advanced, androgen independent, p53 negative, PTEN negative cells such as the PC3s 

experienced a decreased in cell proliferation at higher aspirin concentrations but were not 

affected by treatment with metformin alone. When the drugs were used in combination, 

metformin enhances efficacy of aspirin potentially through inhibition of the PI3K pathway. 
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4.1 Introduction  
 
 

4.1.1 3D cell culture systems  
 

One of the major difficulties with in vitro experiments is modelling the cellular and organizational 

complexity that is seen with tumour masses in vivo.  While 2D cell culture has informed our 

understanding of biological processes for years, 3D culture provides a model which better 

represents the cell to cell interactions and surrounding environment which is essential for cell 

differentiation, proliferation and survival (231). Cells grown in 3D form spheres composed of 

aggregates of cells with growth in all directions.  
 

There are multiple techniques used to grow cells in 3D culture. These include the hanging drop 

method, the liquid overlay method, magnetic levitation, the use of scaffolds, spinner flasks, 

hydrogels or other extracellular component matrixes such as collagen, agarose or matrigel 

(Figure 4.1) (232). In this study, cells were seeded in matrigel, where they invade outwards to 

form spheroids over time. This technique was chosen as it allows the formation of spheroids 

from single cells, enabling the effect of the drugs on both spheroid formation and spheroid 

growth to be monitored.  
 

 

Figure 4.1: Techniques used to create 3D cell culture. 
(a) The hanging drop method uses gravity to bring the cells together and form a 3D aggregate. (b) The 

liquid overlay technique inhibits cell attachment to plates by using low adhesive surfaces such as agarose. 

(c) In magnetic levitation, cells are treated with a magnetic nanoparticle assembly, which causes them to 

become magnetic. A magnetic field causes the cells to aggregate. (d) Cells proliferate and adhere to 

scaffolds. Over time they interact with each other and form spheroids. (e) In spinner flasks cells aggregate 

due to centrifugal forces. (f) Matrigel and other hydrogels are used to seed single cells within an 

extracellular matrix which form spheroids over time. 



The effect of aspirin and metformin on cell proliferation and cell death in 3D cell culture 

 

 

134 
 

4.1.2 Advantages and disadvantages of 3D cell culture compared to 2D 
 
3D cell culture does have advantages and disadvantages to consider and both 2D and 3D culture 

is useful depending on the question of interest. 

 

4.1.2.1 Advantages of 3D cell culture 
 

In 2D culture, the cells are grown as a monolayer, which results in the cells being limited to 

horizontal growth and signalling. For cells grown in 3D, the cells are suspended within the 

matrigel, allowing cell-cell signalling throughout the spheroid as well as cell-ECM signalling with 

the extracellular components of the surrounding matrigel (233).This establishes a signalling 

network that is essential for spheroid homeostasis and survival. In addition, the structure of the 

spheroid creates diffusion gradients, with gradients for oxygen, drugs, waste, and nutrients 

present (234). This is considered more representative of a solid tumour where there are central 

hypoxic regions and the concentration of drugs is highest at the outer layers of the tumour (235). 

Furthermore, gene and protein expression are more comparable with the genetic profile seen 

in tumour masses in vivo than in 2D cell culture (236). In a study which examined biomarker 

expression in prostate cells cultured in matrigel there was a significant difference in morphology, 

biomarker expression, and proliferation rates between non-cancerous epithelial cells, non-

invasive and metastatic prostate cancer cells lines. Cells grown in 3D culture more precisely 

mimicked the cancer progression reported in vivo (237). In addition, this model can be adapted 

to incorporate other cell types and scaffolding to create a more tissue like microenvironment. 

Many studies have shown that the tumour microenvironment (TME) is important for cancer 

progression and response to treatments. The TME consists of the extracellular matrix (ECM), 

different non-cancer cell types, their stroma which includes mesenchymal supporting cells, 

fibroblasts, immune cells and cells of the surrounding vasculature (238). Together the TME has 

a specific role in the function, structure and physiology of the tumour. Therefore, many 3D 

culture models attempt to encompass the surrounding environment, incorporating tumour 

cells, cancer associated fibroblasts and macrophages (239) to create a dynamic environment 

with cell to cell interactions and the secretion of signalling molecules such as cytokines and pro-

inflammatory factors.  
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4.1.2.2 Disadvantages of 3D cell culture 
 

Despite the advantages in providing a more representative tumour model, 3D cell culture does 

have some disadvantages. It can be expensive, with the added cost of gels or scaffolding as well 

as more specific media requirements to induce differentiation or development of structures 

such as crypt formation from primary colorectal cultures. Furthermore, as 3D cell culture has 

only started to be used relatively recently, the protocols are quite labour intensive and are still 

being optimized and developed. Consequently, the downstream assays are not as reproducible 

as those for 2D cell culture and are continually improving. Quantifying the effect of drugs, 

metabolites and chemicals on 3D culture can also be difficult as the cells aren’t exposed to 

uniform concentrations of a substance which leads to variable effects within the spheroid. 

However, as time goes on the techniques will become less expensive and more robust, 

increasing outputs from these models and making them more widely available. 

4.1.2.3 3D cell culture in drug discovery and testing 
 

Drug discovery and development is one of the main goals of clinical research. Identifying drugs 

that work well in humans is difficult and often drug induced effects seen in the laboratory are 

not translated to clinical practice. While animal studies help to bridge this gap, the use of animals 

is very expensive and must be ethical which means there is less high content screening. The use 

of 3D cell culture before animal testing assesses the drug could help determine whether animal 

tests are necessary (240) (241). Indeed, a study which compared the effect of 

chemotherapeutics on 2D and 3D models observed that the response of the 3D prostate cell 

culture to docetaxel was more consistent with in vivo results than those cultured in 2D (242).  

To date there are no studies examining the effect of aspirin or metformin in 3D culture for 

prostate cancer and no studies that have examined combining the drugs in 3D cell culture for 

any type of cancer. It is thought that testing aspirin and metformin in 3D culture will give a better 

indication of what effect the drugs will have in humans.  

 

 

 

 

  



The effect of aspirin and metformin on cell proliferation and cell death in 3D cell culture 

 

 

136 
 

4.2 Hypotheses and aims 
 

In this chapter, the effects of aspirin and metformin on cell proliferation and apoptosis in 3D cell 

culture are described.  

 

Hypothesis: As aspirin was shown to reduce proliferation of prostate cancer cells in 2D cell 

culture in Chapter 3 it is expected that aspirin will also cause growth inhibition of 3D prostate 

spheroids. Metformin will have no effect on cell proliferation in 3D culture when administered 

alone but may enhance the efficacy of aspirin as seen in 2D cell culture.  

 

Aims and objectives:  

1. To optimise 3D cell culture for PC3, PNT2 and primary prostate cells. 

2. To examine the effect of aspirin and metformin alone and in combination on 3D 

spheroid formation and growth. These experiments will be designed to address if 

administering the drugs before cancer development is beneficial and if the drugs have 

the capacity to reduce the growth of an established tumour. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The effect of aspirin and metformin on cell proliferation and cell death in 3D cell culture 

 

 

137 
 

4.3 Materials and methods 
 

Spheroid cultures were seeded and maintained as described in Chapter 2, Section 2.7.1. They 

were imaged and analysed as described in Chapter 2, Sections 2.7.2 and 2.7.3. Statistical analysis 

was performed as described in Chapter 2, Section 2.8. 

4.3.1 Examining the effect of aspirin and metformin on spheroid formation 
 

Cells were seeded in a 48 well plate with 40 cells per well in 20 µl of matrigel. The day of seeding 

was termed day 0 and spheroids were dosed at days 4, 7 and 11 with 250 µl of 0, 0.5, 1, 2, 4 and 

10 mM aspirin and 0, 10, 20, 30, 1000 and 5000 µM metformin. When cells were dosed the wells 

were washed with PBS before the media was changed to remove all of the existing media.  

Following the results of the initial experiments the drug concentrations and experimental setup 

were then modified. Cells were dosed at days 0, 4, 7 and 11 but the original media was not 

removed and spheroids were not washed with PBS as this was found to disrupt the matrigel. 

Instead, fresh media was added to the existing media. The concentrations were also changed so 

that spheroids were dosed with 0, 0.25, 0.5, 1, 2 and 4 mM aspirin and 0, 10, 20, 30, 100 and 

1000 µM metformin to determine whether lower concentrations of the drugs would also have 

an antiproliferative effect.  Spheroids were imaged at day 14.  

4.3.2 Examining the effect of aspirin and metformin on spheroid growth  
 

 

Cells were seeded into ADF plus supplements rather than dosing immediately and grown in 

spheroid media for 1 week, forming small spheroids with an average spheroid area of 0.03 x105 

µm2. They were then dosed with 0, 0.25, 0.5, 1, 2 and 4 mM aspirin and 0, 10, 20, 30, 100 and 

1000 µM metformin for a further 1.5 weeks, dosing twice a week. Spheroids were imaged at day 

18. At the end of the experiment spheroids were also stained with calcein AM and ethidium 

homodimer-1 as described in Chapter 2, Section 2.7.4 or stained for markers of cell proliferation, 

PCNA and cyclin D1, following the immunofluorescent protocol as described in Chapter 2, 

Section 2.7.5.  
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4.4 Results 
 

4.4.1 Establishing 3D cell culture  
 

Cells were seeded suspended in matrigel and cultured in Advanced DMEM/F12 (ADF) plus 

supplements B27, N2 and N-acetylcysteine to create 3D functional spheroids. It was observed 

that the media and supplements supported cell growth and that spheroids were formed from 

single cells. In 2D culture, cells grow in a monolayer with PC3 cells having a long and thin 

appearance. In 3D, the PC3 cells had a stellate morphology with spiky, branching protrusions 

around the perimeter (Figure 4.2). The spheroids did not contain a lumen as expected as they 

are considered to be a basal cell type due to the expression of keratin 5 and keratin 14 and lack 

of luminal markers PSA and AR (243).  

 

 

Figure 4.2: A comparison of PC3 cells grown in 2D and 3D cell culture. 
(a) PC3 cells grown in 2D cell culture as a monolayer attached to plastic. (b) PC3 cells grown in 3D cell 
culture suspended in matrigel. 
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Non-tumorigenic PNT2 prostate epithelial cells and primary cells from a prostate with benign 

prostatic hyperplasia, H642/17, were also grown in 3D culture to compare the differences in 

spheroid morphology with the PC3 prostate cancer cell line. Unlike the PC3 cell line which 

displayed protrusions both the non-tumorigenic and the benign primary prostate cells had a 

rounded morphology and slower growth rates (Figure 4.3). 

 

 

 

Figure 4.3: A comparison of cancerous and non-cancerous prostate cells grown in 3D culture. 
(a) Cancerous PC3 cells (b) non-tumorigenic PNT2 cells and (c) primary prostate cells from a patient with 
benign prostatic hyperplasia, H642/17, displayed different morphologies when grown in 3D culture. PC3 
and PNT2 cells were imaged at 5x magnification on a wide-field microscope while the H642/17 cells were 
imaged at 20x magnification on an Olympus CK2 microscope.   
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A seeding density trial was performed to assess how many cells to seed per well and at what 

time point the experiment should be terminated. It was necessary to ensure that spheroids were 

seeded at a low enough density so that they did not overlap and were imaged for as long as 

possible without becoming too large to fit within the imaging frame. The PC3 cell line was 

selected to examine the effect of the aspirin and metformin on proliferation in 3D culture as 

these were the only cells that showed an additive effect of the drugs in 2D cell culture (Chapter 

3, Figures 3.4 and 3.5). PC3 cells were seeded at 40, 80, 160 and 240 cells per well and grown 

for three weeks. Spheroids were imaged once a week and the media was changed twice a week.  

 

The PC3 spheroids grew quickly, displaying constant growth over the 3-week culturing period, 

and would have continued to grow if culturing was maintained (Figure 4.4). Two to three weeks 

was chosen as an appropriate time point to end future experiments as after this, some spheroids 

were too large to fit within the field of view and it would have been difficult to accurately record 

their size (Figure 4.5). After two weeks of growth spheroids had an average diameter of ~526 

µM. At 80, 160 and 240 cells per well there was large overlap between the spheroids with too 

many cells seeded to individually assess spheroid size. Therefore, it was decided to seed 40 cells 

per well for future experiments. 

 

 

 

Figure 4.4: Average PC3 spheroid area over 21 days of culturing. 
PC3 spheroids grew slowly until day 7 when spheroid area greatly increased with time. The spheroids 
would have continued to grow after day 21 if culturing was maintained. Data for one independent 
experiment performed in triplicate. Error bars represent standard error of mean.  
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Figure 4.5: Seeding density trial for PC3 cells. 
Single cells were seeded in matrigel at 40, 80, 160 and 240 cells per well and grown for 3 weeks. Images 
were taken using the Leica LAS X program on a wide-field microscope using the 5x objective. 
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4.4.2 Localization of markers of cell proliferation, PCNA and cyclin D1, 
within PC3 spheroids 

 
Spheroids were stained for markers of cell proliferation, PCNA and cyclin D1, to determine the 

localization of proliferating cells within the spheroid and to provide a more detailed 

understanding of spheroid growth. When staining for markers of cell proliferation, PCNA and 

cyclin D1 were focused around the outer edges of the spheroid, with the centre remaining 

unstained (Figure 4.6). DAPI was observed throughout the spheroid. The spheroid protrusions 

were stained but did not appear as bright as the central region because they were composed of 

fewer cells. The surrounding matrigel did cause some minor background fluorescence. A 

negative control without the addition of the primary antibody confirmed that there was no 

nonspecific binding of the secondary antibody and that the labelling observed was due to the 

binding of the secondary antibody to the primary antibody (Figure 4.7Figure ). 

 

 

 

Figure 4.6: Immunofluorescence for markers of cell proliferation in a PC3 spheroid. 
PC3 spheroids were grown for 18 days and stained with proliferation markers PCNA (red) and cyclin D1 
(green) to determine their localization. DAPI (blue) was used to visualise cell nuclei. Spheroids were 
imaged on a confocal microscope using the HCX PL Fluotar 10x 0.3 Dry objective. Representative of three 
repeats. 
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Figure 4.7: Negative control for immunofluorescence. 
Spheroids were grown until day 18 and then underwent immunofluorescence for PCNA and cyclin D1 

following the protocol described in in Chapter 2, Section 2.7.5 but without the addition of the primary 

antibody. Spheroids were imaged on a confocal microscope using the HCX PL Fluotar 10x 0.3 Dry objective. 
Representative of three repeats.  
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4.4.3 Localization of markers of cell proliferation throughout the spheroid 
growth period 

 

To examine changes in spheroid proliferation over the peroid of growth, spheroids were fixed 

and stained with PCNA and cyclin D1 at days 4, 7, 11, 14, 18 and 21 (Figure 4.8). For spheroids 

grown from days 4-14 PCNA and cyclin D1 were observed throughout, indicating that all the cells 

were viable and proliferating. At days 18 and 21 PCNA and cyclin D1 were localized to the outer 

edges of the spheroid, forming a zone of proliferation. This was to be expected as studies have 

shown that the centre of large spheroids are often necrotic (244). It appears that PCNA stains 

further into the centre of the spheroid than cyclin D1.  

 

 

Figure 4.8: PC3 spheroid immunofluorescence for markers of cell proliferation during a three-week 
growth period. 
Localization of PCNA (red) and cyclin D1 (green) was examined in PC3 spheroids at days 4, 7, 11, 14, 18 
and 21. Representative of one independent experiment performed in triplicate. Spheroids were imaged 
on a confocal microscope using the HCX PL Fluotar 10x 0.3 Dry objective. 

 
Together the data from the growth experiments suggest that spheroids up to day 21 contain 

actively proliferating cells and potentially a necrotic core.  
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4.4.4 Optimization of dosing PC3 spheroids with aspirin and metformin 
 

Once the media requirements and time points for the PC3 3D cell culture were established, it 

was important to decide what concentrations of aspirin and metformin to use and establish a 

dosing regimen. Studies have shown that drugs have a different effect in 3D and 2D cell culture, 

so it was not known if the concentrations used in 2D for the combination studies would be 

optimum in 3D cell culture. Therefore, cells were seeded and dosed with the same doses used 

for the 2D culture experiments (Chapter 3, Section 3.3.4). Cells were dosed with 0, 0.5, 1, 2, 4, 

10 mM aspirin or 10, 20, 30, 100 and 5000 µM metformin. Spheroids were analyzed using 

Matlab, which compressed the image stacks into 2D, located the spheroids and calculated 

spheroid area (Chapter 2, Section 2.7.3). Spheroids were highlighted in pink against a green 

background to easily identify each spheroid (Figure 4.9)  

 

 

 

 

Figure 4.9: Matlab calculated spheroid area. 
(a) 35 images of the spheroids were taken through the z plane to form a z-stack on a wide-field microscope 
(b, c) Matlab compressed the 35 images into a 2D image and calculated spheroid area; spheroids were 
highlighted in pink. (d) Spheroid area for spheroids which were overlapping were manually discarded so 
as not to skew the data. 
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The outer edges of the spheroids were not fully detected by the software as the spheroids had 

many protrusions, which can sometimes blend into the background and are difficult to 

distinguish. Spheroids that were partially out of frame were excluded. After running the images 

through Matlab the spheroids were checked manually, comparing the images with the 

calculated area. Spheroids which were only partially identified or were not separated from 

overlapping spheroids were manually excluded so as not to skew the data.  

 

The day of seeding was termed day 0 and spheroids were dosed at days 4, 7 and 11 with 0, 0.5, 

1, 2, 4 and 10 mM aspirin or 0, 10, 20, 30, 1000, 5000 µM metformin and then underwent 

imaging at day 14. It was observed that when cells were dosed with aspirin there was a dose-

dependent decrease in median spheroid area with increase in aspirin concentration. Median 

spheroid area was 1.4 x105, 1.0 x105, 0.90 x 105, 0.25 x105, 0.11 x105 and 0.08 x105 µm2 for the 

control, 0.5, 1, 2, 4 and 10 mM aspirin respectively (Figure 4.10). The decrease in spheroid area 

was significant from 1 mM aspirin and above. The greatest decrease was seen between 1 and 2 

mM aspirin, with a drop in median spheroid area of 0.64 x 105 µm2. Aspirin was toxic at 10 mM, 

with only one small spheroid observed.  

 

For PC3 spheroids dosed with metformin a decrease in median spheroid area was observed at 

20, 30, 100 and 5000 µM metformin (Figure 4.11). However, spheroid area was only significantly 

different from the control at 5000 µM metformin (p<0.001). At this concentration a large 

decrease was seen, with a drop of almost 60% in median area compared to that of the control. 
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Figure 4.10: Optimising dosing with aspirin for 3D cell culture. 
(a) PC3 spheroids dosed twice a week for two weeks with 0, 0.5, 1, 2, 4 and 10 mM aspirin and then 
imaged at day 14. (b) Box and whisker plot displays the median, interquartile range and the 5-95 
percentile. Data from one independent experiment performed in triplicate.  
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Figure 4.11: Optimising dosing with metformin for 3D cell culture. 
(a) PC3 spheroids were dosed for 2 weeks with 0, 10, 20, 30, 100 and 5000 µM metformin and then imaged 
at day 14. (b) Box and whisker plot displays the median, interquartile range, and the 5-95 percentile. Data 
from one independent experiment performed in triplicate.  



The effect of aspirin and metformin on cell proliferation and cell death in 3D cell culture 

 

 

149 
 

The previous experiments were performed to assess the effect aspirin and metformin on 

spheroid formation and to optimize dosing conditions. The experiments provided strong 

preliminary data on the effect of the drugs on proliferation in 3D, indicating that drugs do inhibit 

spheroid growth. After one experiment it was decided to modify the model to reduce the highest 

concentrations of both drugs, using more clinically achievable concentrations. In addition, it was 

decided to seed the cells directly into media containing the drugs instead of dosing after 4 days 

to examine the ability of a single cell to form a spheroid. It was thought that this would better 

model preventing the formation of a tumour within a person who is already taking aspirin or 

metformin. Instead of removing spent media during dosing, the fresh media was added to the 

existing media to minimize the disruptiveness to the matrigel.  
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4.4.5  Aspirin dose-dependently inhibits PC3 spheroid formation 
 

With the new culture conditions PC3 cells were dosed at days 0, 4, 7 and 11 with 0, 0.25, 0.5, 1, 

2 and 4 mM aspirin or 0, 10, 20, 30, 100 and 1000 µM metformin. Again, a dose-dependent 

decrease in median spheroid area with increase in aspirin concentration was observed (Figure 

4.12). The decrease in spheroid area was dose-dependent, decreasing to a minimum median 

area of 0.11 x105 µm2 for spheroids dosed with 4 mM aspirin, which was the same as seen in the 

previous experiment (Figure 4.10).  A significant effect was observed between 0.5 mM and 4 

mM aspirin (p= 0.12, <0.001, <0.001, <0.001, and <0.001 for 0.25, 0.5, 1, 2 and 4 mM aspirin 

respectively compared to the control). Median spheroid area was 1.75 x105, 1.37 x105, 1.03 x105, 

0.61 x105, 0.26 x105 and 0.11 x105 for the control, 0.25, 0.5, 1, 2 and 4 mM aspirin respectively. 

Median spheroid areas were similar to the previous experiment (Figure 4.10), despite the 

changes in the method. The largest different in median spheroid area between the two 

experiments was when the cells were dosed with 1 mM aspirin for which in the previous 

experiment it was 0.9 x 105 whereas in this new experimental setup median spheroid area was 

0.61 x105 indicating that lower concentrations have a greater effect on spheroid formation. 

Interestingly, for both experiments aspirin was more effective at lower concentrations in 3D 

culture than in 2D, causing a significant reduction in proliferation at 0.5 mM which was not 

observed in the 2D experiments (Chapter 3, Figure 3.5).  
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Figure 4.12: The effect of aspirin on PC3 spheroid formation. 
(a) PC3 spheroids dosed for two weeks with 0, 0.25, 0.5, 1, 2 and 4 mM aspirin. (b) Change in spheroid 
area for spheroids dosed with 0.25, 0.5, 1, 2 and 4mM aspirin at day 14. Box and whisker plot displays the 
median, interquartile range and the 5-95 percentile. Data were analysed using a Kruskal-Wallis one-way 
ANOVA and Dunn’s post hoc test for multiple comparisons. * p <0.05, ** p <0.01, *** p < 0.001. Data from 
three independent experiments performed in quadruplet.  



The effect of aspirin and metformin on cell proliferation and cell death in 3D cell culture 

 

 

152 
 

4.4.6 Metformin has no significant effect on spheroid formation at 
clinically relevant concentrations 

 

This experiment tested whether clinically achievable doses of metformin affect spheroid 

formation. The maximum concentration of metformin was reduced to 1000 µM metformin from 

5000 µM in the previous experiment for reasons described in Chapter 4, Section 4.4.4. It was 

seen that there was no significant effect on spheroid area for spheroids dosed with 10-100 μM 

metformin (Figure 4.13). However, at 1000 µM metformin there was a significant decrease in 

median spheroid area compared to the control (p= 0.15, >0.99, 0.85, >0.99 and 0.046 for 10, 20, 

30, 100 and 1000 µM). This suggests that concentrations above those that are therapeutically 

relevant, 40 µM, are required to influence spheroid formation and supports the 2D cell culture 

data where 30 µM metformin did not affect cell proliferation (Chapter 3, Figure 3.5) but 1000 

µM caused a decrease in cyclin D1 expression (Chapter 3, Figure 3.11). 
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Figure 4.13: The effect of metformin on PC3 spheroid formation. 
(a) PC3 spheroids after two weeks of being dosed with 0, 10, 20, 30, 100 and 1000 µM metformin. (b) 
Change in spheroid area for spheroids dosed with 10, 20, 30, 100 and 1000 µM metformin at day 14. Box 
and whisker plot displays the median, interquartile range and the 5-95 percentile. Data were analysed 
using a Kruskal-Wallis one-way ANOVA and Dunn’s post hoc test for multiple comparisons. * p <0.05, ** 
p <0.01, *** p < 0.001. Data from three independent experiments performed in quadruplet.  
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4.4.7  Aspirin dose-dependently inhibits PC3 spheroid growth  
 
The next experiment aimed to study the effect of aspirin on PC3 spheroid growth. Cells were 

dosed after one week of growth, once they had formed small spheroids with an average 

spheroid area of 0.03 x 105 μm2. They were then dosed with 0, 0.25, 0.5, 1, 2 and 4 mM aspirin 

and 0, 10, 20, 30, 100 and 1000 µM metformin for a further 1.5 weeks, dosing twice a week. 

Spheroids were imaged at day 18.  

Similar to the spheroid formation experiment, a dose-dependent decrease in spheroid area was 

observed when cells were dosed with aspirin (Figure 4.14). Median area was 2.8 x105, 3.0 x105, 

2.4 x105, 2.2 x105, 1.8 x105 and 0.5 x105 µm2 for the control, 0.25, 0.5, 1, 2 and 4 mM aspirin 

respectively, with a significant decrease from 1 mM aspirin onwards (p = >0.99, 0.39, 0.03, 

<0.001, and <0.001 for 0.25, 0.5, 1, 2 and 4 mM compared to the control). Spheroid area was 

not as affected as in the previous experiment, when the cells were seeded directly into the 

media containing the drugs (Figure 4.12), where a significant effect was seen from 0.5 mM 

aspirin.  

 

 

Figure 4.14: The effect of aspirin on PC3 spheroid growth.  
Change in spheroid area for spheroids dosed with 0.25, 0.5, 1, 2 and 4 mM aspirin at day 18. Spheroids 
were dosed for 11 days. Box and whisker plot displays the median, interquartile range and the 5-95 
percentile. Data were analysed using a Kruskal-Wallis one-way ANOVA and Dunn’s post hoc test for 
multiple comparisons. * p <0.05, ** p <0.01, *** p < 0.001. Data represents three independent 
experiments performed in quadruplet.  
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4.4.8 Metformin has no significant effect on spheroid growth at clinically 
relevant concentrations 

 
In a similar experiment, when cells were dosed with metformin there was a decrease in spheroid 

area, which was significant at 100 µM (p= 0.01) and 1000 µM (p= 0.002) (Figure 4.15). Spheroid 

growth was more affected by metformin than spheroid formation for which a significant effect 

was only seen at 1000 µM. Median spheroid area was 2.78 x105, 2.05 x105, 2.05 x105, 1.75 x105, 

1.56 x105 and 1.29 x105 µm2 for the control, 10, 20, 30, 100 and 1000 µM metformin respectively. 

This was a decrease in median area of 44% and 64% for 100 and 1000 μM metformin compared 

with the control. Again, this data supported the results from the 2D cell culture experiments 

where metformin alone had no effect on cell proliferation at clinically relevant concentrations, 

(Chapter 3, Figure 3.5).  

 

 
 

Figure 4.15: The effect of metformin on PC3 spheroid growth.  
Change in spheroid area for spheroids dosed with 10, 20, 30, 100 and 1000 µM metformin at day 18. 
Spheroids were dosed for 11 days. Box and whisker plot displays the median, interquartile range and 5-
95 percentile. Data were analysed using a Kruskal-Wallis one-way ANOVA and Dunn’s post hoc test for 
multiple comparisons. * p <0.05, ** p <0.01, *** p < 0.001. Data represents three independent 
experiments performed in quadruplet.  
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4.4.9  Metformin enhances the efficacy of aspirin to inhibit spheroid 
growth 

 

To investigate whether the drugs had an additive effect on spheroid growth as observed in the 

2D culture experiments, Chapter 3, Figures 3.4 and 3.5, spheroids were dosed with a 

combination of aspirin (0.25 or 1 mM) and metformin (30 μM). The concentrations 0.25 and 1 

mM aspirin were chosen as they include a concentration that no effect spheroid growth on its 

own (0.25 mM) and a concentration that does have an effect on its own but does not drastically 

reduce spheroid growth (1mM) as seen in Chapter 4, Section 4.4.7. 30 µM metformin was 

chosen as this was the highest clinically relevant concentration of metformin and in the 2D 

culture experiments this concentration had no effect alone but enhanced the effect of aspirin 

when used in combination.   

For both combinations a decrease in spheroid area was observed with the combination of 1 mM 

aspirin and 30 µM metformin having the greatest effect (Figure 4.16). Median area was 2.77 x 

105, 3.01 x 105, 2.33 x 105, 2.44 x 105, 1.88 x 105 and 1.67 x 105 µm2 for the control, 0.25 mM 

aspirin, 1 mM aspirin, 30 µM metformin, the combination of 0.25 mM aspirin and 30 µM 

metformin and the combination of 1 mM aspirin and 30 µM metformin respectively. Compared 

to the control, there was a significant difference in median spheroid area for the combination 

of 0.25 mM aspirin and 30 µM metformin, with a decrease of 32%. This was considerably greater 

than the decrease in median area when spheroids were dosed with 0.25 aspirin and 30 µM which 

was 0% and 13% compared to the control respectively. Despite this, the decreased failed to 

reach significance (p>0.05). The combination of 1 mM aspirin with 30 µM metformin caused a 

decrease in median spheroid area of 40% compared to the control which was highly significant 

(p<0.001). While there was a large reduction in median spheroid area compared to dosing with 

1 mM aspirin alone (0.66 x105 µm2) it did not reach significance and indicates that the decrease 

observed is due to aspirin.   
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Figure 4.16: The effect of aspirin combined with metformin on PC3 spheroid growth. 
Change in spheroid area after dosing with either 0.25 or 1 mM aspirin alone and in combination with 30 
µM metformin at day 18. . Spheroids were dosed for 11 days. Box and whisker plot displays the median, 
interquartile range and the 5-95 percentile. Data were analysed using a Kruskal-Wallis one-way ANOVA 
and Dunn’s post hoc test for multiple comparisons. * p <0.05, ** p <0.01, *** p < 0.001. Data represents 
three independent experiments performed in quadruplet.  
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4.4.10   Aspirin and metformin do not induce cell death in 3D cell culture  
 

After examining changes in spheroid area, the spheroids were stained with calcein AM and 

ethidium homodimer-1 to examine changes in cell viability. It was seen in the previous 

experiments that aspirin inhibited spheroid formation and growth, reducing spheroid area in 

both experiments (Figure 4.12 and Figure 4.14). This experiment was used to determine if the 

drugs were inhibiting cell proliferation and the spheroids were growth arrested or whether the 

cells were undergoing cell death. Staining with calcein AM and ethidium homodimer identified 

that PC3 spheroids contained a necrotic core (Figure 4.17) with the center staining red, 

indicating that the cells membranes were disrupted and ethidium homodimer 1 could enter. 

This supported the immunofluorescence data which showed that cells in the center of the 

spheroid did not express PCNA or cyclin D1 and were not proliferating. The outer zone was 

mostly composed of live cells which were stained green.  

 

 

Figure 4.17: PC3 spheroids stained with calcein AM and ethidium homodimer-1. 
Calcein AM stains live cells green, indicating intracellular esterase activity, whilst ethidium homodimer-1 
stains dead cells red, indicating loss of plasma membrane integrity. Representative of experiments 
repeated three times.  

 

When the cells were dosed with aspirin and metformin the spheroids maintained the pattern of 

live and dead cells seen in the untreated samples (Figure 4.18). Spheroids dosed with the highest 

concentration of the drugs, which caused the greatest decrease in spheroid area during the 

spheroid formation and growth experiments, were still composed of live cells with almost no 

cell death. This indicates that the drugs do not induce cell death in PC3 3D cell culture and 

suggests that the changes observed in the spheroid formation and growth experiments were 

due to aspirin and metformins inhibition of proliferation.   

Calcein                       Ethidium homodimer-1                     Merged 
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Figure 4.18: Calcein AM and ethidium homodimer-1 staining in PC3 spheroids dosed with aspirin or 
metformin. 
PC3 spheroids were dosed with (a) aspirin or (b) metformin and stained with calcein AM (green) and 
ethidium homodimer-1 (red). Representative of experiment repeated three times. 
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4.5 Discussion 
 

In this chapter, the effect of aspirin and metformin on cell proliferation in 3D cell culture was 

examined. Culturing the cells as spheroids identified the differences between 2D and 3D cell 

culture in terms of growth and response to treatment. It has been reported that these 

differences are associated with alterations in gene expression and result in the spheroids 

possessing a more similar genetic profile to that seen with tumour masses in vivo (241). Growing 

the cells as a spheroid provides drug diffusion gradients with less accessibility of the drug to the 

cells in the middle, making the model more representative of the effect on a tissue. Breslin and 

O’Driscoll have also shown that the expression of proteins such as transporters associated with 

drug resistance and proteins involved in cell survival are increased in 3D cultures compared to 

2D conferring higher innate resistance to treatments (245). 

In terms of spheroid structure, Edmonson et al have stated that spheroids can adopt four 

different shapes; round, mass, grape-like and stellate (241). The spheroid structure depends on 

the cell line but also the culture conditions and the extracellular matrix surrounding the cells. 

Growing the PC3, PNT2 and primary prostate cells as spheroids demonstrated key differences 

between cell type and morphology. The more advanced and invasive PC3 cells possessed a 

stellate morphology and formed protrusions into the surrounding matrigel. This morphology has 

also been reported by Björk et al (246). The non-tumorigenic PNT2 and primary cells formed 

much smaller, rounded spheroids. It is encouraging that in our model the PC3 and non-

tumorigenic spheroids morphologically appear to demonstrate the mesenchymal and epithelial 

properties of the cells. Localization of markers of cell prolifertion, PCNA and cyclin D1, during 

the PC3 spheriod growth period was examined using immunofluorescence. PCNA and cyclin D1 

were dispersed throughout the spheroid from day 1-14  but were localized to the outer layer of 

cells at days 18 and 21. Spheroid with a radii of 200 µm and larger have been reported to have 

a zone of proliferation which is restricted to the outer layer of cells with quiescent cells on the 

inside (247). Large spheroids will also have a necrotic centre. Immunofluorescence confirmed 

that cells on the periphery were actively growing with high expression of both proteins. The 

decrease in oxygen availability towards the centere of the spheroid is a rate limiting factor in 

spheroid growth (248) and so may contribute to the decrease in cell proliferation observed 

towards the spheroid centre. An important limitation of this experiment was that it was not 

established whether the antibodies had penetrated the spheroid centre. While DAPI did, the use 

of other antibodies such as those for hypoxia (CA-9 or HIF-1) would be benefical to confirm that 

the method works.  
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In assessing spheroid formation, it was observed that aspirin markedly affected spheroid size, 

reducing the median area in a dose-dependent manner that was significant from 0.5 mM, a 

therapeutically achievable concentration. This was an encouraging result, implying that aspirin 

does inhibit the ability of single cells to form spheroids. The benefit of administering aspirin pre-

diagnostically is often debated with some studies such as the Physicians Health Study finding 

that administering aspirin before cancer diagnosis is associated with a lower risk of lethal 

prostate cancer (117) whereas other epidemiological studies have shown no pre-diagnostic 

effect (249) (250). The data from this experiment supports the suggestion that it is beneficial to 

administer aspirin before cancer diagnosis. 

Examining the effect of aspirin or metformin on PC3 spheroid growth by dosing with once the 

spheroid had formed gave an indication of the effect of the drugs on proliferation in an existing 

tumour as it was also of interest to see what effect aspirin and metformin may have when taken 

after cancer diagnosis. Spheroids dosed with aspirin showed a dose-dependent decrease in 

spheroid area, which was significant from 1 mM onwards. While the reduction in spheroid area 

was apparent it was less of an effect than seen in the spheroid formation experiment. This may 

be because spheroids were only dosed once the spheroid had formed (after 1 week of growth) 

so it was harder for the drugs to penetrate the cells in the centre of the spheroid, allowing some 

cells to maintain their normal proliferation rate. Studies have shown that spheroids possess drug 

diffusion gradients which increase with the size of the spheroid and affect response to treatment 

(251). Despite this, in both models aspirin had a potent effect, greatly reducing spheroid area 

even at low concentrations, and support the use of aspirin both pre and post-diagnostically.  

There are many papers which provide strong evidence of metformin’s anti-cancer action both 

through in vitro work and population studies (252) (253). However, in the spheroid formation 

and spheroid growth experiments a change in spheroid area at clinically relevant concentrations 

of metformin, 30 µM or lower, was not observed. This was consistent with the 2D cell culture 

data where metformin also had no effect on cell proliferation at these concentrations.  

Spheroids dosed with the combination of aspirin and metformin experienced a greater decrease 

in median spheroid area than when dosed with each drug alone indicating that metformin 

increases inhibition of spheroid growth by aspirin. This may mean that when metformin is used 

in combination with aspirin, lower doses of aspirin will be required. It is also encouraging that 

this model supports the PC3 2D culture data where an additive effect of the drugs was seen 

through 3H- thymidine incorporation and cell counting.  
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When examining cell death it was seen that the spheroids potentially contain a necrotic core 

and an outer layer of live, proliferating cells. As previously mentioned spheroids display a 

diffusion gradient for drugs, but this is also true for oxygen, waste and nutrients which causes 

different depths of the spheroid to be in different nutritional states and the centre to become 

necrotic (254) (255). When the spheroids were dosed with either aspirin or metformin there was 

no visual change in cell death indicating that the reduction in spheroid area was due to inhibition 

of cell proliferation rather than increased cell death, consistent with the PC3 data from the 2D 

cell culture experiments (Chapter 3, Figures 3.5 and 3.19). The spheroids dosed with higher 

concentrations of aspirin, such as 4 mM, were much smaller in size and presumably because of 

their size did not contain a necrotic core. As mentioned previously spheroids with a radii of 200 

µm or greater will have a zone of proliferation and then a quiescent or necrotic centre. In the 

cell death experiments PC3 spheroids were grown for 18 days and had an average spheroid radii 

of 297 μm. While this study examined cell death rather than apoptosis, in future experiments it 

would also be of interest to see if the cells in the centre are apoptotic with use of a caspase 

inhibitor such as Q-VD-OPh. 

 

In this chapter it was seen that aspirin had a large effect on spheroid formation and growth, 

reducing median spheroid area at low concentrations. Conversely, metformin only caused a 

reduction in spheroid formation and growth at concentrations which were higher than those 

considered clinically relevant. Therefore, the next question was whether the drugs exert their 

anti-cancer effects through other phenotypes.  
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5.1 Introduction 
 

5.1.1 Cell migration and invasion in prostate cancer 
 

Nearly all prostate cancer associated mortality occurs due to the metastasis of the cancer, with 

the most common secondary sites being the lymph nodes, bones, lungs and liver (256). In men 

with advanced prostate cancer, around 80 percent will have cancer that has spread to the bones 

(257). The bone microenvironment is favourable for prostate cancer metastasis due to constant 

cell turnover (258) and the expression of chemokines (i.e. CXCL12) which interact with 

chemokine receptors on the prostate cancer cells (i.e. CXRCR4) to mediate metastasis (259). 

Bone structure is normally maintained by a careful balance of bone matrix production by 

osteoblasts and bone resorption by osteoclasts. While many signalling molecules are involved 

in this process, the most important are receptor activator of nuclear factor- Kβ ligand (RANKL), 

expressed by osteoblasts, and its receptor RANK, expressed by osteoclasts. Prostate cancer bone 

metastases destroy bone by releasing factors such as parathyroid hormone-related peptide to 

drive osteoblast production of RANKL, leading to increased bone resorption. Once in the bones 

the cancer can develop or spread to new sites. A study by Gundem et al reported that the 

metastasis of cancer from these secondary sites is a common feature of prostate cancer, 

introducing new mutations and creating future sub clones (260). This makes the cancer even 

more difficult to control as it increases the number of locations to where the cancer must be 

contained and the number of mutations that are present.  

 

The process by which tumours metastasize involves multiple steps, with the cells migrating to 

the blood vessels, undergoing intravasation, surviving in the circulatory or lymphatic system, 

extravasation and colonizing a new site (261). This requires a change in the molecular phenotype 

of the tumour cells with the production of migration inducing proteins such as N-cadherin and 

the down regulation of epithelial proteins such as E-cadherin during EMT (Figure 5.1). 

Transcription factors are also extremely significant in the process of EMT, acting as molecular 

switches to regulate expression of genes, which are key to cell migration as well as the 

expression of each other. In particular, Slug, Snail, Twist-1 and Zeb-1 are often highlighted as 

major players, promoting migration by down regulating the abundance of E-cadherin and 

upregulating levels of N-cadherin (262). These factors are activated early in EMT and play 

fundamental roles in cancer, fibrosis and development (263).  Intracellularly, E-cadherin binds 

to α-catenin, β-catenin and p120-catenin linking adherence junctions to the actin cytoskeleton. 
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For cell movement to occur, E-cadherin is downregulated by transcription factors such as Slug, 

Snail, Twist and ZEB which leads to translocation of membrane bound β-catenin to the nucleus 

where it controls the expression of numerous genes such as c-myc (264). This subsequently 

causes an upregulation of mesenchymal markers such as N-cadherin and vimentin and 

expression of N-cadherin mediates Rho-induced stress fibres to causes the rearrangement of 

the cytoskeleton. The formation of lamellipodia due to Rac1 and Cdc42 activation mediate cell 

movement. Matrix metalloproteinases (MMPs) and integrins also play an important role in cell 

migration. MMPs cause extracellular matrix remodelling during development, inflammation and 

wound healing  by degrading  the basement membrane and modifying expression of cell 

adhesion molecules (265). Integrins are transmembrane receptors which bind cells to the 

extracellular matrix and mediate signals between the two. They also cause extracellular matrix 

remodelling through regulation of localization and activity of proteases (266).  Both MMPs and 

integrins have been shown to be upregulated in cancer (267) (268).  

 

 

 

Figure 5.1: The epithelial to mesenchymal transition. 
Epithelial cells have high levels of E-cadherin, anchoring them to neighbouring cells. Cancer cells often 
become more mesenchymal with a down regulation of E-cadherin and an upregulation of proteins such 
as N-cadherin, integrins and matrix metalloproteinases (MMPs). This allows them to migrate away from 
the primary tumour, invade and grow in surrounding areas. 
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While surgery, radiotherapy, hormone therapy and chemotherapy work well with localized 

prostate cancer, advanced prostate cancer is much more difficult to treat as it is impossible to 

remove all the cancer with surgery or to control its spread with radio and chemotherapies. 

Furthermore, as prostate cancer develops the cells often become androgen independent which 

causes hormone deprivation therapy to become ineffective and confers a growth advantage to 

the cells.  Despite the obvious importance of metastasis in prostate cancer development, only a 

few studies to date have examined the impact of aspirin or metformin on prostate cancer cell 

migration. Furthermore, no studies have examined the effect of combining both drugs on cell 

migration in this cancer. There is a need for treatments, which slow down the progression of 

prostate cancer, providing time for clinicians to diagnose the disease at an earlier stage, for 

treatments to take effect and to delay the need for more aggressive therapies. 
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5.2 Hypotheses and aims 
 

In this chapter, the effects of aspirin and metformin on prostate cancer cell migration are 

described.  

 

Hypothesis: Based on the results from Chapter 3 and 4 which show that metformin increases 

the efficacy of aspirin in reducing prostate cancer cell proliferation, it is hypothesised that 

metformin will also increase the efficacy of aspirin in reducing the migratory capacity of prostate 

cancer cells and promote a more epithelial phenotype.  

 

Aims and objectives: 

1. To determine the effect of aspirin and metformin alone and in combination on cell 

migration. 

2. To examine the effect of aspirin and metformin alone and in combination on gene and 

protein expression of markers of EMT. 
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5.3 Materials and methods 

 
5.3.1 Seeding and dosing cells for the wound healing assay, western 

blotting and qPCR 
 
For the wound healing assay, western blotting and qPCR cells were seeded in T25 flasks as 

described in Chapter 2, Section 2.3.1. Aspirin and metformin were reconstituted as described in 

Chapter 2, Section 2.2 and cells were dosed for 96 hours with 0, 10, 20, 30 and 1000 µM 

metformin and 0, 0.25, 0.5, 1, 2 and 4 mM aspirin with the media being collected and replaced 

every 24 hours. At the end of 96 hours the wound healing assay was performed as described in 

Chapter 2, Section 2.5, western blotting as described in Chapter 2, Section 2.4 and qPCR as 

described in Chapter 2, Section 2.6. Western blotting examined markers of epithelial to 

mesenchymal transition (EMT), including E-cadherin and N-cadherin while qPCR examined 

mRNA levels of E-cadherin, N-cadherin, slug and MMP9. Statistical analysis was performed as 

described in Chapter 2, Section 2.8. 
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5.4 Results 
 

5.4.1 Characterisation of PC3 and DU145 cell movement  
 
As it was seen in Chapter 4 that the results from the 3D proliferation assays supported the 2D 

proliferation data, the experiments to examine the effects of the drugs on cell migration were 

performed in 2D. First, to investigate the cells ability to migrate, a wound healing assay was 

performed. This allowed real time analysis of cell movement, taking images every 10 minutes 

over 72 hours. The PC3 and DU145 cell lines were chosen as they are both migratory whereas 

the LNCaP and PNT2 cells are not. The DU145 and PC3 cells were pretreated with the 

proliferation inhibitor mitomycin C to prevent cell proliferation, as both cell lines proliferate at 

a different rate, to ensure that only changes in cell motility was measured. The PC3 cells moved 

individually with some cells being more motile than others and moving back and forwards 

between both sides of the gap (Figure 5.2 a). The cells moved at a steady rate, and after 72 hours 

the gap was fully closed. Unlike the PC3 cells, the DU145 cells moved together as a sheet 

indicating that they require close contact with other cells for movement (Figure 5.2 b). 
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Figure 5.2: Migration of PC3 and DU145 cells. 
(a) PC3 and (b) DU145 cells were seeded with a proliferation inhibitor, mitomycin C (20 µg/ml), and 
imaged every 10 minutes to examine cell migration over 72 hours.  

For a full video of PC3 cell migration see https://streamable.com/na5lm. For a full video of DU145 cell 

migration see https://streamable.com/kaebi. 

 

 

 

 

 

 

 

 

https://streamable.com/na5lm
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5.4.2 Aspirin dose dependently inhibits cell migration 
 
After it was determined whether the cells moved individually or through collective cell 

migration, the effect of the drugs on cell movement was examined. For this, the PC3 cell line 

was chosen as it is the most advanced of the three prostate cancer cell lines and is the most 

motile. In the previous experiment is was seen that PC3s cells utilised single cell migration and 

were more metastatic that the DU145s. Additionally, this cell line took on a spikey morphology 

when grown in 3D cell culture, indicative of a highly metastatic cell line. PC3 cells were pre-

treated with aspirin, metformin or a combination of the two drugs every 24 hours for a total of 

96 hours and then were assessed in the wound healing assay.  

Cells pre-treated with aspirin (0.5, 2 and 4 mM) migrated more slowly than the control, in a 

dose-dependent manner (Figure 5.3). While the gap completely closed after 72 hours for the 

control cells, it took 96 hours when cells were treated with 0.5 mM aspirin and the cells were 

unable to close the gap after the 96 hours when dosed with either 2 or 4 mM aspirin. The largest 

difference in gap area was observed at 60 hours of imaging, with a difference of 14% (p=0.045), 

16% (p=0.04) and 19% (p=0.04) in gap area for cells dosed with 0.5, 2 and 4 mM aspirin 

compared to the control respectively. Dosing the cells with the highest concentration of aspirin, 

4 mM, had the greatest effect and caused a significant difference in gap area at 36, 72, 84 and 

96 hours of imaging (p=0.048, 0.01, 0.046, 0.049 respectively).   
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a. 
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Figure 5.3: Wound healing assay for PC3 cells pre-treated with aspirin. 
(a) PC3 cells were pre-dosed with aspirin for 96 hours and then seeded in an Ibidi insert to perform a wound healing assay. Mitomycin C, 20 µg/ml, was used as a proliferation 
inhibitor. The gap was imaged every 12 hours to examine cell migration over 96 hours and gap area was calculated using ImageJ. (b) Change in the area of the gap over time. 
Error bars represent standard error of mean. Data was analysed using a one-way ANOVA each time point and Dunnett’s post hoc test. Where there is an asterisk it is the 
condition compared to the control of that timepoint. * p <0.05, ** p <0.01, *** p < 0.001. Data represents three independent experiments performed in triplicate. 
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5.4.3 Metformin dose-dependently inhibits cell migration 
 
As with aspirin, when the PC3 cells were pre-treated for 96 hours with metformin (10, 30 and 

1000 µM) cell migration was reduced dose-dependently (Figure 5.4). Compared to the 72 hours 

it took for the control cells to close the gap, it took those dosed with 10 µM metformin 84 hours 

while cells dosed with 30 or 1000 µM metformin did not close the gap within the 96 hours of 

imaging. This was an important result, indicating that whilst clinically relevant concentrations of 

metformin (30 µM) has no effect on cell growth or survival (Chapters 3 and 4) it does 

dramatically inhibit cell migration, a fundamental aspect of prostate cancer development. The 

difference in gap area for 30 µM metformin compared to the control was significant at 36 hours 

(p = 0.008) and 60 hours (p= 0.001). The difference in gap area for cells treated with 1000 µM 

metformin was more obvious and was significant from 24 hours onwards (p= 0.02, 0.008, 0.04, 

0.002, 0.008, 0.002 and 0.049 for 24-96 hours compared to the control).  Similar to aspirin, the 

biggest difference in gap area for pre-dosed cells was at 60 hours, with a difference of 9%, 19% 

and 20% in gap area for 10, 30 and 1000 μM metformin compared to the control respectively. 
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Figure 5.4: Wound healing assay for PC3 cells pre-dosed with metformin. 
(a) PC3 cells were pre-dosed with metformin for 96 hours and then seeded in an Ibidi insert to perform a wound healing assay. Mitomycin C, 20 µg/ml, was used as a 
proliferation inhibitor. The gap was imaged every 12 hours to examine cell migration over 96 hours and gap area was calculated using ImageJ. (b) Change in the area of the 
gap over time. Error bars represent standard error of mean. Data was analysed using a one-way ANOVA at each time point and Dunnett’s post hoc test. Where there is an 
asterisk it is the condition compared to the control of that timepoint. * p <0.05, ** p <0.01, *** p <0.001. Data represents three independent experiments performed in 
triplicate. 
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5.4.4 The combination of aspirin and metformin causes the greatest 
reduction in cell migration 

 

When the PC3 cells were pre-treated with a combination of both drugs, 2 mM aspirin and 30 

µM metformin, cell migration was reduced more than by dosing with each drug alone. At the 

end of 96 hours of imaging, cells dosed with the combination of both drugs did not close the gap 

(Figure 5.5). There was a significant difference in gap area for the combination compared to the 

control from 24 hours of imaging onwards (p= 0.04, 0.006, 0.04, 0.002, 0.045, 0.049 and 0.03 for 

24 to 96 hrs respectively). Whilst the combination was not significantly different from dosing 

with aspirin or metformin alone it was observed that metformin inhibited cell migration more 

quickly than aspirin and that the combination of both drugs was more effective, as seen by a 

significant difference in gap area compared to the control at 24 hours. This may indicate that 

using aspirin and metformin together could have the greatest potential to inhibit cell migration.   
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Figure 5.5: Wound healing assay for PC3 cells pre-dosed with aspirin and metformin alone or in combination together. 
(a) PC3 cells were pre-dosed with either aspirin, metformin or a combination of both drugs for 96 hours and then seeded in an Ibidi insert to perform a wound healing assay. 
Mitomycin C, 20 µg/ml, was used as a proliferation inhibitor. The gap was imaged every 12 hours to examine cell migration over 96 hours and gap area was calculated using 
ImageJ. (b) Change in the area of the gap over time. Error bars represent standard error of mean. Data was analysed using a one-way ANOVA at each time point and Tukey’s 
post hoc test for multiple comparisons. Where there is an asterisk it is the condition compared to the control of that timepoint.  * p <0.05, ** p <0.01, *** p < 0.001. Data 
represents three independent experiments performed in triplicate.
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5.4.5 Alterations in markers of cell migration following aspirin and 
metformin treatment 

 

As the wound healing experiment identified that both aspirin and metformin reduce the 

migratory capacity of the cells, western blotting was performed to examine protein expression 

of markers of cell migration and invasion. A panel of four prostate cell lines was used to 

determine the differential abundance of epithelial-cadherin (E-cadherin) and neural-cadherin 

(N-cadherin) (Figure 5.6). These proteins are some of the most commonly used markers of cell 

migration and invasion (269) and as both drugs affected the individual cell migration of PC3 cells 

in the previous experiment it was assumed that they may be mediated via the expression of 

molecules involved in cell to cell junctions. As expected, the most mesenchymal cell line, PC3, 

had the lowest expression of E-cadherin and was the only cell line to express N-cadherin. The 

cancerous DU145 and LNCaP cell lines as well as the non-tumorigenic PNT2 cell line all expressed 

E-cadherin but not N-cadherin. The LNCaP and PNT2 cells expressed two bands for E-cadherin, 

which are reported to be the immature (130 kda) and the mature forms of the E-cadherin 

protein (120 kda). The two bands are only observed in the more epithelial cell lines when there 

is a high level of the protein, however, it is not always seen (270) (271). The lower band is used 

to determine E-cadherin expression as determined from previous experiments of the IMEG 

research group.  

 

 

 

 

Figure 5.6: E-cadherin and N-cadherin expression in prostate cancer and epithelial cell lines. 
Expression of E-cadherin (135 kDa) and N-cadherin (140 kDa) in PC3, DU145, LNCaP and PNT2 cell lines. 
The housekeeping gene tubulin was used as a loading control. 
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5.4.5.1 Aspirin and metformin increase E-cadherin expression in the PC3 cell 
line 

 
Dosing the PC3 cell line with aspirin (0.25-4 mM) caused an increase in the abundance of E-

cadherin in a dose-dependent manner (Figure 5.7). There was a significant increase from 1 mM 

aspirin onwards, p= 0.03, 0.04 and 0.04 for 1 to 4 mM respectively. For N-cadherin, the changes 

in protein levels varied and a significant change was not observed (p >0.05).  

 

 

 

 

 

Figure 5.7: E-cadherin and N-cadherin levels in PC3 cells dosed with aspirin. 
(a) Abundance of markers of cell migration, E-cadherin and N-cadherin, in PC3 cells dosed with aspirin 
every 24 hours for a total of 96 hours. (b) Densitometry was performed to quantify protein levels. Error 
bars represent standard error of mean. Data was analysed using a one-way ANOVA and Dunnett’s post 
hoc test. * p <0.05, ** p <0.01, *** p <0.001. Data represents three independents. 
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When the PC3 cell line was dosed with metformin (10-1000 µM) there was a dose-dependent 

increase in E-cadherin and decrease in N-cadherin (Figure 5.8). The increase in E-cadherin was 

significant from 30 µM metformin (p= 0.03, 0.01 and 0.01 for 30, 100 and 1000 μM respectively) 

while the decrease in N-cadherin occurred at a lower dose, with a significant decrease from 20 

µM metformin onwards (p= 0.03, 0.03, 0.03 and 0.01 for 20 to 1000 µM metformin respectively) 

indicating that metformin promotes a more epithelial-like phenotype.  

 

 

 

Figure 5.8: E-cadherin and N-cadherin levels in PC3 cells dosed with metformin. 
a) Protein levels of markers of cell migration, E-cadherin and N-cadherin, in PC3 cells dosed with 
metformin every 24 hours for a total of 96 hours. (b) Densitometry was performed to quantify protein 
levels. Error bars represent standard error of mean. Data was analysed using a one-way ANOVA and 
Dunnett’s post hoc test. * p <0.05, ** p <0.01, *** p <0.001. Data represents three independent 
experiments. 
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Dosing the PC3 cell line with a combination of aspirin (2 mM) and metformin (30 µM) caused 

the greatest increase in E-cadherin expression (p=0.008) and decrease in N-cadherin expression 

(p= 0.04) (Figure 5.9). However, as seen with the wound healing experiment, this was not 

significantly different to dosing with the drugs alone. 

 

 

 

Figure 5.9: E-cadherin and N-cadherin abundance in PC3 cells dosed with a combination of aspirin and 
metformin.  
(a) Levels of markers of cell migration, E-cadherin and N-cadherin, in PC3 cells dosed with either aspirin 
or metformin alone and in combination every 24 hours for a total of 96 hours. (b) Densitometry was 
performed to quantify protein levels. Error bars represent standard error of mean. Data was analysed 
using a one-way ANOVA and Tukey’s test for multiple comparisons. * p <0.05, ** p <0.01, *** p <0.001. 
Data represents three independent experiments. 
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5.4.5.2 Aspirin and metformin increase E-cadherin mRNA levels and decrease 
N-cadherin mRNA levels in the PC3 cell line.  

 
qPCR was performed to examine mRNA levels of E-cadherin and N-cadherin when PC3 cells were 

dosed with aspirin, metformin or a combination of the two drugs. This, along with the western 

blotting data determined whether the drugs alter expression of these proteins pre or post 

translationally. Melt curves were graphed for each gene of interest to confirm amplification of 

a specific product (Figure 5.10).  

For E-cadherin, a dose-dependent increase in mRNA levels was observed when the cells were 

dosed with aspirin, reaching a maximum fold change of 2.85 for 4 mM aspirin (p=0.01) (Figure 

5.11 a). While there also appeared to be a dose-dependent increase in E-cadherin mRNA levels 

when cells were dosed with metformin this was only significant at 1000 µM, reaching a 

maximum fold change of 2.38 (p =0.04) (Figure 5.11 b). Conversely, a dose-dependent decrease 

in N-cadherin was observed when cells were dosed with aspirin (Figure 5.11 d), decreasing 

average expression by over 50% at 4 mM aspirin (p=0.01). A large decrease in N-cadherin of 

around 66% average mRNA levels was observed when PC3 cells were dosed with metformin 

which did not appear to be concentration dependent (p=0.01, 0.01 and <0.01 for 10, 30 and 

1000 µM respectively) (Figure 5.11 e). As seen with western blotting, the combination of aspirin 

(2 mM) and metformin (30 µM) caused the largest increase in E-cadherin but was not 

significantly different to dosing with each drug alone (Figure 5.11 c). The combination was also 

no different to dosing with each drug alone for N-cadherin (Figure 5.11 f). Therefore, the qPCR 

data indicated that 2 mM aspirin altered mRNA levels of both E-cadherin and N-cadherin which 

consequently affected their downstream protein expression (Figure 5.7). The qPCR for 30µM 

metformin, indicated that metformin decreases N-cadherin mRNA but not E-cadherin and so the 

increase observed in western blotting suggests post-translational regulation (Figure 5.8).  
 

 

 

Figure 5.10: qPCR melt curves for GAPDH, E-cadherin and N-cadherin. 
Melt curves show a single peak for each gene of interest and confirm amplification of a specific product.  
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Figure 5.11: E-cadherin and N-cadherin mRNA levels in PC3 cells determined by qPCR. 
PC3 cells were dosed every 24 hours for a total of 96 hours with (a, d) aspirin (b, e) metformin or (c, f) 
aspirin and metformin in combination together. E-cadherin (a, b, c) and N-cadherin (d, e, f) were 
normalized to the housekeeping gene GAPDH. Error bars represent standard error of mean. Data was 
analysed using a one-way ANOVA and either Dunnett’s (a, b, d, e) or Tukey’s (c, f) post hoc tests. * p <0.05, 
** p <0.01, *** p <0.001. Data represents three independent experiments performed in triplicate. 
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5.4.5.3 Aspirin and metformin decrease MMP-9 and Slug mRNA levels in the 
PC3 cell line 

 
As aspirin and metformin caused both pre and post translational modifications to N-cadherin 

and E-cadherin, qPCR for matrix metalloproteinase-9 (MMP-9) and the transcription factor 

SNAI2 (Slug) was also performed to examine the effect of the drugs on other markers of EMT. 

Melt curves were graphed for each gene of interest (Figure 5.12).  

When PC3 cells were dosed with either aspirin or metformin a dose-dependent decrease in both 

MMP-9 and Slug mRNA expression was observed also indicating that the cells become more 

epithelial and less migratory (Figure 5.13). For MMP-9 the reduction in gene expression was 

significant even at the lowest concentrations of the drugs, reducing average expression by 35% 

at 0.5 mM aspirin (p= 0.005) and 57% at 10 μM metformin (p<0.001). The reduction in 

expression increased with increasing drug concentration, reducing MMP-9 by 70% at 4 mM 

aspirin (p<0.001) and 80% at 1000 μM metformin (p<0.001). Similarly, Slug expression decreased 

at all concentrations tested, with a reduction of 32% at 0.5 mM aspirin (p= 0.003) and 55% at 10 

μM metformin (p= 0.004). Slug expression reached a maximum decrease in average expression 

of 46% at 4 mM aspirin (p<0.001). As seen with N-cadherin, a concentration dependent decrease 

in Slug was not observed when the cells were dosed with metformin. However, it is important 

to note that metformin was highly effective at suppressing MMP-9 and Slug even at very low 

concentrations (10µM) which is important for treatment. Dosing with a combination of aspirin 

(2 mM) and metformin (30 μM) caused a large decrease in MMP-9 and Slug mRNA levels but 

this was no different to dosing with each drug alone, supporting qPCR for E-cadherin and N-

cadherin and the western blotting data.  

 
 
Figure 5.12: qPCR melt curves for GAPDH, MMP-9 and Slug. 
Melt curves show a single peak for each gene of interest and confirm amplification of a specific product.  
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Figure 5.13: MMP-9 and Slug mRNA levels in PC3 cells determined by qPCR. 
PC3 cells were dosed every 24 hours for a total of 96 hours with (a, d) aspirin (b, e) metformin or (c, f) 
aspirin and metformin in combination together. MMP-9 (a, b, c) and Slug (d, e, f) were normalized to the 
housekeeping gene GAPDH. Error bars represent standard error of mean. Data was analysed using a one-
way ANOVA and either Dunnett’s (a, b, d, e) or Tukey’s (c, f) post hoc tests. * p <0.05, ** p <0.01, *** p 
<0.001. Data represents three independent experiments performed in triplicate.  
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5.4.5.4 Aspirin and metformin increase E-cadherin expression in the LNCaP 
cell line  

 
E-cadherin and N-cadherin protein abundance was also examined in the LNCaP cell line. This cell 

line represents an earlier stage of prostate cancer than the PC3 and DU145 cells, a stage which 

is still dependent on androgens, and provides insight into how the drugs may affect cancer 

progression. These cells migrate extremely slowly and so have more of an epithelial profile than 

the PC3 cells with no N-cadherin and high levels of E-cadherin. The LNCaP cells were dosed with 

0-4 mM aspirin as were the other cell lines, however, western blotting could not be performed 

for cells dosed with 4 mM aspirin as there was not enough lysate due to the toxic effect of aspirin 

at this concentration as explained in Chapter 3, Section 3.4.4. For cells dosed with either 0-2 mM 

aspirin or 0-1000 μM metformin there was a non-significant increase in E-cadherin (Figure 5.14). 

N-cadherin was not examined as the LNCaP cell line normally has very low levels of this protein 

and so an anticipated decrease in this protein would not have been seen.   

 

 

 

Figure 5.14: E-cadherin levels in LNCaP cells dosed with aspirin or metformin. 
Abundance of E-cadherin in LNCaP cells dosed with aspirin (a) or metformin (b) every 24 hours for a total 
of 96 hours. Densitometry was performed to quantify protein levels (c, d). Error bars represent standard 
error of mean. Data was analysed using a one-way ANOVA and Dunnett’s post hoc test.  
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When the LNCaP cell line was dosed with the combination of aspirin (2 mM) and metformin (30 

μM) E-cadherin was potentially increased although this was not significant (Figure 5.15).  

 

 

 

 

Figure 5.15: E-cadherin levels in LNCaP cells dosed with a combination of aspirin and metformin.  
(a) Abundance of E-cadherin in LNCaP cells dosed with either aspirin or metformin alone and in 
combination every 24 hours for a total of 96 hours. (b) Densitometry was performed to quantify protein 
levels. Error bars represent standard error of mean. Data was analysed using a one-way ANOVA and 
Tukey’s test for multiple comparisons.  
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5.4.5.5 Aspirin and metformin have no effect on E-cadherin expression in the 
PNT2 cell line 

 

 

The PNT2 cells are a non-tumorigenic epithelial prostate cell line and can be used as a control. 

As with the LNCaP cells they have high levels of E-cadherin and do not express N-cadherin. E-

cadherin abundance did not change when the PNT2 cells were dosed with either aspirin or 

metformin (Figure 5.16).  

 

 

 

 

Figure 5.16: E-cadherin levels in PNT2 cells dosed with aspirin or metformin. 
Abundance of E-cadherin in PNT2 cells dosed with aspirin (a) or metformin (b) every 24 hours for a total 
of 96 hours. Densitometry was performed to quantify protein levels (c, d). Error bars represent standard 
error of mean. Data was analysed using a one-way ANOVA and Dunnett’s post hoc test 
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Importantly the combination of aspirin and metformin also had no significant effect on E-

cadherin levels (Figure 5.17) indicating that the combination of the drugs does not alter the 

epithelial phenotype of this cell line. 

 

 

 

Figure 5.17: E-cadherin abundance in PNT2 cells dosed with a combination of aspirin and metformin.  
(a) Levels of E-cadherin in PNT2 cells dosed with either aspirin or metformin alone and in combination 
every 24 hours for a total of 96 hours. (b) Densitometry was performed to quantify protein levels. Error 
bars represent standard error of mean. Data was analysed using a one-way ANOVA and Tukey’s test for 
multiple comparisons.  
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5.5 Discussion 
 

5.5.1 Aspirin and metformin and prostate cell motility  
 

In the wound healing assay, the PC3 cells were highly motile, with individual cells moving back 

and forth between each side of the gap. In contrast, the DU145 cells remained in close contact, 

moving as a sheet. During cancer migration, both single cells and clusters of cells can detach 

from primary tumours, enter the blood stream and migrate to new areas to colonize (264). This 

movement is regulated by adhesion molecules which are involved in localized cell migration such 

as E-cadherin, N-cadherin, integrins and MMPs but also makes use of leaky tumour vasculature 

to squeeze in between epithelial cells and enter the blood system (272). It is thought that 

tumour cells also release factors such as damage-associated molecular pattern (DAMP) 

molecules to increase vascular permeability (273). To exit the circulatory system, integrins 

present on circulating tumour cells bind to intercellular adhesion molecule 1 or vascular cell 

adhesion molecule 1 present on the vascular cell surface to mediate extravasation (272). While 

moving as a sheet may not permit the rapid movement of individual cells it still provides several 

advantages, allowing the cells to maintain tissue organization and cohesiveness (274). It also 

propagates mechanical signalling through cell-cell junctions, distributing tasks to each cell and 

protects metastatic clusters from immune assault (274). Collective cell migration is more 

commonly seen in epithelial cancers and these cells often have higher survivability in response 

to chemotherapeutics due to tumour interaction with ECM molecules, making treatment more 

difficult(275). It has been reported that an upregulation of integrins causes a pro-survival effect 

due to intracellular signalling through the focal adhesion kinase (FAK), PINCH/AKT signal 

transducer, STAT3 and glycogen synthase kinase 3 (GSK3) (276). However, both types of cell 

migration tend to be less responsive to chemotherapy as migrating cells temporarily stop 

proliferating which allows them to avoid treatments which targets the cell cycle (277). While the 

migration of individual cells can be problematic due to the rapid formation of new colonies, 

migration as a sheet can allow tumours to take over their surrounding areas quickly and are the 

more aggressive form in circulation, worsening prognosis. Therefore, it is necessary to identify 

drugs which can prevent both types of movement and keep the cancer localized. In this study, 

only the effect of aspirin and metformin on PC3 single cell migration was examined. PC3s are 

more motile than DU145s and are derived from the bone rather than the brain which is a 

common secondary site in prostate cancer. Furthermore, in Chapter 3 an additive effect of the 

aspirin and metformin was observed on cell proliferation in the PC3 cell line but not the DU145s 

and so it was of interest to see if the drugs also have an additive effect on cell migration.  
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In the wound healing assay, both aspirin and metformin reduced cell migration of PC3 cells in a 

dose-dependent manner, preventing closure of the gap after the 96 hours of imaging at the 

higher concentrations of each drug. In Chapters 3 and 4 therapeutic concentrations of 

metformin, ≤ 30 µM, had no effect on cell proliferation. In contrast, the effect of metformin on 

cell migration was much more apparent, indicating that it may play more of an anti-metastatic 

role in cancer treatment. Indeed, epidemiological findings suggest that both aspirin and 

metformin reduce the risk of distant metastases in several cancers. In a meta-analysis consisting 

of 5 randomised controlled trials daily aspirin (75 mg) was shown to prevent distant metastasis 

in colorectal cancer (108). Another study determined that aspirin reduces the risk of bone 

metastasis in men with prostate cancer after a median follow up of 70 months (278). Similarly, 

metformin has also been shown to improve distant metastasis free survival as observed in a 

study which examined men who took a median dose of 500 mg metformin twice daily for a 

median duration of 58.2 months (279). Interestingly, in a study which examined metformin use 

in diabetic patients for the treatment of pancreatic cancer there was a statistically significant 

increase in survival after 5 years for metformin users compared to non-metformin users, but 

only for patients who received metformin when the disease was nonmetastatic. This may imply 

that metformin is more beneficial at the earlier stages of cancer progression when the cancer is 

localized and prevents cancer metastasis (280).  

However, while both aspirin and metformin have both been suggested to inhibit cell migration 

little work has been done examining the effect of combining them. In the wound healing assay, 

the combination of aspirin and metformin had the greatest effect on cell motility. Interestingly 

it has previously been reported that the combination of aspirin and high concentration 

metformin (3 or 5 mM) significantly reduced cell migration of pancreatic cancer cells (187). It is 

also encouraging that in this thesis the combined effect of aspirin and metformin on cell motility 

was observed at much lower metformin concentrations than in the previous study which are 

more clinically relevant.   
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5.5.2 Aspirin and metformin and markers of EMT 
 

E-cadherin forms tight junctions with neighbouring cells, anchoring the cells to each other. Its 

levels are frequently reduced in the more advanced stages of cancer which allows the cells to 

migrate away from each other and form secondary sites of cancer (281). Conversely, N-cadherin 

is often upregulated in cancer, promoting cell migration and invasion by inducing cellular 

polarity and organising the actin cytoskeleton to form actin bundles for migration (282). In 

western blotting and qPCR both drugs caused an increase in PC3 E-cadherin expression and a 

decrease in N-cadherin expression. Interestingly, when the cells were dosed with 30 µM 

metformin an increase in E-cadherin was observed by western blotting but not qPCR, indicating 

that the protein is post-translationally regulated. In breast cancer cells metformin has been 

shown to alter the transcriptome and proteome of cells, rewiring signalling pathways through 

many transcriptional, translational and post-translational modifications (283). E-cadherin is also 

known to undergo post-translational modification in response to stimuli such as ER stress and 

apoptosis (284). Despite this, no study to date has shown that metformin post-translationally 

alters E-cadherin.  

PC3 cells treated with aspirin also showed a dose-dependent reduction in both MMP-9 and Slug 

expression. Treatment with metformin greatly reduced MMP-9 and Slug but did not appear to 

be concentration dependent. Slug is a well-known repressor of E-cadherin and so as Slug 

expression decreases E-cadherin expression increases. While this was seen when cells were 

dosed with aspirin it was not observed with metformin where the increase in E-cadherin 

continued with increase in concentration of metformin despite Slug levels remaining the same. 

While Slug is a key transcription factor involved in EMT it is not the only E-cadherin repressor 

and the data suggests that metformin inhibits other repressors of E-cadherin independently of 

Slug. Metformin is known to modulate several EMT transcription factors including Snail (285), 

ZEB (286) and Twist (287), however the mechanisms by which requires further investigation. 

While metformin is known to decrease MMP-9 expression in other cancers (288) to the best of 

my knowledge this is the first time a decrease in MMP-9 has been observed in prostate cells 

with metformin treatment. Aspirin has previously been shown to reduce MMP-9 in prostate 

cancer and in separate studies both aspirin and metformin have been suggested to decrease 

MMP-9 and Slug expression through a reduction in NFKB activation (146) (289) (290). Targeting 

MMP has been shown to reduce invasion of prostate cancer cells and potentially induce 

apoptosis (291). Similarly Slug upregulation leads to metastatic prostate cancer (292) and so is 

a potential target for treatment.  
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In this thesis, dosing with either aspirin or metformin demonstrated that the drugs alone inhibit 

cell migration. However, the data for the combination was mixed. While the wound healing 

assay showed that the combination of aspirin and metformin caused the greatest reduction in 

cell motility, the changes observed with the combinations were often no different to dosing with 

the drugs alone. It may be that the effect is very minimal so was only seen in the wound healing 

assay as the cells were exposed to the drugs for 96 hours longer than the cells for western 

blotting and qPCR. Indeed, in the wound healing assay the effect of the combination becomes 

more apparent over time.  In addition, testing lower concentrations of the drugs, which are not 

effective when the drug is used on its own should be considered in the future. It is thought that 

the drugs both target similar pathways to reduce cell migration and so using concentrations 

which already cause a large decrease in markers of cell movement could make it more difficult 

to see an enhanced effect when the drugs are used in combination.  
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6.1 Biological and clinical implications of main findings 
 

Repositioning established medicines is a major opportunity in the field of cancer research. Not 

only does it save time and money in drug development, but the side effects of the drugs are well 

documented, reducing the possibility for patient harm. Aspirin and metformin are two 

therapeutics which have been in use for many years, aspirin is a nonsteroidal anti-inflammatory 

drug while metformin is the first line treatment for type II diabetes. More recently in vitro, in 

vivo and epidemiological studies have shown that both drugs possess anti-cancer effects, 

slowing down cancer development and reducing cancer associated mortality. However, while 

many studies have been conducted examining the benefit of aspirin treatment for colon cancer, 

reports of its actions in prostate cancer are limited. Current literature supports the use of either 

aspirin or metformin in prostate cancer treatment, however most in vitro studies use doses 

which are supra pharmacological and there is a lack of information regarding the effect of 

combining the drugs for prostate cancer treatment.  

  

This project used lab-based techniques to examine the effect of aspirin and metformin on non-

tumorigenic (PNT2) and cancerous (PC3, DU145 and LNCaP) prostate cell lines, specifically 

looking at changes in cell proliferation, apoptosis and cell migration using doses which are 

clinically relevant. The genomic diversity seen in cancer due to sustained cell proliferation results 

in a heterogenous molecular profile and makes personalized therapies difficult to implement. In 

prostate cancer tumour heterogeneity is a problem for treatment (293) (294), with a study 

reporting that in a cohort of 304 patients extensive heterogeneity was seen for Gleason scored 

samples in 89% of the patients and DNA ploidy for 40% of the patients, posing a major challenge 

to biomarker research and making personalized therapy less effective (295).  In addition, 

increased cell survival through deregulation of apoptotic pathways propagates the 

incorporation of new mutations into the tumour and reduces treatment success. Cell migration 

also plays a key role in cancer progression, enabling the cancer to spread to other sites in the 

body, such as the bones, lungs and liver which leads to a poor prognosis. The 5-year survival rate 

for localized and locally advanced prostate cancer are almost 100% and 95% respectively 

whereas for metastatic prostate cancer it is around 30% (296). This sharp decrease 

demonstrates the importance of identifying drugs which can prevent cancer migration and keep 

the cancer localized to the prostate.  
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The results from this thesis provide further evidence of the use of aspirin and metformin as anti-

cancer agents and discuss the value of combining the drugs to decrease cell proliferation and 

cell migration.  

 

It was seen in Chapter 3 that aspirin induces apoptosis in only the LNCaP cell line and at high 

concentrations (2 mM) and it was suggested that it could be in part through stabilization of the 

tumour suppressor p53 and activation of its downstream targets. Localized prostate tumours 

usually express wildtype p53 while mutations and/or allelic losses in the p53 gene are more 

often associated with metastatic prostate cancer and tumour recurrence (297). p53 mutations 

which lead to a non-functional version of the protein have been reported in 3-20% of prostate 

cancer cases at the time of diagnosis (298). Therefore, the ability of aspirin to activate p53 could 

be beneficial in most patients (>80%) potentially reducing the number of cases which progress 

to metastatic disease. Interestingly, aspirin had differential effects in the LNCaP cell line which 

were dependent on dose, causing inhibition of cell proliferation at 0.5 mM and cell death at 2 

mM. It was encouraging that low dose aspirin (0.5 mM) caused a reduction in cell proliferation, 

suggesting that lower doses will still have anti-cancer activity reducing the risk of side effects 

associated with high dose aspirin. Daily aspirin is normally given at 75 mg- 325 mg with the upper 

end representing a regular strength aspirin tablet (299). Aspirin to treat short-term pain can be 

taken at a maximum of 3600 mg every 24 hours for a few days (300) but no longer than 3 days 

due to potential side effects. While translating in vivo doses to in vitro culture is often 

controversial, in this study concentrations of 0.25-4 mM aspirin were used following reports that 

human plasma aspirin levels are around 1 mM (301) and 2.5 mM (289) when therapeutic doses 

of aspirin are given.  

 

Metformin is the first line agent for treatment of type two diabetes and is normally given at a 

maximum dose of 2,000 mg per day (302) although some studies state that this can go up to 

2,500 mg (303). In a study which examined systemic plasma concentrations after intake of 2,500 

mg metformin, plasma concentration in the portal vein was between 40 and 70 µM and after 

hepatic uptake this concentration was reduced to 10-40 µM (182). In another controlled clinical 

study, maximum metformin plasma levels did not exceed 30 µmol/L (304). In this thesis, 

metformin had no effect on cell proliferation or apoptosis at concentrations up to 30 µM in any 

of the cell lines. While this is controversial to the multitude of studies which support the 

proposition that metformin has anti-proliferative effects, many of the studies are conducted at 

supra-pharmacological metformin concentrations. Indeed, in this study 100 and 1000 µM 
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metformin did cause a reduction in spheroid area when examining spheroid growth implying 

that concentrations higher than those found in the plasma do have an anti-proliferative effect. 

 

In terms of examining the combined effect of the drugs on cell proliferation, an additive effect 

was observed in the PC3, potentially due to the lack of the PTEN tumour suppressor in this cell 

line. Lack of PTEN leads to an overactive PI3K pathway, a pathway which is targeted by both 

drugs (Chapter 3).  Using the drugs in combination may reduce the dose necessary to have an 

effect and reduce adverse patient reactions, although this is clearly dependent on the genotype 

of the tumour cells. 

 

Examining the effect of the drugs on PC3 cell migration (Chapter 5) provided evidence that both 

drugs individually prevent cell migration as previously reported in other studies (147) (305). This 

is an important feature for cancer treatment and suggests that it may be beneficial to administer 

the drugs for localized prostate cancer to prevent metastasis. Treatment with aspirin or 

metformin alone caused the cells to adopt a more epithelial phenotype as seen by an increase 

in E-cadherin, and a reduction in N-cadherin, MMP-9 and Slug with western blotting and qPCR. 

This data supports previous studies, where both aspirin and metformin decreased MMP-9 and 

Slug expression and reversed EMT through inhibition of the canonical NFKB pathway in prostate 

cancer cells (146) (306). The results from the combination of both drugs were variable for cell 

migration and show an enhanced but not additive effect. Both drugs target similar pathways 

including the NFKB, PI3K/AKT, STAT3 and MAPK pathways which have been suggested to 

contribute to their anti-migratory effects. Aspirin specifically inhibits IKK-β activation  whereas 

metformin reduces NFKB activation through activation of AMPK (307) or independently of AMPK 

(306), with inhibitors of AMPK and PI3K signalling abrogating its effects. These studies primarily 

examine the use of metformin in cardiovascular disease prevention as prolonged activation of 

the NFKB pathway is known to play an important role in eliciting signals which trigger chronic 

inflammation and disease development (308). The connection of NFKB to prostate cancer cell 

growth, survival and cell movement (309) makes drugs that have the capacity to target NFKB 

activation, such as aspirin and metformin, well suited for cancer treatment. Importantly this 

study establishes that the anti-metastatic activity of the drugs can be achieved at therapeutically 

relevant doses in prostate cancer, particularly when used in combination.  

 

There is much interest in the potential use of aspirin and metformin alongside conventional 

therapies. Both aspirin and metformin have been proposed to have synergistic effects with 
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standard cancer treatments such as chemotherapy and radiotherapy, with studies suggesting 

patient outcome is improved when they are used together (191) (310) (195) (196). NFKB 

activation appears to be increased during radiotherapy (311) and chemotherapy (312) and so 

the mechanisms by which aspirin and metformin target NFKB signalling could reduce resistance 

to chemo and radiotherapy, improving patient outcome. In terms of surgery, inhibition of cell 

migration observed with both drugs could help keep the cancer localized prior to surgery, 

providing more time for men to decide what treatment option they want to proceed with.  

 

In this thesis, the combination of aspirin and metformin demonstrated that the drugs have 

potential efficacy.  However, it is important to also consider the effects of the drugs on different 

hallmarks of cancer and how targeting multiple hallmarks at the same time may be most 

beneficial therapeutically. While aspirin was more effective at inhibiting prostate cancer cell 

proliferation (Chapter 3 and 4) metformin was more effective at inhibiting cell migration and did 

so at an earlier time point than aspirin (Chapter 5). Therefore, when the drugs are used in 

combination, aspirin may act to reduce tumour cell growth while metformin prevents tumour 

metastasis, targeting different hallmarks to provide a practical benefit. Indeed in a recent nature 

review, it was suggested that combining drugs based on their effect on independent cancer 

hallmarks simultaneously targets multiple phenotypic behaviours of cancer cells, improving 

effectiveness of treatment (313). In addition, tumours are known to possess intra-tumour 

heterogeneity which results from genetic and non-genetic determinants and leads therapeutic 

resistance (314). Therefore, depending on the genetic composition of the tumour some patients 

may respond better to drugs which target cell proliferation pathways while others respond 

better to those which target cell migration pathways. The pleiotropic nature of both aspirin and 

metformin allows the drugs to target multiple signalling pathways so that heterogeneous 

tumours may still respond to treatment. 

 

In all, it was concluded that aspirin and metformin have differential effects depending on the 

cancer subtype (Figure 6.1). In the wild type p53, androgen dependent cells, such as the LNCaPs, 

aspirin alone was seen to influence cell proliferation. In the mutant p53, androgen independent 

cells, such as the PC3s, although aspirin alone could inhibit cell proliferation it was the 

combination of aspirin and metformin that had the greatest effect on cell proliferation and cell 

migration. This indicates that in the more advanced stages of prostate cancer the combination 

of aspirin and metformin (targeting two distinct hallmarks of cancer) would be most effective 

for treatment. 
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Figure 6.1: Aspirin and metformin have differential effects depending on cancer subtype. 
(a) In wild type p53, androgen dependent cells such as LNCaPs, aspirin alone induces apoptosis and 
inhibits cell proliferation. (b) In mutant p53, androgen independent cells such as PC3s the combination of 
aspirin and metformin inhibits cell proliferation and rapid cell migration more effectively that when the 
drugs are given individually. In this cancer subtype the drugs do not induce apoptosis.  
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6.2 Limitations of the research 
 

The four prostate cell lines used in this thesis attempt to encompass various stages of prostate 

cancer including non-tumorigenic, androgen dependent and androgen independent cancer. 

However, all three of the cancerous cell lines are from the more advanced, metastatic stages of 

the disease. Therefore, a limitation of the study is that the effect of the drugs on localized 

prostate cancer was not examined. Towards the end of the project I obtained P4E6 cells, an early 

stage prostate cancer cell line, from a collaboration (Maitland Lab, University of York) and in 

future work it would be useful to examine the effects of the drugs on this early stage prostate 

cancer cell line. It would also be interesting to grow the cells in 3D to see if there are differences 

in the spheroids morphologies. The PC3, DU145, LNCaP and PNT2 cells are all established 

commercial cell lines and contain some of the more commonly observed mutations in cancer 

such as loss of important tumour suppressors such as PTEN or p53. The fact that their mutation 

status is well known and documented is valuable as it allows a greater analysis of signalling 

pathways to aid in understanding of how the drugs exert their anti-cancer effects. However, 

while cell lines are useful to study specific signalling pathways access to primary cultures would 

have been beneficial, providing a heterogeneous population of cells which maintain many of the 

key markers and functions seen in cells in vivo. 

 

Translating in vivo doses to in vitro culture is difficult and often controversial and so another 

limitation of this work is the debate over what drug concentrations are considered 

therapeutically relevant. In this study, 2 mM aspirin and 30 µM metformin were selected as the 

maximum doses for each drug. While literature supports these concentrations there are doubts 

whether 2 mM aspirin is achievable in the prostate. Therefore, more studies that examine the 

concentration of aspirin which reaches the prostate are needed before it can confidently be 

stated that 2 mM aspirin is therapeutically relevant. However, an important consideration for 

these studies is that people take aspirin and metformin daily for years. Metformin has been 

shown to accumulate in the mitochondria and many epidemiological studies have identified that 

aspirin and metformin have a long-term benefit which increases with duration of treatment 

(315). The studies in this thesis examined the short-term effects of the drugs and so a lower 

concentration over a longer period of time may have a similar effect to a higher concentration 

over a shorter period of time. Future studies which examine the effect of low dose, long term 

treatment may also be informative and clinically useful. Indeed, cells have been maintained in 
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low dose aspirin for extended periods of time, for example >50 weeks, to determine whether 

the cells respond differently to long term dosing and if the cells become more resistant to the 

drugs over time.  

A final limitation was that while the proteins and genes examined in this study are useful to 

determine the effect of the drugs on hallmarks of cancer, such as proliferation and migration, 

they do not confirm the effect of the drugs on specific signalling pathways. In future work it 

would be beneficial to examine the expression of proteins further downstream such as the E2F 

family or ribosomal S6 kinase. FACs would also to determine what stage of the cell cycle the 

drugs inhibit and if this is altered through treatment with the combination of aspirin and 

metformin. Knockout studies would also be useful to determine the function of specific genes 

in response to treatment, of particular interest would be the NFĸB protein complex and 

members of the PI3K pathway.  
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6.3 Future research 
 

Multiple signalling pathways have been implicated in the anti-migratory effects of aspirin and 

metformin including the TGF- beta, AMPK, mTOR and STAT3 pathways as well as miRNAs. In a 

study by Yue et al it was noted that both aspirin and metformin modulate the AMPK, mTOR, 

STAT3 and NFкB pathways and could potentially affect cell migration via these mechanisms (17). 

Interestingly, PC3 cells do not express STAT3 (316) and so the ability of aspirin and metformin 

to inhibit cell migration in this cell line is not through the STAT3 pathway. In addition, the number 

of miRNAs which have been directly or indirectly linked with EMT is extensive and constantly 

increasing (317). Recently metformin has been shown to inhibit TGF-β induced EMT and 

modulate the expression of miRNAs, specifically miR30a, to reduce prostate cancer cell 

migration (318). Similarly, aspirin has been shown to reprogram the mesenchymal to epithelial 

transition (MET) and delay cell migration through the TGF-β/SMAD4 pathway in breast cancer 

(319). With many studies highlighting the pleiotropic nature of both drugs it would be interesting 

to examine the effect of combining aspirin and metformin on key signalling molecules involved 

in the PI3K/ATK, NFкB and TGFβ pathways. In this study, different effects were seen in cancer 

subtypes, with an additive effect of the drugs observed in the PC3 cell line suggesting that in 

androgen independent, p53 negative, PTEN negative cells both drugs inhibit the PI3K pathway 

to reduce cell proliferation (Figure 6.2 a). Conversely in androgen dependent, p53 positive cells, 

PTEN negative cells, such as the LNCaPs, aspirin could inhibit cell proliferation and induce 

apoptosis through inhibition of the PI3K pathway, inhibition of androgen receptor signalling and 

activation of p53 (Figure 6.2 b). In migratory cells, inhibition of NFкB by both aspirin and 

metformin as well as inhibition of other pathways previously mentioned in this section by either 

of the drugs could act to reverse EMT, preventing cancer metastasis (Figure 6.2 c). It would be 

interesting to examine the mechanisms by which aspirin and metformin exert their anti-cancer 

effects and understand which cancers may benefit most from treatment. 
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Figure 6.2: Proposed mechanisms by which aspirin and metformin may reduce cell proliferation and 
migration in cancer cells. 
(a) In androgen independent, p53 negative cancer cells aspirin and metformin exert additive effects by 
targeting the PI3K pathway to reduce cell proliferation. This effect is enhanced in cells which are negative 
for the tumour suppressor PTEN which normally prevents overactive PI3K signalling. (b) In androgen 
responsive, p53 positive cancer cells aspirin inhibits cell proliferation by downregulating the androgen 
receptor mRNA and protein expression. This prevents the androgen receptor from downregulating cell 
cycle inhibitors such as p16 and p21 and enhancing the activity of CDKs. Aspirin also induces apoptosis by 
preventing MDM2 from binding to p53 and stabilization of p53. The PI3K pathway is also active in LNCaP 
cells and so aspirin may also reduce cell proliferation through inhibition of this pathway. (c) Aspirin and 
metformin target the NFKB pathway to prevent cell migration. Aspirin inhibits IKK-β activation while 
metformin activates AMPK to reduce NFKB activation.   

 



General Discussion 

   

 

207 
 

Examining the effect of the drugs on cell proliferation in 3D cell culture identified that the 

spheroids appeared to contain a necrotic, hypoxic core. Hypoxia has been shown to promote 

cancer progression, leading to excessive dysfunctional vascularisation and the acquisition of 

mesenchymal traits which allow cancer to migrate to secondary sites (320).  Metformin has been 

shown to reduce hypoxia in solid tumours (196), reducing cancer progression and dissemination 

and allowing therapeutics such a radiotherapy which requires oxygen to have a greater effect. 

In radiation therapy, oxygen assists in the chemical reactions that cause DNA damage when cells 

absorb energy from the ionizing radiation (321). Cells that have a normal level of oxygen are 

around two to three times more sensitive to radiotherapy than hypoxic cells such as those in the 

centre of a tumour (315)(314). Currently there is an ongoing clinical trial, ASPIRE, which 

examines whether aspirin improves radiotherapy in rectal cancer (323). The ADD-Aspirin trial is 

also recruiting participants to determine whether aspirin use after treatment for an early stage 

cancer prevents recurrence and reduces cancer associated mortality. It examines aspirin use for 

breast, colon/rectum, gastro and prostate cancers and in prostate cancer examines men who 

have undergone radiotherapy or a radical prostatectomy (123). It will be interesting to see the 

outcomes of both trials to help determine whether aspirin prevents cancer recurrence and 

improves outcome after primary treatment. Similarly, metformin has been shown to reduce the 

oxygen consumption rate and hypoxia in cells through inhibition of mitochondrial complex I 

(324). A study by Spratt et al, undertaken in men who underwent external-beam radiation 

therapy for localized prostate cancer identified a strong association between metformin use and 

clinical benefit in prostate cancer patients. There was improvement in all outcomes for patients 

who were taking metformin, including; PSA-recurrence free survival, distant metastases free 

survival, overall survival, prostate cancer specific mortality and the development of castration-

resistant prostate cancer (325). It would be interesting to see if combining aspirin and metformin 

further reduces hypoxia and thus increases sensitivity to conventional therapy.  

 

In addition, while our model was simplified to include only the extracellular matrix (matrigel) 

and cancer cells, other 3D models include non-cancerous cells found within the tumour 

microenvironment such as fibroblasts and immune cells (326). These cells secrete factors such 

as cytokines and growth factors which are important for cancer development and growth. It may 

be that the drugs are more effective at targeting stromal cells than epithelial and therefore, it 

would be interesting to include stromal and immune cells in our 3D model to see if the drug 

induced changes in tumour microenvironment affect prostate spheroid growth. 
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Both aspirin and metformin significantly affected cell migration, reducing the migratory capacity 

of the cells in the wound healing assay and causing the cells to adopt a more epithelial 

phenotype as seen with markers of EMT. However, it would have been interesting to conduct 

studies examining the effect of the drugs on cell invasion as well as migration. While the markers 

of EMT examined are characteristic of both cell migration and invasion conducting a transwell 

migration and invasion assay would have provided information about the cells ability to move 

through a physical barrier towards a chemoattractant such as growth media, further establishing 

the drugs effect on cancer metastatic processes (327). In addition, while E-cadherin and N-

cadherin are two of the most reliable indicators of EMT the use of more markers such as 

integrins or the twist and ZEB families would have been valuable to better understand the drug 

induced changes to adhesion molecules and EMT transcription factors. As stated in Chapter 5, 

cells migrate either individually or as a cluster, with collective migration being the most 

commonly observed method in epithelial cancers. In this thesis, the effect of aspirin and 

metformin on individual cell migration was examined using the PC3 cell line but it was noted 

that the DU145 cells migrate by keeping in close contact with each other. In future experiments 

it would be interesting to also conduct migration experiments with this cell line to examine 

whether the drugs have a differential effect on collective cell migration. Examining the signalling 

pathways targeted by aspirin and metformin will help to determine whether the drugs also alter 

expression of proteins involved in EMT in these cells and will be effective in preventing both 

types of cell migration.  

 

One of the major considerations in prescribing aspirin and metformin is deciding who will most 

benefit. Metformin is taken up by organic cation transporters, most commonly OCT1, and 

extruded by multidrug and toxic compound extrusion transporters 1 and 2 (MATE 1 and 2) which 

are highly expressed in the liver (328) but are also expressed by cells of the prostate (329) (330). 

However, studies have shown that in men with prostate cancer, having polymorphisms in OCT1 

or MATE1 or high levels of MATE2 can cause a reduction in responsiveness to metformin 

treatment (331) (330). Furthermore, other genetic factors also affect response to metformin 

treatment, such as polymorphisms in Serine-threonine kinase 11 (STK11) also known as LKB1, 

an important protein involved in metformins downstream PI3K/AKT signalling (332). It would be 

interesting to examine the expression of OCT1, MATE2 and STK11 in our cell lines to determine 

their association with response. Similarly, genetic polymorphisms have also been associated 

with aspirin resistance, mostly in the COX-1/2, P2Y receptors (P2Y), and glucose-6-phosphatase 

isomerase (GPI) genes (333). P2Y is a platelet membrane receptor and plays a key role in platelet 
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aggregation (334) while the GPI gene encodes a glycoprotein coupled receptor which TXA2 binds 

to also causing platelet aggregation (335). Studies have shown that polymorphisms in these 

genes result in a reduced response of aspirin to cardiovascular disease but also could affect 

aspirin response to cancer with aspirins effect on platelets thought to play a key role in its anti-

cancer effects. Aspirin is also known to reach a higher concentration in the colon compared to 

distal tissues such as the prostate, skin and liver (145). Therefore, while plasma concentrations 

of aspirin have been shown to have an anti-cancer effect in distal tissues, people with colon 

cancer may receive a greater benefit from treatment than those with other types of cancer. 

Investigating expression of markers associated with resistance in prostate cancer cell models 

would help us to determine which patients would most benefit from combined 

aspirin/metformin treatment in the future. 

 

Finally, it was an aim of this study to examine the effect of aspirin and metformin on an in vivo 

metastasis model to help determine whether the combination has an additive effect on cell 

migration. Work is currently underway with our collaborator Dr Oltean at Exeter University who 

is intravenously inoculating nude mice with 1 x 106 luciferase-tagged PC3 cells and then treating 

them with either saline (control), aspirin, metformin or a combination of the two drugs. The 

degree of metastatic spread will be monitored twice weekly using in vivo imaging with an IVIS 

Xenogen device to determine whether the drugs prevent cell migration within an in vivo model. 

Pilot studies have confirmed the timeline of metastasis showing the formation of lung 

metastases over time and the experiments determining drug concentrations are currently 

underway (Figure 6.3).  
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Figure 6.3: Pilot studies of in vivo PC3 metastasis. 
1 x106 luciferase tagged PC3 cells are injected into the tail vein of the mouse and form lung metastases.  
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6.4 Overall conclusion  
 

The data presented in this thesis suggests that aspirin in combination with metformin may be a 

valid and novel approach to improve prostate cancer treatment. This work strongly supports 

findings that aspirin is anti-proliferative with a decrease in cell proliferation observed in all the 

cancerous cell lines tested. Aspirins effect on apoptosis is dependent on the mutations acquired 

during tumorigenesis, inducing apoptosis in tumours which retain wild type p53, which could be 

greater than 80% of prostate cancer cases. Aspirin was also seen to reduce cell migration which 

suggests that aspirin may be beneficial for both cancer prevention and treatment.  

Metformin did not reduce prostate cell proliferation which contradicts studies which do show 

an anti-proliferative effect. While the short duration of the experiment may have had an impact, 

many studies use concentrations of metformin which are supra-pharmacological which should 

be taken into consideration. Despite this, metformin was highly effective at inhibiting cell 

migration and did so at an earlier time point than aspirin, a feature which is important for the 

treatment of aggressive cancers.  

In terms of the combined effect of the drugs, the most advanced cell line, the PC3s, exhibited 

an additive decrease in cell proliferation and cell migration, confirming that in combination the 

drugs could prevent the formation of secondary sites of cancer.  

In summary, this thesis does support the use of aspirin and metformin in combination to reduce 

prostate cancer cell proliferation and migration. Importantly, as aspirin and metformin appear 

to target two distinct hallmarks of cancer they have a greater chance of efficacy in heterogenous 

tumours and combined treatment may prevent progression to the metastatic disease.  

 

 

 

 

 

 

 

 



 

212 
 

References 

 

1.  Marker PC, Donjacour AA, Dahiya R, Cunha GR. Hormonal, cellular, and molecular 
control of prostatic development. Developmental Biology. 2003 Jan 
15;253(2):165–74.  

2.  Huang L, Pu Y, Hu WY, Birch L, Luccio-Camelo D, Yamaguchi T, et al. The role of 
Wnt5a in prostate gland development. Dev Biol. 2009 Apr 15;328(2):188–99.  

3.  Donjacour AA, Thomson AA, Cunha GR. FGF-10 plays an essential role in the 
growth of the fetal prostate. Dev Biol. 2003 Sep 1;261(1):39–54.  

4.  Berman DM, Desai N, Wang X, Karhadkar SS, Reynon M, Abate-Shen C, et al. Roles 
for Hedgehog signaling in androgen production and prostate ductal 
morphogenesis. Dev Biol. 2004 Mar 15;267(2):387–98.  

5.  Shen MM, Abate-Shen C. Molecular genetics of prostate cancer: new prospects 
for old challenges. Genes Dev. 2010 Sep 15;24(18):1967–2000.  

6.  Wang Y, Hayward S, Cao M, Thayer K, Cunha G. Cell differentiation lineage in the 
prostate. Differentiation. 2001 Oct;68(4–5):270–9.  

7.  Collins AT, Habib FK, Maitland NJ, Neal DE. Identification and isolation of human 
prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell 
Sci. 2001 Nov;114(Pt 21):3865–72.  

8.  Wang ZA, Toivanen R, Bergren SK, Chambon P, Shen MM. Luminal Cells Are 
Favored as the Cell of Origin for Prostate Cancer. Cell Reports. 2014 Sep 
11;8(5):1339–46.  

9.  Wang X, Julio MK, Economides KD, Walker D, Yu H, Halili MV, et al. A luminal 
epithelial stem cell that is a cell of origin for prostate cancer. Nature. 2009 
Sep;461(7263):495–500.  

10.  Timms BG. Prostate development: a historical perspective. Differentiation. 2008 
Jul;76(6):565–77.  

11.  Rybak AP, Bristow RG, Kapoor A. Prostate cancer stem cells: deciphering the 
origins and pathways involved in prostate tumorigenesis and aggression. 
Oncotarget. 2015 Feb 10;6(4):1900–19.  

12.  Debes JD, Tindall DJ. The role of androgens and the androgen receptor in prostate 
cancer. Cancer Letters. 2002 Dec 10;187(1):1–7.  

13.  Li H, Pham T, McWhinney BC, Ungerer JP, Pretorius CJ, Richard DJ, et al. Sex 
Hormone Binding Globulin Modifies Testosterone Action and Metabolism in 
Prostate Cancer Cells. Int J Endocrinol [Internet]. 2016 [cited 2018 Aug 22];2016. 
Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5136390/ 

14.  So AI, Hurtado-Coll A, Gleave ME. Androgens and prostate cancer. World J Urol. 
2003 Nov;21(5):325–37.  

15.  Testosterone Effects on the Prostate Gland: Review of Pathophysiology and 
considerations in Prostate Cancer [PDF] - Online free publishing [Internet]. [cited 
2017 Sep 19]. Available from: 
https://www.noexperiencenecessarybook.com/GeLnJ/testosterone-effects-on-
the-prostate-gland-review-of-pathophysiology-and-considerations-in-prostate-
cancer.html 



  

 

213 
 

16.  Androgen Blocks Apoptosis of Hormone-dependent Prostate Cancer Cells | 
Cancer Research [Internet]. [cited 2018 Aug 20]. Available from: 
http://cancerres.aacrjournals.org/content/61/14/5611.long 

17.  Heinlein CA, Chang C. Androgen Receptor in Prostate Cancer. Endocr Rev. 2004 
Apr 1;25(2):276–308.  

18.  Nicholson TM, Ricke WA. Androgens and estrogens in benign prostatic 
hyperplasia: past, present and future. Differentiation. 2011;82(4–5):184–99.  

19.  Apoptotic versus proliferative activities in human benign prostatic hyperplasia. 
Human Pathology. 1996 Jul 1;27(7):668–75.  

20.  Saraon P, Drabovich AP, Jarvi KA, Diamandis EP. Mechanisms of Androgen-
Independent Prostate Cancer. EJIFCC. 2014 Apr 28;25(1):42–54.  

21.  Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000 Jan 7;100(1):57–
70.  

22.  Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011 
Mar 4;144(5):646–74.  

23.  Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017 May 
1;7(5):1016–36.  

24.  “Hallmarks of Cancer:” How Normal Cells Turn into Cancer Cells [Internet]. EWG. 
[cited 2017 Sep 26]. Available from: http://www.ewg.org/research/rethinking-
carcinogens/hallmarks-cancer-how-normal-cells-turn-cancer-cells 

25.  Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Proto-
Oncogenes and Tumor-Suppressor Genes. 2000  

26.  Torrealba N, Rodríguez-Berriguete G, Vera R, Fraile B, Olmedilla G, Martínez-
Onsurbe P, et al. Homeostasis: apoptosis and cell cycle in normal and pathological 
prostate. The Aging Male. 2018 May 6;0(0):1–11.  

27.  Hyland KM. Tumor Suppressor Genes and Oncogenes: Genes that Prevent and 
Cause Cancer. :16.  

28.  Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene. 2003 
Dec;22(56):9030–40.  

29.  Deng C-X. BRCA1: cell cycle checkpoint, genetic instability, DNA damage response 
and cancer evolution. Nucleic Acids Res. 2006;34(5):1416–26.  

30.  Yoshida S, Kajitani N, Satsuka A, Nakamura H, Sakai H. Ras Modifies Proliferation 
and Invasiveness of Cells Expressing Human Papillomavirus Oncoproteins. Journal 
of Virology. 2008 Sep 1;82(17):8820–7.  

31.  Kissil J. Mechanisms of cell contact inhibition and their dysregulation in cancer. 
Grantome. [cited 2018 Aug 24];  

32.  Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer 
Res. 2011 Sep 26;30(1):87.  

33.  MacFarlane M, Williams AC. Apoptosis and disease: a life or death decision: 
Conference and Workshop on Apoptosis and Disease. EMBO reports. 2004 Jul 
1;5(7):674–8.  

34.  Elmore S. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol. 
2007;35(4):495–516.  

35.  Fernald K, Kurokawa M. Evading apoptosis in cancer. Trends Cell Biol. 2013 
Dec;23(12):620–33.  

36.  Clark DE, Errington TM, Smith JA, Frierson HF, Weber MJ, Lannigan DA. The 
Serine/Threonine Protein Kinase, p90 Ribosomal S6 Kinase, Is an Important 



  

 

214 
 

Regulator of Prostate Cancer Cell Proliferation. Cancer Res. 2005 Apr 
15;65(8):3108–16.  

37.  (3) Drug Resistance and Molecular Cancer Therapy: Apoptosis Versus Autophagy 
| Request PDF [Internet]. ResearchGate. [cited 2018 Aug 23]. Available from: 
https://www.researchgate.net/publication/237052270_Drug_Resistance_and_
Molecular_Cancer_Therapy_Apoptosis_Versus_Autophagy 

38.  Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. Journal 
of Clinical Investigation. 2009 Jun 1;119(6):1420–8.  

39.  Kim DH, Xing T, Yang Z, Dudek R, Lu Q, Chen Y-H. Epithelial Mesenchymal 
Transition in Embryonic Development, Tissue Repair and Cancer: A 
Comprehensive Overview. J Clin Med [Internet]. 2017 Dec 22 [cited 2018 Aug 
20];7(1). Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5791009/ 

40.  Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal 
transition. Nat Rev Mol Cell Biol. 2014 Mar;15(3):178–96.  

41.  Regulation of the protein stability of EMT transcription factors: Cell Adhesion & 
Migration: Vol 8, No 4  

42.  Shay JW, Wright WE. Senescence and immortalization: role of telomeres and 
telomerase. Carcinogenesis. 2005 May 1;26(5):867–74.  

43.  Fagagna F d’Adda di, Teo S-H, Jackson SP. Functional links between telomeres and 
proteins of the DNA-damage response. Genes Dev. 2004 Aug 1;18(15):1781–99.  

44.  Cleal K, Norris K, Baird D. Telomere Length Dynamics and the Evolution of Cancer 
Genome Architecture. Int J Mol Sci. 2018 Feb 6;19(2).  

45.  Maciejowski J, de Lange T. Telomeres in cancer: tumour suppression and genome 
instability. Nat Rev Mol Cell Biol. 2017 Mar;18(3):175–86.  

46.  Jafri MA, Ansari SA, Alqahtani MH, Shay JW. Roles of telomeres and telomerase 
in cancer, and advances in telomerase-targeted therapies. Genome Med . 2016 
Jun 20 [cited 2018 Aug 21];8.  

47.  Rubtsova MP, Vasilkova DP, Malyavko AN, Naraikina YV, Zvereva MI, Dontsova 
OA. Telomere Lengthening and Other Functions of Telomerase. Acta Nature. 
2012;4(2):44–61.  

48.  Leão R, Apolónio JD, Lee D, Figueiredo A, Tabori U, Castelo-Branco P. Mechanisms 
of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in 
cancer. J Biomed Sci. 2018 Mar 12;25.  

49.  Hsu C-P, Lee L-W, Tang S-C, Hsin I-L, Lin Y-W, Ko J-L. Epidermal growth factor 
activates telomerase activity by direct binding of Ets-2 to hTERT promoter in lung 
cancer cells. Tumour Biol. 2015 Jul;36(7):5389–98.  

50.  Ren B, Yee KO, Lawler J, Khosravi-Far R. Regulation of tumor angiogenesis by 
thrombospondin-1. Biochim Biophys Acta. 2006 Apr;1765(2):178–88.  

51.  Watnick RS, Cheng Y-N, Rangarajan A, Ince TA, Weinberg RA. Ras modulates Myc 
activity to repress thrombospondin-1 expression and increase tumor 
angiogenesis. Cancer Cell. 2003 Mar;3(3):219–31.  

52.  Shchors K, Shchors E, Rostker F, Lawlor ER, Brown-Swigart L, Evan GI. The Myc-
dependent angiogenic switch in tumors is mediated by interleukin 1β. Genes Dev. 
2006 Sep 15;20(18):2527–38.  



  

 

215 
 

53.  Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer 
incidence and mortality worldwide: Sources, methods and major patterns in 
GLOBOCAN 2012. Int J Cancer. 2015 Mar 1;136(5):E359–86.  

54.  GLOBOCAN Cancer Fact Sheets: prostate cancer [Internet]. [cited 2017 Jun 26]. 
Available from: http://globocan.iarc.fr/old/FactSheets/cancers/prostate-
new.asp 

55.  Schrecengost RS, Knudsen KE. Molecular Pathogenesis and Progression of 
Prostate Cancer. Semin Oncol. 2013 Jun;40(3):244–58.  

56.  Davidson D, Bostwick DG, Qian J, Wollan PC, Oesterling JE, Rudders RA, et al. 
Prostatic intraepithelial neoplasia is a risk factor for adenocarcinoma: predictive 
accuracy in needle biopsies. J Urol. 1995 Oct;154(4):1295–9.  

57.  Kronz JD, Allan CH, Shaikh AA, Epstein JI. Predicting cancer following a diagnosis 
of high-grade prostatic intraepithelial neoplasia on needle biopsy: data on men 
with more than one follow-up biopsy. Am J Surg Pathol. 2001 Aug;25(8):1079–85.  

58.  Brawer MK. Prostatic Intraepithelial Neoplasia: An Overview. Rev Urol. 
2005;7(Suppl 3):S11–8.  

59.  Humphrey PA. Diagnosis of adenocarcinoma in prostate needle biopsy tissue. J 
Clin Pathol. 2007 Jan;60(1):35–42.  

60.  Dissecting major signaling pathways in prostate cancer development and 
progression: Mechanisms and novel therapeutic targets. The Journal of Steroid 
Biochemistry and Molecular Biology. 2017 Feb 1;166:16–27.  

61.  Chalhoub N, Baker SJ. PTEN and the PI3-Kinase Pathway in Cancer. Annu Rev 
Pathol. 2009;4:127–50.  

62.  Kim S, Huang W, Mottillo EP, Sohail A, Ham Y-A, Conley-Lacomb MK, et al. 
Posttranslational regulation of membrane type 1-matrix metalloproteinase (MT1-
MMP) in mouse PTEN null prostate cancer cells: Enhanced surface expression and 
differential O-glycosylation of MT1-MMP. Biochim Biophys Acta. 2010 
Nov;1803(11):1287–97.  

63.  Chesire DR, Ewing CM, Sauvageot J, Bova GS, Isaacs WB. Detection and analysis of 
beta-catenin mutations in prostate cancer. Prostate. 2000 Dec 1;45(4):323–34.  

64.  Carracedo A, Pandolfi PP. The PTEN–PI3K pathway: of feedbacks and cross-talks. 
Oncogene. 2008 Sep;27(41):5527–41.  

65.  Gupta S, Iljin K, Sara H, Mpindi JP, Mirtti T, Vainio P, et al. FZD4 as a mediator of 
ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition 
in human prostate cancer cells. Cancer Res. 2010 Sep 1;70(17):6735–45.  

66.  Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and 
cancer. Molecular Cancer. 2013 Aug 2;12(1):86.  

67.  Fan Y, Mao R, Yang J. NF-κB and STAT3 signaling pathways collaboratively link 
inflammation to cancer. Protein Cell. 2013 Mar;4(3):176–85.  

68.  Zhang L, Altuwaijri S, Deng F, Chen L, Lal P, Bhanot UK, et al. NF-κB Regulates 
Androgen Receptor Expression and Prostate Cancer Growth. Am J Pathol. 2009 
Aug;175(2):489–99.  

69.  Chen CD, Sawyers CL. NF-κB Activates Prostate-Specific Antigen Expression and Is 
Upregulated in Androgen-Independent Prostate Cancer. Molecular and Cellular 
Biology. 2002 Apr 15;22(8):2862–70.  



  

 

216 
 

70.  Mukherjee R, McGuinness DH, McCall P, Underwood MA, Seywright M, Orange C, 
et al. Upregulation of MAPK pathway is associated with survival in castrate-
resistant prostate cancer. Br J Cancer. 2011 Jun 7;104(12):1920–8.  

71.  Weber MJ, Gioeli D. Ras signaling in prostate cancer progression. Journal of 
Cellular Biochemistry. 2004 Jan 1;91(1):13–25.  

72.  Key Statistics for Prostate Cancer | Prostate Cancer Facts [Internet]. [cited 2017 
Jun 26]. Available from: https://www.cancer.org/cancer/prostate-
cancer/about/key-statistics.html 

73.  TNM Staging | Prostate cancer | Cancer Research UK [Internet]. [cited 2017 Sep 
18]. Available from: http://www.cancerresearchuk.org/about-cancer/prostate-
cancer/stages/tnm-staging 

74.  PSA test [Internet]. Prostate Cancer UK. [cited 2017 Sep 18]. Available from: 
https://prostatecanceruk.org/prostate-information/prostate-tests/psa-test 

75.  Martin RM, Donovan JL, Turner EL, Metcalfe C, Young GJ, Walsh EI, et al. Effect of 
a Low-Intensity PSA-Based Screening Intervention on Prostate Cancer Mortality: 
The CAP Randomized Clinical Trial. JAMA. 2018 06;319(9):883–95.  

76.  Andriole GL, Crawford ED, Grubb RL, Buys SS, Chia D, Church TR, et al. Mortality 
results from a randomized prostate-cancer screening trial. N Engl J Med. 2009 Mar 
26;360(13):1310–9.  

77.  Schröder FH, Hugosson J, Roobol MJ, Tammela TLJ, Zappa M, Nelen V, et al. The 
European Randomized Study of Screening for Prostate Cancer – Prostate Cancer 
Mortality at 13 Years of Follow-up. Lancet. 2014 Dec 6;384(9959):2027–35.  

78.  O’Shaughnessy M, Konety B, Warlick C. Prostate cancer screening: issues and 
controversies. Minn Med. 2010 Aug;93(8):39–44.  

79.  Understanding Your Pathology Report: Prostate Cancer [Internet]. [cited 2017 Sep 
18]. Available from: https://www.cancer.org/treatment/understanding-your-
diagnosis/tests/understanding-your-pathology-report/prostate-
pathology/prostate-cancer-pathology.html 

80.  Martin K. Gleason Score - Prostate Conditions [Internet]. [cited 2018 Mar 7]. 
Available from: http://www.prostateconditions.org/about-prostate-
conditions/prostate-cancer/newly-diagnosed/gleason-score 

81.  Survival | Prostate cancer | Cancer Research UK [Internet]. [cited 2017 Jun 26]. 
Available from: http://www.cancerresearchuk.org/about-cancer/prostate-
cancer/survival 

82.  Prostate cancer incidence statistics [Internet]. Cancer Research UK. 2015 [cited 
2017 Sep 18]. Available from: http://www.cancerresearchuk.org/health-
professional/cancer-statistics/statistics-by-cancer-type/prostate-
cancer/incidence 

83.  Reference GH. prostate cancer [Internet]. Genetics Home Reference. [cited 2017 
Jun 26]. Available from: https://ghr.nlm.nih.gov/condition/prostate-cancer 

84.  Ewing CM, Ray AM, Lange EM, Zuhlke KA, Robbins CM, Tembe WD, et al. Germline 
Mutations in HOXB13 and Prostate-Cancer Risk. New England Journal of 
Medicine. 2012 Jan 12;366(2):141–9.  

85.  BRCA 1 and 2: the genes, the myths, the mutations [Internet]. Prostate Cancer UK. 
[cited 2017 Sep 18]. Available from: https://prostatecanceruk.org/about-
us/news-and-views/2013/8/brca-genes-myth-busters 



  

 

217 
 

86.  Watanabe M, Nakayama T, Shiraishi T, Stemmermann GN, Yatani R. Comparative 
studies of prostate cancer in Japan versus the United States: A review. Urologic 
Oncology: Seminars and Original Investigations. 2000 Nov 1;5(6):274–83.  

87.  Maskarinec G, Noh JJ. The effect of migration on cancer incidence among 
Japanese in Hawaii. Ethn Dis. 2004;14(3):431–9.  

88.  McDonald JT, Farnworth M, Liu Z. Cancer and the healthy immigrant effect: a 
statistical analysis of cancer diagnosis using a linked Census-cancer registry 
administrative database. BMC Public Health [Internet]. 2017 Apr 5 [cited 2018 
Aug 22];17. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382414/ 

89.  Rebbeck TR. Prostate Cancer Genetics: Variation by Race, Ethnicity, and 
Geography. Semin Radiat Oncol. 2017 Jan;27(1):3–10.  

90.  Bhardwaj A, Srivastava SK, Khan MA, Prajapati VK, Singh S, Carter JE, et al. Racial 
disparities in prostate cancer: a molecular perspective. Front Biosci (Landmark 
Ed). 2017 Jan 1;22:772–82.  

91.  Treatments [Internet]. Prostate Cancer UK. [cited 2017 Jun 26]. Available from: 
https://prostatecanceruk.org/prostate-information/treatments 

92.  Active surveillance [Internet]. Prostate Cancer UK. [cited 2018 Jan 25]. Available 
from: https://prostatecanceruk.org/prostate-information/treatments/active-
surveillance 

93.  Ray KJ, Sibson NR, Kiltie AE. Treatment of Breast and Prostate Cancer by 
Hypofractionated Radiotherapy: Potential Risks and Benefits. Clin Oncol (R Coll 
Radiol). 2015 Jul;27(7):420–6.  

94.  Hormone Therapy for Prostate Cancer [Internet]. [cited 2018 May 22]. Available 
from: https://www.cancer.org/cancer/prostate-cancer/treating/hormone-
therapy.html 

95.  Pitteloud N, Dwyer AA, DeCruz S, Lee H, Boepple PA, Crowley WF, et al. Inhibition 
of Luteinizing Hormone Secretion by Testosterone in Men Requires Aromatization 
for Its Pituitary But Not Its Hypothalamic Effects: Evidence from the Tandem Study 
of Normal and Gonadotropin-Releasing Hormone-Deficient Men. J Clin Endocrinol 
Metab. 2008 Mar;93(3):784–91.  

96.  Osguthorpe DJ, Hagler AT. Mechanism of androgen receptor antagonism by 
bicalutamide in the treatment of prostate cancer. Biochemistry. 2011 May 
17;50(19):4105–13.  

97.  Mode of action of docetaxel – a basis for combination with novel anticancer 
agents. Cancer Treatment Reviews. 2003 Oct 1;29(5):407–15.  

98.  Paller CJ, Antonarakis ES. Cabazitaxel: a novel second-line treatment for 
metastatic castration-resistant prostate cancer. Drug Des Devel Ther. 2011 Mar 
10;5:117–24.  

99.  Mitoxantrone - an overview | ScienceDirect Topics [Internet]. [cited 2018 Aug 22]. 
Available from: 
https://www.sciencedirect.com/topics/neuroscience/mitoxantrone 

100.  Drug repositioning - an overview | ScienceDirect Topics [Internet]. [cited 2018 
May 22]. Available from: https://www.sciencedirect.com/topics/medicine-and-
dentistry/drug-repositioning 

101.  How long a new drug takes to go through clinical trials [Internet]. Cancer Research 
UK. 2014 [cited 2017 Nov 13]. Available from: 



  

 

218 
 

http://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/how-
clinical-trials-are-planned-and-organised/how-long-it-takes-for-a-new-drug-to-
go-through-clinical-trials 

102.  Corsello SM, Bittker JA, Liu Z, Gould J, McCarren P, Hirschman JE, et al. The Drug 
Repurposing Hub: a next-generation drug library and information resource. 
Nature Medicine. 2017 Apr 7;23(4):nm.4306.  

103.  Turanli B, Grøtli M, Boren J, Nielsen J, Uhlen M, Arga KY, et al. Drug Repositioning 
for Effective Prostate Cancer Treatment. Front Physiol [Internet]. 2018 [cited 2018 
Aug 23];9. Available from: 
https://www.frontiersin.org/articles/10.3389/fphys.2018.00500/full 

104.  Vane JR, Botting RM. The mechanism of action of aspirin. Thrombosis Research. 
2003 Jun 15;110(5–6):255–8.  

105.  Ricciotti E, FitzGerald GA. Prostaglandins and Inflammation. Arterioscler Thromb 
Vasc Biol. 2011 May;31(5):986–1000.  

106.  Ittaman SV, VanWormer JJ, Rezkalla SH. The Role of Aspirin in the Prevention of 
Cardiovascular Disease. Clin Med Res. 2014 Dec;12(3–4):147–54.  

107.  Fries JF, Ramey DR, Singh G, Morfeld D, Bloch DA, Raynauld J-P. A Reevaluation of 
Aspirin Therapy in Rheumatoid Arthritis. Arch Intern Med. 1993 Nov 
8;153(21):2465–71.  

108.  Rothwell PM, Fowkes FGR, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of 
daily aspirin on long-term risk of death due to cancer: analysis of individual patient 
data from randomised trials. The Lancet. 2011 Jan 7;377(9759):31–41.  

109.  Ai G. Novel Cellular Targets of Aspirin in Chemoprevention studies on P53, G6PD 
and c-MYC. Theses and Dissertations [Internet]. 2016 Jan 1; Available from: 
https://openprairie.sdstate.edu/etd/973 

110.  Lapi F, Levi M, Simonetti M, Cancian M, Parretti D, Cricelli I, et al. Risk of prostate 
cancer in low-dose aspirin users: A retrospective cohort study. Int J Cancer. 2016 
Jul 1;139(1):205–11.  

111.  Huang W-T, Erickson SR, Hansen RA, Wu C-H. The association between regular use 
of aspirin and the prevalence of prostate cancer. Medicine (Baltimore) [Internet]. 
2016 Jun 24 [cited 2017 Mar 17];95(25). Available from: 
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4998316/ 

112.  Jacobs EJ, Rodriguez C, Mondul AM, Connell CJ, Henley SJ, Calle EE, et al. A Large 
Cohort Study of Aspirin and Other Nonsteroidal Anti-inflammatory Drugs and 
Prostate Cancer Incidence. J Natl Cancer Inst. 2005 Jul 6;97(13):975–80.  

113.  Vidal AC, Howard LE, Moreira DM, Castro-Santamaria R, Andriole GL, Freedland 
SJ. Aspirin, NSAIDs, and Risk of Prostate Cancer: Results from the REDUCE Study. 
Clin Cancer Res. 2015 Feb 15;21(4):756–62.  

114.  Veitonmäki T, Tammela TLJ, Auvinen A, Murtola TJ. Use of aspirin, but not other 
non-steroidal anti-inflammatory drugs is associated with decreased prostate 
cancer risk at the population level. European Journal of Cancer. 2013 
Mar;49(4):938–45.  

115.  Huang T, Yan Y, Guo Z, Zhang X, Liu H, Geng J, et al. Aspirin use and the risk of 
prostate cancer: a meta-analysis of 24 epidemiologic studies. Int Urol Nephrol. 
2014 Apr 1;46(9):1715–28.  



  

 

219 
 

116.  Liu Y, Chen J-Q, Xie L, Wang J, Li T, He Y, et al. Effect of aspirin and other non-
steroidal anti-inflammatory drugs on prostate cancer incidence and mortality: a 
systematic review and meta-analysis. BMC Medicine. 2014;12:55.  

117.  Allard CB, Downer MK, Preston MA, Gaziano JM, Stampfer MJ, Mucci LA, et al. 
Regular aspirin use and the risk of lethal prostate cancer in the Physicians’ Health 
Study. JCO. 2016 Jan 10;34(2_suppl):306–306.  

118.  Schernhammer ES, Kang J-H, Chan AT, Michaud DS, Skinner HG, Giovannucci E, et 
al. A Prospective Study of Aspirin Use and the Risk of Pancreatic Cancer in Women. 
J Natl Cancer Inst. 2004 Jan 7;96(1):22–8.  

119.  Holmes MD, Chen WY, Li L, Hertzmark E, Spiegelman D, Hankinson SE. Aspirin 
Intake and Survival After Breast Cancer. JCO. 2010 Mar 20;28(9):1467–72.  

120.  Liu J-F, Jamieson GG, Wu T-C, Zhu G-J, Drew PA. A preliminary study on the 
postoperative survival of patients given aspirin after resection for squamous cell 
carcinoma of the esophagus or adenocarcinoma of the cardia. Ann Surg Oncol. 
2009 May;16(5):1397–402.  

121.  Trabert B, Ness RB, Lo-Ciganic W-H, Murphy MA, Goode EL, Poole EM, et al. 
Aspirin, Nonaspirin Nonsteroidal Anti-inflammatory Drug, and Acetaminophen 
Use and Risk of Invasive Epithelial Ovarian Cancer: A Pooled Analysis in the 
Ovarian Cancer Association Consortium. J Natl Cancer Inst [Internet]. 2014 Feb 1 
[cited 2018 Jan 8];106(2). Available from: 
https://academic.oup.com/jnci/article/106/2/djt431/2518168 

122.  Mahmud SM, Franco EL, Aprikian AG. Use of nonsteroidal anti-inflammatory 
drugs and prostate cancer risk: A meta-analysis. Int J Cancer. 2010 Oct 
1;127(7):1680–91.  

123.  ADD-ASPIRIN [Internet]. [cited 2016 Oct 11]. Available from: 
http://www.addaspirintrial.org/ 

124.  Sfanos KS, De Marzo AM. Prostate cancer and inflammation: the evidence. 
Histopathology. 2012 Jan;60(1):199–215.  

125.  Chen H, Cai W, Chu ESH, Tang J, Wong C-C, Wong SH, et al. Hepatic 
cyclooxygenase-2 overexpression induced spontaneous hepatocellular carcinoma 
formation in mice. Oncogene [Internet]. 2017 Mar 27 [cited 2017 Jun 26]; 
Available from: 
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc201773a.html 

126.  Yoshimura R, Sano H, Masuda C, Kawamura M, Tsubouchi Y, Chargui J, et al. 
Expression of cyclooxygenase-2 in prostate carcinoma. Cancer. 2000 Aug 
1;89(3):589–96.  

127.  Kashiwagi E, Shiota M, Yokomizo A, Itsumi M, Inokuchi J, Uchiumi T, et al. 
Prostaglandin receptor EP3 mediates growth inhibitory effect of aspirin through 
androgen receptor and contributes to castration resistance in prostate cancer 
cells. Endocr Relat Cancer. 2013 Jun 1;20(3):431–41.  

128.  Liu XH, Kirschenbaum A, Yao S, Lee R, Holland JF, Levine AC. INHIBITION OF 
CYCLOOXYGENASE-2 SUPPRESSES ANGIOGENESIS AND THE GROWTH OF 
PROSTATE CANCER IN VIVO. The Journal of Urology. 2000 Sep 1;164(3, Part 
1):820–5.  

129.  Din FVN, Valanciute A, Houde VP, Zibrova D, Green KA, Sakamoto K, et al. Aspirin 
Inhibits mTOR Signaling, Activates AMP-Activated Protein Kinase, and Induces 



  

 

220 
 

Autophagy in Colorectal Cancer Cells. Gastroenterology. 2012 Jun;142(7):1504-
1515.e3.  

130.  Zhao Q, Zhao Q, Wang Z, Wang Z, Wang Z, Wang Z, et al. Aspirin may inhibit 
angiogenesis and induce autophagy by inhibiting mTOR signaling pathway in 
murine hepatocarcinoma and sarcoma models. Oncology Letters. 2016 Oct 
1;12(4):2804–10.  

131.  Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, et al. The 
ancient drug salicylate directly activates AMP-activated protein kinase. Science. 
2012 May 18;336(6083):918–22.  

132.  Hernández C, Barrachina MD, Vallecillo-Hernández J, Álvarez Á, Ortiz-Masiá D, 
Cosín-Roger J, et al. Aspirin-induced gastrointestinal damage is associated with an 
inhibition of epithelial cell autophagy. J Gastroenterol. 2016 Jul 1;51(7):691–701.  

133.  Lu W, Tinsley HN, Keeton A, Qu Z, Piazza GA, Li Y. Suppression of Wnt/β-catenin 
signaling inhibits prostate cancer cell proliferation. European Journal of 
Pharmacology. 2009 Jan 5;602(1):8–14.  

134.  Yardy GW, Brewster SF. Wnt signalling and prostate cancer. Prostate Cancer 
Prostatic Dis. 2005;8(2):119–26.  

135.  Mulholland DJ, Cheng H, Reid K, Rennie PS, Nelson CC. The androgen receptor can 
promote beta-catenin nuclear translocation independently of adenomatous 
polyposis coli. J Biol Chem. 2002 May 17;277(20):17933–43.  

136.  Rakoff-Nahoum S. Why Cancer and Inflammation? Yale J Biol Med. 2006 
Dec;79(3–4):123–30.  

137.  Kim HG, Hien TT, Han EH, Hwang YP, Choi JH, Kang KW, et al. Metformin inhibits 
P-glycoprotein expression via the NF-κB pathway and CRE transcriptional activity 
through AMPK activation. British Journal of Pharmacology. 162(5):1096–108.  

138.  Din FVN, Dunlop MG, Stark LA. Evidence for colorectal cancer cell specificity of 
aspirin effects on NFκB signalling and apoptosis. British Journal of Cancer. 2004 
Jul;91(2):381–8.  

139.  Stark LA, Din FVN, Zwacka RM, Dunlop MG. Aspirin-induced activation of the NF-
κB signaling pathway: a novel mechanism for aspirin-mediated apoptosis in colon 
cancer cells. The FASEB Journal. 2001 Mar 20;15(7):1273–5.  

140.  Stark LA, Reid K, Sansom OJ, Din FV, Guichard S, Mayer I, et al. Aspirin activates 
the NF-κB signalling pathway and induces apoptosis in intestinal neoplasia in two 
in vivo models of human colorectal cancer. Carcinogenesis. 2007 May 
1;28(5):968–76.  

141.  Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat 
Rev Cancer. 2011 Feb;11(2):123–34.  

142.  Jurasz P, Alonso-Escolano D, Radomski MW. Platelet–cancer interactions: 
mechanisms and pharmacology of tumour cell-induced platelet aggregation. Br J 
Pharmacol. 2004 Dec;143(7):819–26.  

143.  Xu XR, Yousef GM, Ni H. Cancer and platelet crosstalk: opportunities and 
challenges for aspirin and other antiplatelet agents. Blood. 2018 Apr 
19;131(16):1777–89.  

144.  Guillem-Llobat P, Dovizio M, Bruno A, Ricciotti E, Cufino V, Sacco A, et al. Aspirin 
prevents colorectal cancer metastasis in mice by splitting the crosstalk between 
platelets and tumor cells. Oncotarget. 2016 May 31;7(22):32462–77.  



  

 

221 
 

145.  Alfonso L, Ai G, Spitale RC, Bhat GJ. Molecular targets of aspirin and cancer 
prevention. Br J Cancer. 2014 Jul 8;111(1):61–7.  

146.  Shi C, Zhang N, Feng Y, Cao J, Chen X, Liu B. Aspirin Inhibits IKK-β-mediated 
Prostate Cancer Cell Invasion by Targeting Matrix Metalloproteinase-9 and 
Urokinase-Type Plasminogen Activator. CPB. 2017 Mar 8;41(4):1313–24.  

147.  Lloyd FP, Slivova V, Valachovicova T, Sliva D. Aspirin inhibits highly invasive 
prostate cancer cells. International Journal of Oncology. 2003 Nov 1;23(5):1277–
83.  

148.  Khan P, Manna A, Saha S, Mohanty S, Mukherjee S, Mazumdar M, et al. Aspirin 
inhibits epithelial-to-mesenchymal transition and migration of oncogenic K-ras-
expressing non-small cell lung carcinoma cells by down-regulating E-cadherin 
repressor Slug. BMC Cancer. 2016;16(1):39.  

149.  Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic 
web. Nat Rev Cancer. 2011 Nov;11(11):761–74.  

150.  Kasznicki J, Sliwinska A, Drzewoski J. Metformin in cancer prevention and therapy. 
Ann Transl Med [Internet]. 2014 Jun [cited 2015 May 26];2(6). Available from: 
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4200668/ 

151.  Pryor R, Cabreiro F. Repurposing metformin: an old drug with new tricks in its 
binding pockets. Biochem J. 2015 Nov 1;471(Pt 3):307–22.  

152.  Pernicova I, Korbonits M. Metformin—mode of action and clinical implications for 
diabetes and cancer. Nat Rev Endocrinol. 2014 Mar;10(3):143–56.  

153.  Chae YK, Arya A, Malecek M-K, Shin DS, Carneiro B, Chandra S, et al. Repurposing 
metformin for cancer treatment: current clinical studies. Oncotarget [Internet]. 
2016 Jun 28 [cited 2016 Oct 7]; Available from: 
http://www.oncotarget.com/abstract/8194 

154.  Noto H, Goto A, Tsujimoto T, Noda M. Cancer Risk in Diabetic Patients Treated 
with Metformin: A Systematic Review and Meta-analysis. PLoS ONE. 2012 Mar 
20;7(3):e33411.  

155.  Yu H, Yin L, Jiang X, Sun X, Wu J, Tian H, et al. Effect of Metformin on Cancer Risk 
and Treatment Outcome of Prostate Cancer: A Meta-Analysis of Epidemiological 
Observational Studies. PLOS ONE. 2014 Dec 29;9(12):e116327.  

156.  Kowall B, Stang A, Rathmann W, Kostev K. No reduced risk of overall, colorectal, 
lung, breast, and prostate cancer with metformin therapy in diabetic patients: 
database analyses from Germany and the UK. Pharmacoepidemiol Drug Saf. 2015 
Aug 1;24(8):865–74.  

157.  Raval AD, Thakker D, Vyas A, Salkini M, Madhavan S, Sambamoorthi U. Impact of 
metformin on clinical outcomes among men with prostate cancer: a systematic 
review and meta-analysis. Prostate Cancer Prostatic Dis. 2015 Jun;18(2):110–21.  

158.  Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et 
al. Diabetes and Cancer. Diabetes Care. 2010 Jul;33(7):1674–85.  

159.  Suissa S, Azoulay L. Metformin and the Risk of Cancer. Diabetes Care. 2012 
Dec;35(12):2665–73.  

160.  Aldea M, Craeiun L, Popescu T, Nenu I, Crivii C. Confounding Factors of the 
Diabetes - Metformin - Cancer Relationship. Romanian Journal of Diabetes 
Nutrition and Metabolic Diseases. 2014 Sep 29;21(3):239–46.  



  

 

222 
 

161.  Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and 
molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012 
Mar;122(6):253–70.  

162.  Mihaylova MM, Shaw RJ. The AMP-activated protein kinase (AMPK) signaling 
pathway coordinates cell growth, autophagy, & metabolism. Nat Cell Biol. 2011 
Sep 2;13(9):1016–23.  

163.  Zhou J, Huang W, Tao R, Ibaragi S, Lan F, Ido Y, et al. Inactivation of AMPK alters 
gene expression and promotes growth of prostate cancer cells. Oncogene. 2009 
Apr 6;28(18):1993–2002.  

164.  Sahra IB, Laurent K, Loubat A, Giorgetti-Peraldi S, Colosetti P, Auberger P, et al. 
The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo 
through a decrease of cyclin D1 level. Oncogene. 2008 Jan 21;27(25):3576–86.  

165.  Denduluri SK, Idowu O, Wang Z, Liao Z, Yan Z, Mohammed MK, et al. Insulin-like 
growth factor (IGF) signaling in tumorigenesis and the development of cancer 
drug resistance. Genes & Diseases. 2015 Mar;2(1):13–25.  

166.  Kato H, Sekine Y, Furuya Y, Miyazawa Y, Koike H, Suzuki K. Metformin inhibits the 
proliferation of human prostate cancer PC-3 cells via the downregulation of 
insulin-like growth factor 1 receptor. Biochemical and Biophysical Research 
Communications. 2015 May 22;461(1):115–21.  

167.  Rozengurt E, Sinnett-Smith J, Kisfalvi K. Crosstalk between Insulin/Insulin-like 
Growth Factor-1 Receptors and G Protein-Coupled Receptor Signaling Systems: A 
Novel Target for the Antidiabetic Drug Metformin in Pancreatic Cancer. Clin 
Cancer Res. 2010 May 1;16(9):2505–11.  

168.  Rozengurt E. Mechanistic target of rapamycin (mTOR): a point of convergence in 
the action of insulin/IGF-1 and G protein-coupled receptor agonists in pancreatic 
cancer cells. Front Physiol [Internet]. 2014 Sep 23;5. Available from: 
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4171984/ 

169.  Kisfalvi K, Eibl G, Sinnett-Smith J, Rozengurt E. Metformin Disrupts Crosstalk 
Between G protein-Coupled Receptor and Insulin Receptor Signaling Systems and 
Inhibits Pancreatic Cancer Growth. Cancer Res. 2009 Aug 15;69(16):6539–45.  

170.  Wang Y, Liu G, Tong D, Parmar H, Hasenmayer D, Yuan W, et al. Metformin 
represses androgen-dependent and androgen-independent prostate cancers by 
targeting androgen receptor. Prostate. 2015 Aug 1;75(11):1187–96.  

171.  Demir U, Koehler A, Schneider R, Schweiger S, Klocker H. Metformin anti-tumor 
effect via disruption of the MID1 translational regulator complex and AR 
downregulation in prostate cancer cells. BMC Cancer. 2014;14:52.  

172.  Colquhoun AJ, Venier NA, Vandersluis AD, Besla R, Sugar LM, Kiss A, et al. 
Metformin enhances the antiproliferative and apoptotic effect of bicalutamide in 
prostate cancer. Prostate Cancer Prostatic Dis. 2012 Dec;15(4):346–52.  

173.  Deng X-S, Wang S, Deng A, Liu B, Edgerton SM, Lind SE, et al. Metformin targets 
Stat3 to inhibit cell growth and induce apoptosis in triple-negative breast cancers. 
Cell Cycle. 2012 Jan 15;11(2):367–76.  

174.  Feng Y, Ke C, Tang Q, Dong H, Zheng X, Lin W, et al. Metformin promotes 
autophagy and apoptosis in esophageal squamous cell carcinoma by 
downregulating Stat3 signaling. Cell Death Dis. 2014 Feb 27;5(2):e1088.  



  

 

223 
 

175.  Zhao Z, Cheng X, Wang Y, Han R, Li L, Xiang T, et al. Metformin Inhibits the IL-6-
Induced Epithelial-Mesenchymal Transition and Lung Adenocarcinoma Growth 
and Metastasis. PLOS ONE. 2014 Apr 30;9(4):e95884.  

176.  Tan X-L, Bhattacharyya KK, Dutta SK, Bamlet WR, Rabe KG, Wang E, et al. 
Metformin suppresses pancreatic tumor growth with inhibition of NFκB/STAT3 
inflammatory signaling. Pancreas. 2015 May;44(4):636–47.  

177.  Q L, W Y, D T, G L, W L, D Z, et al. Metformin represses bladder cancer progression 
by inhibiting stem cell repopulation via COX2/PGE2/STAT3 axis., Metformin 
represses bladder cancer progression by inhibiting stem cell repopulation via 
COX2/PGE2/STAT3 axis. Oncotarget. 2016 May 10;7, 7(19, 19):28235, 28235–46.  

178.  Cerezo M, Tichet M, Abbe P, Ohanna M, Lehraiki A, Rouaud F, et al. Metformin 
Blocks Melanoma Invasion and Metastasis Development in AMPK/p53-
Dependent Manner. Mol Cancer Ther. 2013 Aug 1;12(8):1605–15.  

179.  Dirat B, Ader I, Golzio M, Massa F, Mettouchi A, Laurent K, et al. Inhibition of the 
GTPase Rac1 Mediates the Antimigratory Effects of Metformin in Prostate Cancer 
Cells. Mol Cancer Ther. 2015 Feb 1;14(2):586–96.  

180.  Ridley AJ. Rho GTPases and cell migration. Journal of Cell Science. 2001 Aug 
1;114(15):2713–22.  

181.  Pollak M. Potential applications for biguanides in oncology. J Clin Invest. 2013 Sep 
3;123(9):3693–700.  

182.  He L, Wondisford FE. Metformin Action: Concentrations Matter. Cell Metabolism. 
2015 Feb 3;21(2):159–62.  

183.  Andrzejewski S, Gravel S-P, Pollak M, St-Pierre J. Metformin directly acts on 
mitochondria to alter cellular bioenergetics. Cancer Metab. 2014 Aug 28;2:12.  

184.  Gash KJ, Chambers AC, Cotton DE, Williams AC, Thomas MG. Potentiating the 
effects of radiotherapy in rectal cancer: the role of aspirin, statins and metformin 
as adjuncts to therapy. Br J Cancer. 2017 Jul 11;117(2):210–9.  

185.  Salicylic acid - an overview | ScienceDirect Topics [Internet]. [cited 2018 Aug 28]. 
Available from: https://www.sciencedirect.com/topics/neuroscience/salicylic-
acid 

186.  W Y, T W, E Z, Y L, Cs Y, Q X, et al. Transcriptomic analysis of pancreatic cancer 
cells in response to metformin and aspirin: an implication of synergy., 
Transcriptomic analysis of pancreatic cancer cells in response to metformin and 
aspirin: an implication of synergy. Sci Rep. 2015;5, 5:13390–13390.  

187.  Yue W, Zheng X, Lin Y, Yang CS, Xu Q, Carpizo D, et al. Metformin combined with 
aspirin significantly inhibit pancreatic cancer cell growth in vitro and in vivo by 
suppressing anti-apoptotic proteins Mcl-1 and Bcl-2. Oncotarget. 2015 May 
12;6(25):21208–24.  

188.  O’Brien AJ, Villani LA, Broadfield LA, Houde VP, Galic S, Blandino G, et al. Salicylate 
activates AMPK and synergizes with metformin to reduce the survival of prostate 
and lung cancer cells ex vivo through inhibition of de novo lipogenesis. 
Biochemical Journal. 2015 Jul 15;469(2):177–87.  

189.  Sharma M, Nazareth I, Petersen I. Trends in incidence, prevalence and prescribing 
in type 2 diabetes mellitus between 2000 and 2013 in primary care: a 
retrospective cohort study. BMJ Open. 2016 Jan 1;6(1):e010210.  

190.  Chang JC. Cancer stem cells: Role in tumor growth, recurrence, metastasis, and 
treatment resistance. Medicine. 2016 Sep;95(1S):S20.  



  

 

224 
 

191.  Saha S, Mukherjee S, Khan P, Kajal K, Mazumdar M, Manna A, et al. Aspirin 
Suppresses the Acquisition of Chemoresistance in Breast Cancer by Disrupting an 
NFκB–IL6 Signaling Axis Responsible for the Generation of Cancer Stem Cells. 
Cancer Res. 2016 Apr 1;76(7):2000–12.  

192.  Honjo S, Honjo S, Ajani JA, Ajani JA, Scott AW, Scott AW, et al. Metformin 
sensitizes chemotherapy by targeting cancer stem cells and the mTOR pathway in 
esophageal cancer. International Journal of Oncology. 2014 Aug 1;45(2):567–74.  

193.  Iliopoulos D, Hirsch HA, Struhl K. Metformin Decreases the Dose of Chemotherapy 
for Prolonging Tumor Remission in Mouse Xenografts Involving Multiple Cancer 
Cell Types. Cancer Res. 2011 May 1;71(9):3196–201.  

194.  Zhang H-H, Guo X-L. Combinational strategies of metformin and chemotherapy in 
cancers. Cancer Chemother Pharmacol. 2016 Jul 1;78(1):13–26.  

195.  Jacobs CD, Chun SG, Yan J, Xie X-J, Pistenmaa DA, Hannan R, et al. Aspirin improves 
outcome in high risk prostate cancer patients treated with radiation therapy. 
Cancer Biol Ther. 2014 Jun 1;15(6):699–706.  

196.  Zannella VE, Pra AD, Muaddi H, McKee TD, Stapleton S, Sykes J, et al. 
Reprogramming Metabolism with Metformin Improves Tumor Oxygenation and 
Radiotherapy Response. Clin Cancer Res. 2013 Dec 15;19(24):6741–50.  

197.  Choe KS, Cowan JE, Chan JM, Carroll PR, D’Amico AV, Liauw SL. Aspirin Use and 
the Risk of Prostate Cancer Mortality in Men Treated With Prostatectomy or 
Radiotherapy. J Clin Oncol. 2012 Oct 1;30(28):3540–4.  

198.  Pucci B, Kasten M, Giordano A. Cell Cycle and Apoptosis. Neoplasia. 2000 
Jul;2(4):291–9.  

199.  Cooper GM. Regulators of Cell Cycle Progression. The Cell: A Molecular Approach 
2nd edition [Internet]. 2000 [cited 2018 Jul 23]; Available from: 
https://www.ncbi.nlm.nih.gov/books/NBK9962/ 

200.  Wang J, Wang G, Ma H, Khan MF. Enhanced expression of cyclins and cyclin-
dependent kinases in aniline-induced cell proliferation in rat spleen. Toxicol Appl 
Pharmacol. 2011 Jan 15;250(2):213–20.  

201.  Bantis A, Giannopoulos A, Gonidi M, Liossi A, Aggelonidou E, Petrakakou E, et al. 
Expression of p120, Ki-67 and PCNA as proliferation biomarkers in imprint smears 
of prostate carcinoma and their prognostic value. Cytopathology. 2004 Feb 
1;15(1):25–31.  

202.  Lindström M, Ling Wallin K. Prognostic role of proliferating cell nuclear antigen 
(PCNA) in cancer and other diseases. 2005. 181 p.  

203.  Maga G, Hubscher U. Proliferating cell nuclear antigen (PCNA): a dancer with 
many partners. J Cell Sci. 2003 Aug 1;116(Pt 15):3051–60.  

204.  Liu J, Jiao N, Hong H, Luo T, Cai H. Proliferating cell nuclear antigen (PCNA) as a 
marker of cell proliferation in the marine dinoflagellate <Emphasis 
Type="BoldItalic">Prorocentrum donghaiense</Emphasis> Lu and the green alga 
<Emphasis Type="BoldItalic">Dunaliella salina</Emphasis> Teodoresco. J Appl 
Phycol. 2005 Jun 1;17(4):323–30.  

205.  Stacey DW. Cyclin D1 serves as a cell cycle regulatory switch in actively 
proliferating cells. Current Opinion in Cell Biology. 2003 Apr 1;15(2):158–63.  

206.  Yang K, Hitomi M, Stacey DW. Variations in cyclin D1 levels through the cell cycle 
determine the proliferative fate of a cell. Cell Div. 2006 Dec 18;1:32.  



  

 

225 
 

207.  Pereira RA, Ravinal RC, Costa RS, Lima MS, Tucci S, Muglia VF, et al. Cyclin D1 
expression in prostate carcinoma. Braz J Med Biol Res. 2014 May 9;47(6):515–21.  

208.  Gu M, Nishihara R, Chen Y, Li W, Shi Y, Masugi Y, et al. Aspirin exerts high anti-
cancer activity in PIK3CA-mutant colon cancer cells. Oncotarget. 2017 Sep 
18;8(50):87379–89.  

209.  Spampatti M, Vlotides G, Spöttl G, Maurer J, Göke B, Auernhammer CJ. Aspirin 
inhibits cell viability and mTOR downstream signaling in gastroenteropancreatic 
and bronchopulmonary neuroendocrine tumor cells. World J Gastroenterol. 2014 
Aug 7;20(29):10038–49.  

210.  Alao JP. The regulation of cyclin D1 degradation: roles in cancer development and 
the potential for therapeutic invention. Mol Cancer. 2007 Apr 2;6:24.  

211.  Eischen CM. Genome Stability Requires p53. Cold Spring Harb Perspect Med 
[Internet]. 2016 Jun [cited 2018 Sep 25];6(6). Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888814/ 

212.  Reed SM, Quelle DE. p53 Acetylation: Regulation and Consequences. Cancers 
(Basel). 2014 Dec 23;7(1):30–69.  

213.  Ichwan SJA, Bakhtiar MT, Ikeda KO and M-A. Therapeutic Targeting of p53-
Mediated Apoptosis Pathway in Head and Neck Squamous Cell Carcinomas: 
Current Progress and Challenges. Tumor Suppressor Genes [Internet]. 2012 [cited 
2018 Sep 25]; Available from: https://www.intechopen.com/books/tumor-
suppressor-genes/therapeutic-targeting-of-p53-mediated-apoptosis-pathway-
in-head-and-neck-squamous-cell-carcinomas-cu 

214.  Zhuang Y, Miskimins WK. Metformin Induces Both Caspase-Dependent and 
Poly(ADP-ribose) Polymerase-Dependent Cell Death in Breast Cancer Cells. Mol 
Cancer Res. 2011 May 1;9(5):603–15.  

215.  Behl C, Ziegler C. Cell Aging: Molecular Mechanisms and Implications for Disease 
[Internet]. Berlin Heidelberg: Springer-Verlag; 2014 [cited 2018 Apr 20]. 
(SpringerBriefs in Molecular Medicine). Available from: 
//www.springer.com/gb/book/9783642451782 

216.  Gao M, Kong Q, Hua H, Yin Y, Wang J, Luo T, et al. AMPK-mediated up-regulation 
of mTORC2 and MCL-1 compromises the anti-cancer effects of aspirin. 
Oncotarget. 2016 Feb 23;7(13):16349–61.  

217.  Bokhoven A van, Varella‐Garcia M, Korch C, Johannes WU, Smith EE, Miller HL, et 
al. Molecular characterization of human prostate carcinoma cell lines. The 
Prostate. 2003 Nov 1;57(3):205–25.  

218.  Chappell WH, Lehmann BD, Terrian DM, Abrams SL, Steelman LS, McCubrey JA. 
p53 expression controls prostate cancer sensitivity to chemotherapy and the 
MDM2 inhibitor Nutlin-3. Cell Cycle. 2012 Dec 15;11(24):4579–88.  

219.  Kastenhuber ER, Lowe SW. Putting p53 in Context. Cell. 2017 Sep;170(6):1062–
78.  

220.  Kim MP, Lozano G. Mutant p53 partners in crime. Cell Death and Differentiation. 
:8.  

221.  Giaccia AJ, Kastan MB. The complexity of p53 modulation: emerging patterns 
from divergent signals. Genes Dev. 1998 Oct 1;12(19):2973–83.  

222.  Moll UM, Petrenko O. The MDM2-p53 Interaction. Mol Cancer Res. 2003 Dec 
1;1(14):1001–8.  



  

 

226 
 

223.  Ho C-C, Yang XW, Lee T-L, Liao P-H, Yang S-H, Tsai C-H, et al. Activation of p53 
signalling in acetylsalicylic acid-induced apoptosis in OC2 human oral cancer cells. 
Eur J Clin Invest. 2003 Oct;33(10):875–82.  

224.  Brighenti E, Giannone FA, Fornari F, Onofrillo C, Govoni M, Montanaro L, et al. 
Therapeutic dosages of aspirin counteract the IL-6 induced pro-tumorigenic 
effects by slowing down the ribosome biogenesis rate. Oncotarget. 2016 Aug 
20;7(39):63226–41.  

225.  Ai G, Dachineni R, Kumar DR, Marimuthu S, Alfonso LF, Bhat GJ. Aspirin acetylates 
wild type and mutant p53 in colon cancer cells: identification of aspirin acetylated 
sites on recombinant p53. Tumor Biol. 2016 May 1;37(5):6007–16.  

226.  Leslie NR, Downes CP. PTEN function: how normal cells control it and tumour cells 
lose it. Biochem J. 2004 Aug 15;382(Pt 1):1–11.  

227.  Jiang X, Chen S, Asara JM, Balk SP. Phosphoinositide 3-Kinase Pathway Activation 
in Phosphate and Tensin Homolog (PTEN)-deficient Prostate Cancer Cells Is 
Independent of Receptor Tyrosine Kinases and Mediated by the p110β and p110δ 
Catalytic Subunits. J Biol Chem. 2010 May 14;285(20):14980–9.  

228.  Maxwell PJ, Coulter J, Walker SM, McKechnie M, Neisen J, McCabe N, et al. 
Potentiation of Inflammatory CXCL8 Signalling Sustains Cell Survival in PTEN-
deficient Prostate Carcinoma. Eur Urol. 2013 Aug;64(2):177–88.  

229.  Sharrard RM, Maitland NJ. Regulation of protein kinase B activity by PTEN and 
SHIP2 in human prostate-derived cell lines. Cell Signal. 2007 Jan;19(1):129–38.  

230.  Rudelius M, Pittaluga S, Nishizuka S, Pham TH-T, Fend F, Jaffe ES, et al. 
Constitutive activation of Akt contributes to the pathogenesis and survival of 
mantle cell lymphoma. Blood. 2006 Sep 1;108(5):1668–76.  

231.  Rubashkin MG, Ou G, Weaver VM. Deconstructing Signaling in Three Dimensions. 
Biochemistry. 2014 Apr 8;53(13):2078–90.  

232.  Haycock JW. 3D Cell Culture: A Review of Current Approaches and Techniques. In: 
3D Cell Culture [Internet]. Humana Press; 2011 [cited 2017 Aug 22]. p. 1–15. 
(Methods in Molecular Biology). Available from: 
https://link.springer.com/protocol/10.1007/978-1-60761-984-0_1 

233.  Fang Y, Eglen RM. Three-Dimensional Cell Cultures in Drug Discovery and 
Development. SLAS Discov. 2017 Jun;22(5):456–72.  

234.  Mueller-Klieser W. Method for the determination of oxygen consumption rates 
and diffusion coefficients in multicellular spheroids. Biophys J. 1984 
Sep;46(3):343–8.  

235.  Zanoni M, Piccinini F, Arienti C, Zamagni A, Santi S, Polico R, et al. 3D tumor 
spheroid models for in vitro therapeutic screening: a systematic approach to 
enhance the biological relevance of data obtained. Scientific Reports. 2016 Jan 
11;6:19103.  

236.  Antoni D, Burckel H, Josset E, Noel G. Three-Dimensional Cell Culture: A 
Breakthrough in Vivo. Int J Mol Sci. 2015 Mar 11;16(3):5517–27.  

237.  Windus LCE, Kiss DL, Glover T, Avery VM. In vivo biomarker expression patterns 
are preserved in 3D cultures of Prostate Cancer. Experimental Cell Research. 2012 
Nov 15;318(19):2507–19.  

238.  Langhans SA. Three-Dimensional in Vitro Cell Culture Models in Drug Discovery 
and Drug Repositioning. Front Pharmacol [Internet]. 2018 Jan 23 [cited 2018 Aug 
23];9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5787088/ 



  

 

227 
 

239.  3D-3-culture: A tool to unveil macrophage plasticity in the tumour 
microenvironment. Biomaterials. 2018 May 1;163:185–97.  

240.  Ravi M, Paramesh V, Kaviya S r., Anuradha E, Solomon FDP. 3D Cell Culture 
Systems: Advantages and Applications. J Cell Physiol. 2015 Jan 1;230(1):16–26.  

241.  Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-Dimensional Cell Culture 
Systems and Their Applications in Drug Discovery and Cell-Based Biosensors. 
Assay Drug Dev Technol. 2014 May 1;12(4):207–18.  

242.  Chambers KF, Mosaad EMO, Russell PJ, Clements JA, Doran MR. 3D Cultures of 
Prostate Cancer Cells Cultured in a Novel High-Throughput Culture Platform Are 
More Resistant to Chemotherapeutics Compared to Cells Cultured in Monolayer. 
PLoS One [Internet]. 2014 Nov 7;9(11). Available from: 
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224379/ 

243.  Zhang D, Park D, Zhong Y, Lu Y, Rycaj K, Gong S, et al. Stem cell and neurogenic 
gene-expression profiles link prostate basal cells to aggressive prostate cancer. 
Nature Communications. 2016 Feb 29;7:10798.  

244.  Däster S, Amatruda N, Calabrese D, Ivanek R, Turrini E, Droeser RA, et al. Induction 
of hypoxia and necrosis in multicellular tumor spheroids is associated with 
resistance to chemotherapy treatment. Oncotarget. 2016 Dec 10;8(1):1725–36.  

245.  Breslin S, O’Driscoll L. The relevance of using 3D cell cultures, in addition to 2D 
monolayer cultures, when evaluating breast cancer drug sensitivity and 
resistance. Oncotarget. 2016 Jun 10;7(29):45745–56.  

246.  Björk JK, Åkerfelt M, Joutsen J, Puustinen MC, Cheng F, Sistonen L, et al. Heat-
shock factor 2 is a suppressor of prostate cancer invasion. Oncogene. 2016 Apr 
7;35(14):1770–84.  

247.  Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S. Opportunities and 
Challenges for use of Tumor Spheroids as Models to Test Drug Delivery and 
Efficacy. J Control Release. 2012 Dec 10;164(2):192–204.  

248.  Gomes A, Guillaume L, Grimes DR, Fehrenbach J, Lobjois V, Ducommun B. Oxygen 
Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids 
Grown in Physioxic Culture Condition. Ramchandran R, editor. PLOS ONE. 2016 
Aug 30;11(8):e0161239.  

249.  Flahavan EM, Bennett K, Sharp L, Barron TI. A cohort study investigating aspirin 
use and survival in men with prostate cancer. Ann Oncol. 2014 Jan 1;25(1):154–9.  

250.  Li P, Wu H, Zhang H, Shi Y, Xu J, Ye Y, et al. Aspirin use after diagnosis but not 
prediagnosis improves established colorectal cancer survival: a meta-analysis. 
Gut. 2015 Sep;64(9):1419–25.  

251.  Voissiere A, Jouberton E, Maubert E, Degoul F, Peyrode C, Chezal J-M, et al. 
Development and characterization of a human three-dimensional 
chondrosarcoma culture for in vitro drug testing. PLoS One [Internet]. 2017 Jul 13 
[cited 2018 Mar 28];12(7). Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509331/ 

252.  Gong J, Kelekar G, Shen J, Shen J, Kaur S, Mita M. The expanding role of metformin 
in cancer: an update on antitumor mechanisms and clinical development. Targ 
Oncol. 2016 Feb 11;11(4):447–67.  

253.  Coyle C, Cafferty FH, Vale C, Langley RE. Metformin as an adjuvant treatment for 
cancer: a systematic review and meta-analysis. Ann Oncol. 2016 Sep 28;mdw410.  



  

 

228 
 

254.  Nath S, Devi GR. Three-Dimensional Culture Systems in Cancer Research: Focus 
on Tumor Spheroid Model. Pharmacol Ther. 2016 Jul;163:94–108.  

255.  Laurent J, Frongia C, Cazales M, Mondesert O, Ducommun B, Lobjois V. 
Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D. BMC 
Cancer. 2013;13:73.  

256.  Symptoms of advanced prostate cancer - Understanding - Macmillan Cancer 
Support [Internet]. [cited 2018 May 22]. Available from: 
https://www.macmillan.org.uk/information-and-support/prostate-
cancer/advanced-prostate-cancer/understanding-cancer/signs-and-symptoms-
advanced-prostate-cancer.html 

257.  Advanced prostate cancer [Internet]. Prostate Cancer UK. [cited 2017 Nov 27]. 
Available from: https://prostatecanceruk.org/prostate-information/just-
diagnosed/advanced-prostate-cancer 

258.  Paiva AE, Lousado L, Almeida VM, Andreotti JP, Santos GSP, Azevedo PO, et al. 
Endothelial Cells as Precursors for Osteoblasts in the Metastatic Prostate Cancer 
Bone. Neoplasia. 2017 Nov 1;19(11):928–31.  

259.  Metastatic Prostate Cancer and the Bone: Significance and Therapeutic Options. 
European Urology. 2015 Nov 1;68(5):850–8.  

260.  Kremeyer B, Latimer C, Foster C, Cooper CS, Brewer DS, Wedge DC, et al. The 
evolutionary history of lethal metastatic prostate cancer. Nature. 2015 Apr 
1;520(7547):353.  

261.  Jin J-K, Dayyani F, Gallick GE. Steps in Prostate Cancer Progression that lead to 
Bone Metastasis. Int J Cancer. 2011 Jun 1;128(11):2545–61.  

262.  Martin TA, Ye L, Sanders AJ, Lane J, Jiang WG. Cancer Invasion and Metastasis: 
Molecular and Cellular Perspective [Internet]. Landes Bioscience; 2013 [cited 
2017 Nov 20]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK164700/ 

263.  Baulida Josep. Epithelial‐to‐mesenchymal transition transcription factors in 
cancer‐associated fibroblasts. Molecular Oncology. 2017 Jun 13;11(7):847–59.  

264.  van Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: Cell invasion and 
endothelial transmigration. Mutat Res. 2011 Jul;728(1–2):23–34.  

265.  Mehner C, Hockla A, Miller E, Ran S, Radisky DC, Radisky ES. Tumor cell-produced 
matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis 
of basal-like triple negative breast cancer. Oncotarget. 2014 May 1;5(9):2736–49.  

266.  Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and 
therapeutic opportunities. Nat Rev Cancer. 2010 Jan;10(1):9–22.  

267.  Reunanen N, Kähäri V. Matrix Metalloproteinases in Cancer Cell Invasion 
[Internet]. Landes Bioscience; 2013 [cited 2018 Aug 28]. Available from: 
https://www.ncbi.nlm.nih.gov/books/NBK6598/ 

268.  Bianconi D, Unseld M, Prager GW. Integrins in the Spotlight of Cancer. Int J Mol 
Sci [Internet]. 2016 Dec 6 [cited 2018 Aug 28];17(12). Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5187837/ 

269.  Mikesh LM, Kumar M, Erdag G, Hogan KT, Molhoek KR, Mayo MW, et al. 
Evaluation of Molecular Markers of Mesenchymal Phenotype in Melanoma. 
Melanoma Res. 2010 Dec;20(6):485–95.  

270.  Lin S, Wang J, Ye Z, Ip NY, Lin S-C. CDK5 activator p35 downregulates E-cadherin 
precursor independently of CDK5. FEBS Lett. 2008 Apr 9;582(8):1197–202.  



  

 

229 
 

271.  Simões-Correia J, Figueiredo J, Lopes R, Stricher F, Oliveira C, Serrano L, et al. E-
Cadherin Destabilization Accounts for the Pathogenicity of Missense Mutations in 
Hereditary Diffuse Gastric Cancer. PLOS ONE. 2012 Mar 21;7(3):e33783.  

272.  Kowalik A, Kowalewska M, Góźdź S. Current approaches for avoiding the 
limitations of circulating tumor cells detection methods—implications for 
diagnosis and treatment of patients with solid tumors. Translational Research. 
2017 Jul 1;185:58-84.e15.  

273.  Strilic B, Yang L, Albarrán-Juárez J, Wachsmuth L, Han K, Müller UC, et al. Tumour-
cell-induced endothelial cell necroptosis via death receptor 6 promotes 
metastasis. Nature. 2016 Aug;536(7615):215–8.  

274.  Trepat X, Chen Z, Jacobson K. Cell Migration. Compr Physiol. 2012 Oct;2(4):2369–
92.  

275.  Lintz M, Muñoz A, Reinhart-King CA. The Mechanics of Single Cell and Collective 
Migration of Tumor Cells. J Biomech Eng. 2017 Feb;139(2):0210051–9.  

276.  Alexander S, Friedl P. Cancer invasion and resistance: interconnected processes 
of disease progression and therapy failure. Trends in Molecular Medicine. 2012 
Jan 1;18(1):13–26.  

277.  Krakhmal NV, Zavyalova MV, Denisov EV, Vtorushin SV, Perelmuter VM. Cancer 
Invasion: Patterns and Mechanisms. Acta Naturae. 2015;7(2):17–28.  

278.  Choe KS, Cowan JE, Chan JM, Carroll PR, D’Amico AV, Liauw SL. Aspirin Use and 
the Risk of Prostate Cancer Mortality in Men Treated With Prostatectomy or 
Radiotherapy. JCO. 2012 Oct 1;30(28):3540–4.  

279.  Spratt DE, Zhang C, Zumsteg ZS, Pei X, Zhang Z, Zelefsky MJ. Metformin and 
Prostate Cancer: Reduced Development of Castration-resistant Disease and 
Prostate Cancer Mortality. European Urology. 2013 Apr;63(4):709–16.  

280.  Sadeghi N, Abbruzzese JL, Yeung S-CJ, Hassan M, Li D. Metformin Use Is Associated 
with Better Survival of Diabetic Patients with Pancreatic Cancer. Clinical Cancer 
Research. 2012 May 15;18(10):2905–12.  

281.  Putzke AP, Ventura AP, Bailey AM, Akture C, Opoku-Ansah J, Çeliktaş M, et al. 
Metastatic Progression of Prostate Cancer and E-Cadherin. Am J Pathol. 2011 
Jul;179(1):400–10.  

282.  Shih W, Yamada S. N-cadherin-mediated cell–cell adhesion promotes cell 
migration in a three-dimensional matrix. J Cell Sci. 2012 Aug 1;125(15):3661–70.  

283.  Sacco F, Calderone A, Castagnoli L, Cesareni G. The cell-autonomous mechanisms 
underlying the activity of metformin as an anticancer drug. Br J Cancer. 2016 Dec 
6;115(12):1451–6.  

284.  Geng F, Zhu W, Leber B, Andrews DW. Multiple post-translational modifications 
of E-cadherin during ER stress and apoptosis. Cancer Res. 2006 Apr 15;66(8 
Supplement):44–44.  

285.  Trinh SX, Nguyen HTB, Saimuang K, Prachayasittikul V, Chan On W. Metformin 
Inhibits Migration and Invasion of Cholangiocarcinoma Cells. Asian Pac J Cancer 
Prev. 2017 01;18(2):473–7.  

286.  Ge R, Wang Z, Wu S, Zhuo Y, Otsetov AG, Cai C, et al. Metformin represses cancer 
cells via alternate pathways in N-cadherin expressing vs. N-cadherin deficient 
cells. Oncotarget. 2015 Aug 24;6(30):28973–87.  



  

 

230 
 

287.  Tong D, Liu Q, Liu G, Xu J, Lan W, Jiang Y, et al. Metformin inhibits castration-
induced EMT in prostate cancer by repressing COX2/PGE2/STAT3 axis. Cancer 
Lett. 2017 28;389:23–32.  

288.  Sun XJ, Zhang P, Li HH, Jiang ZW, Jiang CC, Liu H. Cisplatin combined with 
metformin inhibits migration and invasion of human nasopharyngeal carcinoma 
cells by regulating E-cadherin and MMP-9. Asian Pac J Cancer Prev. 
2014;15(9):4019–23.  

289.  Khan P, Manna A, Saha S, Mohanty S, Mukherjee S, Mazumdar M, et al. Aspirin 
inhibits epithelial-to-mesenchymal transition and migration of oncogenic K-ras-
expressing non-small cell lung carcinoma cells by down-regulating E-cadherin 
repressor Slug. BMC Cancer. 2016 Jan 26;16:39.  

290.  Hsieh S-C, Tsai J-P, Yang S-F, Tang M-J, Hsieh Y-H. Metformin inhibits the invasion 
of human hepatocellular carcinoma cells and enhances the chemosensitivity to 
sorafenib through a downregulation of the ERK/JNK-mediated NF-κB-dependent 
pathway that reduces uPA and MMP-9 expression. Amino Acids. 2014 Dec 
1;46(12):2809–22.  

291.  NALLA AK, GORANTLA B, GONDI CS, LAKKA SS, RAO JS. Targeting MMP-9, uPAR 
and Cathepsin B Inhibits Invasion and Migration and Activates Apoptosis in 
Prostate Cancer Cells. Cancer Gene Ther. 2010 Sep;17(9):599–613.  

292.  Medici D, Hay ED, Olsen BR. Snail and Slug Promote Epithelial-Mesenchymal 
Transition through β-Catenin–T-Cell Factor-4-dependent Expression of 
Transforming Growth Factor-β3. Mol Biol Cell. 2008 Nov;19(11):4875–87.  

293.  Oliveira-Barros EG, Nicolau-Neto P, Da Costa NM, Pinto LFR, Palumbo A, Nasciutti 
LE. Prostate cancer molecular profiling: the Achilles heel for the implementation 
of precision medicine. Cell Biol Int. 2017 Nov;41(11):1239–45.  

294.  Cooperberg MR, Erho N, Chan JM, Feng FY, Fishbane N, Zhao SG, et al. The Diverse 
Genomic Landscape of Clinically Low-risk Prostate Cancer. Eur Urol. 2018 May 28;  

295.  Cyll K, Ersvær E, Vlatkovic L, Pradhan M, Kildal W, Avranden Kjær M, et al. Tumour 
heterogeneity poses a significant challenge to cancer biomarker research. Br J 
Cancer. 2017 Jul 25;117(3):367–75.  

296.  Survival Rates for Prostate Cancer [Internet]. [cited 2018 Jul 6]. Available from: 
https://www.cancer.org/cancer/prostate-cancer/detection-diagnosis-
staging/survival-rates.html 

297.  Burchardt M, Burchardt T, Shabsigh A, Ghafar M, Chen MW, Anastasiadis A, et al. 
Reduction of wild type p53 function confers a hormone resistant phenotype on 
LNCaP prostate cancer cells. Prostate. 2001 Sep 15;48(4):225–30.  

298.  Markert EK, Mizuno H, Vazquez A, Levine AJ. Molecular classification of prostate 
cancer using curated expression signatures. PNAS. 2011 Dec 27;108(52):21276–
81.  

299.  Lance P. Chemoprevention for Colorectal Cancer: Some Progress But a Long Way 
to Go. Gastroenterology. 2008 Jan 1;134(1):341–3.  

300.  Aspirin for pain relief [Internet]. NHS.UK. [cited 2018 Jul 13]. Available from: 
https://beta.nhs.uk/medicines/aspirin-for-pain-relief/ 

301.  Olivan M, Rigau M, Colás E, Garcia M, Montes M, Sequeiros T, et al. Simultaneous 
Treatment with Statins and Aspirin Reduces the Risk of Prostate Cancer Detection 
and Tumorigenic Properties in Prostate Cancer Cell Lines. Biomed Res Int 



  

 

231 
 

[Internet]. 2015 [cited 2018 Apr 25];2015. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4306438/ 

302.  Metformin: medicine to treat type 2 diabetes [Internet]. NHS.UK. [cited 2018 Jul 
18]. Available from: https://beta.nhs.uk/medicines/metformin/ 

303.  Metformin Dosage Guide with Precautions [Internet]. Drugs.com. [cited 2018 Jul 
18]. Available from: https://www.drugs.com/dosage/metformin.html 

304.  Erices R, Bravo ML, Gonzalez P, Oliva B, Racordon D, Garrido M, et al. Metformin, 
at Concentrations Corresponding to the Treatment of Diabetes, Potentiates the 
Cytotoxic Effects of Carboplatin in Cultures of Ovarian Cancer Cells. Reprod Sci. 
2013 Dec;20(12):1433–46.  

305.  Increased FoxM1 expression is a target for metformin in the suppression of EMT 
in prostate cancer [Internet]. [cited 2018 Sep 22]. Available from: 
https://www.spandidos-publications.com/ijmm/33/6/1514?text=fulltext 

306.  Moiseeva O, Deschênes-Simard X, St-Germain E, Igelmann S, Huot G, Cadar AE, et 
al. Metformin inhibits the senescence-associated secretory phenotype by 
interfering with IKK/NF-κB activation. Aging Cell. 2013 Jun 1;12(3):489–98.  

307.  Metformin inhibits TNF-α-induced IκB kinase phosphorylation, IκB-α degradation 
and IL-6 production in endothelial cells through PI3K-dependent AMPK 
phosphorylation - International Journal of Cardiology [Internet]. [cited 2018 Jun 
13]. Available from: 
https://www.internationaljournalofcardiology.com/article/S0167-
5273(08)00576-7/abstract 

308.  Hattori Y, Suzuki K, Hattori S, Kasai K. Metformin Inhibits Cytokine-Induced 
Nuclear Factor κB Activation Via AMP-Activated Protein Kinase Activation in 
Vascular Endothelial Cells. Hypertension. 2006 Jun 1;47(6):1183–8.  

309.  Nguyen DP, Li J, Yadav SS, Tewari AK. Recent insights into NF-κB signalling 
pathways and the link between inflammation and prostate cancer. BJU 
International. 114(2):168–76.  

310.  Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin Selectively Targets Cancer 
Stem Cells, and Acts Together with Chemotherapy to Block Tumor Growth and 
Prolong Remission. Cancer Res. 2009 Oct 1;69(19):7507–11.  

311.  Ahmed KM, Li JJ. NF-κB-mediated adaptive resistance to ionizing radiation. Free 
Radic Biol Med. 2008 Jan 1;44(1):1–13.  

312.  Montagut C, Tusquets I, Ferrer B, Corominas JM, Bellosillo B, Campas C, et al. 
Activation of nuclear factor-kappa B is linked to resistance to neoadjuvant 
chemotherapy in breast cancer patients. Endocr Relat Cancer. 2006 
Jun;13(2):607–16.  

313.  Al-Lazikani B, Banerji U, Workman P. Combinatorial drug therapy for cancer in the 
post-genomic era. Nature Biotechnology. 2012 Jul;30(7):679–92.  

314.  Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for 
cancer? Nature Reviews Cancer. 2012 May;12(5):323–34.  

315.  Margel D, Urbach D, Lipscombe LL, Bell CM, Kulkarni G, Austin PC, et al. 
Association Between Metformin Use and Risk of Prostate Cancer and Its Grade. J 
Natl Cancer Inst. 2013 Aug 7;105(15):1123–31.  

316.  Kim E, Kim M, Woo D-H, Shin Y, Shin J, Chang N, et al. Phosphorylation of EZH2 
Activates STAT3 Signaling via STAT3 Methylation and Promotes Tumorigenicity of 
Glioblastoma Stem-like Cells. Cancer Cell. 2013 Jun 10;23(6):839–52.  



  

 

232 
 

317.  Craene BD, Berx G. Regulatory networks defining EMT during cancer initiation and 
progression. Nature Reviews Cancer. 2013 Feb;13(2):97–110.  

318.  Zhang J, Shen C, Wang L, Ma Q, Xia P, Qi M, et al. Metformin inhibits epithelial–
mesenchymal transition in prostate cancer cells: Involvement of the tumor 
suppressor miR30a and its target gene SOX4. Biochemical and Biophysical 
Research Communications. 2014 Sep 26;452(3):746–52.  

319.  Maity G, De A, Das A, Banerjee S, Sarkar S, Banerjee SK. Aspirin blocks growth of 
breast tumor cells and tumor-initiating cells and induces reprogramming factors 
of mesenchymal to epithelial transition. Laboratory Investigation. 2015 
Jul;95(7):702–17.  

320.  Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, 
angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 2015 Dec 
11;3:83–92.  

321.  Rockwell S, Dobrucki IT, Kim EY, Marrison ST, Vu VT. Hypoxia and radiation 
therapy: Past history, ongoing research, and future promise. Curr Mol Med. 2009 
May;9(4):442–58.  

322.  Liu C, Lin Q, Yun Z. Cellular and Molecular Mechanisms Underlying Oxygen-
Dependent Radiosensitivity. Radiat Res. 2015 May;183(5):487–96.  

323.  A study to see if aspirin improves radiotherapy for rectal cancer (ASPIRE) 
[Internet]. Cancer Research UK. 2015 [cited 2017 Jul 19]. Available from: 
http://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/a-study-
see-aspirin-improves-radiotherapy-rectal-cancer-aspire 

324.  Cameron AR, Logie L, Patel K, Erhardt S, Bacon S, Middleton P, et al. Metformin 
selectively targets redox control of complex I energy transduction. Redox Biology. 
2018 Apr 1;14:187–97.  

325.  Spratt DE, Zhang C, Zumsteg ZS, Pei X, Zhang Z, Zelefsky MJ. Metformin and 
Prostate Cancer: Reduced Development of Castration-resistant Disease and 
Prostate Cancer Mortality. European Urology. 2013 Apr 1;63(4):709–16.  

326.  Herrmann D, Conway JRW, Vennin C, Magenau A, Hughes WE, Morton JP, et al. 
Three-dimensional cancer models mimic cell-matrix interactions in the tumour 
microenvironment. Carcinogenesis. 2014 Aug;35(8):1671–9.  

327.  Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV. In vitro Cell Migration and 
Invasion Assays. J Vis Exp [Internet]. 2014 Jun 1 [cited 2018 Jun 13];(88). Available 
from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186330/ 

328.  Lickteig AJ, Cheng X, Augustine LM, Klaassen CD, Cherrington NJ. Tissue 
distribution, ontogeny and induction of the transporters Multidrug and toxin 
extrusion (MATE) 1 and MATE2 mRNA expression levels in mice. Life Sci. 2008 Jul 
4;83(1–2):59–64.  

329.  Jung N, Lehmann C, Rubbert A, Knispel M, Hartmann P, Lunzen J van, et al. 
Relevance of the Organic Cation Transporters 1 and 2 for Antiretroviral Drug 
Therapy in Human Immunodeficiency Virus Infection. Drug Metab Dispos. 2008 
Aug 1;36(8):1616–23.  

330.  Chowdhury S, Yung E, Pintilie M, Muaddi H, Chaib S, Yeung M, et al. MATE2 
Expression Is Associated with Cancer Cell Response to Metformin. PLOS ONE. 
2016 Dec 13;11(12):e0165214.  

331.  Joerger M, van Schaik RHN, Becker ML, Hayoz S, Pollak M, Cathomas R, et al. 
Multidrug and toxin extrusion 1 and human organic cation transporter 1 



  

 

233 
 

polymorphisms in patients with castration-resistant prostate cancer receiving 
metformin (SAKK 08/09). Prostate Cancer and Prostatic Diseases. 2015 
Jun;18(2):167–72.  

332.  Li Q, Li C, Li H, Zeng L, Kang Z, Mao Y, et al. STK11 rs2075604 Polymorphism Is 
Associated with Metformin Efficacy in Chinese Type 2 Diabetes Mellitus. Int J 
Endocrinol [Internet]. 2017 [cited 2018 Jul 19];2017. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5523539/ 

333.  Goodman T, Ferro A, Sharma P. Pharmacogenetics of aspirin resistance: a 
comprehensive systematic review. Br J Clin Pharmacol. 2008 Aug;66(2):222–32.  

334.  Yi X, Wang C, Zhou Q, Lin J. Interaction among COX-2, P2Y1 and GPIIIa gene 
variants is associated with aspirin resistance and early neurological deterioration 
in Chinese stroke patients. BMC Neurol [Internet]. 2017 Jan 9 [cited 2018 Aug 
29];17. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223580/ 

335.  Wang H, Sun X, Dong W, Cai X, Zhou Y, Zhang Y, et al. Association of GPIa and COX‐
2 gene polymorphism with aspirin resistance. J Clin Lab Anal [Internet]. 2018 May 
[cited 2018 Aug 29];32(4). Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6001439/ 

 


