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There is increased interest in the use of cellulose nanomaterials for the mechanical 10 

reinforcement of composites due to their high stiffness and strength. However, 11 

challenges remain in accurately determining their distribution within composite 12 

microstructures. We report the use of a range of techniques used to image 13 

aggregates of cellulose nanocrystals (CNCs) greater than 10 μm2 within a model 14 

thermoplastic polymer. Whilst Raman imaging accurately determines CNC 15 

aggregate size, it requires extended periods of analysis and the limited observable 16 

area results in poor reproducibility. In contrast, staining the CNCs with a 17 

fluorophore enables rapid acquisition with high reproducibility, but overestimates 18 

the aggregate size as CNC content increases. Multi-channel spectral confocal laser 19 

scanning microscopy is presented as an alternative technique that combines the 20 

accuracy of Raman with the speed and reproducibility of conventional confocal 21 

laser scanning microscopy, enabling the rapid determination of CNC aggregate 22 

distribution within composites. 23 

Keywords: cellulose, nanomaterials, composites, confocal microscopy, spectral 24 

imaging, confocal Raman spectroscopy 25 
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Introduction 26 

The rise of the circular economy, and increased environmental awareness, has seen 27 

biomaterials come to the fore of innovation as evidenced by the Circular Design 28 

Challenge winners announced at the World Economic Forum Annual Meeting in 29 

Davos in early 2018. These factors have led to significant interest in the use of 30 

cellulosic nanomaterials (CNMs) across a wide range of application areas 31 

including, but not exclusive to, composites (Nakagaito & Yano 2004, Malainine et 32 

al. 2005), biosensors (Bi et al. 2016), drug delivery (Jackson et al. 2011), food 33 

additives (Hu et al. 2016), packaging (Yu et al. 2014), energy storage (Liew et al. 34 

2013), tissue engineering (He et al. 2014), and wastewater treatment (Batmaz et al. 35 

2014). Their nanoscale dimensions, high mechanical properties, ease of 36 

functionalization, and sustainability in particular have resulted in publications 37 

exploring their use as reinforcement in various polymer nanocomposite materials 38 

(Siró & Plackett 2010, Oksman et al. 2016, Kargarzadeh et al. 2017). 39 

It is generally accepted that the uniform distribution of CNMs as a percolated 40 

network throughout the polymer matrix results in composites with better 41 

mechanical properties than those with isolated CNM aggregates. (Siqueira et al. 42 

2010, Oksman et al. 2016, Ray & Sain 2016, Kargarzadeh et al. 2017, Chakrabarty 43 

& Teramoto 2018) However, it is a particular challenge to track the bulk distribution 44 

of CNMs in a nanocomposite material. Whilst electron microscopy can distinguish 45 

individual CNMs (Ranby 1951), CNMs and polymeric materials have similar 46 

densities, making contrast difficult without staining. Cellulose is also susceptible to 47 

charge build-up and degradation under high energy beams (Foster et al. 2018, 48 

Ogawa & Putaux 2018). Scanning probe microscopy has previously been used to 49 

investigate the distribution of CNMs in composites (Saxena et al. 2009, Shariki et 50 
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al. 2011, Mandal & Chakrabarty 2015). Yet it is challenging to accurately 51 

distinguish the CNMs from the polymer matrix via height mapping only – although 52 

Nigmatullin et al. had success in distinguishing cellulose nanocrystals, CNCs, from 53 

starch using adhesion mapping (Nigmatullin et al. 2018) – and the observable 54 

volume is limited to around 150 × 150 × 15 μm3. Chemical mapping using confocal 55 

Raman spectroscopy is a well-established technique (Stewart et al. 2012) that has 56 

been successfully applied by Agarwal et al. to distinguish between CNCs and 57 

polypropylene, mapping the density of CNCs in areas up to 100 × 100 µm2 58 

(Agarwal et al. 2012), whilst Lewandowska et al. have mapped areas containing 59 

CNCs and polyethylene up to 200 × 200 µm2 (Lewandowska & Eichhorn 2016, 60 

Lewandowska et al. 2018). However, the observable area is still limited, and the 61 

process time consuming, often requiring more than half a day to acquire and analyse 62 

each image. 63 

One alternative to these imaging approaches is the modification of CNMs with 64 

various fluorophores, including fluorescein, rhodamine and calcofluor white 65 

(Haghpanah et al. 2013, Lou et al. 2014, Endes et al. 2015, Camarero-Espinosa et 66 

al. 2016, Tomić et al. 2016, Leng et al. 2017), which enables rapid imaging of their 67 

bulk distribution in composites via confocal microscopy. However, the 68 

physicochemical properties of the CNMs will inevitably be altered upon binding of 69 

the fluorophore (Abitbol et al. 2013). Therefore, if the CNMs are modified with the 70 

fluorophore before composite production, observations may not be representative 71 

of the unmodified material. 72 

It is generally accepted that fluorescent detection of CNMs requires the presence of 73 

fluorophores due to the lack of fluorescent aromatic groups within their chemical 74 

structure. Nevertheless, several publications have reported the autofluorescence of 75 
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cellulose under UV excitation (Olmstead & Gray 1993, Pöhlker et al. 2012, Gong 76 

et al. 2013, Kalita et al. 2015, Malinowska et al. 2015, Johns et al. 2018). This 77 

autofluorescence has previously been attributed to the presence of lignin in the 78 

samples (Kalita et al. 2015). This effect is thought to be understood (Albinsson et 79 

al. 1999, Radotić et al. 2006), but explanations for these materials do not hold true 80 

for autofluorescent celluloses that are not of plant origin (Olmstead & Gray 1993, 81 

Johns et al. 2018). Gong et al. suggest that the clustering of electron-rich groups 82 

with lone pair electrons, i.e. oxygen atoms, resulting in electron cloud overlap are 83 

responsible for the luminescent properties of carbohydrate molecules (Gong et al. 84 

2013). The inter- and intra-molecular hydrogen bonding network between the 85 

chains rigidify the molecular confirmations, blocking vibrational dissipation and 86 

ensuring emission (Gong et al. 2013). This forms the basis of a theory known as 87 

clustering-triggered emission (CTE) with computational modelling confirming that 88 

interconnected short oxygen-oxygen contacts may exist between D-glucose units 89 

(Yuan & Zhang 2017). 90 

The present paper investigates the use of multi-channel spectral confocal laser 91 

scanning microscopy, which simultaneously detects fluorescent emission across the 92 

visible spectrum as 32 distinct channels rather than the single channel detected by 93 

conventional confocal laser scanning microscopy, to track the distribution of CNMs 94 

in a model HDPE composite material. The distribution of the CNM aggregates 95 

observed using this technique is compared to those observed using confocal laser 96 

scanning microscopy with conventional staining of the cellulose and confocal 97 

Raman spectroscopy. It is reported that staining results in an overestimation of the 98 

aggregate sizes, whilst limited analysis may be performed using data generated by 99 

Raman spectroscopy due to the restricted observable area. Conversely, scanning 100 
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confocal microscopy enables the rapid analysis of the aggregate distribution whilst 101 

maintaining the accuracy of Raman spectroscopy. 102 

Materials and Methods 103 

Materials 104 

Freeze-dried cellulose nanocrystals (CNCs) were purchased from the University of 105 

Maine, Process Development Centre; high density polyethylene (Arboblend HDPE; 106 

molecular weight = 1.33 × 105 g mol-1and melt volume flow rate = 2 cm3 min-1) 107 

was supplied by Tecnaro GmbH, while maleated polyethylene (A-C 575A, MAPE 108 

copolymer) was provided by Honeywell. Calcofluor white stain was purchased 109 

from Sigma Aldrich. 110 

Composite Sample Production 111 

The CNC/MAPE/HDPE composite samples were compounded with CNC loadings 112 

of 0.625, 1.250, 2.500 and 5.000 wt.%. A procedure of compounding and extrusion 113 

was consistent with a process previously described by Lewandowska and Eichhorn 114 

(Lewandowska & Eichhorn 2016). Freeze-dried CNCs were used as purchased. All 115 

compounds; filler, compatibilizer and matrix; were mixed in a mortar for 8 min and 116 

subsequently were dried in a vacuum oven at a temperature of 60 C for 24 h. The 117 

compounding process was carried out in a counter rotating twin-screw extruder 118 

(HAAKE Rheomex CTW5, Thermo Fisher Scientific) at a temperature of 160 C 119 

for 7 min at a speed of 70 rpm. The extruded filaments (ø ~ 2 mm) were cryo-120 

microtomed into slices of 20 µm thickness for further characterisation 121 

(Lewandowska & Eichhorn 2016). 122 

 123 
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Scanning Electron Microscopy (SEM) 124 

The morphology of the composites cross-sections was examined with a Nova 600 125 

Dual Beam Scanning Electron Microscope (SEM) (FEI, Hillsboro, OR) with EDT 126 

detector. The SEM was operated at an acceleration voltage of 10 kV and a working 127 

distance of 5 mm. The composite sample was fixed on metal stubs using carbon 128 

tape and sputter-coated with a thin layer of palladium. The magnification used for 129 

the collection of SEM images was 100×. 130 

Confocal Raman Spectroscopy (CRS) 131 

Raman images were performed using a confocal Raman microscope (Alpha300, 132 

WITec GmbH). The spectrometer was equipped with a UHTS 300 VIS-NIR 133 

spectrograph optimized for NIR excitation and a thermoelectrically cooled CCD 134 

detector (down to -61 C). Raman images were acquired using 785 nm wavelength 135 

laser (NIR) and 41 mW laser power at the sample for excitation of the Raman 136 

scattering. The sample was focused with a 50× objective lens (numerical aperture: 137 

0.7, vertical resolution: 1.6 μm) with a lateral resolution of 684 nm. Each Raman 138 

image was recorded from an area of 200 × 200 μm2 (40,000 μm2) with a step size 139 

of 2 μm in both the x- and y- directions, using an exposure time of 4 s. Three images 140 

per composite sample were used in the analysis. 141 

WITec Project Plus and Image J software were used to analyse Raman images. 142 

First, Raman images were converted into chemical images using cluster component 143 

analysis with WITec Project Plus. The estimation of the area of the CNC aggregates 144 

was conducted using Image J software. The extraction of the objects’ dimensions 145 

was performed using an automated threshold with the algorithm ‘IsoData’. 146 

 147 
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Conventional Confocal Laser Scanning Microscopy (CCM) 148 

Samples were immersed in 0.3 mL calcofluor white stain for one minute before 149 

removal and washing with DI water to remove excess dye. Samples were placed 150 

between a glass slide and coverslip to flatten the surface. Z-stack images were 151 

generated using a Zeiss LSM 880 confocal microscope (405 nm diode laser, 0.2 % 152 

power, Plan-Apochromat 10x/0.45 M27 objective, MBS-405 filter, single channel 153 

λ = 410-523 nm). The maximum distance between slices was 2 µm. Three replicates 154 

were imaged per composite sample. 155 

Multi-Channel Spectral Confocal Laser Scanning Microscopy (SCM) 156 

Samples were placed between a glass slide and coverslip to flatten the surface. 157 

Spectral z-stack images were generated using a Zeiss LSM 880 confocal 158 

microscope (405 nm diode laser, 5.0 % power, Plan-Apochromat 10x/0.45 M27 159 

objective, MBS-405 filter, 32 channels: λ = 411-695 nm). The maximum distance 160 

between slices was 2 µm. Three replicates were imaged per composite sample. 161 

Image Processing 162 

Image stacks generated using conventional confocal microscopy and spectral 163 

confocal microscopy were processed in Fiji. Briefly, the z-projection function 164 

(projection type: standard deviation) was used to flatten image stacks into single 165 

images. After thresholding (automatic values used for stained images; manual 166 

adjustment of lower threshold value between 85-100 for spectral images), images 167 

were analysed to determine the observed aggregate areas. Aggregates at the edge 168 

of the images were excluded. 169 

 170 

 171 
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Aggregate Distribution Analysis 172 

Aggregate distribution was subdivided into four categories: small, medium, large 173 

and outliers. Rather than set these categories between fixed area values, which 174 

could result in values being classified as outliers in box and whisker plots despite 175 

being between two size categories, the maximum and minimum values were 176 

determined using the box plots themselves. Briefly, a box plot was constructed 177 

using the entire data set, and the values at which data would be classified as an 178 

upper, or lower, outlier determined. The box plot was then regenerated using the 179 

outlier values as the maximum and minimum for the data range and new outlier 180 

values calculated. This process was repeated until the range of values fell between 181 

the upper and lower outlier values. This determined the aggregates that fell into the 182 

small category for each sample. To determine the medium category range, the 183 

process was repeated excluding all values in the small category. The process was 184 

finally repeated excluding values in the small and medium categories to define the 185 

large category range. All values that fell out of these ranges, representing less than 186 

2 % of aggregates observed in all samples, were classified as outliers. Due to the 187 

skew present in the data sets, the calculated lower outlier values were always less 188 

than the initial lower data values for all samples. 189 

Statistical Analysis 190 

Statistical analysis was performed using IBM SPSS Statistics software. For inter-191 

technique, pairwise comparison of the median CNC aggregate area, an independent 192 

samples t-test was performed to determine the statistical difference between the 193 

median values. For intra-technique comparison of the median CNC aggregate area, 194 

intra-category CNC aggregate population analysis, and intra-category median 195 

aggregate area, a one-way analysis of variance (ANOVA) test was used to 196 
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determine the statistical differences between two or more samples, assuming equal 197 

variance, with Bonferroni posthoc correction. The Kruskal−Wallis one-way 198 

ANOVA test was used to determine significant differences between the distribution 199 

of values in each aggregate size category. In all cases, a confidence interval of 0.95 200 

was used. 201 

Results and Discussion 202 

Comparison of Multi-Channel Spectral Confocal Laser Scanning Microscopy 203 

to Conventional Techniques 204 

Images of CNC aggregates embedded in a MAPE matrix at varying CNC contents 205 

(0.625, 1.250, 2.500, and 5.000 wt.%) were obtained using conventional confocal 206 

laser scanning microscopy, CCM, with cellulose stained using calcofluor white, and 207 

with multi-channel spectral confocal laser scanning microscopy, SCM (Figures 1C 208 

and D respectively). These were then compared to aggregates observed using SEM 209 

and confocal Raman spectroscopy, CRS, mapping, previously reported by 210 

Lewandowska et al. (Figures 1A and B). 211 

Whilst there is apparent surface disruption in the SEM images, it is not possible to 212 

confirm conclusively whether this is cellulose, and it is challenging to determine 213 

the area of the aggregates. As such, this technique is not deemed suitable for further 214 

analysis. CRS distinguishes between cellulose and the matrix by mapping the 215 

intensity of wavenumbers attributable to cellulose and polyethylene at 1096 and 216 

1295 cm-1 respectively. Comparison of the two enables chemical mapping of the 217 

CNC aggregates (Supplementary Information Figure S1C). Whilst this method 218 

accurately differentiates between the two materials, the observable area is limited 219 

compared to the other techniques presented, which restricts the number of 220 
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observable aggregates (Table 1). CCM of the composite, where cellulose has been 221 

stained with calcofluor white, enables an area 18 times greater than that viewable 222 

with CRS to be observed. This enables the observation of more aggregates, whilst 223 

theoretically maintaining the minimum observable aggregate size (Table 1). SCM 224 

uses the same magnification as CCM, and, like the former technique, the relative 225 

increase in the number of CNC aggregates observed compared to those observed 226 

by CRS is equal to the relative increase in area (see Table 1). Despite there being 227 

no stain, the CNC aggregates are readily distinguishable from the polymer matrix 228 

due to differences in intensity and peak maxima (Figure 2) and can be matched to 229 

aggregates identified using CCM (Supplementary Information, Figure S2). The 230 

aggregates of CNCs exhibit fluorescence roughly an order of magnitude more 231 

intense than the matrix, and have a peak maximum located in the range λ = 464-473 232 

nm, whilst the matrix peak is located between λ = 419-428 nm. SCM also confirms 233 

that CNCs are dispersed throughout the matrix, not just confined to the observed 234 

aggregates, as evidenced by comparison of the matrix spectrum (Figure 2) to that 235 

of the pure polymer (Supplementary Information, Figure S3). The matrix spectrum 236 

clearly consists of both the polymer and CNC spectra, and can be discerned at a 237 

glance. The presence of this dispersed material is more difficult to establish using 238 

the other techniques – Raman requires deconvolution of the two spectra from one 239 

another and a weak CNC signal may not be detected (Agarwal et al. 2012, 240 

Lewandowska & Eichhorn 2016, Lewandowska et al. 2018). However, background 241 

noise from the polymer – which risks the generation of false-positive results – 242 

makes it difficult to confidently identify aggregates that are less than 11 µm2 in 243 

area, equivalent to 10 pixels, with the objective used. This limits the lower viewable 244 

aggregate size compared to the other two techniques reported. 245 
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At each CNC wt.%, no significant difference between the mean CNC aggregate 246 

areas, determined between 10 and 2,000 µm2 due to the varying technique 247 

resolution, is observed between the three techniques (Figure 3A). The exception 248 

being the difference between the values calculated using SCM and CCM at a CNC 249 

content of 5 wt.%. However, CRS and SCM are more closely aligned to one another 250 

than CCM; the average significance between the calculated aggregate sizes for CRS 251 

and SCM is 0.80 ± 0.07, compared to 0.27 ± 0.09 and 0.42 ± 0.19 between CRS 252 

and CCM, and SCM and CCM respectively. As CNC content increases, a larger 253 

number of aggregates may be analysed per sample (Table 1), which results in the 254 

calculation of experimental mean values that are closer to the theoretically true 255 

mean value. Therefore, it would be expected that significance between techniques 256 

would increase as the CNC content increases as both techniques should be tending 257 

towards the same mean value. Whilst this is observed between CRS and SCM, 258 

indicating that the calculated values are more closely aligned as expected, the 259 

significances between CRS and CCM, and SCM and CCM, both exhibit a negative 260 

trend (Figure 3B). These results, taken with the calculated aggregate areas (Table 261 

1.), indicate that CCM is overestimating the true mean aggregate value compared 262 

to CRS and SCM, and that this overestimation increases as the CNC content 263 

increases. 264 

The use of CRS results in the greatest intra-sample error, due to the limited number 265 

of aggregates observed, whilst staining of the cellulose results in the least intra-266 

sample variation. As a result of this, no significant difference is observed between 267 

the mean CNC aggregate areas at varying CNC content for CRS, whilst the CCM 268 

mean areas for 2.5 and 5 wt.% are both significantly different from each other, and 269 

those for 0.625 and 1.25 wt.% (Figure 3A). SCM is somewhere between the two, 270 

with the mean area for 5 wt.% being significantly different from that for 0.625 wt.%, 271 
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but neither being significantly different to the areas reported for 1.25 and 2.5 wt.%. 272 

This indicates that the use of lower magnification for both confocal microscopy 273 

techniques (CCM and SCM), resulting in a larger observable area and increase in 274 

the number of aggregates analysed, improves reproducibility. This enables 275 

significant differences to be observed between samples that are not observed for 276 

CRS. However, the overestimation of the aggregate size using CCM may lead to 277 

false significant differences being determined. 278 

CNC Aggregate Distribution as Determined by SCM and CCM 279 

The CNC aggregate area distribution within the polymer matrix is heavily skewed 280 

towards smaller areas at all concentrations (Supplementary Information, Figure S4), 281 

which is expected given that individual CNCs are only a few hundred nanometres 282 

in length (Foster et al. 2018). A single box and whisker plot per sample was found 283 

to be inappropriate for representing the data as outlying/anomalous results are 284 

defined as being any value greater than the third quartile plus 1.5 times the 285 

interquartile range, or lower than the first quartile minus 1.5 times the interquartile 286 

range. This results in aggregates greater than 500 µm2 being classified as anomalous 287 

using conventional analysis, despite consistently being present in the samples 288 

analysed. Therefore, an alternative approach to the analysis – detailed in the 289 

methods section – was developed that split the aggregate distribution into small, 290 

medium, large, and outlier categories, enabling different aggregate size ranges to 291 

be analysed independently (Figure 4 and Table 2). CRS was not considered in this 292 

analysis due to the limited number of aggregates that could be analysed (Table 1), 293 

and aggregates < 10 µm2 were discarded for CCM to enable a direct comparison of 294 

the two techniques. 295 
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For both techniques, a CNC content of 0.625 wt.% consistently results in the lowest 296 

median and narrowest aggregate range across the three categories, whilst a CNC 297 

content of 5 wt.% results in the largest median and aggregate range (Table 2). 298 

However, SCM analysis reveals a similar trend to CRS as CNC content increases, 299 

whereby the CNC content of 1.25 wt.% results in larger aggregate sizes than those 300 

observed at 2.5 wt.%, whilst CCM analysis results in an increase in aggregate area 301 

as the CNC content increases. Larger category ranges, resulting in larger median 302 

aggregate sizes, are also observed for CCM. Population analysis of the categories, 303 

whereby the sum of the categories is equal to 100 %, reveals no intra-category 304 

significant difference across the CNC content range for SCM. However, a 305 

significant decrease for aggregates that fall into the small category, from 76 to 61 %, 306 

is observed as the CNC content increases for CCM. Likewise, a significant increase 307 

for aggregates that fall into the large category, from 4 to 9 %, is also observed. 308 

These data suggest that the presence of the stain, in conjunction with the analysis 309 

method, results in aggregate size overestimation due to merging of multiple 310 

individual aggregates, which consequently affects the population distribution. The 311 

use of SCM removes this factor, improving the reliability of the determined 312 

aggregate distribution. 313 

Conclusions 314 

Taking the statistical analysis for both inter- and intra-techniques into account, 315 

evidence suggests that staining of CNCs results in an overestimation of the mean 316 

aggregate area, which is exacerbated as the CNC content increases. Therefore, 317 

despite providing highly reproducible results, CCM may not provide an accurate 318 

representation of the distribution of CNC aggregates within a polymer matrix, as 319 

demonstrated in the aggregate distribution analysis. This could lead to the reporting 320 
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of false significant differences between samples. In comparison, CRS may be the 321 

most accurate technique for calculating the exact area of a CNC aggregate due to 322 

the chemical mapping technique used. However, the limited number of observable 323 

aggregates results in mean values that have a low reproducibility factor and 324 

distribution analysis cannot be performed. 325 

Here, SCM is presented as a novel technique for analysing CNC aggregates that 326 

combines the reproducibility of CCM with the accuracy of CRS. This enables 327 

precise observations on CNC aggregate distribution to be made with confidence. 328 

The technique also demonstrates that, whilst CNCs aggregate together, CNCs are 329 

distributed throughout the composite at a scale below that of the equipment 330 

resolution, as evidenced by the presence of the cellulose spectra when analysing the 331 

polymer background. This presents further opportunities for tracking CNC mixing 332 

within composites. 333 
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Table Legends 473 

Table 1. Comparison of confocal techniques (confocal raman spectroscopy - CRS, 474 

multi-channel spectral confocal laser scanning microscopy - SCM, and 475 

conventional confocal laser scanning microscopy - CCM), highlighting differences 476 

in aggregate size and number of aggregates observed. Error ± SE. 477 

Table 2. Statistical analysis of data presented in Figures 4A and 4B. Analysis of 478 

the range compares the distribution of values for each sample category irrespective 479 

of the absolute values themselves. † p < 0.05 compared to 1.25 wt.% for a given 480 

measurement; ‡ p < 0.05 compared to 2.5 wt.% for a given measurement; * p < 0.05 481 

compared to 5 wt.% CNC for a given measurement.  482 
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Figure Legends 483 

Figure 1. Representative images used to compare 5 wt.% CNC-MAPE composite 484 

samples imaged using A) SEM (accelerating voltage: 10 kV, working distance: 5 485 

mm, image acquisition: back scatter); B) Confocal Raman spectroscopy, CRS, 486 

mapping at 1096 cm-1 (laser wavelength: 785 nm, laser power: 41 mW, lateral 487 

resolution: 684 nm); C) Conventional confocal laser scanning microscopy, CCM, 488 

(stain: calcofluor white, argon laser intensity: 0.2 %, single channel, λ = 410-523 489 

nm); and D) Multi-channel spectral confocal laser scanning microscopy, SCM, 490 

(argon laser intensity: 5.0 %, 32 channels, λ = 411-695 nm). 491 

Figure 2. Comparison of typical spectra for CNC aggregates and a MAPE matrix. 492 

Top: Spectra for CNC aggregates (bright bars, dashed line) and MAPE matrix (dark 493 

bars, solid line) based on emission intensity. The CNC aggregates are more intense 494 

than the background matrix, making it straightforward to distinguish between the 495 

two. Bottom: Normalised spectra for CNC aggregates (dashed line) and MAPE 496 

matrix (solid line). The peak range maxima for CNCs and MAPE are different, 464-497 

473 and 419-428 nm respectively, confirming that the two materials are 498 

distinguishable. N = 3, n = 5. 499 

Figure 3. A) Comparison of mean CNC aggregate areas as observed using CRS 500 

(blue bars); SCM (red bars with rising diagonal lines); and CCM with CNCs stained 501 

by calcofluor white (green bars with falling diagonal lines) at various CNC 502 

contents. Alphanumeric labels signify intra-technique samples with no significant 503 

difference between them. Due to the varying resolution of the three techniques, 504 

values were calculated from aggregates between 10 and 2,000 μm2, which are the 505 

upper and lower ranges viewable for all three. * p < 0.05. N = 3, n ≥ 5. Error ± SE. 506 

B) Change in significance between CRS and SCM (red squares); CRS and CCM 507 
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(blue circles); and SCM and CCM (green triangles) with increasing CNC content. 508 

Logarithmic lines of best fit plotted to guide the eye. 509 

Figure 4. Comparison of CNC aggregates at varying CNC content observed by 510 

SCM and CCM. A, B: Box plots comparing distribution of aggregates between 511 

samples obtained via A) SCM and B) CCM. Aggregates are divided into four 512 

categories: small (blue boxes), medium (red boxes with light spot scattering), large 513 

(green boxes with medium spot scattering), and outliers (black diamonds). The 514 

mean values for each category are represented by open squares. Aggregates < 10 515 

µm2 ignored for analysis. n > 425. C, D: Populations for varying CNC content 516 

obtained via C) SCM and D) CCM. Whilst no significant difference is observed 517 

between each of the samples for SCM, differences are observed for CCM. 518 

Aggregate categories: small (blue bars), medium (red bars with light spot 519 

scattering), large (green bars with medium spot scattering), and outliers (yellow 520 

bars with heavy spot scattering). For all categories N = 3. * p < 0.05 compared to 5 521 

wt.% in the respective category. Error ± SE. 522 
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