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Ultrasonic phased arrays have produced major
benefits in a range of fields, from medical imaging
to non-destructive evaluation. The maximum
information, which can be measured by an array,
corresponds to the Full Matrix Capture (FMC) data
acquisition technique and contains all possible
combinations of transmitter–receiver signals.
However, this method is not fast enough for some
applications and can result in a very large volume of
data. In this paper, the problem of optimal array data
acquisition strategy is considered, that is, how to make
the minimum number of array measurements without
loss of information. The main result is that under the
single scattering assumption the FMC dataset has a
specific sparse structure, and this property can be
used to design an optimal data acquisition method.
An analytical relationship between the minimum
number of array firings, maximum steering angle
and signal-to-noise ratio is derived, and validated
experimentally. An important conclusion is that the
optimal number of emissions decreases when the
angular aperture of the array increases. It is also
shown that plane wave imaging data are equivalent
to the FMC dataset, but requires up to an order of
magnitude fewer array firings.

1. Introduction
Ultrasonic arrays are now routinely used in industry for
non-destructive testing and assessment of the structural
integrity of materials. Modern computational power
makes it possible to collect raw array data first and
then perform image reconstruction in post-processing.
One common data collection method, which is now
available in many commercial ultrasonic array systems
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is Full Matrix Capture (FMC) [1–4]. In this case, the ultrasonic wave is consecutively transmitted
by each array element and the reflected signal is measured by all array elements simultaneously.
The advantage of this method of array data acquisition is that an FMC dataset contains the
maximum possible information that can be measured by an array from a given position. It means
that data corresponding to any array acquisition method can be synthesized from the FMC dataset
and various imaging techniques can be applied [1,5–10]. Moreover, advanced signal processing
becomes possible. For example, scattering matrices of defects can be extracted and used for their
characterization [11–15].

However, the FMC data acquisition method also has some disadvantages. The first important
issue is related to the volume of measured array data. If an ultrasonic array has N elements,
then the corresponding FMC dataset consists of N2 time signals. In many industrial cases, an
inspection is carried out by physically scanning a phased array to cover a large area. Although
the data volume for a single FMC set is relatively small, the total amount of inspection data in this
case can be extremely large, containing terabytes of data.

Secondly, in order to measure the FMC data N transmissions are required, which can take too
long for some applications. Note, that the technological advances in the last few years have made
it possible to perform ultrasonic imaging using the FMC data acquisition method in near ‘real
time’, where this means frame rate of tens frames per second [16]. This is close to the fundamental
physical limit, which is related to the finite speed of ultrasonic wave propagation and their
decay in materials. Although this imaging rate is fast enough in some industrial cases, there are
multiple applications which require a much faster data acquisition rate of several hundred (or,
in some cases, even thousands) frames per second. Regarding industrial non-destructive testing
applications, well-known examples are pipeline inspection using pigging [17] and railway track
inspection [18]. In these cases, the inspection vehicle moves at tens of metres per second so an
ultrasonic frame rate of 10 frames per second is wholly insufficient. In addition, a very high frame
rate opens the possibility for many other applications, such as real-time monitoring of fatigue
crack growth.

One possible solution to reduce the amount of measured data is based on compressive sensing
theory [19], which provides a method to reconstruct data from far fewer samples than required
by Nyquist sampling theorem. The main condition under which this reconstruction is possible
is that the data are sparse. In the application of this theory to ultrasonic imaging the data to
be reconstructed represents an image, and sparsity is usually interpreted as a small number of
scatterers present in the material [20,21]. This approach is not generalizable and lacks a formal
definition to assess its performance in different inspections.

The problem of reduction of the number of ultrasonic array firings has been intensively studied
by many researchers. The common source method uses all elements to transmit simultaneously,
so that a plane wave propagates into the structure and an image is created from the scattered
waves [22–25]. Another possibility is to use just a few array elements as transmitters in order
to produce the best image for a given number of firings [26,27]. However, in both cases the
reduction in the data acquisition time comes at the expense of significantly reduced image
quality. Alternatively, iterative imaging methods have been suggested in order to suppress the
aliasing noise [28,29]. These techniques help to reduce imaging artefacts, but the signal processing
time increases in proportion to the number of iterations. The main progress in this area has
been achieved in the medical imaging field using plane wave excitations [30,31]. It has been
shown that it is possible to achieve good quality imaging with a relatively small number of
transmitted plane waves. The image quality in plane wave imaging is affected by a number of
parameters, specifically the number of transmitted plane waves and the maximum steering angle.
A method for optimizing these parameters based on Pareto optimality has been developed in
[32]. It has also been demonstrated that plane wave imaging techniques give good results in non-
destructive testing applications with much smaller number of emissions compared to the FMC
method [33,34]. However, the physical reason for this has not been explained. Also, it remains
unclear if there is a fundamental relationship between maximum steering angle and the number
of plane wave transmissions.
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Figure 1. Array measurement geometry.

The key question investigated in this paper is how to optimize the array data acquisition
process so it measures the same amount of information as the FMC method, but using fewer
measurements. The crucial observation is that under the single scattering assumption an FMC
dataset has a specific sparse structure, which is independent of the number of scatterers. This
property can be used to construct the optimal array data measurement procedure. It is shown
that plane wave imaging represents one possible implementation of the optimal data acquisition
approach. Also, the angular sampling criterion, which relates the number of plane wave to the
maximum steering angle, is derived. The proposed plane wave sampling theory is experimentally
validated on an aluminium sample with volumetric defects. Finally, the key applications of this
approach to a range of fields are discussed.

2. Structure of ultrasonic array data

(a) Formulation of the problem
In this paper, for simplicity, two-dimensional imaging using a one-dimensional linear array is
considered. However, all results can be extended to three-dimensional imaging using a two-
dimensional array. The system is illustrated schematically in figure 1. A two-dimensional elastic
isotropic half-space is considered with Cartesian coordinate axes (x, z) defined with the z-axis
normal to the surface of the half-space. In the simulations shown below the material is aluminium
(Young’s modulus: 69 GPa, Poisson’s ratio: 0.334, density: 2700 kg m−3). A 5 MHz, 64 element
array is used as an example throughout this paper, and the element pitch of the array is 0.6 mm
(i.e. 0.5λ at the centre frequency).

In general, the ultrasonic array data, g, can be measured in many different ways, for example,
by applying various time-delays to the array elements or using different subsets of array elements
in transmission and reception. However, the maximum possible amount of information that can
be collected by the array in a particular position is contained in the full matrix of transmitter–
receiver array data, measured using the FMC technique. The FMC data depend on three variables:
position of transmitter array element, xT, position of receiver array element, xR and time, t, and
can be visualized as a three-dimensional cube of data, gfmc(t, xT, xR) (figure 2a). One example of
an alternative array data capture technique is the plane wave imaging method [30,33]. In this
case, the measured array data are given by a dataset gpw(t, γT, xR), which depends on the angle of
transmitted plane wave, γT, position of receiver array element, xR and time, t.

The main question, investigated in this paper, is if there is an optimal array data measurement
technique, which allows the same amount of information to be collected as FMC, but using a
smaller number of measurements. Mathematically, it means, that the data g has a smaller number
of components, than the FMC data, gfmc, and there exists a one-to-one relationship between them:

gfmc = T[g] and g = T−1[gfmc], (2.1)
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Figure 2. Modelling results for five point scatterers: (a) FMC data, −40 dB isosurface image; (b) back-propagation two-
dimensional image; (c) generalized back-propagation image showing−40 dB isosurfaces; (d) slice of the generalized image at
xR = 0. Dashed line indicates the direction of side-lobes (angle θP) given by (2.7), angleϕ0 is the array half angular aperture.

where T is the mapping operator from the new measurement space g into the FMC measurement
space gfmc.

Expression (2.1) means that measurements gfmc and g are equivalent to each other. One
important practical implication is that in this case all data processing methods available for
the FMC data, gfmc, can also be applied to the data g. For example, scattering matrices for
different defects can be extracted from the raw measured data and then used for defect
characterization [15]. Another important observation from relationship (2.1) is, that if the number
of measurements in g is smaller than the dimension of the FMC data gfmc, then different
measurements in the FMC dataset are not independent. Therefore, the main goal of this paper
is to find possible dependencies in the FMC data and then use them to design the optimal
measurement procedure. It is important to note that these sparsity relationships will be based
on fundamental properties of the FMC data and array and not rely on the assumption of a small
number of scatterers or other qualitative comparisons.

(b) Concept of imaging as a data compression method
Conventionally, the amount of information in the array datasets gfmc and g, is assessed by
comparing the ultrasonic images, Ifmc and I, obtained using data gfmc and g, respectively. If Lfmc
and L are imaging operators for the gfmc and g datasets, then

Ifmc = Lfmc[gfmc], I = L[g]. (2.2)

Traditionally, it was assumed, that if images have similar quality (for example, based on the
signal-to-noise ratio or contrast metrics), then there is no loss of information. However, in general,
the equality Ifmc = I does not necessarily imply that the data gfmc and g are equivalent in the sense
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of relationship (2.1), key if more advanced processing is to be carried out. A sufficient condition
for the existence of a mapping operator T between two datasets is that the corresponding imaging
operators are reversible. In this case,

T = L−1
fmcL and T−1 = L−1Lfmc. (2.3)

The construction of an inverse imaging operator requires the range of the imaging operator to
be known, which in turn requires a specific model of the scattering mechanism. For example,
if scatterers are considered as a collection of frequency-independent point scatterers, then an
image represents a reconstruction of the scatterer distribution function. In this case, the image-to-
data operator is represented by the forward model of wave scattering from a known distribution
of point scatterers. Alternatively, the imaging operator Lfmc can be considered globally [12], as
an operator in the vector space gfmc. The advantage of this approach is that the reversibility
of the imaging operator becomes model-independent. For example, it was shown that the
back-propagation imaging method is reversible in such a global sense [12].

The analysis in this paper is based on the assumption that multiple scattering between different
scatterers is small compared with the single scattering contribution, so a single scattering model
is valid. It is important to stress that no other assumptions about the physical nature of scattering
are made.

The modelling example of FMC data for five-point scatterers, located at a depth of 20 mm
from the array is shown in figure 2a. It can be seen that the scattering data are spread over
all combinations of transmit–receive signals, and it is difficult to see any general dependencies
between different components of the FMC dataset. However, the main characteristic of the single
scattering data are that for every scatterer all scattered signals come from a single location,
corresponding to the position of the scatterer. The majority of the array imaging methods are
based on this property and effectively focus the scattered signals back at the scatterer location.
If the imaging method is reversible, then it is possible to convert the image back to the array
data. Therefore, in this case the image represents an alternative form of the array data. Moreover,
because scattered signals from different scatterers are localized in the imaging space, the imaging
algorithm can be considered as an array data compression operation.

(c) Reversible back-propagation imaging method
In this section, the analysis of the reversible back-propagation imaging operator is performed
which helps to reveal data redundancies in the FMC dataset.

In general, the transmitter and receiver elements are designed to be sensitive to the
longitudinal wave mode only, so shear waves and mode conversion effects are not considered.
The back-propagation imaging method can be represented by a linear operator, B, which converts
FMC data, gfmc(t, xT, xR), into the generalized image, b(z, xT, xR) [12],

b(z, xT, xR) = B[gfmc(t, xT, xR)], B = F−1HF. (2.4)

Here F is a two-dimensional Fourier transform with respect to the spatial coordinates xT, xR, F−1

is the inverse Fourier transform and H is the back-propagation of the angular spectrum operator.
Note that the physical meaning of the generalized image, b(z, xT, xR), is transmitter–receiver array
data, measured at time t = 0 by an array located at depth z [12]. Alternatively, it can be considered
as beamforming with different transmit, (xT, z), and receive, (xR, z), focusing.

The operator H converts the time data into a function of propagation distance and can be
written in the form of a one-dimensional Fourier transform (see appendix Aa). Therefore, each
operator in expression (2.4) for the back-propagation operator B is reversible and the generalized
image b(z, xT, xR) can be converted back into the array data gfmc(t, xT, xR):

gfmc(t, xT, xR) = B−1[b(z, xT, xR)], B−1 = F−1H−1F. (2.5)

where B−1 is the inverse imaging operator.
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The conventional two-dimensional image of scatterer position I(x, z) is given by the pulse-echo
data xT = xR of the generalized image

I(x, z) = b(z, x, x)]. (2.6)

Therefore, the generalized image b(z, xT, xR) contains more information than is necessary for
localization of the scatterers. However, the extra information corresponding to the non-diagonal
data xT �= xR is crucial for the inverse imaging [12].

(d) Point spread function in the generalized image domain
Figure 2b shows the conventional two-dimensional back-propagation image, i.e. in the pulse echo
xT = xR plane, for the modelling example of five-point scatterers. The corresponding generalized
image is presented in figure 2c. It is seen that the back-propagation operator focuses the energy
from each scatterer into the vicinity of its location, and, therefore, the data in the generalized
image domain are localized around this pulse-echo plane xT = xR. Note that the generalized
image can be considered as a different representation of the original FMC dataset shown in
figure 2a, as they can be transformed between the two representations using the back-propagation
and inverse back-propagation operators. Comparison of figure 2a,c reveals the fundamental
sparse nature of the FMC dataset. It is clear that the degree of sparseness is defined by the point
spread function (PSF) of the array in the generalized image domain. The structure of the PSF is
investigated in this section.

For simplicity of the initial analysis, it is assumed that the array elements are omnidirectional
and a point scatterer is located at depth z0 directly below the geometrical centre of the array
(x0 = 0). An example of the PSF in the generalized image domain is shown in figure 2d. The
amplitude of the side lobes can be estimated analytically using asymptotic analysis of the back-
propagation imaging operator. The detailed derivation is given in appendix Ab, and only final
results are summarized below.

The main side lobes are located in the (xT, z), (xR, z) planes in the directions θ = θP (figure 2d):

θP = π

2
∓ ϕ0

2
, (2.7)

where the angle θ is an elevation angle in the (xT − x0, xR − x0, z − z0) space, and θ = 0
corresponds to the direction of the positive z-axis. The angle ϕ0 corresponds to the maximum
scattered angle measured by the array (half angular aperture of the array),

tan ϕ0 = L
2z0

, (2.8)

where L is the array aperture.
The quantity of interest is the relative side lobe level as a function of distance r and array

angular aperture ϕ0:

δP(r, ϕ0) = P(r, θP)
P(0, 0)

, (2.9)

where P(r, θ ) is the point spread function and r is the radial distance in the (xT − x0, xR − x0, z − z0)
space with the centre at the location of the scatterer.

It is convenient to introduce dimensionless distance r̃ = r/λ, where λ is the ultrasonic
wavelength at the centre frequency f0. Then the asymptotic behaviour of the PSF in the far field
r̃ � 1 is given by

— if r̃ϕ3
0 � 1

δP(r̃, ϕ0) = 1
4π r̃

1
ϕ0 cos(ϕ0/2)

, (2.10)

— if r̃ϕ3
0 ≥ 1

δP(r̃, ϕ0) = 1
8π r̃3/2

1

ϕ2
0 cos(ϕ0/2)

√
sin(ϕ0/2)

. (2.11)
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Qualitatively, expression (2.10) is applicable when the half array angular aperture ϕ0 is
relatively small. This corresponds to the situations when the array size is small or the scatterer
is located far from the array. On the other hand, when the array angular aperture ϕ0 increases, the
array focusing capability becomes better. Consequently, the decay rate of the PSF also increases
according to expression (2.11).

Figure 2d shows the xT − z plane (xR = 0) of the generalized image of the PSF for the scatterer
located in the centre of the array. The dashed line corresponds to the theoretically predicted
side-lobe direction. Note that the half angular aperture of the full array is 40◦. However, large
angles contribute mainly to the noise and, therefore, an additional angular filter of ϕ0 = 35◦ was
applied in the wavenumber domain. In this case, according to expressions (2.7), (2.11) the side-
lobes direction is θP = 72.5◦ and the side-lobes length at −40 dB in xT direction is 9 mm. It can be
seen that these theoretical estimations are in a good agreement with figure 2d.

3. Optimal data acquisition strategies

(a) General approach
In this section, the sparse nature of the FMC dataset in the generalized image domain is used
to design the optimal data acquisition procedure. For the analysis, it is convenient to rewrite
the back-propagation imaging operator (2.4) as an operator acting on the angular spectrum
G(t, kx(T), kx(R)) = F[gfmc(t, xT, xR)]:

b(z, xT, xR) = F−1H[G(t, kx(T), kx(R))]

and G(t, kx(T), kx(R)) = H−1F[b(z, xT, xR)].

⎫⎬
⎭ (3.1)

Note, that the Fourier transform operator F acts on the spatial coordinates xT, xR, and the back-
propagation of angular spectrum operator H acts on the variable z only.

If the array data are collected using the FMC technique, then the sampling in the wavenumber
domain (kx(T), kx(R)) is defined by the array aperture L as

�kx(T), �kx(R) = 2π

L
. (3.2)

In the previous section, it was shown that the generalized image b(z, xT, xR) has a specific sparsity,
when all data are localized around the pulse-echo plane xT = xR. This means that the sampling
rule (3.2) is too conservative and results in oversampling. The concept of the optimal data
acquisition method is to design the optimal sampling in the wavenumber domain, so that it
reflects the sparse property of the generalized image.

From the practical point of view, an important question is how to implement the sampling
scheme in the wavenumber domain using array measurements. There are multiple possible
sampling schemes which are consistent with the sparsity of the generalized image, however, not
all of them allow practical implementation using conventional ultrasonic array instrumentation.
Therefore, in this paper an additional optimization criterion of minimal number of array firings is
used. In this case, it is convenient to represent the Fourier transform operator as F = FTFR, where
FT and FR are Fourier transform operators with respect to transmitter and receiver coordinates.
Then the back-propagation imaging operator can be written in terms of the transmit angular
spectrum GT(t, kx(T), xR) = FT[gfmc(t, xT, xR)] as

b(z, xT, xR) = F−1
T F−1

R HFR[GT(t, kx(T), xR)]

and GT(t, kx(T), xR) = F−1
R H−1FRFT[b(z, xT, xR)].

⎫⎬
⎭ (3.3)
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From this expression and using conventional sampling arguments, it follows that the optimal
sampling in the wavenumber domain kx(T) is

�kx(T) = 2π

WP
, (3.4)

where WP is the maximum linear size of the PSF in the generalized image domain in the xT, xR
directions. It should be noted that, strictly speaking, the size of the PSF in the generalized image
domain (points where the PSF is not equal to zero) is unbounded. If the parameter WP is finite,
then this results in additional noise in the image due to aliasing. The level of this noise can be
controlled by using some threshold, and then the corresponding value of WP can be calculated
from expressions (2.10) or (2.11), depending on the array size and scatterer location.

(b) Angular spectrum imaging
One possible practical implementation of the optimal data acquisition approach described above
is to transmit angular spectrum components, corresponding to the sampling rule (3.4), and then
use all array elements on reception simultaneously similar to the FMC technique. The maximum
measured wavenumber is given by kmax = 2π/λ sin ϕ0. Then the number of array firings is given
by 2kmax/�kx(T), and using (3.4) can be written as

NT = 2 sin ϕ0
WP

λ
. (3.5)

Then the image is produced by applying the back-propagation operator in form (3.3). In this case,
all information is preserved and the FMC data can be reconstructed from the generalized image
using inverse imaging (2.5).

However, there are some difficulties associated with the angular spectrum excitation. Each
angular spectrum component represents a one-dimensional wave propagating in the z-direction.
For high wavenumbers kx(T), this wave is highly dispersive and has very small amplitude
compared with the plane wave excitation at kx(T) = 0, which makes it very sensitive to
experimental noise. Therefore, a practical implementation of the angular spectrum approach is
very challenging.

(c) Plane wave imaging
The problems associated with the angular spectrum method can be overcome by
using an alternative approach—plane wave imaging, which is described in this section.
Figure 3a schematically shows the sampling in the wavenumber-frequency domain, kx(T) −
ω, corresponding to the angular spectrum excitation. Each angular spectrum component is
associated with the fixed wavenumber kx(T), which is independent of frequency. It means that
the phase velocity of the angular spectrum wave is frequency-dependent. In order to illuminate
the dispersion effect the wavenumber kx(T) in the sampling scheme can be taken to be proportional
to frequency

kx(T) = ω

v
sin ϕ. (3.6)

This corresponds to non-uniform sampling and is schematically shown in figure 3b. Each
component (3.6) represents the plane wave propagating in the direction ϕ relative to the array.
Note, that practically each plane wave can be generated by applying appropriate time-delays to
the array elements. The reception is performed simultaneously on all array elements as before.

Because the sampling in the wavenumber domain is non-uniform, the back-propagation
image cannot be calculated using the Fast Fourier Transform algorithm. Therefore, a numerical
evaluation of Fourier integrals on a non-uniform grid must be performed instead. However, a
computationally more efficient approach is to use the asymptotic form of the back-propagation
method [35]. In this case, the imaging algorithm has a form similar to the total focusing method,
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and, hence, very efficient numerical implementation is possible. The detailed derivation is given
in appendix Ac.

The angular interval, �ϕ, of the plane wave excitation can be approximately calculated from
expressions (3.4) and (3.6) as

�ϕ = λ

WP
. (3.7)

For a scatterer located in the centre of the array (x0 = 0), the PSF is symmetrical in the xT, xR
plane. In this case, WP can be taken as the size of the PSF in the xT direction, and can be written
as WP = 2r sin θP = 2r cos 0.5ϕ0, where r is the side-lobe size in the generalized image domain
(figure 2d). Here relationship (2.7) between size-lobe direction θP and the angular array aperture
ϕ0 was used. Then the angular sampling interval can be expressed as

�ϕ = 1
2r̃ cos(ϕ0/2)

. (3.8)

The number of plane waves is Nϕ = 2ϕ0/�ϕ. Finally, using expressions (2.10), (2.11) for
asymptotic behaviour of the PSF, it is possible to obtain the following expression for the optimal
number of firings:

Nϕ = min[N1ϕ ; N2ϕ] (3.9)

and

N1ϕ = 1
δPπ

, N2ϕ = 1
(δPπ )2/3

1
(ϕ0 tan(ϕ0/2))1/3 . (3.10)

Here the variable δP describes the relative noise level due to aliasing.
Expression (3.9) allows us to draw some important practical conclusions. Note, that if the

location of a scatterer is fixed, then the angle ϕ0 monotonically increases when the array aperture
increases. Then from (3.9) it follows that for a relatively small angular range ϕ0 the required
number of firing is constant and independent of ϕ0, and, consequently, independent of the array
aperture. Moreover, when the number of array elements increases (hence, angular range ϕ0
increases), the optimal number of firing decreases as (ϕ0 tan 0.5ϕ0)−1/3. This behaviour can be
explained by the fact that increased angular range results in better focusing, and, hence, smaller
size of the PSF.

It should be stressed that the number of transmitted plane waves given by expression (3.9)
preserves the PSF in the generalized image domain (to the accuracy given by the relative noise
level δP). It means that in this case the plane wave array data is equivalent to the FMC data and can
be converted to the FMC data using inverse imaging. On the other hand, the conventional two-
dimensional image corresponds to the pulse-echo xT = xR plane in the generalized image domain.
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Therefore, if it is required to reconstruct the two-dimensional image only, then the number of
plane wave excitations, Nϕ,image, is half that given by expression (3.9):

Nϕ,image = 1
2 Nϕ . (3.11)

In this case, the two-dimensional image is preserved (up to the relative noise level δP), but the
part of the generalized image outside of the pulse-echo plane is corrupted by aliasing noise.

It is noted that the results (3.9), (3.11) for the optimal number of plane wave transmissions
do not explicitly depend on the position of the scatterer relative to the array and are entirely
defined by the angular aperture only. However, it is assumed that the angular aperture is
symmetrical, [−ϕ0, ϕ0]. In practice, it corresponds to the imaging area directly below the array
centre. If a point scatterer is located at the position (x0, z0), x0 �= 0, that is offset from the array
centre, then the angular range, [ϕ1, ϕ2], is asymmetrical: min(|ϕ1|, |ϕ2|) < ϕ0, max(|ϕ1|, |ϕ2|) = ϕ0.
However, the important result obtained above is that the maximum angular step, �ϕ, of the
plane wave transmissions is inversely proportional to the size of the point spread function, WP,
in the generalized image (equation (3.7)). This condition is true for any location of a scatterer,
and, therefore, can be used to estimate the minimum number of plane waves. Qualitatively, if a
scatterer is located with an offset relative to the array centre, then the focusing performance of
the array worsens and the relative side lobe amplitude of the PSF increases. Therefore, for a given
relative side lobe level, δP, the size of the PSF increases. Consequently, the plane wave angular
step becomes smaller.

The structure of the PSF in the generalized image domain for an offset scatterer can be
investigated similar to the centred scatterer (see appendix Ab). However, the analysis in this case
becomes more complex, and, in general, the result cannot be represented in a compact form as
in (3.9). Nevertheless, in a particular case of a scatterer located close to the edge of the array,
x0 ≈ L/2 (L is the array aperture), it is possible to estimate the minimum number of plane waves
as (see (3.11))

1
2

N1 ≤ Nϕ,image

[
x0 = L

2

]
≤ 1

2
N2 (3.12)

and
N1 = min[N1ϕ , 2−1/3N2ϕ], N2 = max[N1ϕ , 2−1/3N2ϕ], (3.13)

where N1ϕ , N2ϕ are given by (3.10). Note that in this expression it is assumed that the angular
range is [0, ϕ0], and corresponds to the imaging area around the scatterer location at x0 = L/2. If
it is required to perform imaging in the entire area below the array, −0.5L ≤ x0 ≤ 0.5L, then the
angular range is [−ϕ0, ϕ0], and the minimum number of plane waves is given by

N1 ≤ Nϕ,image

[
L
2

≤ x0 ≤ L
2

]
≤ N2. (3.14)

Therefore, in this case the optimal number of array firings is between 22/3 ≈ 1.6 and 2 times larger
than for a centred scatterer.

4. Experiments

(a) Scatterer in the centre of the array
The theory developed in the previous sections was experimentally validated on an aluminium
specimen with a 1 mm diameter side drilled hole located at 20 mm depth. A linear array with
the same parameters (5 MHz, 64 elements, 0.6 mm element pitch) as in the modelling example
was used. Firstly, the measurements were performed by positioning the array exactly above the
defect. The case of a scatterer located with the offset relative to the array centre is considered later.
Figure 4 shows the back-propagation imaging results obtained using the FMC dataset. Note that
similar to §2d the half angle filter of 35◦ was applied in the wavenumber domain. Figure 4a,b
shows the two-dimensional back-propagation image and the generalized image, respectively.
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Figure 4. Experimental images for 1 mm side drilled hole obtained from the FMC data: (a) back-propagation two-dimensional
image; (b) generalized back-propagation image,−40 dB isosurfaces; (c) slice of the generalized image at xR = 0. Dashed line
indicates the direction of side-lobes (angle θP) given by (2.7), angleϕ0 is the array half angular aperture.

Figure 2d shows the xT − z plane of the generalized image at xR = 0. The dashed line corresponds
to the theoretically predicted side-lobes direction. It can be seen that in general the experimental
PSF structure agrees well with the theoretical estimations (see also figure 2d).

The plane wave imaging results are presented in figure 5 for 9, 17 and 25 transmitted plane
waves. The maximum steering angle is 35◦ and the angular filter of 35◦ is also applied on reception
in the wavenumber domain. Note that according to expression (3.11) only nine plane waves are
required for the maximum noise level of −40 dB in the two-dimensional image. It can be seen
that in all cases the two-dimensional images are practically identical and the noise level is below
−40 dB (see also figure 4a for the two-dimensional image obtained from the FMC data).

Figure 5b,d,f illustrates how the aliasing noise in the generalized image domain changes with
the number of emitted plane waves. For example, if only nine plane waves are used then the
generalized image is completely corrupted with noise in the region outside the pulse-echo plane
|xT − xR| ≥ 2 mm. However, if the number of emissions is increased to 17 plane waves, then
the aliasing noise in the generalized image domain does not affect the data as predicted by
expression (3.9).

Once the generalized image is constructed, it can be converted to the FMC data using the
inverse imaging process. Preliminarily, the part of the generalized image free from the aliasing
noise was filtered out by applying the spatial filter |xT,R| ≤ �x, z1 ≤ z ≤ z2. Based on figure 5, it can
be determined that z1 = 18 mm, z2 = 23 mm and �x = 2, 8 and 10 mm for 9, 17 and 25 plane wave
emissions, respectively. An example of the reconstructed time-trace corresponding to transmitter
element 40 and receiver element 20 is shown in figure 6, where for comparison the same time-
trace from the experimentally captured FMC dataset is also shown. It can be seen that in all three
cases the reconstruction is very good, even in the case of only nine plane wave transmissions. This
surprising result is explained by noting that the majority of the PSF data in the generalized image
domain, which is needed for the inverse imaging, is concentrated in a relatively small area around
the defect location. In order to quantitatively illustrate this fact the relative side lobe amplitude
of the PSF as a function of array half angular aperture, ϕ0, and the distance in xT,R direction is
shown in figure 7. The calculations were performed using expression

δP = min[δP1, δP2]. (4.1)

Here δP1, δP2 are given by formulae (2.10) and (2.11) and the distance r̃ in the side lobe direction
was replaced by r̃ = r̃x/ cos(ϕ0/2), where r̃x is the distance in xT,R direction. For example, it is seen
that for ϕ0 = 35◦ the PSF data with a relative amplitude above −20 dB is contained in the region
|xT,R| ≤ 1.4λ, where the ultrasonic wavelength λ = 1.2 mm at 5 MHz.

The possibility to reconstruct the FMC dataset means that all signal processing operations
available for the FMC data can also be applied to the plane wave dataset. For example, the
scattering matrices extracted from the FMC data and the plane wave data with 9, 17 and 25
emissions are shown in figure 8. For the plane wave data, the FMC data were reconstructed first
using the inverse imaging as described above and then the scattering matrix was extracted from
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the FMC data. It is seen that the results are very similar confirming that the number of plane
waves given by expression (3.11) is enough to preserve the majority of FMC information. Note
that the scattering matrices extracted from the FMC data and nine plane wave data (figure 8a,b)
differ mainly at the maximum angles ±ϕ0 = ±35◦. This is consistent with the asymptotic analysis
performed in appendix Ab, where it has been shown that the main side lobe contribution is given
by the maximum steering angles and the stationary point (0◦). However, this information is partly
removed from the plane wave data during the preliminary filtering in the generalized image
domain before the application of the inverse imaging operator.

Finally, the signal-to-noise ratio (SNR) in the two-dimensional image as a function of number
of plane waves and angular aperture was calculated. The noise amplitude was estimated as the
maximum image amplitude in the area outside the rectangular box containing the PSF. The half
x-size of the box was taken equal to 2π/ max kx(T) = λ/ sin ϕ0, and the size in the z-direction was
6 mm. The result is presented in figure 9a. Also figure 9b shows the SNR based on the theoretical
formulae (3.9) and (3.11). It can be seen that there is a reasonable agreement, however, for angular
apertures smaller than 20◦ the experimental images show slightly higher SNR compared with the
theoretical predictions. This can be explained by the fact that asymptotic expression (3.9) is based
on the assumption of regular sampling in the wavenumber domain. In this case, the PSF pattern
is periodically repeated in the xT direction. Plane wave imaging however corresponds to irregular
sampling, which is also frequency-dependent (figure 3). Consequently, the grating lobe structure
in the generalized image domain is different (figure 5). It is important to note that this modelling
approach therefore represents a good conservative approach.

(b) Scatterer offset from the array centre
In this section, a scatterer located with an offset to the array centre is considered. In order to
illustrate the plane wave imaging performance in this case a modelling example is presented
first. The linear array aperture for the array parameters given in §2a is L = 37.8 mm, the point
scatterer is located at a depth of z0 = 20 mm and its lateral position x0 varies from 0 (array centre)
to x0 = L/2 (array edge). The maximum plane wave steering angle is ϕ0 = 35◦ as in the case of
the centred scatterer. Therefore, the angular aperture of the scatterer is [−ϕx, ϕ0], 0 ≤ ϕx ≤ ϕ0,
and ϕx = 0◦ corresponds to the scatterer located at the array edge and ϕx = ϕ0 corresponds to
the scatterer at the array centre.

Initially, the FMC array data were modelled using the far-field ray tracing model [11,12]. Then
the FMC data were converted into the plane wave array data by applying appropriate time-
delays to the array elements on transmission. Figure 10a shows the signal to aliasing noise ratio
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in the conventional two-dimensional image as a function of the number of emitted plane waves
and the scatterer location. Similar to the previous section, the noise amplitude was estimated
as the maximum image amplitude in the area outside the rectangular box containing the peak
of the PSF. The size of the box was chosen to satisfy the condition that the amplitude of the
PSF in the back-propagation image (FMC dataset) is less than −40 dB in the area away from the
selected region.
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It is important to note, that in figure 10a the number of plane waves for a given angle ϕx is
related to the full angular aperture [−35◦, 35◦], and, consequently, corresponds to the case when
the scatterers are located in the whole area −x0 ≤ x ≤ x0. It can be seen that for a given number of
plane waves the relative level of aliasing noise gradually increases as the position of the scatterer
approaches the edge of the array, ϕx → 0. Additionally, figure 10b,c separately shows the SNR
for the centred scatterer and the scatterer located at the array edge together with the theoretical
predictions (3.11) and (3.14). It can be seen that the agreement is very good. In particular, the
number of plane waves required to image the entire area below the array, −L/2 ≤ x0 ≤ L/2, with
the SNR greater than 40 dB is 2−1/3N2ϕ ≈ 15 as predicted by the lower bound of the theoretical
condition (3.14).

So far only a single scatterer case has been considered. However, because imaging operations
are linear, all results remain valid even when more than one scatterer is present, providing that the
single scattering contribution is dominant. This is supported by the experimental measurements
shown in figure 11. In this case, an aluminium specimen was used with a row of 1 mm diameter
side drilled holes with a pitch of 10 mm at a depth of 20 mm. Figure 11a shows the back-
propagation imaging results obtained using the FMC dataset. The half angle filter of 35◦ was
applied in the wavenumber domain. The plane wave images for 9 and 15 transmitted plane waves
are presented in figure 11b,c. The steering angle is [−35◦, 35◦] and the angular filter of 35◦ was also
applied on reception. The aliasing noise is visible in the case of nine plane waves predominantly
between and above the scatterers. However, the noise amplitude is at approximately −36 dB,
which is half that predicted by the theoretical estimation of −30 dB (figure 10c). This is explained
by the fact that the highest aliasing noise is related to the side scatterers, but their absolute
amplitude is smaller compared with the scatterer at the array centre due to the reduced angular
range. In the case of 15 plane waves, it can be seen that the image is practically identical to the
back-propagation image and the noise level is below −40 dB as predicted theoretically.

(c) Other factors affecting plane wave imaging
One of the main results of this paper is the fact that the optimum number of plane waves is
determined by the array PSF in the generalized image domain. Therefore, the structure of the
PSF can be used to assess the influence of different parameters on the plane wave imaging
performance. As an example, two factors which are important from the practical point of view
are briefly considered in this section: array element pitch and multiple scattering. Note, that only
a qualitative illustration is given below, and the detailed quantitative analysis of these cases will
be the subject of future work.

The developed theory implicitly assumes that the array element pitch satisfies to the Nyquist
sampling criterion (λ/2). However in many fields, including medical ultrasonic imaging it is
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common to use arrays with λ-pitch. Figure 12 shows the modelling example of a conventional
two-dimensional image and the generalized image of the PSF for the same 5 MHz 64 element
array as in §2, but with λ element pitch. Additionally, an angular filter with the half angular
aperture of 20◦ was applied on transmission and reception [36]. It can be seen that grating lobes
are successfully suppressed in the two-dimensional image. However, there are significant grating
lobes in the generalized image domain outside the pulse-echo plane. These grating lobes do not
appear on the two-dimensional image, but effectively result in an increased size of the PSF, and,
therefore, affect the minimum number of array firings required to preserve all information. This
provides the quantitative framework to explain why images can look fine with a reduced number
of firings and specifies the number required to achieve this, something previously not reported.

Another important aspect is related to the single scattering assumption. Strictly speaking, a
multiple scattering contribution always exists, although in many cases it is small compared with
single scattering [37]. In the generalized image, domain multiple scattering results in additional
noise distributed outside the conventional two-dimensional image plane xT = xR. This ‘multiple
scattering’ part of the generalized image will result in aliasing noise in the two-dimensional image
during the plane wave imaging with reduced number of firings. Essentially, this will degrade the
performance of the two-dimensional image and the magnitude and nature of this effect must be
taken into account when designing the reduced plane wave firings.

5. Conclusion
The problem of optimization of ultrasonic array data acquisition has been investigated. The
conventional FMC technique involves collecting all possible transmitter–receiver signals and,
therefore, contains the maximum information which can be measured by an array. However,
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the volume of measured data is very large and the data acquisition is not fast enough for some
applications.

It has been shown that under the single scattering assumption the FMC dataset has a specific
sparse structure. This property can be used to design an optimal data acquisition method. Two
possible strategies, corresponding to different sampling schemes in the wavenumber-frequency
domain, have been considered: the angular spectrum and plane wave imaging techniques. The
analytical relationship between the number of emissions, angular array aperture and signal-to-
noise ratio has been derived. An important counterintuitive conclusion from this relationship, is
that the optimal number of emissions decreases when the angular aperture of the array increases.

The analysis shows that plane wave imaging is more suitable for practical implementation than
the angular spectrum method. The theory has been validated experimentally using 5 MHz, 64
element array measurements on an aluminium sample with a 1 mm diameter holes. In particular,
it has been demonstrated that the theoretical prediction of the optimal number of plane waves is
in a good agreement with the experiment. Also, it has been shown that the FMC dataset can be
reconstructed from the plane wave data with a reduced number of emissions. This result means
that all signal processing operations available for the FMC data can also be applied to the plane
wave dataset. For example, the scattering matrices of the defects can be extracted and used for
defect characterization.

The possible applications of the developed theory are twofold. Firstly, the precise knowledge
of the PSF structure gives an opportunity to construct an efficient spatial filter in the generalized
image domain for the accurate extraction of defect scattering matrices. Secondly, the optimal
number of array firings for various practical configurations can be predicted and used for fast
imaging without loss of scattering information, or with detailed knowledge of what information
has been discarded.
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Appendix A

(a) Back-propagation of angular spectrum operator
In this section, the expression for the back-propagation of angular spectrum operator H is given.
Any time-domain signal u(t) can be expressed as a linear superposition of its spectral components
u(ω)

u(t) = 1
2π

∫
u(ω) eiωt dω. (A 1)

The Fourier transform operator F transforms the FMC array data gfmc(t, xT, xR) into the angular
spectrum G(t, kx(T), kx(R)), where kx(T) and kx(R) are the wavenumbers in the x-direction for the
transmitted and scattered waves, respectively:

G(t, kx(T), kx(R)) ≡ F[gfmc(t, xT, xR)]

=
∫∫

gfmc(t, xT, xR) ei(kx(T)xT+kx(R)xR) dxT dxR. (A 2)

Note, that the back-propagation operation is based on the assumption that the transmitter and
receiver elements are sensitive to the longitudinal wave mode only. Then it can be shown [12]
that the angular spectrum, G(t, kx(T), kx(R)), represents a one-dimensional wave propagating in the

z-direction with the wavenumber kz = kz(T) + kz(R). Here kz(T) =
√

k2 − kx(T), kz(R) =
√

k2 − kx(R) are
the wavenumbers in the z-direction for the transmitted and scattered wave, and k = ω/v is the
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scalar wavenumber, where v is the velocity of the longitudinal wave. The back-propagation of the
angular spectrum operator H converts the time data G(t, kx(T), kx(R)) into a function of propagation
distance, h(z, kx(T), kx(R)), and can be written in the form:

h(z, kx(T), kx(R)) ≡ H[G(t, kx(T), kx(R))]

= 1
2π

∫
G(ω, kx(T), kx(R)) eikzz dω. (A 3)

Note that for the spatial wavenumbers kx(T), kx(R) > k the spectrum G(ω, kx(T), kx(R)) corresponds
to the exponentially decaying evanescent waves and it can be assumed that G(ω, kx(T), kx(R)) = 0 for
kx(T), kx(R) > k. If kx(T) �= 0 or kx(R) �= 0 the one-dimensional wave G(t, kx(T), kx(R)) is dispersive and
the back-propagation of the angular spectrum (A 3) is equivalent to the dispersion compensation
method [38]. The wavenumber kz nonlinearly depends on the frequency ω and direct calculation
using the formula (A 3) is very time consuming. However, if the integration variable is changed
from ω to kz then the integral (A 3) can be written in the form of a Fourier transform with respect
to the variable kz as [38]

h(z, kx(T), kx(R)) = 1
2π

∫
G(ω(kz), kx(T), kx(R))

(
dkz

dω

)−1
eikzz dkz. (A 4)

(b) Asymptotic analysis of the array point spread function in thegeneralized imagedomain
In this section, the asymptotic analysis of the array PSF in the generalized image domain,
(xT, xR, z), is performed. The point scatterer is located at the depth z0 directly below the array
centre (x0 = 0). It is convenient to study the structure of the PSF in the spherical coordinate system,
(r, θ , γ ), with the centre at the scatterer location:

xT = r sin θ cos γ , xR = r sin θ sin γ and z − z0 = r cos θ . (A 5)

It is also useful to change the wavenumber variables in the Fourier integrals in the back-
propagation operator (3.1) as kx(T,R) = −k sin γT,R. Here angles −ϕ0 ≤ γT,R ≤ ϕ0 and ϕ0 is half of
the array angular aperture. Then using the model of array data developed in [12], the envelope of
the generalized image, b(r, θ , γ ), can be expressed as

b(r, θ , γ ) =
∣∣∣∣
∫ω0+�ω

ω0−�ω

U0(ω)ITR(ω, r, θ , γ ) dω

∣∣∣∣
and ITR =

∫ϕ0

−ϕ0

∫ϕ0

−ϕ0

f (γT)S(γT, γR)f (γR) eikr(ΦT+ΦR) dγT dγR,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 6)

where U0(ω) is the frequency spectrum of the initial pulse u0(t) with the centre frequency ω0
and half-bandwidth �ω. Below it is assumed that max |u0(t)| = u0(0) = 1. The function f (γ ) is the
array element directivity function, S(γT, γR) is the scattering matrix, and the phase factors ΦT,R
are given by

ΦT = sin θ cos γ sin γT + cos θ cos γT

and ΦR = sin θ sin γ sin γR + cos θ cos γR.

}
(A 7)

It is assumed that the scatterer and array elements are omnidirectional, so f ≡ 1 and S ≡ 1. In
this case,

ITR = ITIR, IT,R =
∫ϕ0

−ϕ0

eikrΦT,R dγT,R. (A 8)
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Integrals IT,R can be evaluated using the stationary phase method:

I ≈ 1√
r

I0 eikrΦ0 + 1
r

(I1 eikrΦ1 − I2 eikrΦ2 ),

Φ0 = Φ(γ0), Φ1 = Φ(ϕ0), Φ2 = Φ(−ϕ0)

and I0 =
√

2π

k|Φ ′′(γ0)| eiπ/4 sgn Φ ′′(γ0), I1 = 1
ikΦ ′(ϕ0)

, I2 = 1
ikΦ ′(−ϕ0)

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A 9)

Here subscripts T, R are omitted to simplify notations. The term I0 represents the contribution of
the stationary point γ0, Φ ′(γ0) = 0. The other two terms, I1 and I2, correspond to the boundary
points ±ϕ0.

From (A 6) and (A 9), it follows that the generalized image can be expressed as:

b =
∣∣∣∣∣∣

2∑
n,m=0

bnm

∣∣∣∣∣∣
and bnm = 1

rα

∫ω0+�ω

ω0−�ω

U0(ω)IT,n(ω)IR,m(ω) eiωr/v(ΦT,n+ΦR,m) dω,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A 10)

where parameter α = 1, 1.5, 2 depending on the n and m. These integrals can be approximately
calculated as

|bnm| ≈ 2π

rα
|IT,n(ω0)IR,m(ω0)|u0h

( r
v

(ΦT,n + ΦR,m)
)

, (A 11)

where u0h(t) is the envelope of the initial pulse u0(t). Because the signal u0(t) has finite duration,
from (A 11) it can be concluded that bnm ≈ 0 as r → ∞. The maximum side lobe amplitude is
reached in the directions (γ , θ ) where

ΦT,n(γ , θ ) + ΦR,m(γ , θ ) ≡ 0. (A 12)

Because the PSF is symmetrical, it is enough to consider directions 0 ≤ γ ≤ π/4, 0 ≤ θ ≤
π/2. Numerical calculations show that in this case condition (A 12) is satisfied only for m = 0
(stationary point in the integral IR) and n = 2 (boundary point in the integral IT), or m = 1, 2 and
n = 1, 2 (boundary points in the integrals IT and IR). Therefore, from (A 9) it follows that the
leading term in the asymptotic expansion of side lobes corresponds to m = 0, n = 2 and decays
as r−3/2. Note that the maximum value of the PSF corresponds to the scatterer location r = 0, and
equal to max |b| = 8πϕ2

0 . Then the relative side lobe level, δP = |b|/ max |b|, can be written as

δP =
(

λ

r

)3/2 1

8πϕ2
0

∣∣∣∣∣∂
2ΦR

∂γ 2
R

∣∣∣∣∣
−1/2

γR=γR,0

∣∣∣∣∂ΦT

∂γT

∣∣∣∣−1

γT=−ϕ0

, (A 13)

where γR,0 is the stationary point for the phase function ΦR, and angles (γ , θ ) in the expressions
for the phase functions ΦT,R are solutions to equation (A 12) for m = 0, n = 2.

Equation (A 12) can be solved with respect to the elevation angle θ for each value of azimuth
γ and half angular aperture ϕ0, and the solution, θ (γ , ϕ0), for the case m = 0, n = 2 is shown in
figure 13a. Then this function θ (γ , ϕ0) is used to calculate the relative side lobe level (A 13) and
the result is shown in figure 13b. Note that if the stationary point is located outside the array
aperture, γ0 > ϕ0, then the main contribution to the side lobe amplitude is given by the boundary
points and the leading term in the asymptotic expansion is O(r−2). From figure 13, it is seen that
dependance on the azimuth angle is very weak and the side lobes are located predominantly in
γ = 0 direction (xT − z plane of the generalized image).

In the case of γ = 0, the phase function in the integral IR is ΦR = cos θ cos γR and the
corresponding stationary point is γR,0 = 0. Condition (A 12) can be written as

(1 + cos ϕ0) cos θP ± sin θP sin ϕ0 = 0. (A 14)
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Figure 13. (a) Solution to equation (A 12) in the form θ (γ ,ϕ0) in the case m= 0, n= 2; (b) relative side lobe amplitude
(expression A 13) at r = λ as a function of azimuth γ in the generalized image domain and half angular apertureϕ0. (Online
version in colour.)

This equation allows analytical solution θP = π/2 ∓ ϕ0/2. Then the relative side lobe amplitude
can be obtained by substituting γ = 0, θ = θP into formula (A 13), which results in
expression (2.11).

It should be noted that the stationary phase approximation of the integral IR is based on the
Taylor series of the phase ΦR around the stationary point γR,0 = 0: ΦR ≈ (1 − γ 2

R/2) cos θ . However,
if the angular aperture, ϕ0, is small, so krϕ2

0 cos θP ≈ 0.5 kr ϕ3
0 � 2π , then the phase ΦR ≈ ΦR(γR,0)

can be considered constant over the integration interval and

IR ≈ 2ϕ0 eikrΦR(γR,0). (A 15)

The relative side lobe level in this case can be calculated as previously and is given by
formula (2.10).

(c) Asymptotic form of the back-propagation imaging method
This section derives an alternative expression for the back-propagation imaging method. This
expression specifically takes into account the plane wave data acquisition method and provides a
more efficient numerical implementation than expression (3.3).

As has been shown before, the back-propagation imaging operator can be written in the
form given in (3.3). By using expression (A 3) for the back-propagation of the angular spectrum
operator and rearranging the integration, the back-propagation operator can be expressed as

b(z, x′
T, x′

R) = 1
8π3

∫ [
gpw(ω, kx(T), xR)

{∫
eikR(rR−r′

R) dkx(R)

}
eikTr′

T

]
dω dkx(T) dxR. (A 16)

Here gpw is the plane wave data,

gpw = FT[gfmc], (A 17)

and vectors r(T,R), r′
(T,R), k(T,R) are defined as

rT = {xT, 0}T, rR = {xR, 0}T,

r′
T = {x′

T, z}T, r′
R = {x′

R, z}T

and kT = {kx(T), kz(T)}T, kR = {kx(R), −kz(R)}T.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 18)
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The integral in the curly brackets can be evaluated explicitly as∫
eikR(rR−r′

R) dkx(R) = iπ
∂

∂z
H(1)

0 (kRR), (A 19)

where RR = |rR − r′
R|.

Finally, using the far-field asymptotic approximation for the Hankel function H(1)
0 , the back-

propagation operator can be written in the form

B[gtfm(t, xT, xR)] = 1
2π

∫
s(ω, xT, xR, x′

T, x′
R, z)gpw(ω, γT, xR) dω dγT dxR, (A 20)

where the angle γT defines the direction of the transmitted plane wave, and γT = 0 corresponds
to the positive z-direction. The function s represents focusing coefficients

s =
(

ik
2π

)3/2 cos γT cos γR√
RR

spw

and spw = eikTrT eikRR ,

⎫⎪⎪⎬
⎪⎪⎭ (A 21)

here the angle γR defines the direction of the vector r′
R − rR, so cos γR = z/|r′

R − rR|. Note, that
focusing coefficients spw correspond to the plane wave compounding method [30].
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