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ABSTRACT: Diethylglycine (Deg) homopeptides adopt the rare 2.05-helical conformation, the longest three-dimensional structure 

that a peptide of a given sequence can adopt. Despite this unique conformational feature, Deg is rarely used in peptide design be-

cause of its poor reactivity. In the paper we show that reductive desulfurization of oligomers formed from more reactive tetrahy-

drothiopyran-containing precursors provides a practical way to build the longest Deg homopeptides so far made, and we detail 

some conformational studies of the Deg oligomers and their heterocyclic precursors. 

Homopeptides 2 of diethylglycine (Deg) 1 (Figure 1a) have 

peculiar structural features, as they are able to adopt the rare, 

fully-extended conformation or 2.05-helix (Figure 1b). This 

motif is the longest 3D-structure that a peptide of a given se-

quence can adopt, with torsion angles: φ = ψ = ω = 180°,1 and 

is extremely rare in natural peptides. One of the few examples 

known is the (Gly)4 sequence of the enzyme His-tRNA-

synthetase.2 The 2.05-helix is sensitive to external conditions 

and reversibly interconverts with the much shorter 310-helix on 

changing solvent polarity.3 Deg peptides, being able to under-

go such a conformational switch, may find application as mo-

lecular springs in peptide-based devices.4 

Despite these unique features, Deg peptides are not widely 

exploited in peptide conformational design, mainly because of 

the low reactivity of even the most activated Deg derivatives, 

which hampers its coupling reactions. The longest Deg homo-

peptide synthesized so far is the hexapeptide Tfa-(Deg)6-OEt.5 

In this paper, we describe a new, generally applicable syn-

thetic approach to Deg homopeptides that exploits the more 

readily coupled tetrahydrothiopyran-derived Cα-

tetrasubstituted residue Thp (4-aminotetrahydrothiopyran-4-

carboxylic acid, 3) as a precursor to Deg, which may be re-

vealed through desulfurization of 3. Thp is a mimic of Met and 

has been employed in the design of Met-containing peptide 

analogues with improved biological activity/enzymatic stabil-

ity.6 Cyclic quaternary amino acids tend to be significantly 

more reactive than their acyclic homologues,7 and the strategy 

of masking alkyl groups as rings by linking them through a 

sulfur atom is one that proved successful in classical diastere-

oselective aldol reactions. A temporary sulfur-containing ring 

was, for example, crucial to Woodward’s seminal synthesis of 

erythromycin.8 

 

Figure 1. Diethylglycine (Deg) and its oligomers. 

A supply of the α-amino acid Thp 3 was prepared using a 

modified Strecker reaction9 (for details see Supporting Infor-

mation, SI). Thp 3 was protected as its Fmoc derivative and 

activated towards coupling by conversion to its acid fluoride 

derivative Fmoc-Thp-F (Figure 2).10 

The methyl ester of 3 was successively coupled to Fmoc-

Thp-F in solution, allowing the synthesis of Thp homopeptides 

4 with high yields (76% - 89%) for each coupling step (Figure 



 

 

2). By fine tuning the excess of the acylating agent and reac-

tion times, we could considerably improve both yield and puri-

ty even for the longer peptide sequences (yield >80% even for 

Fmoc-(Thp)n-OMe, n = 7,8). Each coupling between Fmoc-

Thp-F and H-(Thp)n-OMe was achieved by stirring for 12 

hours in anhydrous CH2Cl2. Simple purification by flash 

chromatography returned pure Thp-homopeptides 4. 
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Figure 2. Synthesis of oligomers of Thp. Conditions: a 20% v/v 

Et2NH in anhydr. CH2Cl2, room temp, 1 h; b Fmoc-Thp-F (1.1 

equiv) in anhydr. CH2Cl2, room temp overnight; c 30% Ac2O in 

anhydr. CH2Cl2, room temp, 1 h.  

Thp homopeptides have never been synthesized before, so 

we carried out a detailed study of their conformational charac-

teristics. It has been proposed6 that Thp may induce the elusive 

γ-turn.11 FTIR analysis in deuterochloroform (Figure 3) pro-

vided evidence that a γ-turn is indeed present in the shorter 

Thp homologues. Figure 3a shows a band centered at about 

3290 cm-1 for Fmoc-(Thp)3-OMe and 3315 cm-1 for Fmoc-

(Thp)2-OMe. A negligible dilution effect (see SI) shows that 

this band is due to an intramolecularly H-bonded NH, arising 

from a γ-turn C7 pseudo-cycle between the NH of the second 

Thp residue with the Fmoc C=O. At the same time, the third 

Thp residue in Fmoc-(Thp)3-OMe makes possible the for-

mation of a β-turn (a sequence of which produces a 310 helix). 

An i←i+3 H-bond between the NH of Thp3 and the urethane 

C=O of the Fmoc protecting group is confirmed by a band 

centered at 3370 cm-1.  
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Figure 3. (a) Portion of the FTIR absorption spectra (NH stretch-

ing bands) of Fmoc-(Thp)n-OMe (n = 2-4) in CDCl3 (1 mM); (b) 

Amide A region of the FTIR absorption spectra of the Fmoc-

(Thp)n-OMe series (n= 4-8) in CDCl3 (1 mM). 

This rare γ-turn could not be detected for longer homopep-

tides, for which a 310-helical structure is preferably adopted 

(Figure 3b), indicating that the γ-turn (a sequence of which 

generates the 2.27-helix12) is stable only in short peptide se-

quences (n <4). The onset of a 310-helix for Fmoc-(Thp)n-OMe 

(n= 4-8) peptides is confirmed by the negligible dilution effect 

(Figure S2, SI), the strong, red-shifted amide I band centered 

at about 1666 cm-1, and the occurrence of the amide II band at 

around 1520 cm-1 (Figure S3, SI). More detailed information 

on the secondary structure of the Thp homooligopepeptides 

was provided by both FTIR absorption analysis and NMR 

studies of Ac-(Thp)n-OMe 5, obtained by deprotection and 

acetylation of 4 (Figure 2). The results pointed to a well de-

veloped 310-helical conformation13 for all Ac-(Thp)n-OMe (see 

SI). 

Desulfurization of the tetrahydrothiopyran ring of Thp re-

veals two ethyl groups, allowing the synthesis of peptides con-

taining the otherwise synthetically challenging diethylglycine 

residue. Treatment of Ac-(Thp)n-OMe peptides (n = 6-8) with 

Raney Ni14 converted the Thp-homooligopeptides straightfor-

wardly to the corresponding Deg-peptides Ac-(Deg)n-OMe (n 

= 6-8) in good yield and purity (Fig. 4). 
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Figure 4. Synthesis of Ac-(Deg)n-OMe by Raney Ni desulfuriza-

tion of Ac-(Thp)n-OMe. 

As a result of the differences in their molecular dipole mo-

ments, Deg homopeptides undergo reversible conformational 

transitions between the 2.05- and 310-helix in response to a 

change in solvent polarity (Figure 1b,c). FTIR clearly distin-

guishes between a 2.05- and a 310-helix,3 so in order to investi-

gate this feature for these unprecedentedly long homopeptides, 

we acquired IR spectra in three different solvents (CDCl3, 

cyclohexane-d12, and CD3CN). 
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Figure 5. IR absorption spectra (Amide I and II region) of (a) Ac-

(Deg)n-OMe (n = 6-8) in CDCl3 (peptide concentration: 1 mM) 

and (b) Ac-(Deg)7-OMe in cyclohexane-d6 (peptide concentration: 

0.5 mM). 

FTIR analysis on all peptides at both 0.1 and 1 mM concen-

trations revealed negligible spectral differences and thus ruled 

out peptide aggregation. Ac-(Deg)6-OMe shows the typical IR 

absorption features of the fully extended conformation, name-

ly a split amide I band (Δν = 20 cm-1). The amide II shifts to a 

frequency lower than 1500 cm-1 (about 1490 cm-1) and is more 

intense than the amide I band (Figure 5).15 Additionally, a less 

intense band at 1525 cm-1 may be tentatively ascribed to a 

small contribution from the 310-helical conformation arising 

from the relative destabilization of the 2.05-helix in longer 

oligomers of Ac-(Deg)n-OMe. 

The amide I and II bands of Ac-(Deg)7-OMe in CDCl3 solu-

tion (Figure 5) reveal the population of both 310- and 2.05-

helical structures, with a broad amide I band and two equally 

intense amide II bands at the position typical of 310- (1525 cm–

1) and 2.05-helices (1490 cm–1). This observation is further 

supported by the position and relative intensities of the bands 

in the amide A region, (Figure S6, SI). In a continuation of 

this trend, the IR absorption spectrum of Ac-(Deg)8-OMe 

(Figure 5a) shows amide I and amide II bands characteristic 

only of a 310-helical structure. In particular, the (2.05-helix) 

amide II band at a frequency lower than 1500 cm-1 is com-

pletely absent. 

This result suggests that the Deg7 heptapeptide is already 

too long to adopt a fully extended 2.05 conformation, which 

apparently does not gain stability by increasing cooperativity. 

The same holds true for the 310-helix, which often disappears 

with peptide elongation in favour of the onset of an α-helix.16 

This is the first evidence of a length-dependent change in the 

conformational preferences of Deg homopeptides, with the 

310-helix preferred over the fully extended conformation for 

longer 7- and 8-residue homologues. 

Even in non-polar cyclohexane, which is expected to favour 

the greater number of intramolecular hydrogen bonds support-

ed by a 2.05-helix, the amide I band of Ac-(Deg)7-OMe re-

vealed a mixture of 2.05- and 310-helix (Figure 5b), though 

with a greater contribution from the 'split' signal characteristic 

of the 2.05-helix. In the polar solvent CD3CN (known to in-

duce 310-helical conformation in Deg-peptides) the amide II 

band of all Ac-(Deg)n-OMe peptides studied (n = 6-8) falls at 

about 1530 cm–1, characteristic of helical structures (see Fig-

ure S7, SI). Ac-(Deg)6-OMe thus reveals a conformational 

switch between a 2.05 helix in CDCl3 and a 310 helix in 

CD3CN solutions.17 

Further information on the secondary structure of Deg 

homopeptides was gained from 1D and 2D 1H-NMR spectros-

copy in CDCl3, DMSO-d6, and CD3OH. NMR analysis on Ac-

(Deg)6-OMe in CDCl3 solution in the presence of an increas-

ing percentage of DMSO-d6
18 caused no change on any of the 

NH proton chemical shifts, confirming the adoption of a fully 

extended conformation in CDCl3 solution for Ac-(Deg)6-OMe 

(Figure 6a). The same analysis carried out on Ac-(Deg)8-OMe 

showed that two NHs are sensitive to the presence of the H-

bond donor, as expected for a 310-helical conformation (Figure 

S8, SI). The 1D 1H NMR spectrum of Ac-(Deg)7-OMe in 

CDCl3 solution at 23 °C was characterized by very broad sig-

nals which sharpened when acquired at 53 °C, presumably as a 

result of the exchange between the 310- and 2.05-helical struc-

tures revealed by FTIR. NOESY experiments in a more polar 

solvent CD3OH (Figure 6b) revealed all sequential, NH-NH 

cross peaks (apart from the one between NH6 and NH7 falling 

into the diagonal). Such connectivity is possible only for 310- 

or α-helical peptides and is inconsistent with a 2.05-helix.19  
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Figure 6 (a) Insensitivity of NH proton chemical shifts in the 1H 

NMR spectra Ac-(Deg)6-OMe as a function of the amount of 

DMSO-d6 added to the CDCl3 solution (v/v) (peptide concentra-

tion: 1 mM). (b) Amide region of the NOESY spectrum of Ac-

(Deg)7-OMe in CD3OH solution (peptide concentration: 1 mM) 

showing NH(i)→NH(i+1) connectivities. 

In summary, we report the synthesis of the homopeptide se-

ries Fmoc-(Thp)n-OMe (n = 2-8) and Ac-(Thp)n-OMe (n = 6-

8). A conformational analysis by means of FTIR Absorption 

spectroscopy highlighted the presence of the elusive γ-turn 

conformation for short Thp homopeptides. Raney Ni reductive 

desulfurization of these Thp oligomers converted them into the 

corresponding Deg homopeptides Ac-(Deg)n-OMe (n = 6-8) - 
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the longest Deg-homopeptides ever synthesized - with good 

yield and purity. This approach overcomes the usual challenge 

of coupling the highly unreactive Deg oligomers and paves the 

way to their synthesis on a solid support. 

Ac-(Deg)n-OMe oligomers adopt stable fully-extended con-

formations only for n < 7 in non-polar solvents. Such length-

dependent stability may be explained considering that alt-

hough for a single Deg residue the minimum energy confor-

mation corresponds to a 2.05 helix, the 310-helical structure is 

less than 2 kcal/mol higher in energy.3 Moreover, as the num-

ber of intramolecular H-bonds increases  as a result of peptide 

elongation, the stabilization gained by the two additional intra-

residue H-bonds in the 2.05 conformation becomes less im-

portant. We conclude that the longest homologue of the Ac-

(Deg)n-OMe series that can adopt a stable fully-extended 2.05 

conformation is the hexapeptide, which thus represents the 

current limit for using peptide design to induce this maximally 

extended conformation.  The fact that lengthening oligomers 

of Deg, and presumably also of other similar dialkylglycines, 

causes them to revert to a 310 helical secondary structure has 

wider implications for the use of these residues in the design 

and synthesis of conformationally controllable and switchable 

helical foldamer structures,20 particularly with regard to their 

potential membrane activity.21 The use of Thp as a precursor 

to Deg has potential wider utility in peptide synthesis in solu-

tion and on solid phase, and opens opportunities for wider use 

of Deg as a conformational control element in the design of 

peptidomimetics. 
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Experimental and spectroscopic data for all new compounds. Fur-

ther spectroscopic data and conformational analysis for Thp and 
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