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Abstract 

Sialidases are enzymes which modify carbohydrate chains on cell membranes and glycoproteins 
by removing sialic acid residues. Raised sialidase activity is associated with a condition of the 
female genital tract called bacterial vaginosis. Bacterial vaginosis is associated with various 
health problems, including infertility. In this study we sought to determine whether variations 
in sialidase activity could be detected in samples from the male urogenital tract and if so, 
whether changes could be linked to sexual health. Using a fluorogenic substrate we were able 
to measure the sialidase activity in semen samples taken from both fertile and infertile men. It 
was found that almost 20% of men visiting a fertility clinic had high sialidase activity in their 
semen, whilst this was the case for only around 10% of fertile men. It appeared that high 
sialidase activity had various effects on the semen, including reducing seminal viscosity and 
removing streaks from the semen. In addition, it appeared that sialidase activity was associated 
with an increased seminal abundance of Prevotella, a bacterial genus known to contribute to 
sialidase production in bacterial vaginosis. Finally, we attempted to determine the potential 
effect of raised sialidase activity on Neisseria gonorrhoeae, the causative agent of a known 
urogenital infection. It was found that removal of sialic acid from the surface of N. gonorrhoeae 
caused reduced sensitivity to antibiotics, potentially making the infection harder to treat in 
patients with raised urogenital sialidase activity.  
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Introduction 

It has been estimated that as many as 48.5 million couples are infertile1. Around 20% of cases 

involve both the male and female partner, whilst 30% of cases are caused by a male factor only, 

meaning factors affecting male fertility could be involved in 50% of all cases of infertility2. 

Despite this, factors affecting male infertility are not well understood and one male infertility 

clinic reported 32.6% of its cases as being idiopathic3. Difficulty conceiving can contribute to 

increased stress4 which can result in further morbidity. It is important that the causes of 

infertility, particularly those affecting men, are better understood, so that more effective 

fertility treatments can be developed.  

It is possible that bacteria may be involved in some cases of idiopathic male factor infertility, as 

bacterial influence on male fertility is currently not well understood. There have however, been 

numerous studies analysing the effect of bacteria on fertility in women. The findings from these 

studies can provide a starting point for investigating the influence of bacteria on male factor 

infertility.  

1. Bacterial Vaginosis and Infertility 

There are multiple clinical definitions for bacterial vaginosis5–7 (BV), but it is often described as 

a disruption of the normal vaginal microflora. This disruption can lead to discomfort, discharge, 

elevated vaginal pH, and a fishy odour8, but is asymptomatic in approximately 50% of cases9. 

Between 2001 and 2004 BV was found to affect 29.2% of women in the United States10. 

The vaginal microbiome was first described by Albert Doderlein in 189211. “Doderlein’s bacilli” 

later determined to be predominantly lactobacillus, were found to be the primary constituent 

of a healthy vaginal microbiome. Lactobacillus help to maintain good vaginal health by 

preventing the urogenital tract from being colonised by potentially harmful organisms. 

Lactobacilli outcompete pathogens for nutrients and adhesion receptors, and produce 

bacteriocins actively killing harmful organisms12. It is also thought that lactic acid produced by 

lactobacilli plays an important role in maintaining low vaginal pH, providing potentially another 

means of reducing colonisation by harmful bacteria13. 

The disruption of this lactobacilli dominated flora during BV can lead to severe complications, 

many of which have an impact on fertility. BV during pregnancy has been linked to preterm birth 

and postpartum endometriosis14, and there is evidence that it predisposes women to sexually 

transmitted infections. Additionally, it has been reported that BV is linked to pelvic 
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inflammatory disease15, a serious condition that can leave women infertile. However, another 

study contradicts these findings, claiming there is no link16.   

There is a high prevalence of BV amongst infertile women. One study reported that 37.4% of 

women suffering from unexplained infertility tested positive for BV, compared to only 15.4% in 

the control group17. Using secnidazole to treat these women for BV increased their chances of 

getting pregnant, indicating that BV was the cause of their infertility, rather than merely being 

associated with it. The exact nature of the link between BV and infertility has not yet been 

established. It has been suggested that BV alters the environment required for successful 

embryo implantation, by changing the pH and increasing local prostaglandin production18. 

Another possible cause of BV associated infertility lies in the enzymes produced by BV 

associated bacteria. High levels of sialidase activity are detectable in the vaginal fluid from 

women with BV19, and it appears to be bacterial in origin, produced by Prevotella, Bacteroides, 

and Gardnerella vaginalis, all of which are found in elevated levels in BV patients20. Sialic acid 

plays an important role in fertilisation (see section 2.3), and so it seems plausible that sialidases, 

which remove sialic acid, could interfere with fertility.  

2. Sialic acid 

2.1 Sialic Acid Structure 

Sialic acid is present in every domain of life, playing a variety of different roles. The term sialic 

acid is a general term referring to molecules derived from neuraminic acid21 (see Figure 1A) the 

most common of which is N-acetyl-5-neuraminic acid. The unique structure and negative charge 

of neuraminic acid allow it to play an important role in biological signalling. Many proteins can 

recognise and bind to sialic acid allowing it to act as a receptor22, but sialic acid can also obscure 

other molecules, blocking protein ligand interactions23. This dual function provides a possible 

explanation for the abundance of sialic acid mediated processes found throughout nature. Sialic 

acid is often bound to a galactose residue at the end of a polysaccharide chain, and this bond 

can take the form of an α-2,3 or an α-2,6 ketosidic bond (shown in Figure 1C). The type of bond 

attaching the sialic acid to its substrate changes is orientation, affecting which proteins can bind 

to the sialic acid, further expanding its potential functions24.  
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Figure 1- Sialic Acid Structure 

 

2.2 Role in immune regulation 

A particularly well studied area of sialic acid function is its role in regulating the mammalian 

immune response. Terminal sialic acid residues on sugar chains attached to glycoproteins are 

recognised by the immune system as self-associated molecular patterns25 and prevent immune 

activation against cells displaying them. Siglecs (short for sialic acid binding immunoglobulin 

type lectins) are a group of sialic acid binding proteins with various immune regulatory 

functions26, that protect sialic acid expressing cells from both the innate and adaptive immune 

response. Siglec-7 is expressed by Natural Killer cells (NK cells), and inhibits cell killing by NK 

cells when it binds to sialic acid residues. CD22 (Siglec-2) is a siglec found on B-cells that inhibits 

their activation when it interacts with sialic acid27, preventing a humoral response against sialic 

acid displaying cells.  

Figure 1. Panel A- General structure of sialic acid. Panel B- the structure of N-acetyl 
neuraminic acid (right), the most common derivative in mammals. Panel C- Sialic acid linked 
to galactose via 2,3 and 2,6 linkages. Figure constructed using Chemdraw Professional. 

A B 

C 



13 
 

Sialic acid also plays an important role in regulation of the complement system. The 

complement system is a component of the innate immune system, consisting of a number of 

serum proteins which, with appropriate activation, can kill target cells by forming a membrane 

attack complex, and can aid activation of other parts of the immune system, against the target28. 

Sialic acid acts as a cofactor along with glycosaminoglycans and complement protein C3b, for 

the C-terminal modules of factor H29. When factor H binds to a cell surface via sialic acid and 

other ligands, it adopts a conformation which allows it to inhibit activation of the alternative 

complement pathway (see Figure 2B), thereby preventing formation of the membrane attack 

complex and the death of the cell30.  

Figure 2- The Alternative Complement Pathway and its Regulation by Sialic Acid 

B
 

Figure 2. Panel A- Diagram showing the role of C3b in activating the alternative pathway. 
C3b forms a C3 convertase with Factor B, leading to further C3b formation activating a 
positive feedback loop. C3bBb associates with another C3b molecule forming a C5 convertase 
which triggers the formation of the membrane attack complex and cell death (figure legend 
continued on next page).  

A
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2.3 Role in Fertilisation 

Sialic acid also appears to play an important role in fertilisation. Sperm cells are coated in a 

glycocalyx which is rich in sialic acid31. This sialylation appears to play a key role in allowing the 

sperm cells to survive in the female genital tract, so that they can reach the ovum. The 

importance of sialic acid in sperm survival has been demonstrated in animal models. In 1991 

Toshimori et al used sialidase to desialylate mouse sperm and measure the effect of sialic acid 

on phagocytosis by macrophages32. Sialic acid appeared to protect the sperm from 

phagocytosis, with more than 3 times the number of macrophages engulfing sperm cells being 

observed in the sialidase treated sperm than the untreated sperm. Ma et al found similar results 

in 2016, and also demonstrated the incremental addition of sialic acid to the sperm cells as they 

develop, indicating the importance of sialic acid in sperm function33.  

Despite the apparent importance of the sperm sialome, it is possible that sperm need to lose 

their sialome for fertilisation to occur, although evidence supporting this is conflicting. In 2007 

Velásquez et al treated bovine sperm with various bacterial sialidases, and measured the effect 

this had on oocyte binding34. The result was a dose dependent loss of sperm binding to the 

outer membrane of the oocyte (the zona pellucida), indicating that in addition to protection 

from the female immune system, the sialic acid is needed for binding to the oocyte (at least in 

cattle). The opposite seemed to be true in a 2012 study by Ma et al35. They measured a release 

of N-acetyl neuraminic acid during capacitation (a process in which the sperm glycoprotein layer 

is shed to allow for binding to the oocyte), in both mouse and human sperm. Furthermore, they 

found that treatment with a sialidase inhibitor during capacitation had a negative impact on 

oocyte binding by the sperm. The release of sialic acid coupled with the need for sialidase 

activity during capacitation seemed to indicate a need for sperm cells to shed their sialome to 

be able to successfully bind the oocyte. This is supported by a 1988 study showing the induction 

of capacitation and enhancement of fertility by sialidase treatment of guinea pig and rabbit 

sperm36. It is possible that the role of sialic acid in mammalian fertilisation varies between 

species, with it being required for oocyte binding in cattle, whilst inhibiting it in other species. 

Alternatively, it is possible that an outer layer of sialic acid is shed during capacitation, to reveal 

other sialylated structures beneath which are required for oocyte binding. A summary of the 

Figure 2 (continued) Panel B- Diagram showing the multiple ways in which factor H prevents 
C3b from activating the alternative pathway after being recruited by sialic acid on the surface 
of the cell. Factor H on the cell membrane can sequester C3b, act with Factor I to deactivate 
C3b, and accelerate the decay of the C3bBb C3 convertase. Figure constructed using PyMol 
molecular visualisation software. 
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hypothetical role of sialic acid in fertilisation, based on review of the literature, can be seen in 

Figure 3.  

 

Figure 3- Hypothetical Role of Sialic Acid in Fertilisation 

  

 

 

 

Figure 3. The possible role of sialic acid 
during each step of fertilisation. The 
sialic acid is depicted as a yellow outline 
on the sperm cell. The sialic acid is added 
during sperm maturation (A) and allows 
the sperm to pass through the female 
reproductive tract, without being 
harmed by the female immune response 
(B). The sialic acid layer is then removed 
to allow the sperm to bind to the ovum, 
so that fertilisation can take place (C). 
Figure constructed using Microsoft 
PowerPoint. 

A B 

C 
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With maintaining the correct sialylation status of the sperm cell being so important for 

successful oocyte contact, it is likely that anything influencing the sialylation status of sperm 

cells could impede fertilisation. If the sialic acid is removed too early from the sperm cells, 

before they have successfully penetrated the cervical mucous and reached the zona pellucida, 

it could result in the cell being destroyed by the female immune system. Yet it would appear 

that if the sialic acid is not removed at all, the spermatozoa cannot bind to the ovum. This 

provides a possible explanation for the association between sialidases, which remove sialic acid, 

and infertility.  

3. Sialidases 

3.1 Structure and Catalytic Mechanism 

Just as sialic acid is involved in a wide range of biological processes, so are sialidases. Sialidases 

are used by eukaryotes, prokaryotes, and viruses, and are involved in processes ranging from 

cell-cell signalling, to nutrient acquisition, to facilitating the spread of viral particles.  

Most sialidases conform to a six bladed β-propeller fold, with the active site located in the 

centre of the enzyme (see Figure 4). Sialidases are categorised based both on the position of 

their sialic acid substrate, and the mechanism by which the bond cleavage occurs. The majority 

of discovered sialidases are referred to as exo-sialidases37, as they catalyse the removal of 

terminal sialic acid from the end of carbohydrate chains. Endo-sialidases instead cleave bonds 

within polysialic acid chains. Exo-sialidases can be further grouped into three distinct classes: 

hydrolytic exo-sialidases, trans-sialidases, and intramolecular trans-sialidases (IT-sialidases). All 

exo-sialidases are thought to act through the classical Koshland retaining glycosidic hydrolase 

mechanism38 in which a glycosyl enzyme intermediate is formed after nucleophilic attack of the 

ketosidic bond39, which is then hydrolysed, freeing the sialic acid and retaining its anomeric 

configuration. Sialidases are unusual in that tyrosine acts as a nucleophile, rather than the 

typical glutamic or aspartic acid, although it is thought that a proximal glutamic acid activates 

the tyrosine to allow this. The hydrolysis of the sialic acid-enzyme covalent intermediate is part 

of what differentiates hydrolytic, trans, and IT sialidases. In hydrolytic sialidases water attacks 

the covalent intermediate, in IT-sialidases it is the O7-hydroxyl group in the sialic acid that does 

this which leads to the release of 2,7 anhydro N-acetlyneuraminic acid instead of neuraminic 

acid. In trans-sialidases this step appears to be catalysed by the presence of lactose, allowing 

the ketosidic bond to be transferred to another carbohydrate structure.  
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Figure 4- Exo-sialidase Structure 

3.2 Bacterial Sialidases 

Many different species of bacteria produce exo-sialidases, and they often play a role in 

processes related to pathogenicity. Some bacteria use sialic acid as a source of nutrients and 

produce sialidases as a means of scavenging host sialic acid, an example of which can be seen 

in Vibrio cholerae the causative agent of Cholera, which produces a sialidase to scavenge host 

sialic acid (NanH), machinery for uptake of sialic acid (SiaPQM), and enzymes for catabolising 

sialic acid (NanA and NanEK), allowing it to use sialic acid as a carbon source40.  

Other bacteria use sialidases to uncover receptors for adhesion. Mucosal surfaces are often 

home to a vast number of different bacterial species, all of which compete for space and 

nutrients. Bacteria such as Tannerella forsythia (often found in the mouth) have adapted to this 

competition by using sialidases to uncover novel receptors normally obscured by sialic acids41, 

allowing them to bind in places sialidase deficient bacteria would not be able to. Some bacteria 

use sialic acid itself as an adhesion factor, and it has been demonstrated that sialidase producing 

bacteria are able to reduce colonisation of other bacteria that need the sialic acid to adhere to 

host cells42 possibly providing another competitive function of sialidases.  

Bacteria also use sialidases to acquire sialic acid as a means of protecting themselves from the 

innate immune response. Pathogenic bacteria such as Haemophilus influenzae43, and Neisseria 

gonorrhoeae44,45 often use sialic acid to protect themselves from the immune response, by using 

sialyltransferase enzymes to attach the sialic acid to their LPS, allowing sialic acid dependent 

Figure 4. Three different exo-sialidases each sharing the six bladed β-propeller fold. The β-
sheets making up the folds have been separated with black lines to highlight their 
conformation. Figure constructed using PyMol molecular visualisation software. 
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immune regulatory mechanisms such as Siglecs and factor H, to protect them. Sialidases may 

allow some bacteria to acquire sialic acid for this purpose.  

Streptococcus pneumoniae is a pathogenic bacterium for which sialidases play an important role 

during infection. S. pneumoniae produces three different sialidases, NanA, NanB, and NanC. 

Each one having a slightly different mechanism of action and carrying out a different function. 

NanA is a hydrolytic sialidase able to cleave free α2,3, α2,6, and α2,8 linked sialic acid whilst 

retaining anomeric configuration, which appears to be involved in epithelial cell adherence46, 

perhaps by unmasking hidden receptors. NanB is an IT-sialidase, catalysing the release of 2,7 

anhydro N-acetlyneuraminic acid rather than neuraminic acid, the expression of which is 

downregulated in response to iron47, possibly indicating a role in nutrient acquisition or 

metabolism. NanC is unusual in that rather than releasing N-acetyl neuraminic acid, it releases 

2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA) which is a sialidase inhibitor48, 

although it can also further hydrolyse DANA to produce N-acetyl neuraminic acid, depending on 

how much substrate is present, which could allow it to play a role in regulating the activity of 

NanB and NanC.  

3.3 Mammalian Sialidases 

Mammalian sialidases are often involved in cellular signalling, removing sialic acid from 

sialylated glycoproteins as needed, to allow access to underlying receptors. Four sialidases have 

been identified in humans: NEU1, NEU2, NEU3, and NEU449. Each of the human sialidases varies 

in its subcellular localisation and its substrate specificity. Mammalian sialidases have a six 

bladed β-propeller fold, as seen in bacterial sialidases (shown in Figure 4), and are thought to 

use a mechanism of action similar to that of other hydrolytic exo-sialidases. The differing 

subcellular localisation of each neuraminidase allows each enzyme to carry out a different 

function.  

NEU1 is mainly located within lysosomes, where it appears to play a role in catabolising 

glycoconjugates, although it is also involved in a huge range of signalling pathways, such as that 

of TOLL-like receptor 4, a component of the innate immune system, which it activates by 

desialylating key residues50. NEU2 is mainly found in the cytosol and appears to be involved in 

muscle and neuronal cell differentiation in rats and mice51. However, NEU2 is not expressed at 

high levels in human cells and often cannot be detected at all52, making its role in humans 

unclear. NEU3 is associated with the plasma membrane and (in humans) specifically hydrolyses 

gangliosides. Association with the plasma membrane allows NEU3 to regulate a range of cell 

surface processes53, and it has been demonstrated to play a role in neuronal differentiation and 
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apoptosis, by activating various cell surface receptors54. NEU4 has been reported to be localised 

both to lysosomes and mitochondria55 Like NEU3, NEU4 appears to play a role in neuronal cell 

differentiation, although whilst NEU3 positively regulates neurite formation, NEU4 seems to 

negatively regulate it56. Mammalian sialidases seem to play a far more complex role than 

bacterial sialidases, with each enzyme being involved in regulating a range of different 

processes and signalling pathways.  

3.4 Other Sialidases 

Sialidases are not just limited to bacteria and mammals. They are also found in various species 

of protozoa, fungi, and even viruses. A particularly well studied sialidase is produced by 

Trypanosoma cruzi, the parasitic protozoan responsible for causing Chaga’s disease. T. cruzi 

produces a trans-sialidase, which transfers sialic acid from one residue to another, rather than 

releasing free sialic acid57. It is thought that T. cruzi uses trans-sialidase activity to transfer sialic 

acid from the host to its own surface glycoconjugates. This coating of sialic acid allows it to 

evade the immune system and survive in the host58.  

The influenza virus also produces a sialidase59. Influenza binds to sialic acid on the surface of 

the target host cell before entering and infecting the cell. The outer shell of the influenza virus 

contains the clusters of the sialidase NA, which cleaves sialic acid to allow mature viral particles 

to leave the cell after replication60. Some viral sialidases have been demonstrated to have endo-

sialidase activity, able to hydrolyse residues within chains of poly-sialic acid. An example of 

endo-sialidase activity can be seen in the bacteriophage K1F which uses endo-sialidase activity 

to degrade the polysialic acid coat on Escherichia coli cells, allowing the phage access to the cell 

surface for infection61.  

4. Sialidases in Semen 

4.1 Rationale for Predicting the Presence of Sialidases in Semen 

As mentioned in section 1, bacterial vaginosis is associated with subfertility, and also with raised 

sialidase activity. These two observations may be linked, given the important role sialic acid 

plays in fertilisation. Abnormally high sialidase activity in the genital tract could trigger the 

premature removal of the sperm sialome through sialidase activity, allowing the female innate 

immune system to destroy the sperm cells before they reach the ovum. The sialidase activity in 

bacterial vaginosis patients has been demonstrated to be bacterial in origin, meaning it is 

possible that raised sialidase levels may not just be limited to the female urogenital tract. 

Studies have demonstrated that the urogenital microbiome of sexual partners are shared to 
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some degree62, meaning the sialidase producing organisms in bacterial vaginosis patients may 

also inhabit the urogenital tract of their male partners. It is possible that the association 

between bacterial vaginosis and infertility, may be in part, due to bacterial vaginosis being an 

indication of sialidase producing bacteria in the male urogenital tract, which may be 

desialylating sperm before they enter the female genital tract. If sialidase producing bacteria in 

the urogenital tract are linked with infertility, bacteria in both the male and female genital tract 

could be involved.     

4.2 The Seminal Microbiome 

Whilst the male urogenital microbiome is not as well characterised as the vaginal microbiome, 

there have been a number of studies analysing the bacteria present within the male urogenital 

tract either using 16S rRNA sequencing62–64 or culturing of semen samples65,66. The apparent 

composition of the seminal microbiome seems to vary from study to study and is likely affected 

by factors such as the whether the microbiome was analysed by culturing or sequencing, 

geographical variation, and (if sequencing was used) the part of the 16S rRNA gene targeted by 

the sequencing primers. However, all studies find potential sialidase producers to be present 

within semen samples.  

Two studies which cultured organisms from semen samples found an abundance of 

Enterococcus faecalis,65,66 which has a sialidase annotated in its genome, possibly allowing it to 

desialylate sperm cells. In 2014, Hou et al used 16S rRNA sequencing to analyse the bacteria 

present within semen samples, and they found that several samples (almost 20% of the total 

sample population) contained Prevotella63, many species of which are known to produce 

sialidase. Prevotella was also found in other studies, which analysed the seminal microbiome 

using 16S rRNA sequencing, along with Gardnerella, another potential sialidase producer62,64, 

both of which are associated with sialidase activity in bacterial vaginosis. Whilst the 

identification of bacteria capable of producing sialidase is not an absolute indication of sialidase 

activity, it does indicate the possibility that bacterial sialidases may be present within the male 

urogenital tract as well as the female urogenital tract. 
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Figure 5- Summary of previous Seminal Microbiome Studies 

 

4.3 Potential Impact of Sialidases in Semen 

The presence of sialidases in the male urogenital tract presents a potential cause of infertility, 

that is thus far unstudied. It is possible that as the vaginal microbiome fluctuates, sometimes 

causing bacterial vaginosis, the male urogenital microbiome male may also fluctuate, but with 

less obvious symptoms. This could potentially lead to some men having an abundance of 

sialidase producing bacteria in their semen, prematurely removing the sperm sialome, and 

impeding fertility. The sialidase producing bacteria may spread from the male to the female 

partner potentially exacerbating the problem, and possibly causing bacterial vaginosis. It is also 

possible that the sialidase producing bacteria originate in the female partner, perhaps as the 

result of pre-existing bacterial vaginosis, and then spread to the male partner.  

In addition to the effect of sialidases in semen on fertility, there may be an effect on urogenital 

pathogens. Neisseria gonorrhoeae, the causative agent of gonorrhoea, relies on a coating of 

sialic acid (like many pathogens) to survive within the host67. N. gonorrhoeae obtains cytidine 

Figure 5. Summary of the results of three previous seminal microbiome studies. The location 
of the study is listed in addition to the region of the 16S rRNA gene amplified by the primers 
used. The bacterial taxa found in each study are listed in order of abundance, with the most 
commonly identified taxa being at the top of the table. Certain taxa have been highlighted, 
to demonstrate the similarity between their findings (for example Prevotella and 
Lactobacillus were found in high abundance in all three studies). Note that this table only 
shows the top 10 most abundant taxa from each study. Figure constructed using Microsoft 
Powerpoint. 
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monophosphate N-acetyl neuraminic acid from within host cells67,68, the N-acetyl neuraminic 

acid portion of which is then attached to the outer membrane LPS by a sialyltransferase69. 

Therefore, urogenital sialidases may potentially have a beneficial effect by removing sialic acid 

from N. gonorrhoeae, limiting the pathogens survivability in the host and preventing 

dissemination. Such a benefit of sialidases should certainly be considered if sialidase inhibitors 

are ever administered as a means of treating infertility. N. gonorrhoeae has recently become 

particularly problematic due to its increasing levels of antibiotic resistance70,71, making 

infections harder to treat. It is not known to what extent sialic acid influences the antibiotic 

susceptibility of N. gonorrhoeae, but such a significant surface modification could have some 

impact. This presents another potential impact of urogenital sialidases to be considered.   

5. Project Outline 

Based on the afore mentioned observations in the literature, and previous studies by the group, 

it appeared likely that sialidases could have a clinically relevant impact on the male urogenital 

tract, worthy of further investigation. The aim of this project was to better understand this 

impact. Firstly, by helping to determine the sources of sialidase activity in the male urogenital 

tract. Secondly, by attempting to determine the impact of sialidase activity on fertility. And 

finally, by attempting to understand the effect of sialidases on the physiology of N. 

gonorrhoeae, the causative agent of a common urogenital infection. 

This project intended to confirm the presence of sialidases in semen by optimising sialidase 

assays for the use in semen. Men both with and without apparent fertility problems were 

recruited to provide semen samples, allowing for the determination of the incidence of sialidase 

activity in semen, and the degree to which it is associated with fertility problems. 16S rRNA 

sequencing was used to analyse the bacteria present within the semen samples, allowing us to 

better understand the bacterial contribution to sialidase activity, and to identify organisms that 

are potential risk factors in sialidase mediated infertility. In addition to this, the effect of 

sialidases on N. gonorrhoeae was studied. The effect of sialidases on gonococcal serum 

resistance is well documented, but this project aimed to determine whether sialidases have any 

impact on gonococcal antibiotic susceptibility, with the aim of helping to provide a more 

complete understanding of the impact of sialidases on the urogenital tract.  
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Materials & Methods 

1. Reagents 

4-Methylumbelliferyl-n-acetyl-α-d-neuraminic acid (4MUSA) was purchased from Carbosynth 

Ltd. All other equipment and reagents were purchased from Sigma-Aldrich, unless otherwise 

stated. 

2. Semen Sample Collection   

Samples of semen were collected by two clinics. Andrology Solutions in London, and the Bristol 

Centre for Reproductive Medicine (BCRM). Patients were provided with a written patient 

information leaflet detailing the nature and purpose of the study and were given the 

opportunity to ask questions about the study, before being given a consent form to sign, 

confirming their agreement for the samples to be used in this study. Samples were produced by 

masturbation into a sterile container, and then frozen, before being transported to the 

University of Bristol on dry ice, using an approved courier. Initial freezing was done at -80oC at 

Andrology Solutions, and -20oC at the BCRM. Samples were anonymised prior to shipment. Men 

were excluded from the study if they had taken antibiotics in the last 4 weeks, were aged under 

18 years, or were unable to provide informed consent. Ethics approval can be found under IRAS 

project ID- 168675 and REC ID- 15/SW/0093; 02.04.15.    

3. Measurement of Semen Parameters 

A portion of each sample was retained by the clinics and used to measure semen parameters. 

Both the Bristol Centre for Reproductive Medicine, and Andrology Solutions measured sample 

volume, sperm concentration, the percentage of sperm with normal morphology, the 

percentage of sperm with progressive motility, and the pH of the sample. In addition to these 

parameters, Andrology Solutions also measured the reactive oxygen species, the concentration 

of round cells, the concentration of leukocytes, the percentage of living cells, the concentration 

of IgA, the concentration of IgG, and the percentage of sperm with any form of motility in the 

samples. Andrology Solutions also provided a qualitative assessment of sample appearance, 

viscosity, and the amount of debris. All parameters were not measured in all samples, due to 

limited sample volumes. Data was identified using numerical sample ID’s, and no identifying 

information such as patient name or birth date was included in the datasets.  
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4. Sample Processing and Storage 

After arrival at the University of Bristol. Samples were thawed on ice for a minimum of 1 hour 

before being divided into aliquots for enzyme assays and sequencing. Samples were then 

quickly frozen using liquid nitrogen and stored at -80oC. Detailed records were kept listing the 

location of each sample in accordance with the Human Tissue Act (2004). If at any point details 

emerged indicating the sample was no longer eligible for use in the study, the sample was 

destroyed. 

5. Sialidase Assay 

100μl of each semen sample was thawed on ice for 1 hour. 50μl of each sample was mixed with 

50μl of 2mM 4MUSA in assay buffer (400mM sodium acetate pH 4.2), and 50μl of each sample 

was mixed with assay buffer only (the autofluorescence control). A blank was prepared by 

mixing 50μl of 2mM 4MUSA in assay buffer, with 50μl of Dulbecco’s phosphate buffered saline. 

All reactions were incubated at 37oC for 1 hour, and then stopped by addition of 100μl of 

850mM glycine pH 10 (stop buffer). 100μl of each stopped reaction was added to separate wells 

in a black polystyrene 96-well plate, and the fluorescence of each reaction was measured at an 

excitation of 355nm and emission of 460nm, using a BMG Labtech plate reader.  

6. Activity Calculation 

Sialidase activity for each sample was calculated by subtracting the fluorescence of the blank 

reaction (4MUSA in assay buffer and PBS), and the autofluorescence (sample and assay buffer 

only), from the total fluorescence measured in the assayed sample (sample with 4MUSA in assay 

buffer). The value generated by this calculation provided an estimate of the fluorescence 

produced just by sialidase activity within the sample. The final activity for each sample was 

calculated as the average of three experiments.   

7. Sequencing 

Genomic DNA was extracted from the semen samples using a QIAamp DNA Blood Mini Kit, 

following the supplied spin protocol for DNA purification from blood or body fluids with no 

alterations. A barcoded amplicon library was prepared by PCR using the forwards primer 5’-

XXXXGGATTAGATACCCBRGTAGTC-3’ and the reverse primer 5’-XXXXTCACGRCACGAGCTGAC 

GAC-3’ where the X’s are replaced by a four codon long barcode used in a combination unique 

to each semen sample. Each 50µl PCR reaction contained 5µl purified sample DNA, 0.5µM of 

each primer, 1 unit of Phusion polymerase, 200µM dNTPs, 1x Phusion HF buffer, and 28.5µl of 

nuclease free water. The cycle conditions were as follows: 30 seconds initial denaturation at 
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98oC; followed by 35 cycles of 10 seconds at 98oC, 20 seconds at 50oC, and 30 seconds at 72oC; 

followed by a final extension of 10 minutes at 72oC. The size of the products was checked by gel 

electrophoresis and then sent to the Bristol Genomics Facility. Staff at the Bristol Genomics 

Facility carried out sample purification, normalisation and pooling. The pooled amplicon library 

was then sequenced using 2 Ion Torrent PGM 318v2 chips. The results were returned as FASTQ 

files. 

8. Sequencing Data Analysis 

The FASTQ files were sent to a computational biologist who deconvoluted and analysed the 

data using the QIIME bioinformatics pipeline. Data was returned to us as the relative percentage 

abundance of each 16S rRNA amplicon sequence found in each semen sample, taxonomically 

identified to the highest level possible.  

9. Bacterial Strains and Growth Conditions 

3 different strains of N. gonorrhoeae were used in these experiments: P9, FA1090, and SN1. 

Two variants of P9 were used, the nonpiliated P9-1 and the piliated P9-2. All strains were grown 

on GC agar (see below) and incubated at 37oC, 5% CO2. Sialylated gonococci were grown by 

spreading a solution of CMP-NANA in sterile water, onto the surface of the agar to the specified 

final concentration and allowing the plate to dry before inoculating with bacteria.   

10. GC Agar 

400ml of agar contains 4g proteose peptone no.3, 0.4g starch, 4g Difco agar, 1.6g K2PO4, 0.4g 

KH2PO4, 2g NaCl, 0.4g glucose, 0.04g L-glutamine, 1mg B-NAD, 0.4mg cocarboxylase, 0.012mg 

thiamine HCl, 0.04mg cyanocobalbumin, 0.132mg Fe(NO3)3. 9H20, 0.052mg 4-aminobenzoic 

acid, 4mg adenine, 0.12mg guanine HCl, and 0.104mg L-cysteine HCl.  

11. Immunodot Blot Test for Sialylation 

Immunodot blotting was used to determine the sialylation status of the bacteria. Bacteria were 

suspended in sterile water and lysed by the freeze-thaw method. The resulting lysates were 

dotted onto nitrocellulose membrane by vacuum. The unoccupied nitrocellulose surface was 

then blocked by incubation at room temperature with 3% bovine serum albumin (BSA), in PBST 

(8mM Na2HPO4, 150mM NaCl, 2mM KH2PO4, 3mM KCl, 0.05% Tween 20, pH 7.4) for 1 hour. 

After blocking the nitrocellulose was incubated with the primary antibody SM82, which is 

specific to lacto-N-neotetraose, for 1 hour. The nitrocellulose was then incubated with the 

secondary antibody, AP conjugated anti-mouse IgM, for 1 hour. Finally, the nitrocellulose was 
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placed in AP buffer (100mM NaCl, 100mM Tris-HCl, 50mM MgCl2, 1% Tween 20, 0.5mM BCIP, 

0.4mM NBT) until purple colour developed. The nitrocellulose was washed three times between 

each antibody incubation using ELISA wash (0.15M NaCl, 0.55M Tween 20).   

12. Effect of Sialylation on Growth Rate 

Both sialylated and unsialylated P9 bacteria were grown on agar as described in section 9, and 

then suspended in GC broth to a concentration of approximately 5x106 cfu ml-1. CMP-NANA was 

added to the broth to give a final concentration of 25µg ml-1 in the sialylated bacteria. No CMP-

NANA was added to the unsialylated bacteria. 200µl of each suspension was added to separate 

wells in a clear 96-well plate and placed in an incubator at 37oC 5% CO2. The plate was removed 

from the incubator at hourly intervals and the OD600 was measured using a plate reader.  

13. Antibiotic Susceptibility Assays 

Antibiotic susceptibility assays were set up as per growth rate assays (see above) but with the 

following changes. The bacteria were resuspended to a concentration of approximately 1x107 

and then 100µl of bacterial suspension was added to 100µl of the appropriate concentration of 

antibiotic dissolved in GC broth. The resulting 200µl was incubated in a 96-well plate as per the 

growth rate assay, but rather than measuring the A600 at hourly intervals, the absorbance at 

600nm was only measured at the end of a 20-hour incubation period.  

14. Relative Growth Calculations 

The relative growth was calculated using the following equation: 

Relative Growth= Optical Density of tested condition (AU)/ Optical Density of control condition 

Relative growth was used to normalise growth rate data to allow comparison of the wild type 

to the mutant strains.  

15. Construction of N. gonorrhoeae Lst knockout 

P9-2 was used as a starting strain used to produce a Δlst knockout mutant, by insertion of a 

kanamycin resistance cassette into the lst gene. The insertion was created using SOEing PCR. 

The 5’ lst flanking region was amplified using the forward primer 5’-GCAAATGCCGTC 

TGAACAGACGGCATCGCGCCG-3’ and the reverse primer 5’-ATCCGGGGAATTCACTGGCTC 

GTGGCAGGATTTGCAGC-3’. The 3’ lst flanking region was amplified using the forward primer 5’-

CCCTGCAGGTCGACGGATATATCCCGAAGCAAAAAACAATCAG-3’ and the reverse primer 5’-

ACGTTTCAGACGGCATCGGGGAATGCCGCCAAAATG-3’. The kanamycin resistance cassette was 

amplified using the forward primer 5’-GCTGCAAATCCTGCCAC GAGCCAGTGAATTCCCCGGAT-3’ 
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and the reverse primer 5’-CTGATTGTTTTTTGCTTCGGGATATATCCGTCGACCTGCAGGG-3’. These 

PCRs were carried out using Taq DNA polymerase and standard PCR protocol. These three 

fragments were then spliced together by PCR in a reaction containing 550ng of template DNA 

comprised of equimolar concentrations of each fragment in nuclease free water, 1x Standard 

Taq reaction buffer, 200µM dNTPs, 1.25 units of Taq polymerase. The conditions for the splicing 

PCR were as follows: An initial denaturation at 95oC for 30 seconds, followed by 15 cycles of 

95oC for 25 seconds, 58oC for 50 seconds, and 68oC for for 2 minutes 45 seconds. After 15 cycles 

0.2µM each of the forward primer 5’-GCAAATGCCGTCTGAACAGACGG-3’ and the reverse primer 

5’-ACGTTTCAGACGGCATCGGGG-3’ were added to the reactions. The reactions were then 

subjected to 20 cycles of 95oC for 20 seconds, 60oC for 20 seconds, and 68oC for 2 minutes 35 

seconds. This was followed by a final extension of 68oC for 5 minutes. The splicing reaction 

produced an insert containing regions homologous to the gonococcal lst gene, flanking a 

kanamycin resistance cassette, extended with the gonococcal DNA uptake sequence. The PCR 

mixture was then pipetted directly onto a fresh streak of P9-2 on GC agar, which was then 

incubated overnight at 37oC 5% CO2. Bacteria were then scraped from the region of the streak 

onto which the DNA had been pipetted, and re-streaked onto GC agar containing 50µg ml-1 

Kanamycin and incubated overnight again at 37oC. Colonies were picked from the kanamycin 

plate and checked for successful transformation by PCR using the forward primer 5’-

GCAAATGCCGTCTGAACAGACGGCATCGCGCCG-3’ and the reverse primer 5’-CTGATTGTTT 

TTTGCTTCGGGATATATCCGTCGACCTGCAGGG-3’ with Taq DNA polymerase. Further 

confirmation of the mutant strain was provided using immunodotblotting as described in 

section 10.  

16. Statistical Analysis 

The relationship between sialidase activity and fertility status was first analysed using a 

student’s t-test. Mean sialidase activity was grouped into three categories: Fertile (samples 

from BCRM), Infertile (samples from Andrology Solutions confirmed to be unsuccessful after >1 

year of attempting to conceive), and Fertility clinic (all samples from Andrology Solutions). The 

infertile group, and the fertility clinic group were each independently checked for significant 

difference to the fertile group. First a two sample F-test was used to check for equal variance. 

It was found that the variances of the fertile samples and the infertile samples were unequal, 

whilst the variances of the fertile samples and the fertility clinic samples were equal. For 

comparing the fertile to the infertile samples, a two-sample t-test assuming unequal variances 

was used. For comparing the fertile to the fertility clinic samples, a two-sample t-test assuming 

equal variances was used. In both tests it was found that the t-stat was between the two-tail t-
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critical value, and the -1(two-tail t-critical value), therefore indicating that there was no 

significant difference between these groups.  

To check for significant relationships between sialidase activity and numerical semen 

parameters the samples were separated into three groups: High activity (sialidase activity 

>1000AU), Low activity (sialidase activity 1-1000AU), and No activity (sialidase activity ≤0). The 

values for each parameter were separated into these three groups and checked for significant 

difference using a single factor ANOVA test. The F statistic was found to be higher than F-critical 

in only two parameters: sperm concentration, and sample volume. For these samples the three 

groups were compared using first an F-test to check whether variance was equal or unequal, 

and then a two-sample t-test to confirm which groups were significantly different to one 

another. Excel Analysis ToolPak was used for all statistical test calculations. 
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Results & Discussion 

1 Development and optimisation of sialidase assay for use in semen. 

Assessment of the impact of sialidases on semen first required a means of measuring sialidase 

activity in semen. 4-Methylumbelliferyl-n-acetyl-α-d-neuraminic acid (4MUSA) acts as a 

fluorogenic substrate for sialidases72 and is often used to assay sialidase activity. Before using 

the substrate to measure activity in semen samples, attempts were made to maximise the 

sensitivity of the assay, by testing the use of lower volumes of more concentrated stop buffer 

(Figure 1).  

Figure 1- The Effect of Stop Buffer Concentration on 4MU Fluorescence 

Figure 1: The Effect of Stop Buffer Concentration on 4MU Fluorescence- Three different stop 

buffer variations were tested using a standard curve of 4MU. For stop buffer A, 1ml of 85mM 

glycine (pH 10) was added to 0.1 ml of 4MU. For B, 0.5 ml of 170mM glycine was added. For C, 

0.1ml of 850mM glycine was added. N=1. 

The original assay protocol recommended the addition of 1 ml of 85mM glycine buffer to stop 

the reaction. It was found that the addition of 0.1 ml of 850mM glycine (pH 10) to 4-

methylumbelliferone (4MU) produced a much larger fluorescence signal. This was likely due to 

maintaining a higher concentration of 4MU, whilst still successfully raising the reaction pH to 

10 thereby stopping the reaction and allowing the 4MU to fluoresce. Using lower volumes of 

stop buffer could also likely increase the signal of any background fluorescence in the samples, 
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but this would be unlikely to be a problem should the signal-noise ratio remain constant at 

different volumes.  

Two different pH values of the reaction buffer were tested in order to determine which should 

be used in the wider screen of clinical samples. Different sialidases have a different optimum 

pH, but due to restraints on sample volume, it would only be possible to test the samples at one 

pH. A selection of samples was assayed at both pH 4.2 (the average vaginal pH73 and close to 

the optimum pH for many bacterial sialidases74–77), and pH 7.7 (the average pH of semen78).  

Figure 2- The Effect of Reaction pH on Seminal Sialidase Activity 

Figure 2- A comparison of sialidase activity in semen samples assayed at both pH 4.2 and pH 7.7. 

Whilst some samples remained mostly unaffected the pH change, the fluorescence for several 

samples was dramatically higher at pH 4.2. N=1.   

It was found that in four of the ten samples tested, the sialidase activity was much higher at pH 

4.2 (Figure 2). The other six samples were mostly unaffected by the pH change, although in two 

low activity samples samples (BES020 and BES21) the activity was slightly higher at pH 7.7. 

Whilst carrying out the reactions at pH 7.7 would have been more representative of in vivo 

conditions, it was decided that pH 4.2 should be used to maximise signal, thus maximising the 

sensitivity of the assay. 

To determine the effect that sample storage might have on sialidase activity, one sample was 

split into three portions immediately after collection at the BCRM, and each portion was stored 

under different conditions before both the sialidase activity and the sample autofluorescence 

were measured. Storage conditions were designed to mimic variations in storage procedure at 

different clinics collecting the samples. One part of the sample was immediately stored at -80oC 
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whilst another was stored at -20oC. A third portion was stored at -80oC after being left at room 

temperature for 1 hour.  

Figure 3- The Effect of Sample Storage Conditions on the Sialidase Assay 

Figure 3- A single semen sample was split into three and stored under three different conditions. 

One sample was stored immediately at -20oC (-20C), one at -80oC (-80C) and one was left at 

room temperature for 1 hour before being stored at -80oC (Delayed Storage). The blue bars show 

the total fluorescence of the sample (sialidase activity + autofluorescence) whilst the orange 

bars show just the sample autofluorescence. Error bars show one standard deviation to either 

side of the mean. N=3.  

Immediately storing the sample at -80oC provided the most consistent results across three 

repeats (Figure 3). However, altering the storage conditions did not appear to have a statistically 

significant effect on the mean sialidase activity and autofluorescence. This experiment whilst 

limited, demonstrated that samples from clinics without access to -80oC freezers should still 

provide useful data.   

The effect of long term sample storage was tested by measuring the sialidase activity and 

sample autofluorescence of a random selection of semen samples, both before and after the 

samples had been stored at -80oC for 1 year (see figure 4). It was found that both the sialidase 

activity and autofluorescence were reduced after a year of storage, with many samples that 

previously tested positive for sialidase activity now testing negative. For example, BES024 was 

recorded as having an activity of 1860AU (after autofluorescence was subtracted), but after one 
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year of storage this was reduced to 0AU. BES034 had the highest recorded activity of 11930AU, 

but this was reduced to less than 3000AU after storage.  

Figure 4- The Effect of Long-Term Storage on the Sialidase Assay 

Figure 4- Panel A shows the total fluorescence of the sample after an hour of incubation with 

4MUSA (activity) and without 4MUSA (autofluorescence) before the samples were stored for a 

year at -80oC. Panel B shows the results of the same assay being conducted on the same samples 

after the year of storage. Both the activity and autofluorescence were severely reduced by the 

long-term storage. N=1.  

These results provide important considerations for future studies, as they indicated that testing 

for sialidase activity after long term storage of semen samples at -80oC is not viable. Most 

enzymes are stable at -80oC but living cells can lose some viability after long term cold storage. 

It is possible that these results indicate enzyme production by living cells (bacterial or human) 

could be the primary source of sialidase activity during the assay. 

 

 

0

2000

4000

6000

8000

10000

12000

BES023 BES024 BES034 BES050 BES058 BES095 BES096

Fl
u

o
re

sc
en

ce
 (A

U
)

Sample ID

Before Storage

Activity Autofluorescence

0

2000

4000

6000

8000

10000

12000

BES023 BES024 BES034 BES050 BES058 BES095 BES096

Fl
u

o
re

sc
en

ce
 (A

U
)

Sample ID

After Storage

Activity Autofluorescence

A 

B 



33 
 

2. Sialidase Activity in Semen 

Sialidase activity was measured in 142 semen samples. In addition to sialidase activity, other 

semen parameters were measured such as sperm motility and pH. The samples were also 

categorised based on the fertility status of the patient. 30 of the samples were grouped as 

‘fertile’ as the donor had successfully conceived within the last 6 months. The other 112 samples 

were provided by a fertility clinic. Most of the donors for these samples were likely to be 

suffering from fertility problems, hence their visiting the fertility clinic. However, only 61 

samples could be defined as ‘infertile’ as such a classification requires the patient to have being 

attempting to conceive for longer than 1 year, without success. For a large proportion of the 

samples from the infertility clinic, detailed information regarding the fertility status of the 

patient was not available, and therefore many of these samples could not be defined as infertile 

despite a high likelihood of fertility problems. 

Initial analysis of the relationship between sialidase activity and fertility status shows no 

significant difference between any of the groups (see table 1). This was not unexpected, as most 

of the infertile patients were likely to be suffering from conditions unrelated to sialidases. The 

results demonstrate that a certain level of sialidase activity can be present even in healthy 

semen samples, as a subset of sialidase positive samples was present within both the fertile and 

infertile samples.  

Table 1- Patient Fertility Status and Sialidase Activity 

Sample Group Mean Sialidase Activity (AU) P-value (t-test against fertile) 

Fertile (n=30) 169.6 ± 113.4 N/A 

Infertile (n=61) 219.7 ± 121.6 0.76 

All Fertility Clinic (n=112) 470.0 ± 168.8 0.37 

Table 1- The average sialidase activity for each group is shown (± standard error). Data was 

analysed using a student’s t-test to check for significant difference between the infertile and 

fertile patients, and between all samples from the infertility clinic and the fertile samples, the p-

values from these tests are shown in the table. No significant differences were found. 

Despite there being no overall significant difference between the average sialidase activity of 

each group. It was still possible to identify differences in the distribution of sialidase activity 
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within the groups. A frequency distribution was generated by grouping the samples from the 

fertile, infertile and fertility clinic samples, into bins of 500 based on sialidase activity.  

It should be noted here that due to the methods used to calculate sialidase activity in this assay 

(see Materials and Methods section 6), many samples appeared to have negative activity. This 

could be due to limitations of the assay discussed in section 2.1 of the general discussion (page 

56). However, until more is learnt about the causes of the negativity of these samples, it was 

decided that samples with negative activity should be recorded as such, and the range of the 

frequency distribution should be inclusive to such samples. 

Figure 5- Sample Distribution by Sialidase Activity 

Figure 5- The distribution of sialidase activity is shown. Panel A compares the fertile samples to 

all samples defined as infertile. Panel B compares the fertile samples to all samples from the 

fertility clinic regardless of whether detailed fertility information was available for the sample. 

The bars show the % of samples within that group that fall within the specified range.  
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Studying the distribution of sialidase activity across the samples, highlights features not 

observable when only comparing the mean activity of fertility status groups (see Figure 5). For 

all 3 sample sets the majority of samples have activity between -500 and 500 AU. This range can 

be considered the ‘normal’ range of sialidase activity in semen. The difference between the 

sample sets can be observed at the tails of the distribution. Particularly noteworthy is the higher 

proportion of infertile samples, and fertility clinic samples with abnormally high levels of 

activity. 10% of the fertile samples have sialidase activity greater than 1000AU, whilst 15% of 

the infertile samples, and 20% of the samples from the fertility clinic have activity greater than 

1000AU.  

The sensitivity of the fluorogenic assay was useful in identifying the presence of sialidase activity 

but did not provide a means of determining the level of activity needed to influence the sample. 

It is possible that activity that low levels of activity, whilst detectable by this assay, have no 

effect on the sample, and that a certain threshold is required to compromise the fertility status 

of the patient. These results could indicate that this threshold lies above 1000AU (as calculated 

by our assay). 

3. Association of Sialidase Activity with Semen Parameters 

The distribution of sialidase activity did not confirm whether or not sialidase activity is 

associated with infertility. However, the 5% increase in infertile and 10% increase in infertility 

clinic samples, with activity greater than 1000AU, indicates the potential for a small subset of 

samples in which high levels of sialidase activity could be influencing fertility. 

To further investigate this, the samples were split into three groups based on sialidase activity: 

negative samples (sialidase activity is equal to or less than 0), low activity samples (sialidase 

activity is between 1 and 1000), and high activity samples (activity is greater than 1000). Semen 

parameters were compared between these groups, to identify any possible relationships 

between semen parameters and sialidase activity. In the majority of measured parameters 

there was no significant difference between the three groups (Table 2). 
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Table 2- Semen Parameters not Significantly Associated with Sialidase Activity 

Table 2- Table shows the mean values for several semen parameters, and the P-value from an 

ANOVA comparing the three sialidase activity groups. Negative samples have activity equal to 

or less than 0AU, low activity samples have activity between 1 and 1000AU, high activity samples 

have activity greater than 1000AU. 

Of the parameters listed in Table 2, pH has the most significant relationship with sialidase 

activity. Whilst the data is not significant enough to give a p-value lower than 0.05, it appears 

possible that slightly lower pH could be linked to higher sialidase activity. This could be due to 

the acidic optimal pH of many bacterial sialidases. There appeared to be no association between 

sialidase activity and morphology, motility, or vitality. This indicates that raised sialidase activity 

has no effect on sperm cells observable microscopically. This was as expected, as there was no 

reason to suspect that the removal of sialic acid would have an immediately obvious impact on 

Parameter Activity Group Mean Value  P (ANOVA) 

pH Negative 8.15 0.06 

 Low Activity 8.07  

 High Activity 7.97  

Total Motile Sperm (%) Negative 58 0.94 

 Low Activity 59  

 High Activity 58  

Progressively Motile Sperm (%) Negative 51 0.75 

 Low Activity 49  

 High Activity 49  

Sperm with Normal Morphology (%) Negative  4.2 0.55 

 Low Activity 4.9  

 High Activity 4.7  

Sperm Vitality (%) Negative 64 0.36 

 Low Activity 68  

 High Activity 67  

Leukocytes (million/ml) Negative 0.90 0.38 

 Low Activity 0.49  

 High Activity 0.44  

Age of Patient (Years) Negative 38 0.64 

 Low Activity 36  

 High Activity 38  
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sperm function. Furthermore the average values for each group was above lower reference 

limits for all measured parameters, as described by the 2010 WHO laboratory manual for the 

examination and processing of human semen79, demonstrating that these samples were 

suitably representative of normal human semen.  

However, some parameters did appear to differ between the 3 sample groups. A larger 

proportion of the high activity samples were described to have ‘normal’ appearance, whilst 

more of both the negative and low activity samples were described to be ‘streaky’ upon 

macroscopic evaluation (see Figure 6).  

Figure 6- Sample Appearance and Sialidase Activity 

Figure 6- The bars show the % distribution of samples within the activity groups with various 

descriptions of macroscopic appearance. ‘Streaky’ samples are represented by the grey bar 

which is larger for the low activity and the negative groups. ‘Normal’ samples are shown in blue 

and make up a lower proportion of the negative and low activity groups. 

Streaks in semen are often caused by mucus, and it is possible that the raised sialidase activity 

broke up the mucus, by cleaving free the terminal sialic acid residues holding mucins together. 

It is also possible that sialidase activity is indicative of bacteria producing other enzymes with 

mucus degrading activity. For example many Prevotella species produce sialidases which will 

likely be detected by the sialidase assays, but also mucin degrading sufatases80 which may be 

partly responsible for the reduction in mucus streaks. 
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Further evidence of sialidase mediated degradation of seminal mucus can be seen in the 

viscosity of the samples (see Figure 7). The negative and low activity groups both contain more 

samples with raised viscosity than the high activity group, with the negative group containing 

the most. More than 30% of the negative samples are considered more viscous than normal, 

whilst less than 20% of the high activity samples are. However, the high activity group does also 

contain the largest proportion of samples within the highest viscosity group: ‘hyperviscous’.  

Figure 7- Sialidase Activity and Sample Viscosity 

Figure 7- The bars show the distribution of viscosity classification for each of the sialidase activity 

groups. ‘Hypoviscous’ is the lowest viscosity classification, followed by ‘normal’, ‘viscous’, 

‘increased’, and finally ‘hyperviscous’ which is the highest viscosity classification. 

Sialidase mediated degradation of seminal mucus could result in lower viscosity, accounting for 

the increased proportion of samples with ‘normal’ viscosity or lower within the high activity 

group. It is difficult to determine what caused the increase in ‘hyperviscous’ samples within the 

high activity group. Seminal hyperviscosity can be indicative of infection of the prostate glands 

or seminal vesicles81, and it could be that there were more patients suffering from such 

infections amongst the high activity patients.  

Whilst both the effect of sialidase activity on appearance and viscosity seem to indicate possible 

sialidase mediated mucus degradation, it appears to only affect abnormal samples. High 

sialidase activity has an impact on the presence of observable ‘streaks’ but it does not appear 

to be associated with any abnormalities in appearance. The activity appears to reduce increased 
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viscosity in the samples but is not associated with hypoviscosity. It is possible that this is because 

sialidase activity in semen is a normal enough occurrence that its observable effects are 

considered to be ‘normal’. Alternatively, it is possible the effect of sialidase activity on mucus is 

only obvious in samples that would otherwise contain abnormally large amounts of mucus. 

Mucus is thought to be an important component of seminal plasma, and sialidase mediated 

degradation of it, could present another potential means for sialidases to influence fertility.  

Debris within the samples was also assessed, and there appeared to be some difference 

between the proportions of samples with significant amounts of debris across the activity 

groups (see Figure 8). The negative group contained the highest proportion of samples without 

significant debris, whilst the high activity samples contained the least. Additionally, the high 

activity group contained the most samples described as having “plus plus” debris, indicating 

particularly large concentrations of debris.  

Figure 8- Sialidase Activity and Sample Debris 

Figure 8- The bars show the % distribution within the activity groups of various debris 

classifications. Classifications are based on qualitative microscopic assessment of the sample by 

the clinician, with ‘not significant’ being the lowest amount of debris, and ‘plus plus plus’ being 

the highest. 

Abnormal amounts of debris in a semen sample is often associated with microbial activity and 

can be indicative of urogenital infection82,83. This perhaps provides evidence that the sialidase 

activity in these samples is bacterial in origin. 
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There also appeared to be a significant relationship between the sialidase activity and the 

sample volume and sperm concentration (see Table 3). The samples with high activity tended 

towards lower volume and higher sperm concentration, although it is likely that these two 

variables are linked, with lower volume resulting in higher sperm concentration. Despite this 

relationship, the average sperm concentration for all three groups was well above the lower 

reference limit of 15 million cells per ml, and the average sample volume was above the lower 

reference limit of 1.5 ml79, showing that there was no association between sialidase activity and 

abnormality in these parameters. 

Table 3- Sialidase Activity and Sperm Concentration 

A- Sperm Concentration 

Group Mean Sperm Concentration 

(million/ml) 

P (t-test against negative group) 

High Activity (n=24) 70.3 ± 11.3 0.03 

Low Activity (n=45) 50.7 ± 6.3 0.09 

Negative (n=57) 42.2 ± 4.9 N/A 

 

B- Sample Volume 

Table 3- Table A shows the average sperm concentration (± standard error) for each sample 

group, and the P-value generated by a student’s t-test against the negative group. Table B shows 

the same as table A but for sample volume.  

This association could indicate a contribution to the sialidase activity by the sperm associated 

human sialidases. It was thought that these would be contained within sperm cells and not act 

Group Mean Sample Volume (ml) P (t-test against negative group) 

High Activity (n=24) 3.19 ± 0.28 0.01 

Low Activity (n=46) 3.50 ± 0.21 0.02 

Negative (n=56) 4.23 ± 0.21 N/A 
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extracellularly, but perhaps small amounts are secreted, or released by lysed sperm cells. It is 

possible that the 4MUSA enters sperm cells present within the samples and is degraded there. 

It is also possible that sialidase producing bacteria are associated with the sperm cells, as 

bacterial adherence to sperm cells has previously been observed84,85. Alternatively, the results 

could be explained just by the volume difference, with lower seminal volume resulting in both 

higher concentrations of sialidases and sperm cells, causing a co-association. 

Dividing the samples into these 3 activity groups has proven to be an effective tool for 

identifying potential effects of sialidase activity. It indicates that the effect of lower levels of 

activity (<1000AU) is limited, and that perhaps these samples should not be considered to be 

truly sialidase positive. It is however, possible that the observed association of high activity with 

fertility problems is coincidental. Perhaps the lower volume of the samples is having an impact 

on fertility, whilst also increasing the observed sialidase activity, leading to more highly positive 

samples being present amongst those visiting a fertility clinic. Although, the lack of streaky or 

more viscous high activity samples indicates that the sialidase activity is having some effect on 

the semen samples.  

4. Distribution of Bacterial Species in Semen 

To provide more insight into the potential sources of sialidase activity in semen, the microbial 

content of a selection of the samples from the infertility clinic was analysed using 16S rRNA 

sequencing. This allowed a microbial profile to be produced for each of these samples, detailing 

the bacterial taxa present within the sample. An equal number of samples were selected from 

the ‘high activity’, ‘low activity’, and ‘no activity’ groups.  

Two unusual taxa appeared to be present within the majority of the sequenced samples (see 

Figure 9): the genus Shewanella and the family Halomonadaceae. Neither of these taxa have 

previously been isolated from the urogenital tract and are both more commonly associated with 

oceanic environments. Approximately 73% of the sequenced samples contain Halomonadaceae 

and Shewanella (HaShe) and in most of these samples they are the dominant taxa, along with 

smaller amounts of Corynebacterium and Enterbacteriaceae. However, the other 27% of 

samples instead contain a mixture of other taxa including Prevotella, Porphyromonas, 

Lactobacillus and various taxa within the order of Clostridiales. A small number of samples 

(around 12%) contained a more even mixture of these two groups of taxa. 
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Figure 9 – Distribution of Bacteria in Semen Samples 

Figure 9 – Bar chart showing the bacterial species diversity present within the semen samples. 

Each column corresponds to a single sample, and the different colours each show the relative 

abundance of 16S rRNA sequences corresponding to different bacterial taxa. The colour key to 

the side of the chart shows which colours correspond to the more common taxa. A red box has 

been placed around a group of HaShe dominated samples to highlight their prevalence.  

There is a degree of concurrency to some of the identified taxa (as may be seen in Figure 9). The 

already mentioned Shewanalla and Halomonadaceae are almost always present together, and 

Veillonella is rarely seen in samples that do not also contain Prevotella, although Prevotella can 

occasionally be seen without Veillonella. This could indicate a degree of co-dependency to some 

of the bacteria found within the male urogenital tract and provide evidence for symbiotic 

relationships.  

The HaShe presence in the samples is difficult to explain. In some cases, parts of the 16S rRNA 

gene can be similar enough in two species that analysis software can inappropriately label one 

as another, and it is possible that the HaShe are actually other taxa more likely to be found in 

the urogenital tract. There is a possibility that the HaShe taxa did not originate within the 

samples and are the result of contamination of the samples, despite every care being taken to 

avoid such an occurrence. However, as all samples were treated the same at every stage any 

contamination would be expected to be present in all samples, and this is not the case. The 

A group of HaShe 

dominated samples. 
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presence of HaShe could also possibly be explained by the methods used to analyse and present 

the sequencing data. To make the samples comparable the species abundance is given as a 

percentage of total reads within the sample. This means that if all the samples contain a small 

amount of a certain taxon, the samples containing the least amount of anything else will over 

represent this taxon. It could be that a higher abundance of HaShe is linked to a lower overall 

bacterial load in the sample.  

The taxa identified, other than HaShe, are similar to those previously found in other seminal 

microbiome sequencing studies, and the methods used appear to have provided a good overall 

view of the microbial content of these samples.  

5. Sialidase Activity and Bacteria 

Certain bacterial taxa appear to be differentially distributed between sialidase positive and 

negative samples (see Figure 10). HaShe positive samples can be found across the entire range 

of sialidase activity but make up a greater proportion of the samples with activity less than 500. 

Around 60% of the samples with activity greater than 500 are HaShe positive, whilst 100% of 

samples with sialidase activity less than 500 are HaShe positive. Prevotella (along with the often 

concurrent Veillonella) is more commonly associated with samples with higher sialidase activity. 

57% of samples with sialidase activity greater than 500 were positive for Prevotella, whilst only 

16% of samples with activity less than 500 were Prevotella positive. In addition to Prevotella 

other taxa such as Poryphyromonas and Bifidobacteriaceae could be found at higher levels of 

sialidase activity whilst they were absent from samples with lower levels of activity. There was 

a greater degree of taxa diversity in samples with higher levels of sialidase activity.  
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Figure 10- Distribution of Bacterial Taxa by Sialidase Activity 

Figure 10- In this figure the samples have been grouped into sialidase activity bins of 500, and 

the bacterial taxa present within these samples has been presented as the percentage of 

samples within that activity range positive for that particular taxon. ‘Positive’ in this case is 

defined as having more than 5% of total 16S rRNA sequence reads within the sample, correspond 

to that taxon. Certain taxa have been grouped in a manner which better demonstrates the 

trends present within the samples, such as the various genera within the Clostridiales order, and 

HaShe.  

It appears that sialidase activity could be an indication of a disruption of the normal microbial 

presence of the urogenital tract, with various species contributing towards the raised activity. 

Several species of Prevotella are known to be sialidase producers, so it is not unexpected that 

this species demonstrates one of the most notable associations with sialidase activity in this 

study. However, not all sialidase positive samples contain an abundance of Prevotella. In most 

of these cases there are other taxa present which could possibly be providing a source of 

sialidase activity, although it is difficult to fully assess this without species specific data. The 

various potential sources of sialidase activity in these samples means that there does not appear 

to be a single taxon strongly associated with raised sialidase activity, but rather a strong 

negative association with the taxa they are replacing, in this case appearing to be Shewanella 

and Halomonadaceae.  
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Shown in Figure 11 are examples which appear to break the trends held by other samples. Two 

samples demonstrated particularly high sialidase activity and both of these samples also appear 

to carry an unusual set of bacterial taxa. BES034 was the only sample to contain such a large 

proportion of Enterobacteriaceae. Many other samples appear to contain organisms from this 

family, including several sialidase negative samples, but none are so completely dominated by 

the taxon. It seems likely that this high proportion of Enterobacteriaceae is linked to the 

markedly high sialidase activity. Some species within the Enterobacteriaceae are capable of 

producing sialidases, whilst some are not, and it is possible that the Enterobacteriaceae present 

within sample BES034 produces sialidases, whilst those present within the sialidase negative 

samples do not.  

BES014 was consistent with many of the sialidase positive samples, containing no HaShe but 

instead containing Prevotella and Veillonella. However, BES014 was unusual in that it contained 

a particularly large percentage abundance of Veillonella when compared with other sialidase 

positive samples and was also the only sample to contain the taxon Treponema. It is difficult to 

determine which of these factors is contributing to the raised sialidase activity, as there is no 

evidence that any species of Veillonella is capable of producing sialidases, and the Treponema, 

though unusual and a potential sialidase producer, was in relatively low abundance, making up 

only 3.9% of the total sequence reads for that sample.  

Another group of unusual samples are BES097, BES005, BES100, and BES072. These were all 

samples negative for sialidase activity which contained Prevotella. This was unusual as most of 

the Prevotella positive samples were sialidase positive, as expected due to many species of 

Prevotella being sialidase producers. It is possible that the Prevotella species detected in these 

samples are some of the few that do not produce sialidase, such as Prevotella intermedia86. 

Alternatively, there may have been some other factor within those samples preventing either 

sialidase expression, or detection in our assay, although there was no other notable abnormality 

in the other measured parameters for these samples. 
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Figure 11- Bacterial Taxa Distribution in Unusual Samples 

 

 

Figure 11- This figure shows a selection of six ‘unusual’ samples. Two of these were samples with 

substantially higher activity than most (in the red box).  Four of these are samples which 

contained an abundance of Prevotella, despite having no sialidase activity (in the blue box). For 

clarity, only taxa with an abundance of at least 4% in at least one of the samples are shown. All 

other taxa are grouped into ‘other’. 

These unusual samples indicate that the findings of this study do not yet present a complete 

picture of the link between bacteria in semen, and sialidase activity in semen. Although there 

were certain clear trends, not all samples followed these trends, and the many outliers indicate 

that unknown factors may have influenced the results. It is possible that something other than 

the bacteria in the samples is contributing to the sialidase activity, such as the human 

neuraminidases. In addition, it is possible that under certain conditions, either sialidase 

production or sialidase activity may be somehow inhibited. It does still seem apparent that 
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there is a link between bacteria in semen, and sialidases in semen. The positive association 

between potential sialidase producers such as Prevotella and raised sialidase activity, provides 

a strong indication of bacterial contribution to sialidase activity in semen. However, further 

experiments will be necessary to confirm these findings, and to better understand the unknown 

factors affecting samples which do not appear to follow the observed trends. 

6. Effect of Sialidase Activity on Gonococcal Physiology 

The urogenital tract provides a dynamic ecological niche, inhabited by a complex microbial 

community. It is also the frequent site of infection, with sexual intercourse providing a 

mechanism by which pathogenic organisms transfer from one urogenital tract to another. Any 

major change to the urogenital tract, such as raised sialidase activity, would be likely to have an 

effect on these pathogens, potentially influencing their virulence, or interfering with 

treatments. Part of the study sought to determine what these effects could be. Neisseria 

gonorrhoeae (known as gonococci) the causative agent of gonorrhoea was selected for this part 

of the study due to gonorrhoea being a particularly common sexually transmitted infection, and 

because of the known importance of sialic acid to the gonococcal lifecycle (see Introduction 

section 4.3).  

Gonococci become sialylated when grown in the presence of CMP-NANA, and so growing 

bacteria with and without CMP-NANA produced both sialylated and unsialylated gonococci. This 

allowed simulation of bacteria that had become sialylated during infection, as is normal for 

gonococci, and bacteria that had been desialylated by high concentrations of sialidase, as would 

potentially happen in a ‘high activity’ patient.  

Assessment of the sialylation status of the bacteria was made possible using the SM82 antibody. 

SM82 binds specifically to lacto-N-neotetraose (LnT), a moiety found at the end of LPS chains 

(see Figure 12A). Gonococcal sialyltransferase attaches sialic acid to LnT during sialylation 

preventing SM82 from binding to the bacteria (see Figure 12B). The impact of CMP-NANA on 

measurable sialylation was tested in three different laboratory strains of gonococci: MS11, P9, 

and FA1090. It was found that CMP-NANA had the greatest effect on P9, and so P9 was selected 

for further studies. A range of concentrations of CMP-NANA was tested on P9, and it was found 

that at least 20 µg ml-1 was required for complete sialylation (see Figure 12C).  
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Figure 12- Blocking of SM82 Antibody Binding by Sialylation 

                   

 

 

 

 

 

 

 

Figure 12- The results of three different dot blots using SM82 with AP conjugated anti-mouse 

IgM as a secondary antibody. Panel A shows a blot using two strains of Neisseria meningitidis, 

one with L8 LPS (without LnT) and one with L3 LPS (with LnT). Panel B shows the blot against 3 

strains of gonococci grown both with and without CMP-NANA. Row 1 shows SM82 with the 

secondary antibody, row 2 shows the secondary only. Panel C shows a blot with P9 grown in 

varying concentrations of CMP-NANA. 

It was found that CMP-NANA supplementation of nutrient broth increased the growth rate of 

gonococci (see Figure 13A). The growth rate during the log phase was increased to 160% of that 

of bacteria grown without CMP-NANA, when 25µg ml-1 CMP-NANA was added to growth media. 

This was unexpected, and if caused by sialylation could have important implications for sialidase 

positive patients. However, it was possible that CMP-NANA was having an as yet unknown effect 

on gonococcal metabolism, completely unrelated to sialylation, in which case sialidases would 

have no effect on the change in growth rate.  

To determine whether the effect on growth was due to sialylation, sialyltransferase knockout 

mutants were created by disrupting the lst gene. These mutants were incapable of sialylation 

even in the presence of CMP-NANA (see Figure 13B), and therefore any effect of CMP-NANA on 

these bacteria would be unrelated to sialylation and would be unaffected by the presence of 

sialidases. It was found that the growth rate of the mutants was completely unaffected by the 

presence of CMP-NANA (see Figure 13C) indicating that sialylation was required for the effect 

to occur, meaning that the presence of sialidases would likely reverse this effect.  
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Figure 13- Sialylation Increases Gonococcal Growth Rate 

 

 

 

 

Figure 13- Panel A shows a growth over time curve for gonococci both with and without CMP-

NANA, each point is the average of three experiments. Panel B shows the result of an SM82 dot 

blot against 3 sialyltransferase knockout mutants, and two wild type strains all grown both with 

and without CMP-NANA. Panel C shows the effect of CMP-NANA on the endpoint growth of the 

wild type and sialyltransferase mutant. Values given are the endpoint growth (absorbance at 

600nm) normalised to the growth endpoints without CMP-NANA. Values are the average of 

three experiments. 

There are several potential explanations for the effect of sialylation on growth rate. The 

negative charge of sialic acid87,88 could potentially prevent bacteria from aggregating, allowing 

them to more evenly disperse throughout the growth media preventing competition for 

nutrients. It is also possible that sialylation triggers a change in gene expression in the bacteria, 

resulting in a faster growing phenotype. The bacteria normally become sialylated upon contact 

and invasion of host cells, where they are exposed to intracellular CMP-NANA. It is therefore 

possible that sialylation acts as a signal to the gonococci to switch to a phenotype more suitable 

to intracellular life, perhaps leading to an increase in growth rate. 

N. gonorrhoeae was one of the first organisms to demonstrate resistance to antibiotics89,90, and 

over the decades since the introduction of antibiotics, gonococci have become significantly 

harder to treat91,92, with highly resistant isolates becoming more prevalent93. The particular 
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importance of antibiotic efficacy in gonococci prompted the study of the impact of sialylation 

on antibiotic susceptibility. Initial results indicated that there was no significant effect of 

sialylation on antibiotic susceptibility, as there was no change in the minimal inhibitory 

concentration (MIC) of azithromycin, ceftriaxone, chloramphenicol, or tetracycline.  

However, bacterial interactions with antibiotics can be too complex to be defined only by an 

MIC. Often several factors with small impacts on antibiotic susceptibility can compound 

together to produce higher levels of antibiotic resistance. To determine whether sialylation 

could have a smaller effect on antibiotic resistance, not detectable in an MIC assay, the bacteria 

were grown in the presence of sub-MIC concentrations of the antibiotic, both with and without 

CMP-NANA (see Figure 14). It was found that after 20 hours of incubation the growth was 

sufficient to be able to measure the impact of sialylation on antibiotic susceptibility by 

comparing the change in growth reduction with and without CMP-NANA. For further 

experiments a single OD600 measurement was taken at 20 hours, rather than taking 

measurements every hour.  

Figure 14- Impact of Azithromycin and Sialylation on Gonococcal Growth Kinetics 
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Figure 14- Shows growth curves of sialylated and unsialylated gonococci with and without 0.09 

µg ml-1 of azithromycin. Sia+ Az- is grown with CMP-NANA but no azithromycin, Sia+ Az+ is 

grown with CMP-NANA and azithromycin, Sia- Az- is grown without CMP-NANA and without 

azithromycin, and Sia- Az+ is grown without CMP-NANA and with azithromycin. It was found 

that after 20 hours of growth, the difference between the OD600 of the bacteria with and 

without antibiotic could be used to compare the impact of antibiotics on bacteria grown under 

different conditions. X shows the impact of azithromycin on bacteria grown with CMP-NANA, 

Y shows the impact on bacteria grown without CMP-NANA. When Y is normalised to 1 (see 

Materials and Methods 14) X equals 0.73.   
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Endpoint measurements were then used to measure the effect of sialylation on the action of 

both azithromycin and ceftriaxone (Figure 15). It was found that at sub-MIC concentrations, 

growth with CMP-NANA made the bacteria more susceptible to the antibiotics. CMP-NANA 

caused the effect of azithromycin and ceftriaxone on gonococcal growth to increase by almost 

20%. The experiment was repeated with the sialyltransferase knockout mutants, and it was 

found that the CMP-NANA did not have the same impact on the effect of antibiotics on these 

organisms, confirming that the observed effect was caused by sialylation.  

Figure 15 - The Effect of Sialylation on Antibiotics 

Figure 15- The figures show the effect of sialylation on response to sub MIC concentrations of 

antibiotic. Panel A shows the effect on 0.09 µg ml-1 of azithromycin, Panel B shows the effect on 

0.002 µg ml-1 of ceftriaxone. The experiment was carried out on both wild type gonococci (P9) 

and the lst negative mutant (labelled mutant here). ‘+’ indicates growth with CMP-NANA, ‘-‘ 

indicates growth without CMP-NANA. The values are given as relative growth values, with the 

growth (relative to growth without antibiotics) of the CMP-NANA negative control equalling 1. 

Values in both panels are the average of three experiments. 

There are several potential explanations for this observed increase in the susceptibility to 

antibiotics of sialylated organisms. Antibiotics have a greater observable effect on growing 

organisms, either because growth is required for their action (as is the case for ceftriaxone) or 

because they act to slow bacterial growth, and their effect is more noticeable in growing 

organisms (as is the case for azithromycin). It is likely that the increased growth rate of sialylated 

gonococci is at least in part, responsible for the observed increased effect of the antibiotics on 

the bacteria.  
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However, there may also be a more direct influence of the sialic acid on antibiotic susceptibility. 

Glycans have been demonstrated to influence the structure and spatial arrangement of surface 

proteins in eukaryotic cells,94,95 and it is possible that a similar effect in gonococci could render 

the membrane more permeable to antibiotics. Alternatively, if sialylation does induce a change 

in gene expression to produce a phenotype better suited to the intracellular stage of its lifecycle, 

(as proposed as a mechanism influencing the growth rate) then this intracellular phenotype 

could be more susceptible to antibiotics. Host contact mediated changes in phenotype have 

been demonstrated in other bacteria such as Staphylococcus aureus96 and Legionella 

pneumophila,97 and gonococci have been shown to possess a transcriptional regulator (CrgA) 

which responds to host cell contact98 indicating a need for phenotypic changes to take place 

upon infection of host cells.  It is possible that in the relative safety of the host cell interior, 

efflux pumps become less active, and the membrane becomes more permeable to outside 

substances.  

Although the effect of sialylation status on antibiotic susceptibility is small, it could still have 

clinical relevance in some circumstances. Combined with other resistance mechanisms, lack of 

sialylation could tip the balance towards treatment failure, meaning high sialidase activity in the 

urogenital tract could make gonorrhoea harder to treat. Additionally, small numbers of 

unsialylated gonococci surviving treatments could play a role in developing higher levels of 

antibiotic resistance. Lack of sialylation may allow bacteria with only slightly reduced 

susceptibility to survive treatment, giving them the opportunity to acquire additional resistance, 

through mutation or horizontal gene transfer.  

However, it could be argued that the advantages of sialylation to gonococci far outweigh the 

disadvantages. The increase in growth rate, coupled with the serum resistance granted by 

sialylation, will likely make it easier for bacteria to survive within the host, and could facilitate 

the development of a disseminated infection. It is possible, based on these results, that patients 

with higher levels of sialidase activity in their urogenital tract, could suffer from harder to treat, 

but milder less virulent gonorrhoea infections. This could prevent the use of sialidase inhibitors 

to increase antibiotic treatment success, as an increase in sialylated bacteria could increase the 

severity of the infection. The multitude of potential effects sialidase activity could have on 

gonorrhoea infections, provides an example of the complex dynamics influencing infections in 

the context of host microflora. 

 

 



53 
 

General Discussion 

1. Outcomes of Study 

The data produced by the experiments carried out during this study has provided a more 

detailed understanding of several linked areas of biomedical research and will hopefully provide 

the groundwork for further research into areas that have yet to be studied in detail. 

1.1 Outcomes of Sialidase Assays 

Previous studies have examined the presence of sialidases in the mouth99,100, gut37, and female 

genital tract20,101. This project has expanded upon sialidase research by confirming the presence 

of sialidase activity within human semen samples, and therefore demonstrating their presence 

in the male genital tract. The data also shows that not all semen samples contain measurable 

levels of sialidase, indicating the influence of a yet to be identified variable. The demonstration 

of such significant variation in the activity of an enzyme present within human tissue is 

important, as it is possible that this variation could have an effect on health. The data will 

hopefully prompt further research into this variation and its underlying mechanisms, potentially 

improving our understanding of factors influencing sexual health.  

The optimisation of the 4MU based sialidase assay for use in semen has provided a starting 

point for being able to differentiate between sialidase positive and sialidase negative men, 

which could prove valuable should the health impacts of raised sialidase activity in semen be 

confirmed. The study also identified two samples with activity several fold higher than most 

other sialidase positive samples. Such samples provide data with which varying levels of 

‘normal’ can be determined. We now know that sialidase activity in semen is relatively common, 

with roughly half of the men in this study testing positive. However, only a relatively small 

number of these samples (around 20%) presented activity greater than 1000AU, and only in 

rare cases (2 samples of the 142 tested) were samples be found with activity greater than 

10000AU. Understanding how these varying levels of activity can affect the semen, and the 

health of the patient, will be crucial for developing effective treatments and diagnostic 

procedures.  

Recent research has begun to highlight the importance of better understanding male factor 

infertility102, and the potential explanations for idiopathic cases. Researchers have investigated 

potential genetic causes103,104, as well as the possible link between the presence of reactive 

oxygen species and infertility105,106. This data has provided some insight into the potential 

impact of sialidase activity on male factor infertility and indicates sialidases are another 
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potential avenue of research which may help to explain the large numbers of cases of idiopathic 

male factor infertility. The experiments did not identify a strong link between seminal sialidase 

activity and the fertility status of the patient, but there was an increase in the number of 

samples with activity greater than 1000AU within the infertile samples, and the samples of 

those visiting a fertility clinic. The study did not produce enough evidence to confirm that the 

higher levels of sialidase activity in these samples caused the fertility issues of the patients who 

provided them, but this increase in samples above a certain threshold of activity is worthy of 

further investigation. Various limitations to the techniques used in these experiments (see 

section 2.1) may have prevented the confirmation of a strong link between sialidases and 

infertility. However, should the link be confirmed by further experiments, it could help to 

diagnose many cases of male factor infertility which are currently left unexplained, and to 

develop treatments for those men affected by sialidase mediated fertility problems. For couples 

suffering from unexplained infertility, such developments in the field are very important.  

Links were also discovered between sialidase activity and various other semen parameters. 

When the threshold of 1000AU of sialidase activity was applied to looking at parameters such 

as sample viscosity and appearance it was found that there were some significant relationships. 

These relationships provide more evidence of a biological effect of sialidase activity on semen, 

with potential clinical implications. Although the initial hypothesis that sialidases could interfere 

with the sperm glycocalyx is yet to be confirmed, we now know that certain levels of sialidase 

activity appear to reduce the amounts of mucus in some semen samples. Mucus makes up less 

than 1% of the composition of seminal fluid, so it is unsure how significant an effect its 

degradation by sialidases will have on fertility, if indeed that is the cause of the observed trends. 

However, evidence that the sialidase activity is having a detectable effect on the semen will be 

important to take into consideration when evaluating the potential clinical significance of 

sialidases in semen.  

1.2 Outcomes of 16S rRNA Sequencing 

16S rRNA analysis of the bacteria present within the semen samples provided an insight into 

the possible sources of sialidases in semen. Understanding the biological mechanisms behind 

raised sialidase levels in semen will be important for the development of diagnostic tools and 

treatments, should the morbidity associated with raised sialidase activity be deemed significant 

enough to warrant such measures. The data indicates that the sialidase activity could be 

bacterial in origin, meaning antibiotics could likely be used to reduce the activity if necessary. It 

also appears that, similar to bacterial vaginosis, sialidase activity in semen seems to be linked 
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to a disruption of the normal urogenital microbiota, perhaps indicating that the two phenomena 

are closely linked. It is possible that an asymptomatic condition similar to bacterial vaginosis 

also occurs in men. Should this be the case, seminal sialidase assays could prove to be the 

easiest way to diagnose the condition, just as sialidase assays can be used to diagnose bacterial 

vaginosis107.  

The bacterial involvement in seminal sialidase activity also potentially provides explanation for 

the difficulty confirming a link between sialidase activity and infertility. Microbiomes can be 

dynamic and can often shift between different dominant organisms over time. This is 

particularly true with the vaginal microbiome which changes in response to different stages of 

the menstrual cycle108. As there is a degree of sharing between the urogenital microbiomes of 

men and women who frequently engage in sexual intercourse, it is likely that there will be a 

degree of temporal variation to the male urogenital tract too. This means that there may be 

fluctuations in the abundance of sialidase producing bacteria in the male urogenital tract, 

meaning the sialidase activity threshold required to impede fertility may not be constantly 

maintained. This could explain why we found cases of men who were fertile, who also displayed 

relatively high levels of sialidase activity. It could also help to explain the weak overall 

association between sialidase activity and fertility problems. However, it does seem plausible 

that in some cases sialidase producing bacteria could become more stably established within 

the urogenital microbiomes of both the male and female partner, leading to potential long-term 

fertility problems.  

1.3 Outcomes of Gonococcal Experiments 

It was found that there is more to gonococcal sialylation than just serum resistance. Sialylated 

N. gonorrhoeae appear to be faster growing, but more susceptible to both azithromycin and 

ceftriaxone. This coupled with their serum resistance presents a complex view of the effect of 

sialylation on gonococci. In some ways sialylation is clearly beneficial to gonococci, allowing 

them to better survive in the host and reproduce more quickly, but it carries the disadvantage 

of making them more susceptible to antimicrobial drugs. It is important that bacterial 

phenotypic changes that occur in response to host contact, such as gonococcal sialylation, are 

understood in their entirety. Such changes are likely to impact infection, and better 

understanding them could lead to the development of novel clinical tools. Studies of gonococcal 

sialylation have mostly been restricted to its effect on serum resistance, but it is possible that 

the data produced by these experiments could prompt research into its other potential effects 

on gonococcal physiology.  
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Coupled with the results of the sialidase assays, the findings from the gonococcal experiments 

are given additional context, with potentially important clinical ramifications. It is likely, 

although yet to be experimentally confirmed, that more gonococci infecting a highly sialidase 

positive urogenital tract will be in their unsialylated state. In some ways this could be to the 

benefit of the patient, as the bacteria will not be serum resistant, and will grow more slowly. 

This could limit the spread of the infection, and perhaps even make it harder for the gonococci 

to establish an infection at all. However, it is possible that the lack of sialylation will also make 

it slightly harder to treat the patient with antibiotics. These details will be important to consider 

should efforts ever be made to reduce sialidase activity to aid fertility, and patients should be 

thoroughly screened for sexually transmitted infections before such treatments are 

administered. It is possible that treatment with sialidase inhibitors could potentially exacerbate 

an underlying gonorrhoea infection.  

Furthermore, when treating gonorrhoea, it may be important to take into consideration 

variations in urogenital sialidase activity between patients. Doses of antibiotic sufficient to treat 

a sialidase negative patient, may not be enough to treat a sialidase positive patient, due to the 

presence of greater numbers of more resilient unsialylated gonococci. It is also possible that 

this could drive the development of higher levels of antimicrobial resistance. Bacteria with only 

slightly reduced levels of antimicrobial susceptibility, normally not sufficient to allow survival of 

antibiotic treatment, may be able to survive treatment if they are unsialylated, giving them 

opportunity to develop other resistance mechanisms and become fully resistant to the 

antibiotics. 

The potentially varied antibiotic response of gonococci infecting a sialidase positive urogenital 

tract versus a sialidase negative urogenital tract presents an example of the limitations of 

current laboratory antibiotic susceptibility assays. Bacteria are often taken out of context during 

antibiotic testing and placed on media designed to optimise growth rather than to mimic host 

conditions. Such conditions allow direct comparison between bacteria, but do not take into 

consideration variation they will be exposed to within the host. It is possible that whilst one 

bacterial strain may appear less susceptible to an antibiotic than another strain on agar, that 

strain may undergo different phenotypic changes in response to various host stimuli, making it 

more susceptible in the host. Bacteria are living organisms able to respond to and adapt to their 

surroundings and it is likely they will undergo phenotypic changes whilst in the host, which may 

also possibly vary from patient to patient. These experiments provide an example of how 

introducing a single host factor (CMP-NANA) to antibiotic susceptibility assays can alter the 

results. Coupled with the evidence that factors affecting this change (sialidase activity) will vary 
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from patient to patient, it becomes clear that traditional disc diffusion assays on agar do not 

provide a complete picture of gonococcal antibiotic responses. It is hoped that results such as 

these could prompt efforts to produce antibiotic susceptibility assays that more accurately 

recreate host conditions, and that an understanding of how these conditions may vary between 

patients is considered when interpreting the results of such assays.  

2. Limitations of the Study and Possible Future Experiments 

This study has provided a unique insight into the potential effects of sialidases on the urogenital 

tract. However, there were many factors which limited these experiments and the level of detail 

of the data that they produced. With hindsight, it is possible to suggest various improvements 

to the experiments carried out during this study, and to suggest further experiments that could 

be completed to provide a more robust dataset.  

2.1 Limitations of the Sialidase Assay 

The 4MUSA based sialidase assay provided a useful tool with which large numbers of semen 

samples could quickly be assessed for their sialidase activity. However, both the nature of the 

samples and of the fluorogenic substrate limited the level of detail that could be garnered from 

the assay. The semen fluoresced to some degree at the same wavelengths used to measure 

4MU abundance, producing a high background signal. The 4MUSA substrate also degraded to 

some extent even if no sialidase was present. This meant that samples produced a relatively 

high fluorescence signal without any sialidase being present, and there was some difficulty 

differentiating between the background signal and signal produced by sialidase, as is evident by 

the numerous ‘negative’ activity values. These negative values are perhaps caused either by 

samples absorbing some of the fluorescence, or perhaps reducing the rate of natural substrate 

degradation. This meant it was impossible to convert the fluorescence measurements from 

these experiments into substrate turnover, as there was no way to generate a functional 

standard curve.  

Another issue frequently encountered whilst carrying out sialidase assays was the 

heterogeneity of the samples. The aim of the assays was to detect extracellular sialidases. This 

necessitated the avoidance of over processing the samples in a manner which risked damaging 

cells and releasing internal sialidases, which made homogenising the samples more difficult. 

Some samples contained debris and mucus, and some samples would separate into two layers. 

Every effort was taken to gently resuspend samples to ensure that such components were 

evenly distributed between assay repeats, however due to the viscosity of the samples and the 
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size of some of the pieces of debris, it is likely that the samples will have maintained a degree 

of heterogeneity, increasing the error rate of the assay. The high viscosity of some samples also 

likely led to some pipetting inaccuracy, further increasing the error rate of the assay.  

As previously mentioned, there was some debate as to the appropriate pH to use during the 

sialidase assay. Whether to use pH 7.7 to more closely replicate normal semen pH, or pH 4.2 to 

produce higher levels of sialidase activity, increasing the sensitivity of the assay. After testing a 

selection of samples (see section 1 of the Results and Discussion) it was found that many 

samples displayed much higher activity at the lower pH and it would be much easier to 

distinguish between sialidase positive and negative samples using pH 4.2. However, it is possible 

that this was a mistake, as many of the samples presenting lower levels of activity show no 

correlation with any other measured parameter. This is perhaps because at biological pH there 

is no sialidase activity present within these samples. In addition, optimum pH varies between 

sialidases, and there may have been rare samples with higher activity at biological pH which 

appeared negative in this assay. No such samples were detected in the selection tested at both 

pH’s, but this does not eliminate the possibility of their existence. However, by determining a 

threshold of fluorescence representative of high enough levels of activity to affect the samples, 

useful data could still be produced.  

Future experiments analysing sialidase activity within semen samples could further optimise 

this assay to produce more consistent data. It is not yet known how sialidases in semen are 

localised and whether they are associated with cells, or free within the seminal fluid. If this can 

be determined, it may be possible to process the samples in a manner which will reduce 

interference with fluorescence-based assays. It may be possible to remove cells via 

centrifugation, and then use protein purification to produce a ‘cleaner’ sample, containing only 

extracellular proteins, allowing for more consistent sialidase assays. The risk of processing the 

samples in this way is that significantly altering the conditions surrounding the sialidases may 

change their activity, allowing inactive enzymes to become active, or reducing the activity of 

active samples. However, these risks may be worth the increase in reproducibility, and 

reduction in background noise. Another option is to use an assay which does not rely on 

methylumbelliferone fluorescence. An alternative assay uses a coupled enzyme system in which 

the desialylation of the galactose residues is detected first by a galactose oxidase which 

produces hydrogen peroxide after binding to unsialylated galactose, and then by a peroxidase 

which uses the hydrogen peroxide to oxidise a chromogenic substrate109. Though this assay is 

more complex than the 4MUSA based assay it is possible that sample autofluorescence will not 

be as high, when detecting an alternative product. However, it is possible that unsialylated 
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galactose within the semen sample may present another source of background noise, possibly 

causing problems with this assay. Future experiments could also take samples from the same 

patient at different time points, to test how stable sialidase activity is over time, and determine 

whether problems caused by sialidase activity are likely to be acute or chronic conditions. 

2.2 Limitations of the 16S rRNA Sequencing 

One of the chief limitations of the 16S rRNA sequencing carried out as part of this study was 

sample availability. At the time the sequencing was completed none of the samples from fertile 

patients were available, and a selection of 50 had to be picked from the first 100 samples from 

the fertility clinic. This meant no comparisons could be made between fertile and infertile 

samples. Therefore, we could not determine whether there were any links between bacterial 

taxa and fertility, and if this corresponded to differences in sialidase activity in both sample sets. 

Such as the data is, the conclusions that can be drawn on the effect of bacteria on fertility are 

limited, and any speculation to that end requires the assumption that correlations between 

bacteria and sialidase activity can be extrapolated to the fertile samples. In addition, the 

number of samples in each activity group was relatively small, with only 16 samples in each (17 

in the high activity group) limiting the statistical significance of the data.  

There are also general limitations to 16S rRNA sequencing, which may have affected the results. 

The level of identification possible using the 16S rRNA gene is limited, rarely allowing 

identification at any phylogenetic level above genus, and sometimes being limited to the family 

or even order level. This made identifying potential sialidase producers difficult as although 

there are some genera containing large numbers of sialidase producing organisms (such as 

Prevotella) it is rare that sialidase production is ubiquitous throughout a genus. This creates a 

high risk of confirmation bias when interpreting the results with assumptions being made that 

sialidase negative members of a taxon are present within a sialidase negative sample whilst 

sialidase positive members of a taxon are present within a sialidase positive sample. It was also 

difficult to determine the abundance of taxa identified within the samples. 16S rRNA sequencing 

relies on PCR to amplify the targeted part of the 16S rRNA gene. This means that sequences 

more efficiently bound by the primers or amplified by the polymerase will be overrepresented, 

whilst sequences less efficiently amplified will be underrepresented. This means the percentage 

abundance of sequence reads produced by the analysis is unlikely to accurately correspond to 

the actual number of organisms within the sample. The processing of the sample may also have 

impacted the results, with some organisms potentially being lost when the samples were 

frozen, and some being lost during the DNA extraction process.  
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Another issue with the microbiome analysis was that of contamination. The patients producing 

the samples are unlikely to be trained in aseptic technique and, due to the private nature of the 

act of sample production, cannot be supervised by trained staff whilst they produce the 

samples. The nature of sample production also makes it difficult to place any restrictions on the 

patients to reduce the risk of contamination. The patients were encouraged to wash their hands 

before producing the sample, and the rooms in which the samples were produced were 

maintained to a high level of cleanliness, but despite these measures it is likely that there was 

a degree of contamination within the samples, likely originating from the patient’s skin flora. 

Certain taxa often isolated from the skin flora such as Streptococcus and Staphylococcus were 

present within some samples, although a large proportion of the identified taxa are not usually 

found on the skin, and so were unlikely to be the result of contamination.   

Now that more samples have been collected by the study, it is possible to carry out the 

sequencing on a larger scale, and to include samples from healthy patients. A larger number of 

samples will allow higher powered statistical analysis to be done and will potentially allow for 

hypotheses formed, based on the sequencing completed during this study, to be more 

rigorously tested. Future experiments will also allow for alternative regions of the 16S rRNA 

gene to be sequenced. A study in 2012110 indicates that the V4 region provides the best 

coverage, whilst in this experiment we used primers spanning the V5 to V6 regions. It is possible 

that sequencing an alternative region of the 16S rRNA gene may provide a more detailed 

analysis of the seminal microbiome. Though difficult, it may be possible to reduce the risk of 

skin flora contamination during sample production. The use of sterilised polyurethane collection 

condoms may be one method to help reduce the risk of samples contamination. Alternatively, 

the use of sample collection machines, such as the Sanwe SW-3701 which allows for ‘hands 

free’ sample collection, may help both to reduce sample contamination, and to standardise the 

sample collection process. As with future sialidase assays, it will be useful to take several 

samples from each patient, at different time points, to monitor the temporal dynamicity of the 

seminal microbiome.  

2.3 Limitations of the Gonococcal Experiments 

The aim of this project was to assess the potential impact of sialidases on the male urogenital 

tract. Whilst the gonococcal experiments did produce data on the impact of sialic acid on 

gonococci, linking this to the project aim required the assumption that sialidases within the 

urogenital tract will alter the sialylation status of gonococci. It is highly likely that sialidases will 

desialylate gonococcal cell surface components, but experimental data confirming this would 
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improve the relevance of this data to the rest of the study. It is possible that the level of sialidase 

activity present within sialidase positive men will be insufficient to fully desialylate gonococci. 

The gonococci often become sialylated after entering host cells, as it is within cells that they 

often encounter CMP-NANA. It is not yet known whether bacterial sialidases can enter human 

cells, and it is possible that many sialylated gonococci within host cells will be protected from 

desialylation. Furthermore, the experiments were only completed with a single strain of N. 

gonorrhoeae. Until more experiments are done it is possible that the observed results are the 

product of a phenomenon which only occurs in P9, and no other strains of gonococci.   

Future experiments should compare several different strains of gonococci, to verify the results 

and understand how varied gonococcal responses to sialylation are. The experiments studying 

the impact of sialylation on gonococcal antibiotic susceptibility should be repeated using 

bacteria with varying degrees of resistance to the antibiotics being tested to better understand 

how desialylation induced reduction in susceptibility will couple with other mechanisms of 

resistance. Species other than N. gonorrhoeae are known to undergo surface sialylation (such 

as Haemophilus influenzae) and it will be important to determine whether these species also 

experience changes in growth rate and antibiotic susceptibility. Therefore, experiments should 

be designed to test the effect of sialylation on these species, and perhaps the experiments could 

be expanded to include other surface modifications. In addition, the effect of sialidases on 

sialylated bacteria should be tested. An experiment could be designed to determine the level 

of sialidase activity required to desialylate the bacteria sufficiently to restore the serum 

sensitivity, slower growth rate, and grant the reduction in antibiotic susceptibility. This will allow 

better understanding of the effects of bacterial sialylation within the context of host levels of 

sialidase activity, and confirm whether host sialidase activity is sufficient to induce a level of 

phenotypic variation, with the potential to affect treatment outcomes or change the course of 

an infection. 

Additional future experiments could examine the effects of sialylation on gonococci in more 

detail. The data from the gonococcal experiments prompted speculation as to how sialylation 

could increase growth rate, and how it could affect antibiotic susceptibility. Three theories 

regarding the potential effects of sialylation on gonococci were formed based on the 

observations. Firstly, the negative charge of the sialic acid could be significant enough to repel 

other sialylated bacteria potentially allowing the bacteria to more quickly disperse through 

growth media, reducing competition for nutrients and space. Secondly, sialylation could have 

an impact on membrane structure, possibly rendering it more permeable to antibiotics. Finally, 

sialylation could trigger changes in gonococcal gene expression, potentially acting as a signal to 
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adopt a phenotype more suitable to intracellular life. Future experiments could explore these 

hypotheses and help to gain an even deeper understanding of the impact of sialylation (and 

possibly sialidases) on gonococci. Microscopic observation of growing cultures could confirm 

whether sialic acid causes bacteria to be spaced further apart. Atomic force microscopy could 

potentially examine the surface of the bacterial membrane, to determine whether sialylation 

alters its structure. Transcriptomics of sialylated versus unsialylated bacteria could determine 

whether sialylation alters the expression of other gonococcal genes. 

2.4 Further Research into Sialidases in Semen 

This study should be repeated on a larger scale if the link between sialidase activity and 

infertility is to be more confidently established. Should the link between sialidase activity and 

infertility be confirmed, it will be crucial for future studies to confirm whether the link is causal. 

Clinical trials should be conducted to determine whether treating infertile men for raised 

sialidase activity is able to restore their fertility. Sialidase inhibitors could be used for this, or 

antibiotic treatments targeting potential sialidase producers. Trials should be conducted testing 

the efficacy of treating the male partner only, the female partner only, and both the male and 

the female partner. Should lowering the urogenital sialidase activity of infertile couples increase 

their reproductive success, it will confirm that the sialidases are directly causing infertility and 

are not merely a symptom of another unidentified fertility problem. 

3. Concluding Remarks 

This study has been successful in its aim to improve understanding of the impact of sialidases 

on the urogenital tract. Thanks to these results we now know that raised sialidase activity in 

semen is prevalent in men, and in some cases could be impacting their reproductive health. 

Links have been established between raised sialidase activity and several other semen 

parameters, showing that it is possible that these enzymes have an observable effect on the 

semen. In addition to this, the experiments revealed an increase in high activity samples in men 

with fertility problems, suggesting that the effects of sialidases on semen may be detrimental 

to male fertility. Furthermore, it appears that raised urogenital sialidase activity has the 

potential to impact gonorrhoea infections, possibly making the infection harder to treat, and 

creating an environment which may allow for the development of more resistant strains of 

gonococci.  

Data from the study has also improved our understanding of various experimental techniques. 

Because of these experiments it may be possible to develop a sialidase assay better suited for 
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use in semen samples, which will be a key tool in expanding our understanding of these 

enzymes. The gonococcal experiments have increased our understanding of the limitations of 

conventional antibiotic susceptibility tests and will hopefully allow for the development of the 

more effective assays needed to tackle the rising problem of antibiotic resistance. It is hoped 

that the results of the experiments in this study will be useful in providing the groundwork for 

future experiments and allow for more sophisticated tools to be developed for these 

experiments.  

Finally, this project has provided a unique insight into the delicate balance of the host-

microbiome relationship. Human mucosal surfaces provide an environment in which a vast 

multitude of organisms can thrive, often becoming an important part of our biology and 

benefiting our health. However, should the conditions within this ecological niche begin to 

favour the wrong kinds of organism, the effects on our health can be detrimental. Looking at 

the impact of a single bacterial enzyme it is possible to see the range of effects such microbiome 

shifts could have on our health, in this case potentially rendering people infertile. It is hoped 

that such research will expand our understanding of bacterial disease beyond that of infection, 

and demonstrate how non-invasive, apparently asymptomatic changes to our microbiota, can 

also have serious consequences for human health.  
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