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Abstract 11 

Various methods have been proposed to define the rainfall thresholds for the landslide prediction. Once 12 

the appropriate threshold is determined, it remains the same regardless of the antecedent soil moisture 13 

conditions. However, given the important role of the antecedent soil moisture in the initiation of 14 

landslides, it is considered if the rainfall threshold level varies according to the antecedent soil moisture 15 

conditions, the prediction performance will be improved. Therefore, in this study we propose a 16 

probabilistic threshold to integrate antecedent soil moisture conditions with rainfall thresholds. In order 17 

to take into account the conditions with landslides and without landslides, the Bayesian analysis is 18 

applied to estimate the landslide occurrence probability given the various combinations of two factors: 19 

the antecedent soil moisture and the severity of the recent rainfall event. These combinations are then 20 

divided into conditions that are likely to trigger landslides and those unlikely to trigger landslides by 21 

comparing their probabilities with a critical value. In this way, the probabilistic threshold is determined. 22 

Here the soil moisture is estimated using the distributed hydrological model, and the severity of the 23 

rainfall event is characterized by the cumulated event rainfall-rainfall duration (ED) thresholds with 24 

different exceedance probabilities. The proposed approach was applied to a sub-region of the Emilia-25 

Romagna region in northern Italy. The results show that the probabilistic threshold has a better 26 

prediction performance than the ED rainfall threshold, especially in terms of reducing false alarms. 27 

This study provides an effective approach to improve the prediction capability of the ED rainfall 28 

threshold, benefiting its application in the landslide prediction. 29 

1 Introduction 30 

Landslides are one of the most common natural hazards in mountain regions, with a high frequency of 31 

occurrence and serious threat to life and property. Being able to predict landslide occurrences in time 32 

and space is of great importance for the hazard management, which can help mitigate the influence 33 

caused by landslides. The initiation of landslides is the result of multiple factors, including intrinsic 34 
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factors that determine soil structure and slope stability (like topography, geology and soil regolith) and 35 

extrinsic factors that can change soil shear strength and lead to slope failures ultimately (like rainfall, 36 

earthquakes, and volcanoes). Landslide susceptibility maps are widely used to assess the relative 37 

likelihood of future landslides of an area based on the intrinsic factors that are responsible for the slope 38 

instability. As for the extrinsic factor, rainfall is the most common triggering factor for landslides, and 39 

the rainfall threshold is the most popular tool used to study the relationship between rainfall and 40 

landslide occurrences.  41 

Rainfall thresholds are defined as the minimum rainfall conditions that are likely to trigger landslides 42 

(Guzzetti et al., 2008). For what concerns the rainfall variables, the most common combinations are 43 

"intensity-duration (ID)", "cumulated event rainfall-rainfall duration (ED)" and "antecedent rainfall". 44 

The ID threshold was firstly proposed by Caine (1980) to construct a global threshold for the 45 

occurrence of shallow landslides. Since then, the ID threshold is widely used at the local, regional and 46 

global scales (Guzzetti et al., 2007; 2008; Segoni et al., 2018). The ED threshold is more widely used 47 

in recent studies, especially those carried out in the landslide-prone areas of Italy (Gariano et al., 2015; 48 

Peruccacci et al., 2012; 2017). As for the threshold relying on the antecedent rainfall conditions, the 49 

antecedent period varies a lot in the published literature. Chleborad et al. (2008) and Scheevel et al. 50 

(2017) combined the recent 3-day rainfall and antecedent 15-day rainfall. Lee et al. (2015) considered 51 

the daily and 3-day cumulated rainfall. In addition to the direct use of rainfall information, some 52 

authors also employed the antecedent rainfall indexes as a proxy of the antecedent wetness condition, 53 

like the Antecedent Precipitation Index (Glade et al., 2000). The approach of defining rainfall 54 

thresholds ranges from visual fits (Caine, 1980) to some statistical methods, like the method based on 55 

Bayesian inference (Guzzetti et al., 2007; 2008) and the frequentist approach (Brunetti et al., 2010). 56 

For these methods, rainfall thresholds are defined deterministically with rainfall events that have 57 

triggered landslides. Probabilistic rainfall thresholds are also explored by Berti et al. (2012) using a 58 
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Bayesian approach, where both rainfall events with landslides and those without landslides are taken 59 

into consideration.  60 

The rainfall thresholds can be identified as two categories according to their objectives (Lagomarsino 61 

et al., 2015; Segoni et al., 2018). One is to identify the minimum rainfall conditions that are likely to 62 

trigger landslides (minimum thresholds hereafter), and the other aims at achieving the balance between 63 

correct predictions and incorrect predictions when forecasting landslide occurrence in early warning 64 

systems (warning thresholds hereafter). Although the minimum thresholds are mostly determined in 65 

the previous studies, they are very conservative, which could cause a high number of false alarms. To 66 

apply rainfall thresholds to the landslide early warning systems, more and more studies try to define 67 

the warning thresholds that could provide good prediction performance. For this purpose, thresholds 68 

with different exceedance probabilities are evaluated with the help of contingency tables, skill scores, 69 

and the receiver operating characteristic (ROC) approach (Giannecchini et al., 2012; Gariano et al., 70 

2015; Lagomarsino et al., 2015). Although the warning thresholds can be defined in this way, once the 71 

threshold is determined, it remains the same regardless of the antecedent soil moisture conditions. 72 

However, it is considered if the warning threshold varies according to the antecedent soil moisture 73 

conditions, the prediction performance will be improved. The landslide occurs due to the accumulation 74 

water in the subsurface which could alter the pore-water pressures and decrease soil strength (Collins 75 

and Znidarcic, 2004; Sidle and Ochiai, 2006; Lu and Godt, 2013; Bogaard and Greco, 2016). Therefore, 76 

for different antecedent soil moisture conditions, the rainfall events that are needed to trigger landslides 77 

are different. For instance, if the antecedent soil moisture is dry, high-intensity rainfall or prolonged 78 

rainfall is needed to increase the water in the soil and trigger landslides, in this case, the higher 79 

threshold is more appropriate to avoid too many false alarms. However, for antecedent conditions at 80 

saturation, even small rainfall could cause the initiation of landslides. Here a lower threshold is 81 

required to avoid the missed alarms. In other words, adjusting the landslide warning thresholds 82 

according to the antecedent soil moisture conditions could be more effective to reduce the incorrect 83 
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predictions (e.g. false alarms and missed alarms), benefiting the application of rainfall thresholds in 84 

the landslide prediction. Based on this cognition, Ponziani et al. (2012) developed an early warning 85 

system with the soil moisture -rainfall thresholds as the tool for the landslide prediction in central Italy. 86 

Ciabatta et al. (2016) used the same system for predicting the landslide occurrence under climate-87 

change scenarios. Despite these thresholds are defined considering the antecedent soil moisture 88 

conditions, few studies are carried out directly based on the traditional rainfall thresholds (e.g. rainfall 89 

intensity-duration (ID) threshold, cumulated event rainfall-rainfall duration (ED) threshold) to improve 90 

their prediction performance.  91 

Therefore, this study attempts to achieve adjusting the rainfall threshold level according to the 92 

antecedent soil moisture conditions, which could directly take advantage of the rainfall thresholds. 93 

This problem could be addressed by estimating the landslide occurrence probability given various 94 

conditions characterized by the antecedent soil moisture and the severity of the recent rainfall event, 95 

after which a critical value is selected to divide these conditions into those that are likely to trigger 96 

landslides and unlikely to trigger landslides. Here the soil moisture conditions are estimated by a 97 

distributed hydrological model called SHETRAN (Système Hydrologique Européen TRANsport) 98 

(Birkinshaw and Ewen, 2000), and the severity of the recent rainfall event is characterized by the 99 

cumulated event rainfall-rainfall duration (ED) thresholds with different exceedance probabilities. In 100 

this way, we propose a probabilistic threshold which directly integrates the antecedent soil moisture 101 

conditions with the ED rainfall thresholds. In order to take into account both conditions with landslides 102 

and without landslides, two-dimensional Bayesian analysis is applied to estimate the landsliding 103 

probabilities. The receiver operating characteristic (ROC) approach is employed to evaluate the 104 

thresholds' prediction performance. For better assessing the proposed threshold, its prediction 105 

performance is compared with that of the ED rainfall threshold. The study is carried out in a sub-region 106 

of the Emilia-Romagna Region in northern Italy, owing to the abundance of landslide records and 107 

hydrometeorological data. The study period is from 2005 to 2015, during which all the required data 108 
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are the most complete. The data of the period 2005 to 2013 (as the calibration period) are used to 109 

estimate the landslide probabilities of different conditions and define the probabilistic thresholds, while 110 

the data of the last two years from 2014 to 2015 (as the validation period) are for the validation of the 111 

proposed thresholds.  112 

This paper is organized as follows. Section 2 introduces the study area and sources of data. Section 3 113 

details the characteristics of hydrological model SHETRAN and the approach of determining the 114 

thresholds. Section 4 describes the results of the proposed method. Further discussions and limitations 115 

of this study are outlined in Section 5, followed by conclusions and outlook in the final section.  116 

2 Study Area and Data 117 

2.1 Study area 118 

The Emilia-Romagna region is located in northern Italy, with a terrain changing from a wide flat area 119 

in the north and east to a mountainous area in the south and west. The elevation ranges from 0 m to 120 

2165 m (Fig 1). There is a typical Mediterranean climate in the region, warm and dry in summer, and 121 

mild/cold and wet in winter. The average annual rainfall varies a lot across the region, where it has a 122 

minimum value of about 500 mm in the foothills, while in the mountains, it can reach 2000 mm.  123 

The mountainous area of the region is extremely subject to landslides (Fig 1), with more than 20% of 124 

its territory covered by active or dominant landslide deposits (Berti et al., 2012). Landslides have a 125 

high threat to human life and properties, although they do not usually cause causalities, they lead to 126 

damage to properties, infrastructures and natural resources. The cost of regeneration and remedial 127 

works is high, approximately €130 million during the period 2008 to 2012 for this region (Berti et al., 128 

2012). Additionally, with the development in the mountainous areas, the cost of post-disaster 129 

constructions becomes higher and higher due to the increased exposure of people and properties to 130 

landslide hazards. 131 



 

7 

 

 132 

Figure 1. Map of the Emilia-Romagna region and landslides in this region. 133 

Two catchments in the mountainous portions are chosen as the study area (Fig 2), because the data 134 

required by this study is relatively complete in these areas. The southern and southwestern sector of 135 

the catchments is characterized by hills and mountains, while the northeastern part is the wide plain. 136 

These two catchments are mainly covered by trees and crops. Catchment 1 has an area of 1191 km2, 137 

with 11 weather stations operated, as for Catchment 2, its area is 722 km2 and there are 5 weather 138 

stations. The weather stations can provide the daily measurements of precipitation, air temperature and 139 

mean wind speed. For both catchments, there is a flow monitoring station at the outlet, measuring the 140 

flow data at a daily resolution.  141 
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 142 

Figure 2. Map of the study area with the terrain elevation and the distribution of weather stations, 143 

flow stations and landslides. 144 

2.2 Landslide data 145 

The landslide data adopted in this study is from the Emilia-Romagna Geological Survey, an agency 146 

maintaining a catalogue of historical landslides in the Emilia-Romagna region. The landslides since 147 

1900 are recorded in this catalogue, whose information comes from various sources, such as reports to 148 

local authorities, national and local press, technical documents. Most landslides that cause casualties 149 

and damage are recorded in the catalogue; however, landslides with little damage or influences, 150 

especially those occurring in the remote area are likely to be undetected. For each landslide, the 151 

catalogue includes the information of its location, date of occurrence, date accuracy, landslide 152 

characteristics (length, width, type and material), triggering factors, damage and references. 153 

Unfortunately, not all landslides are recorded with the complete information, in most cases, only the 154 

location and occurrence date are recorded.  155 

Based on the available information, landslides whose occurrence date is recorded with daily accuracy 156 

and weekly accuracy are selected for analysis. The reason for this selection is that landslides with daily 157 
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accuracy in the study area are limited, not enough for the analysis. To reduce the uncertainties caused 158 

by the data with weekly accuracy, we have made some corrections to their date. For each landslide, 159 

the recent rainfall event is searched, and its occurrence date is adjusted to the end date of the rainfall 160 

event. As a result, a total of 274 landslides are selected over the study period 2005 to 2015 for the 161 

study area (Fig 2). There are 239 landslides occurring during the calibration period 2005 to 2013, 162 

among which 92 landslides are recorded with daily accuracy and 147 with weekly accuracy. For the 163 

35 landslides in the validation period 2014 to 2105, 14 of them have a daily accuracy, with the rest 164 

recorded with weekly accuracy.  165 

The yearly and monthly distribution of landslide occurrences over the study period 2005 to 2015 is 166 

shown in Fig 3 as well as the corresponding rainfall distribution. It can be seen from Fig 3a, the number 167 

of yearly landslide occurrences varies a lot from 2 and 64, with an average of around 25 landslides per 168 

year. There is no obvious trend of the yearly landslide number over these years.  It is expected that this 169 

irregular distribution could be explained by the variation of the yearly rainfall, however, although they 170 

have the similar distribution for some periods (2005 to 2010), for other years their distribution differs 171 

a lot, especially the distinct difference in the year 2011, 2012 and 2014. One possible reason is that the 172 

occurrence of landslides is a result of multiple factors, even for the rainfall-triggered landslides, rainfall 173 

is not the only factor affecting the slope stabilities. For instance, earthquake, the changes in land use 174 

and human activities may alter the slope structure and affect the slope stabilities, changing the 175 

possibilities of landslide occurrences. Besides, the landslide data used for analysis are not complete, 176 

in which some small landslides are likely to be undetected or neglected. Therefore, there may be some 177 

biases of this distribution. Despite this, it is noted that the distribution of yearly landslides in our study 178 

area is in line with that in northern Italy, which is shown in the work of Peruccacci et al. (2017). The 179 

results in Fig 3b show that the change of monthly landslides is similar with that of monthly rainfall, 180 

which increases from January to March and then decreases to July or August, followed by a grow until 181 

November. The rainfall presents a decline in December, while the landslide occurrence in December 182 
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grows dramatically. This unexpected increase could be due to the extreme rainfall event occurred 183 

during 2009-12-23 to 2009-12-25, which caused more than 29 landslides, making a great contribution 184 

to the number of December's landslides. It is also found that the majority of landslides occurred during 185 

the wet season (October to May), indicating the crucial role of rainfall in the initiation of landslides.  186 

 187 

Figure 3. The distribution of landslide occurrence and rainfall over the study period 2005 to 2015, (a) 188 

for yearly distribution and (b) for monthly distribution. 189 

2.3 Data for the hydrological simulation 190 

Regional Agency for the Prevention, Environment and Energy of Emilia-Romagna (Arpae) maintains 191 

measurements of hydrological and meteorological data in the Emilia-Romagna region. The weather 192 

stations distributed in the study area all have tipping-bucket rain gauges, being able to collect rainfall 193 
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data at a daily time scale before 2001 and every 30 minutes since 2001. Besides, they also measure 194 

other daily meteorological data, like air temperature and wind speed. The flow stations at the outlet of 195 

catchments can provide daily flow data. All these data are available online 196 

(http://www.smr.arpa.emr.it/dext3r/). In addition to the meteorological data as the driving force for the 197 

hydrological model and the flow data used for calibration, some environment features (i.e., DEM, land 198 

cover and soil type) are needed to characterize the studied catchments. In this study, the spatial 199 

variation of land cover and soil type is not taken into account, therefore only the DEM information is 200 

used, which are from the Shuttle Radar Topography Mission (SRTM) 3 Arc-Second Global DEM 201 

datasets (90m). Although the rainfall data of every 30 minutes are available over the study period, most 202 

of the other required data are at a daily resolution, which restricted the time resolution of this study to 203 

be daily. The use of these data for hydrological simulations will be introduced in Section 3.1.  204 

3 Methods 205 

3.1 Soil moisture simulation using the hydrological model 206 

SHETRAN (Système Hydrologique Européen TRANsport) is a distributed hydrological model, 207 

originated from the Système Hydrologique Européen (SHE) (Abbott et al., 1986). It is capable of 208 

simulating basic processes and pathways for flow and transport in river catchments (Ewen, 1995). 209 

SHETRAN has been applied in a wide range of catchments and proved to be a reliable hydrological 210 

model (Birkinshaw and Ewen, 2000; Birkinshaw, 2008; Norouzi Banis et al., 2004; Zhang et al., 2013; 211 

Zhang and Han, 2017). SHETRAN has three main components: water flow, sediment transport and 212 

contaminant transport. This study only takes advantage of the water flow component, which contains 213 

major elements of the hydrological cycle, as shown in Table 1. Meteorological inputs to SHETRAN 214 

are: precipitation, potential evapotranspiration (measured or calculated) and the heat budgets used to 215 

calculate rates of snowmelt. Catchment properties like DEM, soil properties and land use are also 216 

requirements. These data are allowed to be spatially distributed, because the physics-based governing 217 

http://www.smr.arpa.emr.it/dext3r/
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partial differential equations for flow and transport are solved on a three-dimensional grid. The 218 

parameters used in this model is listed in Table 2.  219 

Although SHETRAN is able to simulate the hydrological response by taking into account the spatial 220 

variation of land cover and soil properties. In this study, only the meteorological information and DEM 221 

properties are spatially distributed. We divided the study area into several zones using Thiessen 222 

polygons (Croley II and Hartmann, 1985) based on the location of weather stations. The rainfall and 223 

evapotranspiration conditions are assumed to be the same within an individual zone, and the 224 

corresponding data are assigned. The reason for not considering the spatial variation of land cover and 225 

soil type is as follows. Due to the lack of field measurements, the parameters used to characterize the 226 

catchment properties need to be calibrated with the observed flow data. If the parameters related with 227 

the land cover and soil type are spatialized, too many parameters may cause some problems like 228 

overfitting. Besides, through analysing the distribution of land cover and soil type, it is found most 229 

areas are characterized by the similar information, for instance, most lands are covered by tree and 230 

crop, and soil type is gleyic solonetz. Therefore, we assume the land cover and soil type in the study 231 

area are homogeneous and parameters related to them are the same for the whole study area.  232 

Snowmelt is not considered when simulating the hydrological process. The reason is although the 233 

meteorological conditions are spatialized, their spatial resolution is still coarse for the consideration of 234 

snowmelt, because the snowmelt module in SHETRAN works based on the temperature (whether 235 

exceed 0 ℃), and for mountainous areas, the temperature changes with the increase of elevation, the 236 

coarse meteorological input may cause the wrong simulation of snowmelt. Besides, the capability of 237 

SHETRAN to simulate the snowmelt process has not been explored widely.  238 

Table 1 Equations of hydrological processes in SHETRAN 239 

Processes Equation 

Evaporation 
Penman-Monteith equation (or a fraction of potential 

evaporation rate) (Abbott et al., 1986) 
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Canopy interception and drip Rutter equation (Abbott et al., 1986) 

Subsurface flow Variably saturated flow equation (3D) (Parkin, 1996) 

Overland flow 
Saint-Venant equations, diffusion wave approximation 

(2D) (Abbott et al., 1986) 

Channel flow 

Saint-Venant equations, diffusion wave approximation 

(flow in a network of 1D channels) (Abbott et al., 

1986) 

Snowpack and melt * 

Accumulation equation and energy budget melt 

equation (or degree-day melt equation) (Abbott et al., 

1986) 

        * Snowpack and melt are not considered in this study. 240 

Table 2 Parameters used in the hydrological model SHETRAN 241 

 
Parameters 

Minimum 

Value 

Maximum 

Value 

Vegetation 

Canopy storage capacity (mm) 0 - 

Leaf area index 0 - 

Maximum rooting depth (m) 0 20 

Soil properties 

Saturated water content 0.05 1 

Residual water content 0 0.8 

Saturated conductivity (m/day) 0 - 

Van genuchten-alpha (cm-1) 0 - 

Van genuchten-n 1.2 - 

Soil depth (m) 0 - 

Others 

AE/PE ratio at field capacity 0 - 

Strickler overland flow 

roughness coefficient (m1/3 s-1) 
0 - 

 242 

When calibrating parameters, the difference between the observed and simulated flow is minimized 243 

by maximizing the Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) which is defined as: 244 

 𝑅2 = 1 −
∑ (𝑄𝑖

𝑜 − 𝑄𝑖
𝑚)2𝑛

𝑖=1

∑ (𝑄𝑖
𝑜 − 𝑄𝑜)

2
𝑛
𝑖=1

 (1) 

 245 

 246 
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where 𝑄𝑖
𝑜 and 𝑄𝑖

𝑚  are the 𝑖𝑡ℎ observed and simulated streamflow, respectively. 𝑄𝑜
̅̅̅̅   is the arithmetic 247 

mean of the observed streamflow. n is the total number of days in the calibration period. The optimal 248 

value of NSE is 1. The model is calibrated for the period from 2004 to 2013 with the first year as the 249 

warm-up period, and then validated for the period from 2014 to 2015. The spatial resolution of our 250 

model is 1 km.  251 

Based on the above settings, some problems need to be noted. First, the variation of hydrological 252 

response simulated by our model is only related with the meteorological conditions and the topography, 253 

therefore, the soil moisture conditions which are concerned in this study are only the result of the 254 

meteorological conditions and the topography. Second, the model is only calibrated with flow data at 255 

the outlet of the catchment, it is difficult to validate the simulated soil moisture. However, as 256 

SHETRAN is physically based, it is considered the model calibrated well is capable of providing a 257 

reliable simulation of the hydrological response, including the soil moisture's response to 258 

meteorological conditions.  259 

3.2 Definition of rainfall events and rainfall thresholds 260 

Before defining the threshold for landslide occurrences, rainfall events need to be detected. As each 261 

grid cell has been assigned a rain gauge during the hydrological simulations (using Thiessen polygons), 262 

we only need to reconstruct rainfall events for each rain gauge. In order to make the definition of 263 

rainfall events objective and reproducible, we applied the automatic procedure proposed by Melillo et 264 

al. (2014) in this study. The algorithm requires an input parameter to define the minimum dry period 265 

between two consecutive rainfall periods, and this parameter is allowed to vary with seasonal and 266 

climatic conditions. Here we set a dry period of 2 days for the dry season and 4 days for the wet season. 267 

The dry season is from June to September, while the wet season is from October to April, this 268 

classification is based on a function of the climate and altitude (Peruccacci et al., 2017). Once the 269 

rainfall event is constructed, the rainfall conditions associated with landslides are defined, where the 270 
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duration D (day) is from the start date of rainfall event to the date of landslide occurrence, and the 271 

cumulated event rainfall E (mm) is then calculated by accumulating the rainfall during this period.  272 

With the rainfall conditions associated with landslide occurrences, the ED rainfall threshold is 273 

determined using the Frequentist approach proposed by Brunetti et al. (2010). They assumed the 274 

general formulation of threshold curves is a power law: 275 

 𝐸 =  (𝛼 ± ∆𝛼) ∙ 𝐷(𝛾±∆𝛾） (2) 

where α is a scaling constant (the intercept), γ is the shape parameter (defining the slope of the power 276 

law curve). ∆α and ∆γ represent the uncertainties of α and γ, respectively. Thresholds with different 277 

exceedance probabilities are calculated and evaluated. 278 

3.3 Bayes' theorem 279 

Two-dimensional Bayesian analysis is used to evaluate the conditional probability of the landslide 280 

occurrence given the joint occurrence of two factors. Here the two factors are the antecedent soil 281 

moisture conditions and the severity of the recent rainfall event. The antecedent soil moisture 282 

conditions are indexed by the simulated soil moisture of the day preceding the rainfall event. 283 

Considering the distinct variation ranges of the simulated soil moisture series for different grid cells, 284 

in order to make them comparable and used for thresholds definition, the simulated soil moisture here 285 

is normalized based on the cumulative probability distribution of its grid cell's long-term soil moisture 286 

series (termed as soil wetness). As a result, the value of the soil wetness ranges from 0 to 1, the higher 287 

the value, the wetter the soil conditions. According to the value of soil wetness, the soil moisture 288 

conditions are classified into five categories ([0,0.2), [0.2,0.4), [0.4,0.6), [0.6,0.8), [0.8,1]). Rainfall 289 

events are classified into six categories according to the level of severity, which is characterized by the 290 

cumulated event rainfall-rainfall duration (ED) thresholds with different exceedance probabilities. For 291 

instance, rainfall events located below the minimum threshold will be classified into one category, 292 

indicating the severity is low. Those located between the minimum threshold and the threshold at 5% 293 
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exceedance probability (T5) will be classified into another category. Here are six categories, with 294 

different thresholds as the boundary (Tmin, T5, T10, T20, T50). As a result, there are 5 × 6 cells for the 295 

Bayesian analysis. To make use of as much as possible data, we merge all the data of grid cells with 296 

landslides into a dataset, on which the Bayesian analysis is based. A sample of this dataset is shown in 297 

Table 3.  298 

Table 3 Sample dataset for the Bayesian analysis 299 

  
Rainfall 

event 

Antecedent 

Soil Wetness 

Rainfall 

duration (day) 

Cumulated 

rainfall 

(mm) 

Landslide 

Grid Cell 1  

1 0.85 2 3.6 No 

2 0.92 3 45.2 No 

3 0.88 1 10.4 No 

4 0.79 1 2.8 No 

5 0.84 6 29.4 Yes 

… … 2 11 … 

Grid Cell 2 

1 0.92 8 43 Yes 

2 0.85 6 24.6 No 

3 0.88 3 65 No 

4 0.79 5 28 No 

5 0.87 8 26.8 No 

… … … … … 

Grid Cell N … … … … … 

 300 

Two-dimensional Bayes' theorem can be expressed as follows: 301 

 𝑃(𝐴|𝐵, 𝐶) =
𝑃(𝐵, 𝐶|𝐴) ∙ 𝑃(𝐴)

𝑃(𝐵, 𝐶)
 (3) 

where A indicates the event of at least one landslide occurrences. B and C indicate the antecedent soil 302 

moisture conditions and the severity of the recent rainfall, respectively. The notation "B, C" means the 303 

antecedent soil moisture is within a certain range of values, while the rainfall event has a certain level 304 

of severity. In other words, the notation "B, C" represents the condition of one of the 5 × 6 cells 305 

mentioned above (hereafter cell condition). 𝑃(𝐵, 𝐶|𝐴) , 𝑃(𝐴), 𝑃(𝐵, 𝐶) and  𝑃(𝐴|𝐵, 𝐶) can be defined 306 

as follows: 307 
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𝑃(𝐵, 𝐶|𝐴), the conditional probability of "B, C" given A, also known as likelihood. It is the probability 308 

of observing a certain cell condition when a landslide occurs.  309 

𝑃(𝐴), the prior probability of A. It is the probability of landslide occurrences regardless of the cell 310 

conditions. 311 

𝑃(𝐵, 𝐶), the marginal probability of "B, C". It is the probability of observing a certain cell condition 312 

regardless of whether a landslide occurs. 313 

𝑃(𝐴|𝐵, 𝐶), the conditional probability of A given "B, C", also known as posterior probability. It is the 314 

probability of observing at least one landslide when a certain cell condition occurs.  315 

The probabilities are usually calculated in terms of relative frequencies. Thus, these probability terms 316 

can be approximated using the following equations: 317 

 𝑃(𝐴) ≈  
𝑁𝐴

𝑁𝑅
 (4) 

 318 

 𝑃(𝐵, 𝐶) ≈  
𝑁𝐵,𝐶

𝑁𝑅
 (5) 

 319 

 𝑃(𝐵, 𝐶|𝐴) ≈  
𝑁(𝐵,𝐶|𝐴)

𝑁𝐴
 (6) 

where: 320 

𝑁𝐴, the total number of landslide occurrence events, those landslides that occurred during the same 321 

time at the same grid cell are considered as one event and counted once. 322 

𝑁𝑅, the total events of all cell conditions over the calibration period. 323 

𝑁𝐵,𝐶, the number of events which belong to one certain cell condition.  324 
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𝑁(𝐵,𝐶|𝐴) , the number of events which have triggered landslides while belong to one certain cell 325 

condition.  326 

After estimating the probability of landslide occurrences given the different cell conditions, the 327 

thresholds can be determined by comparing the probability values with a critical value. For instance, 328 

if 0.001 is chosen as the critical value, for each soil moisture category, the categorie of rainfall events 329 

can be separated by determining whether their probabilities exceed 0.001. In this way, the rainfall 330 

thresholds could be determined for different soil moisture conditions. The critical value will be selected 331 

by evaluating the prediction performance of the threshold it determined.  332 

3.4 The validation of thresholds 333 

The thresholds are validated with the help of the contingency matrix (Table 4) and Receiver Operating 334 

Characteristic (ROC) curves. This is the most common manner used in landslide prediction studies 335 

(Staley et al., 2013; Gariano et al., 2015; Mirus et al., 2018). The contingency matrix includes four 336 

components: Ture Positive (TP), False Negative (FN), False Positive (FP) and True Negative (TN), 337 

which are four possible outcomes of the thresholds' prediction results. TP means the threshold predicts 338 

landslide occurrences successfully; FN is an error where the thresholds doesn't predict the occurrence 339 

of landslides; however, in reality landslides occur; FP is an error where the threshold predicts the 340 

occurrence of landslides; however, there are no landslide occurrences in reality; TN means the 341 

threshold correctly predicts the non-occurrence of landslides. ROC analysis is based on the 342 

contingency matrix, where two skill scores are calculated: Hit Rate (HR) and False Alarm Rate (FAR). 343 

Hit Rate (HR) is also known as the true positive rate, used to measure the proportion of landslides that 344 

are correctly predicted: 345 

 𝐻𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 
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False Alarm Rate (FAR) is also known as the false positive rate, used to measure the proportion of 346 

false alarms over the events when no landslide occurs: 347 

 𝐹𝐴𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (8) 

The value of HR and FAR ranges between 0 and 1. When HR equals to 1 and FAR equals to 0, the 348 

optimal performance is achieved (the perfect point). For better evaluating the threshold,  the Euclidean 349 

distance (d) to the perfect point is also calculated for each threshold scenario (Gariano et al., 2015). 350 

The smaller the distance, the better the prediction ability.  351 

Table 4. The Contingency Matrix 352 

         Observed 

Predicted 
Yes No 

Yes TP FP 

No FN TN 

4 Results 353 

4.1 Soil moisture estimated by the hydrological model 354 

The hydrological model is calibrated with the flow data for the period 2004 to 2013, with the first year 355 

as the warm-up period. The optimal performance is achieved when NSE equals to 0.82 for Catchment 356 

1 and 0.80 for Catchment 2. For the purpose of validation, the calibrated parameters are used to 357 

simulate the hydrological process for the period 2014 to 2015, whose NSE value is 0.76 for both 358 

catchments. Although the value of NSE is not very high, it is regarded as acceptable, indicating the 359 

calibrated model is feasible to simulate the hydrological response to meteorological conditions. The 360 

top soil depth is calibrated as 0.28m for both catchments, therefore, the soil moisture simulated by the 361 

hydrological model refers to the water content in the upper soil layer with the depth as 0.28m. In order 362 

to better demonstrate the characteristics of the simulated soil moisture, its spatial variation and 363 

temporal evolution are introduced. 364 
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Three periods are chosen as examples to introduce the spatial distribution of the soil moisture data, as 365 

shown in Fig 4. Period 1 is the representative of dry periods. Period 2 is selected to represent the 366 

periods with intense rainfall, whose antecedent periods are relatively dry. Period 3 is an example of 367 

the periods during which the rainfall is intense, and there is intense rainfall preceding these periods. 368 

The soil moisture value presented in Fig 4b is the value of the period's last day. There is a similar 369 

pattern in the soil moisture distribution of these three periods. The grid cells close to the river are wetter 370 

than others, and the grid cells in the north have a higher value compared with those in the south if grid 371 

cells near the river are not taken into account. This distribution pattern can be explained by the 372 

topography, where the southern area of the catchment is characterized by hills and mountains, and the 373 

northern area is flat. Although the soil moisture distribution is influenced by multiple factors, like 374 

topography, landcover, soil type, meteorological conditions and water routing processes, the difference 375 

of landcover and soil type was not distinguished when conducting hydrological simulations. Therefore, 376 

in this study the topography is the main factor that may affect the soil moisture distribution. Therefore, 377 

it is considered the spatial distribution of soil moisture displayed in Fig 4b is reasonable.  378 

There is no rainfall in Period 1 and it has the lowest soil moisture values. Although the rainfall of 379 

Period 2 is intenser than Period 3, its soil moisture values are lower than those of Period 3. The reason 380 

for this is that there is continuous rainfall before Period 3 (as shown in Fig 4a). This phenomenon 381 

demonstrates that the simulated soil moisture has a good response to the rainfall conditions, which is 382 

in line with the physical process.  383 



 

21 

 

 384 

Figure 4. The spatial distribution of the soil moisture data estimated by SHETRAN. (a) The rainfall 385 

series for the year of 2008 and the rainfall information of three representative periods used for the 386 

analysis. (b) The spatial distribution of the soil moisture data of three representative periods for 387 

Catchment 1 with 1 km resolution. 388 

Six grid cells that have more landslides are selected to further study the statistical distribution of soil 389 

moisture data over the calibration period. Figure 5a shows the location of these six representative grid 390 

cells, and the cumulative probabilities of their soil moisture data are plotted in Fig 5b. The cumulative 391 

probability distribution of these six grid cells differs a lot. For Grid Cell 1 and Grid Cell 2 close to the 392 

river, they have high soil moisture values, specifically, their soil moisture is almost saturated for the 393 

most time. For Grid Cell 3 and Grid Cell 4, their soil moisture values vary within a larger range, 394 

indicating they are more sensitive to the change of meteorological conditions. The soil moisture for 395 
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Grid Cell 5 and Grid Cell 6 is always at a low level, with a smaller variation range. The difference in 396 

the distribution is mainly caused by their different topographies. Due to the difference of the soil 397 

moisture variations, we use the cumulative probability to represent the real soil moisture value for the 398 

purpose of comparability. The circle in Fig 5b represents the antecedent soil moisture conditions of 399 

landslides. It is found that the antecedent soil moisture conditions vary a lot, changing from 0.1 to 1. 400 

One possible reason is that the antecedent period differs a lot, which is dependent on the duration of 401 

the rainfall event. For instance, if the rainfall event has a duration of 10 days, the soil moisture before 402 

this event is likely to be dry. In this case, the occurrence of the landslide is mostly contributed to the 403 

rainfall event and has little relation with the antecedent soil moisture.  404 

 405 

Figure 5. The statistical distribution of soil moisture data over the calibration period 2005 to 2013. 406 

(a) The location of six representative grid cells used for the analysis. (b) The distribution of 407 

cumulative probabilities of soil moisture data for six representative grid cells and their landslides. 408 

4.2 Rainfall thresholds 409 

Applying the automatic procedure of defining rainfall events to all rain gauges in the study area, 212 410 

rainfall events were identified for the landslide occurrences. Two variables (cumulated event rainfall 411 

and rainfall duration) of these events are calculated for the determination of ED rainfall thresholds. 412 

The rainfall threshold with different exceedance probabilities (5%, 10%, 20% and 50%) as well as the 413 
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minimum rainfall threshold for landslide occurrences are shown in Fig 6. The minimum threshold here 414 

is the threshold defined without considering the exceedance probability. The national threshold of Italy 415 

at 5% exceedance probability proposed by Peruccacci et al. (2017) is also shown in Fig 6. Its equation 416 

is 𝐸 =  26.59 ∙ 𝐷0.39 with duration in days, which is transferred from the equation 𝐸 = 7.7 ∙ 𝐷0.39 417 

with duration in hours. It is interesting to find that the national threshold is very similar to our defined 418 

threshold at 50% exceedance probability. The rainfall events associated with landslides have a great 419 

variation for both variables, with the duration in the range of 1 𝑑𝑎𝑦 ≤ 𝐷 ≤ 46 𝑑𝑎𝑦𝑠 , and the 420 

cumulated event rainfall in the range of  5.2𝑚𝑚 ≤ 𝐸 ≤ 747.6𝑚𝑚. For the thresholds defined using 421 

the Frequentist approach proposed by Brunetti et al. (2010), taking the exceedance probabilities of 5% 422 

as an example, as expected, there are 10 pairs of the (D, E) data (5% of 212 rainfall conditions) below 423 

the P5 threshold.  424 

The uncertainties associated with the parameters of the ED thresholds are listed in Table 5. It is clear 425 

that parameters of the thresholds defined in this study have much higher relative uncertainties (Δα/α 426 

and Δγ/γ) than the national threshold, indicating that our defined thresholds are more sensitive to the 427 

addition of new rainfall events with landslides. The higher uncertainties could be caused by the small 428 

sample size used for the threshold definition, as explored by Peruccacci et al. (2012) and Gariano et al. 429 

(2015). The relative uncertainty Δα/α of our defined thresholds decreases with the increase of the 430 

exceedance probability, reaching 12.47% at 50% exceedance probability. As the distribution of the 431 

empirical data also has an impact on the uncertainties, the lower relative uncertainty of 50% 432 

exceedance probability may benefit from the distribution of the data.   433 

Table 5 Parameters of ED thresholds and the related uncertainties and relative uncertainties 434 

Label Region Probability α Δα Δα/α γ Δγ Δγ/γ 

T50 Studied Area 50 31.28 3.9 12.47% 0.42 0.041 9.76% 

T20 Studied Area 20 17.42 2.35 13.49% 0.42 0.041 9.76% 

T10 Studied Area 10 12.84 1.83 14.25% 0.42 0.041 9.76% 

T5 Studied Area 5 9.97 1.5 15.05% 0.42 0.041 9.76% 
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Tmin Studied Area 0 2.07 0.44 21.26% 0.42 0.041 9.76% 

TItaly Italy 5 26.59 1.04 3.91% 0.39 0.009 2.31% 

 435 

 436 

Figure 6. The rainfall thresholds with exceedance probabilities of 5%, 10%, 20% and 50% (T5, T10, 437 

T20, T50) and the rainfall threshold without considering the exceedance probability (Tmin) for the 438 

study area as well as the national threshold of Italy (TItaly) proposed by Peruccacci et al. (2017). 439 

4.3 Probabilistic thresholds 440 

The Bayesian analysis is carried out to the study area following the procedure described in Section 3.3. 441 

There are 212 grid cells with landslides among the total grid cells of 1858 for two catchments. During 442 

the calibration period, the total rainfall events for the grid cells with landslides are 48927, about 26 443 

rainfall events for each grid cell per year. There are 228 events identified for the 239 landslides, with 444 

some landslides occurred at the same grid cell on the same day. The results of Bayesian analysis are 445 

shown in Fig 7. It is clear the probability of landslide occurrences increases with the severity of the 446 

event for both antecedent soil moisture condition and rainfall condition. The maximum probability 447 

value of 0.078 is reached when the soil moisture condition and rainfall condition are located in the 448 

severest category. There are some unexpected distributions. For instance, for the soil wetness within 449 
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the range [0.6,0.8), the rainfall distributed between T10 (threshold at 10% exceedance) and T20 has the 450 

higher probabilities than those distributed between T20 and T50. The similar phenomenon can be found 451 

for the soil wetness in the range [0.8,1], where the probability is higher for rainfall events located 452 

within T5 and T10 than those located between T10 and T20. This unexcepted distribution could be due 453 

to two factors. The incompleteness of landslides may cause the bias of this distribution, especially for 454 

grid cells with few data, even a small variation on the number of landslide occurrences will lead to a 455 

different probability value. Besides, the definition of rainfall events responsible for landslide 456 

occurrences may have impacts on the distribution. When defining the rainfall events for landslides, its 457 

end date is the date of the landslide occurrence rather than the end date of rainfall, which may result in 458 

some biases for the two variables of the rainfall event, and thus affect the probability distribution. It is 459 

also noted due to these factors, the calculated probability values in Fig 7 are just a proxy of the true 460 

probability of landslide occurrence. Despite this, we can make use of this probability distribution to 461 

determine the likelihood of landslide occurrences by comparing their probability values.   462 

It is interesting to find that for different antecedent soil moisture conditions, the rainfall events that are 463 

likely to trigger landslides differ a lot. For example, for the dry soil conditions (soil wetness < 0.4), the 464 

rainfall events with the lower severity level are unlikely to trigger landslides, with the probability of 465 

zero. However, when the soil moisture conditions are wet (soil wetness ≥0.8), even the small rainfall 466 

events are likely to trigger landslides. This phenomenon indicates it is necessary to integrate the 467 

antecedent soil moisture with the rainfall thresholds, which is the interest of our study.  468 

To define the probabilistic thresholds which integrate the antecedent soil moisture conditions with the 469 

rainfall thresholds, different critical values are chosen to determinate the separation between conditions 470 

that are likely to trigger landslides and those that are unlikely to trigger landslides. Here 0.001, 0.002, 471 

0.005 and 0.01 are tested, whose results are shown in Table 6. The symbol T∞ in Table 6 means the 472 

threshold is large enough to be exceeded. In this case, landside occurrences are never predicted. The 473 

result of the critical value as 0.001 is also presented by the black dashed line in Fig 7. Taking this case 474 
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as an example, when the antecedent soil moisture is within [0,0.2), the rainfall threshold T20 is chosen 475 

as the threshold for the landslide warning. The conditions of other categories are similar. From Table 476 

6, it is found the higher the critical value, the higher the rainfall threshold for the same soil moisture 477 

category. To choose a suitable critical value, the prediction performance of these thresholds is 478 

evaluated in Section 4.4. 479 

Table 6 The probabilistic thresholds determined by different probability threshold values 480 

Antecedent 

soil wetness 

Rainfall threshold 

P>0.001 P>0.002 P>0.005 P>0.01 

0-0.2 T20 T50 T∞ T∞ 

0.2-0.4 T20 T50 T50 T∞ 

0.4-0.6 T10 T20 T50 T50 

0.6-0.8 T5 T10 T10 T50 

0.8-1 Tmin T5 T5 T20 

* T∞ means the threshold is large enough to be exceeded.  
 481 

 482 

 483 
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Figure 7. The distribution of landslide occurrence probability based on the two-dimensional Bayesian 484 

analysis. The dashed black line is the probabilistic threshold determined by the critical value as 485 

0.001. 486 

4.4 Validation of thresholds 487 

The data of the period 2014 to 2015 are used to validate different thresholds. Here are 11053 events in 488 

total, among which 28 events are associated with landslides. ROC curves for different thresholds are 489 

plotted in Fig 8. Their prediction results in terms of TP, FN, FP, FN, hit rate (HR), false alarm rate 490 

(FAR) and the Euclidean distance (d) are also listed in Table 7. In Fig 8, each point corresponds to one 491 

threshold scenario. It can be seen for both rainfall thresholds and probabilistic thresholds, the increment 492 

of the threshold will reduce the false alarm rate, sometimes at the expense of decreasing the hit rate. It 493 

is interesting to see that the minimum rainfall threshold has a false alarm rate near to 1, which means 494 

almost each rainfall event are predicted to trigger landslides. This is the reason why the minimum 495 

threshold can't be used directly for the landslide predictions. Although using higher threshold like T10 496 

could reduce the false alarms, it is found there is still room to reduce the false alarms without 497 

decreasing the hit rate, like the probabilistic thresholds with 0.002 and 0.005 as the critical value. This 498 

improvement demonstrates the advantages of integrating the antecedent soil moisture conditions with 499 

the rainfall thresholds. 500 

To determine the optimal threshold that meets a balance between the hit rate and the false alarm rate, 501 

the Euclidean distance of various thresholds is compared. It is found that the probabilistic threshold 502 

has the smallest distance when the 0.01 chosen as the critical value, with hit rate as 0.75 and false 503 

alarm rate as 0.11. For ED rainfall threshold, the smallest distance is achieved for T20 threshold, whose 504 

hit rate is 0.96 and false alarm rate is 0.43. Considering the danger of missed alarms, the hit rate is 505 

restricted to the optimal value of 1. In this case, the probabilistic threshold has the optimal performance 506 

when the critical value is 0.005, with a false alarm rate as 0.28. The rainfall threshold has the optimal 507 
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performance for the T10 threshold, whose false alarm rate is 0.58. It is clear that for these two types of 508 

the optimal threshold, the probabilistic threshold could provide better prediction performance than the 509 

ED rainfall threshold. For the probabilistic threshold, we choose the value of 0.005 as the critical value, 510 

because its distance to the perfect point is very similar to that of 0.01, while its hit rate equals to 1.  511 

 512 

Figure 8. Receiver operator characteristic (ROC) curves for the rainfall thresholds and probabilistic 513 

thresholds. Each FAR-HR pair (the point) corresponds to a threshold scenario.  514 

Table 7 The prediction results for various thresholds in terms of TN, FN, FP, TN, Hit Rate(HR), 515 

False Alarm Rate(FAR) and the Euclidean distance (d) with the optimal results highlighted 516 

Threshold TP FN FP TN HR FAR d 

Rainfall 

threshold 

Tmin 28 0 10526 499 1.00 0.95 0.95 

T5 28 0 7394 3631 1.00 0.67 0.67 

T10 28 0 6346 4679 1.00 0.58 0.58 

T20 27 1 4742 6283 0.96 0.43 0.43 

T50 8 20 922 10103 0.29 0.08 0.72 

Probabilistic 

threshold 

P>0.001 28 0 6451 4574 1.00 0.59 0.59 

P>0.002 28 0 5203 5822 1.00 0.47 0.47 
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P>0.005 28 0 3078 7947 1.00 0.28 0.28 

P>0.01 21 7 1224 9801 0.75 0.11 0.27 

5 Discussion 517 

Rainfall thresholds are widely used to predict the landslide occurrence, like the ID threshold and ED 518 

threshold. Thresholds with different exceedance probabilities are evaluated to define an appropriate 519 

one for the landslide prediction, which could achieve the balance between the correct predictions and 520 

incorrect predictions. Once the appropriate threshold is determined, it remains the same regardless of 521 

the antecedent soil moisture conditions. However, it is considered that different warning thresholds 522 

should be adopted according to the antecedent soil moisture conditions. In this way, the missed alarms 523 

and false alarms could be reduced more effectively. Therefore, we propose the probabilistic thresholds 524 

which could integrate the antecedent soil moisture conditions with the ED rainfall thresholds. In order 525 

to take into account the conditions with landslides and without landslides, the two-dimensional 526 

Bayesian analysis is employed.  In this study, the antecedent soil moisture condition is the condition 527 

preceding the rainfall event that is responsible for landslides, due to the variations of these events' 528 

duration, the antecedent period varies. The reason of not using a fix rainfall duration like some reported 529 

works (Scheevel et al., 2017; Mirus et al., 2018) is that this study aims to propose a method to improve 530 

the performance of the ED rainfall threshold, so the definition of rainfall events remains the same. The 531 

results show that the probabilistic thresholds could provide better prediction capabilities especially in 532 

term of reducing the false alarm rate, compared with the ED rainfall thresholds. Although we use the 533 

simulated soil moisture from hydrological model to index the antecedent soil moisture condition, it 534 

can be estimated in other ways, like in-situ measurements, remote sensing products and some indexes 535 

of the soil moisture conditions. Therefore, the proposed method could be widely used to take advantage 536 

of the soil moisture information to improve the prediction capability of the ED rainfall threshold. Once 537 

the probabilistic threshold is determined using the historical dataset, it can be used to predict landslides. 538 

Specifically, based on the estimation of the current soil moisture condition, an appropriate rainfall 539 
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threshold could be selected, and then through comparing the forecast rainfall with the rainfall threshold, 540 

a corresponding prediction could be made.  541 

Despite the advantages of the proposed thresholds, several limitations of this work need to be noted. 542 

First, there are problems with the soil moisture estimated by the hydrological model. Although the 543 

hydrological model used in this study is a spatially distributed model, we only consider the spatial 544 

variation of the meteorological conditions and the topography properties. As a result, the variation of 545 

the simulated soil moisture is just due to these two factors. Therefore, the simulated soil moisture can 546 

only be considered as an index of the soil moisture conditions instead of the real value of the soil water 547 

content. Additionally, in order to make the soil moisture of different locations comparable, the 548 

simulated soil moisture data are normalized based on the cumulative probability distribution of its grid 549 

cell's long-term simulated data (termed as soil wetness). In this way, the soil wetness could represent 550 

the relative soil moisture conditions based on its location and can be used to define the threshold due 551 

to the same variation range. Another problem concerns the effectiveness of the hydrological model, 552 

since the hydrological model is only calibrated with the flow data at the outlet of the catchment. The 553 

lack of the calibration of the simulated soil moisture is really a limitation of this study, however, the 554 

simulated soil moisture is regarded as useful for several reasons. First, as the hydrological model is 555 

physically based, the calibrated model could be considered effective to simulate the hydrological 556 

response including the soil moisture variations. Second, using the calibrated model, the soil moisture 557 

is simulated based on the same mechanism. As a result, for the same location, the soil moisture 558 

evolution is solely dependent on the meteorological inputs. In other words, it is feasible to represent 559 

the total effect of antecedent meteorological conditions, which is the concern of landslide occurrences. 560 

In addition to the temporal variations caused by the meteorological conditions, the simulated soil 561 

moisture could also reflect the effect of topography, since the hydrological simulation considers the 562 

properties of topography. Besides these two reasons, the spatial and temporal distribution of the 563 
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simulated soil moisture has been proved reasonable in Section 3.1. Therefore, we think the soil 564 

moisture data used in this study is effective.  565 

Another limitation is about the landslide data used in this study. In order to make use of soil moisture 566 

with high resolution, the hydrological model is employed, which limits the study area and reduces the 567 

landslide data. Due to the landslide data with daily accuracy in the study area are limited, the dataset 568 

extends to those with weekly accuracy. For the landslide with weekly accuracy, we searched for its 569 

recent rainfall event and adjusted its occurrence date to the end date of the rainfall event. Although this 570 

procedure relates the landslide occurrence to the rainfall event, it also leads to some issues. Assuming 571 

the end date of the rainfall event is the occurrence date of landslides could result in longer duration 572 

and higher cumulated rainfall of the rainfall event with landslides. The overestimation of the rainfall 573 

events in several cases may have an impact on the proposed threshold. Specifically, for the 5 × 6 cells 574 

in Fig 7, the overestimated rainfall events would be shifted to the cells with a lower level in terms of 575 

the rainfall severity. According to the Bayes' theorem expressed in Equation 3, this shift would increase 576 

the landslide probability of the cells with a lower level of the rainfall severity. Thus, the probabilistic 577 

threshold could shift downwards the axis of the rainfall event. In other words, using the landslides with 578 

weekly accuracy may cause the overestimation of the proposed threshold, which could lead to an 579 

overestimation of the missed alarms. Besides, the dataset used for analysis doesn't include all the 580 

landslide occurrences. Some remote landslides or landslides with few casualties or damage are likely 581 

to be neglected. This problem could also cause some biases to the results, as analyzed above. The lack 582 

of information also has an influence on the validation of the thresholds, which has been highlighted in 583 

the work of Gariano et al. (2015). As the Bayesian analysis relies on the previous knowledge, only 584 

when the historical data used for the analysis have the representativeness for the future period, the 585 

results of Bayesian analysis can be used for landslide predictions. For instance, if the frequency of 586 

landslides is affected by changes in land use, land cover, rainfall patterns, etc., the conditions that 587 

triggered landslides may not be representative for the future. In this case, the prior probability has 588 
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changed, and the Bayesian probability based on the previous prior probability may be no longer 589 

significant. Therefore, when using the Bayesian analysis, it is important to use the long-term dataset 590 

to improve the representativeness of the historical data.  591 

In addition to these limitations, some points deserve further discussions. When using the 2-dimensional 592 

Bayesian analysis, the antecedent soil moisture conditions are classified into 5 categories, while the 593 

rainfall evens are classified into 6 categories. As a result, there are 5 × 6 cell conditions, on which the 594 

Bayesian analysis is based. This classification is a compromise between the number in each cell and 595 

the resolution of each factor. If there are sufficient data, more detailed classification could be 596 

considered and more detailed results could be concluded.  597 

For the purpose of comparison, the cumulated event rainfall- rainfall duration (ED) thresholds are also 598 

defined in this study. Considering the rainfall threshold is affected by the number and distribution of 599 

the empirical data, we compare the ED thresholds defined in this study with the national threshold of 600 

Italy defined by Peruccacci et al. (2017), it is interesting to see the ED thresholds at 50% exceedance 601 

probability defined in this study are very similar to the national threshold. Although there are studies 602 

proposing the rainfall thresholds in the Emilia-Romagna region (Berti et al., 2012; Martelloni et al., 603 

2012; Lagomarsino et al., 2013; 2015; Segoni et al., 2015), we didn't take them into consideration for 604 

two reasons. First, these thresholds are defined using different variables, some of them are not 605 

comparable. Second, we define the ED rainfall thresholds with different exceedance probabilities, 606 

which are representative of different levels of the thresholds. Therefore, when evaluating the prediction 607 

performance, the proposed probabilistic thresholds are only compared with the ED rainfall thresholds 608 

defined in this study. It is found the probabilistic thresholds could improve the prediction capabilities. 609 

However, this result needs more explorations to test, because the landslide occurrence events during 610 

the validation period are very limited. The reason of not using a longer period for the validation is that 611 

the calibration procedure which is based on the Bayes theorem requires as many as possible data for 612 

the analysis, restricting the length of the validation period. Considering the published works also use 613 
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a validation period varying from one year to three years (Martelloni et al., 2012; Segoni et al., 2014; 614 

Gariano et al., 2015),  we use the data of last two years for the validation purpose. Although the cross-615 

validation approach is a way to improve the reliability of the results, the soil moisture data are 616 

simulated by the hydrological model, which are based on the continuous process. As a result, if the 617 

leave-one-out cross-validation approach is used, the intermittent data would cause modelling 618 

difficulties. Concerning the validation of thresholds, the optimal thresholds are defined only 619 

considering the optimization of the skill scores, however, in practice, this procedure should depend on 620 

the vulnerability and value of exposed properties and infrastructures. 621 

Finally, our study is carried out at a daily time scale owing to the restriction of data. This may lead to 622 

some biases to the characteristics of rainfall events associated with landslides, thus affect the results 623 

of the Bayesian analysis, because for shallow landslides, they are typically initiated by intense rainfall. 624 

Sometimes an intense rainfall over several hours may trigger landslides by punctuating the saturation. 625 

In this case, using daily rainfall to characterize the rainfall event may overestimate the rainfall severity. 626 

If applied to the landslide predictions, it will cause the delay of warning.  627 

6 Conclusions 628 

 In this study, a probabilistic threshold is proposed for a sub-region of the Emilia-Romagna region in 629 

northern Italy. In order to take into account the conditions with landslides and without landslides, the 630 

two-dimensional Bayesian analysis is applied to estimate the landslide occurrence probability given 631 

the various combinations by two factors. One is the soil moisture conditions preceding the rainfall 632 

event, in this study, the soil moisture is estimated using the distributed hydrological model SHETRAN. 633 

Another is the severity of rainfall event characterized by cumulated even rainfall-rainfall duration (ED) 634 

thresholds with different exceedance probabilities. The soil moisture conditions are classified into 5 635 

categories and the rainfall events are classified into 6 categories. Based on the 5 × 6 cell conditions, 636 

the landslide probabilities are estimated with the data of the calibration period 2005 to 2013. A critical 637 
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value is then selected to divide these cells into conditions that are likely to trigger landslides and those 638 

that are unlikely to trigger landslides, in this way, a probabilistic threshold is defined. In order to 639 

determine an appropriate critical value, probabilistic thresholds defined with different critical values 640 

are evaluated by comparing their prediction performances for the data of the validation period 2014 to 641 

2015. The prediction performance is assessed with the receiver operating characteristic (ROC) 642 

approach, results show that the optimal probabilistic threshold is reached when using the critical value 643 

as 0.005, with the hit rate as 1 and the false alarm rate as 0.28. Besides, through comparing the 644 

prediction results with that of the ED rainfall threshold, the proposed probabilistic threshold provides 645 

a distinct improvement in terms of reducing the false alarm rate from 0.58 to 0.28. The results 646 

demonstrate that adjusting the rainfall threshold level according to the antecedent soil moisture 647 

conditions could improve the prediction capabilities of the ED rainfall threshold, indicating the 648 

importance of the antecedent soil moisture in the landslide occurrences.  649 

This study provides an effective approach to improve the prediction performance of the ED rainfall 650 

threshold, benefiting its application in the landslide prediction. Although the antecedent soil moisture 651 

condition is estimated by the hydrological model in this study, it can be estimated in various ways, 652 

therefore, the proposed method could be widely applied to take advantage of the soil moisture 653 

information to improve the rainfall threshold's performance. More explorations are encouraged to test 654 

the performance of our proposed methods.  655 
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