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ABSTRACT 

 

Background/Objectives: Attention Deficit Hyperactivity Disorder (ADHD), one of the 

most common neurodevelopmental disorders in childhood and adolescence, is 

associated with obesity in observational studies. However, it is unclear whether ADHD 

contributes to, results from or is merely correlated with obesity. This study evaluates the 

presence and direction of a causal effect between ADHD and obesity. 

Subjects/Methods: We performed a bidirectional two-sample Mendelian 

randomization using summary data from consortia of genome-wide association studies 

to investigate if ADHD (N=55 374) has a causal effect on body mass index (BMI) in 

childhood (N= 35 668) and adulhood  (N=322 154 to 500 000), and vice-versa. The 

main analysis was performed using the Inverse Variance Weighted (IVW) method. As 

sensitivity analyses, we used other Mendelian randomization methods that are more 

robust to horizontal pleiotropy (i.e. MR-Egger, weighted mode and penalized weighted 

median estimators), as well as stratified the analysis by the putative mechanisms of 

genetic instruments (i.e. pathways involved or not in neurological processes). Results: 

The IVW method indicated a positive causal effect of BMI on ADHD: β=0.324 (95%CI 

0.198 to 0.449, p<0.001; expressed as change in ln(odds ratio) of ADHD per each 

additional SD unit of BMI). IVW estimates were directionally consistent with other 

methods. On the other hand, we did not find consistent evidence for a causal effect of 

ADHD genetic liability on BMI. Conclusions: The results suggested that higher BMI 

increases the risk of developing ADHD, but not the other way around.  
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INTRODUCTION 

 

Obesity and Attention Deficit Hyperactivity Disorder (ADHD) are common 

clinical conditions. Obesity has become a worldwide epidemic 1, implicated in the 

etiology of cardiovascular and metabolic diseases 2. ADHD may increase the risk of 

important conditions, including professional and educational disadvantages 3, substance 

use disorders 4, and involvement in criminal offenses 5, car accidents 6 and injuries 7. 

Studies in diverse settings have reported an association between ADHD and obesity 8-11. 

A recent meta-analysis including 42 studies worldwide and a total of 728 126 

participants (48 161 ADHD cases) estimated a pooled odds ratio for obesity of 1.3 

(95%CI: 1.16 to 1.46) in children/adolescents and adults with ADHD compared to non-

affected individuals 12. There is also robust evidence of a positive genetic correlation 

between ADHD and BMI from different approaches, such as LD score regression 13, 

genetic markers for BMI 14 and polygenic risk scores for ADHD risk 15. 

Despite the well-established phenotypic and genetic correlation between 

ADHD risk and BMI, the causal relationship between these two traits remain 

unknown. It has been hypothesized that ADHD may contribute to obesity due to 

impulsivity and inattention symptoms, which could lead to over-consumption or 

difficulties to follow a regular eating pattern 12, 16-18. Alternatively, ADHD might be a 

consequence of obesity19, 20. Few studies have explored this possibility and mechanisms 

are not clear, although obesity-induced sleeping problems, inflammation, and chronic 

hyperglycemia have been hypothesized as potential mechanisms 19, 21, 22. It is also 

possible that the association between ADHD and obesity may arise due to non-causal 

mechanisms, such as confounding, where a common factor may contribute to the 

development of both conditions 22.  
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Due to the observational nature of most studies on the association between 

ADHD and obesity, the current evidence on this topic may be distorted due to biases 

such as residual confounding. Therefore it is important to re-assess this association 

using different approaches that are more robust to this type of bias under a triangulation 

perspective 23. One of such methods is Mendelian randomization is a method that uses 

genetic variants associated with modifiable exposures as instrumental variables (IVs), 

aiming to assess causality between the exposures and the outcomes. Valid causal 

inference using Mendelian randomization requires that (i) relevance: the IV is strongly 

associated with the exposure of interest; (ii) independence: the IV is independent of the 

confounding factors between outcome and exposure; and (iii) exclusion restriction: the 

effect of IV on outcome is fully mediated by the exposure 24. 

A previous Mendelian randomization study has assessed the effect of BMI on 

several psychiatric disorders, which was not supportive of the notion that higher BMI 

increases the risk of developing bipolar disorder and schizophrenia, although there was 

a suggestive causal effect on major depression 25. To the best of our knowledge, no 

previous Mendelian randomization study has investigated the relationship between 

ADHD and BMI. In this study, we used Mendelian randomization to assess the presence 

and direction of a causal effect between obesity and ADHD.  

  

METHODS 

 

Study design 

 

We performed a bidirectional two-sample Mendelian randomization analysis 

using summary data from genome-wide association studies (GWAS) consortia to 
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investigate whether obesity is a cause or a consequence of ADHD, or if these two traits 

are correlated due to factors other than a causal relationship between obesity and ADHD 

(e.g. confounding). Genetic variants identified from the ADHD GWAS were looked up 

in the BMI GWAS to estimate the causal effect of ADHD on obesity and associations 

were also ascertained in the opposite direction.  

 

Data sources 

 

Data on the association between genetic polymorphisms and the phenotypes of 

interest was extracted from publicly available datasets of summary association results 

from four GWAS consortia.  

 

The Psychiatric Genomics Consortium (PGC) 

 

Summary association results for ADHD were extracted from a GWAS 

conducted by the PGC 13. The study was composed of 20 183 ADHD cases and 35 191 

controls, including children and adults iPSYCH study, and 11 European, North 

American and Chinese studies 13. Both family and case-control studies were included. 

European ancestry individuals comprised 96.25% of the sample. The genome-wide 

association analysis was conducted in each cohort using logistic regression, assuming 

additive genetics effects. Ancestry-informative principal components calculated using 

genome-wide genotyping data were included as covariates to minimize bias due to 

population stratification, along with relevant study-specific covariates where applicable. 

Variants with imputation quality score (INFO) <0.8 or minor allele frequency (MAF) 
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<0.01 were excluded. Twelve independent (r2< 0.1) genetic variants strongly associated 

with ADHD (P<5×10-8) were identified. Further details can be found elsewhere 13.  

 

The Early Growth Genetics (EGG) consortium 

 

The EGG discovery phase consisted of 20 studies including 35 668 children of 

European ancestry (from 2 to 10 years of age). Syndromic cases of obesity were 

excluded. Sex- and age-adjusted standard deviation scores were created for BMI at the 

latest time point available (oldest age) for each cohort if multiple measurements existed. 

The association estimates were obtained through linear regression, assuming an additive 

genetic model. The data used here includes the results from the discovery phase. 

In total, 18 loci reached genome-wide significance (P<5×10-8) in the EGG joint 

discovery and replication analyses. More details can be obtained in 26. We estimate that 

up to 4.2% of PGC participants might have been included in EGG consortium 

(Supplementary Table 2).  

For replication purposes we have used two other largely independent summary 

association results for BMI in adults, described below. 

 

The Genetic Investigation of Anthropometric Traits (GIANT) 

 

Summary association results for BMI were extracted from the GIANT 

consortium 27. The pooled sample included 322 154 and 17 072 adults of European and 

non-European ancestry, respectively, from GWAS and Metabochip studies. Here, we 

considered the 77 independent (500 kilo-bases apart) genetic variants that reached 
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genome-wide significance in the sex-combined analysis exclusively for individuals of 

European ancestry sample 27.  

 

The UK Biobank 

 

UK Biobank is a national prospective cohort that recruited more than 500 000 

men and women from across the United Kingdom, with aged 40 to 69 years between 

2006 to 2010. The association analysis with BMI was performed using 10.8 million 

Single Nucleotide Polymorphisms (SNPs), assuming additive genetic effects and 

excluding variants with MAF<0.01 and INFO<0.8. For this study, we used publicly 

available summary association results for BMI 28. Details on sample and SNP quality 

control can be found in UK Biobank documentation 29, 30. 

 

Genetic Instruments  

 

As genetic instruments for ADHD or BMI, we selected independent (as defined 

by each study) genetic instruments strongly associated (P<5×10-8) with ADHD and 

BMI, respectively, as described above. When the selected (index) genetic instrument 

was not available in the outcome GWAS, we replaced it by a proxy variant (R2>0.80) 

when possible, using the European population from 1000 genomes (phase 3 version 5) 

31 as reference pannel. Proxies of ADHD instruments were identified using the SNP 

Annotator (SNiPA) v3.2 and LDlink tools 32, 33. For proxies of BMI instruments, we 

used the R package Two-sample MR 34. 

From the 12 genetic instruments selected as instruments for ADHD, we were 

able to find nine (four index and five proxies) in EGG, ten (six index and four proxy) in 
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GIANT, and nine (seven index and two proxy) in UK Biobank datasets of summary 

GWAS results (Supplementary Table 1). 

From the 18 polymorphisms selected as instruments for BMI in childhood from 

EGG, 16 were identified in the ADHD dataset of summary GWAS results. From the 77 

genetic instruments selected as BMI instruments in adulthood from GIANT 27, 72 were 

found in the ADHD dataset. No other large ADHD GWAS was available to for 

replication. 

 

Mendelian randomization analysis 

 

We estimated the effect of BMI on ADHD (and vice-versa) using the Inverse 

Weighted Variance (IVW) estimator, which consists of a linear regression of the 

instrument-outcome association estimates on the instrument-exposure association 

estimates, weighted by the inverse of the variance of the instrument-outcome 

association estimates. The intercept of this regression is constrained at zero, which 

corresponds to the assumption that the genetic instruments can only affect the outcome 

through the exposure or that horizontal pleiotropic effects are balanced 35.   

 

Sensitivity analyses 

 

To assess the robustness of the primary analysis, we used other Mendelian 

randomization estimators that are more robust to horizontal pleiotropy than the IVW 

estimator: MR-Egger regression, Penalized Weighted Median (PMW) and the weighted 

mode-based estimator (MBE). 
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The MR-Egger regression consistently estimates the causal effect even if all 

genetic instruments violate the exclusion restriction assumption, as long as the 

Instrument Strength Independent of Direct Effect (InSIDE) assumption holds. InSIDE 

requires that the strength of the instrument (i.e., the association between the instrument 

and the exposure) is not correlated with the direct effect of the instrument on the 

outcome (i.e., the effect of the instrument on the outcome via horizontal pleiotropy) 36. 

The PMW method gives consistent estimates even if up to (but not including) half of the 

weight in the analysis comes from valid instruments, where each instrument that 

contributes to high heterogeneity (i.e., that yields a causal effect estimate substantially 

different than the most of the remaining instruments) is downweighted (penalized) 37. 

The weighted MBE requires the ZEro Modal Pleiotropy Assumption (ZEMPA) holds. 

ZEMPA postulates that the most common (i.e., the mode) horizontal pleiotropic effect 

is zero, which allows consistent causal effect estimation even if most instruments are 

invalid. The weighted version of ZEMPA can be interpreted as postulating that the 

homogeneous subset of instruments with the largest sum of weights comprises only 

valid instruments 38. 

Additional sensitivity analyses were performed by stratifying the BMI genetic 

instruments from GIANT according to the functional class of the protein encoded by the 

mapped gene, as identified by Locke et al., (2015) 27. More specifically, the instruments 

were classified into two classes: instruments likely to directly regulate 

neurophysiological processes versus other instruments. The neural pathways included 

the categories labelled in the original publication as Neuronal Developmental processes, 

Neurotransmission, Neuronal Expression and Hypothalamic expression and regulatory 

function. The other pathways included those not described as a neuro-related process, 

such as lipid biosynthesis and metabolism, bone development, mitochondrial, 
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endocytosis/exocytosis, tumorigenesis, immune system and limb development. The 

genetic instruments used in each dataset are fully described in the supplementary table 

3. Similar methodology was already used to estimate the causal effect of BMI in other 

psychiatric disorders 25.  

We have also performed a leave-one-out analysis to identify potentially overly 

influential instruments by removing 1 variant at a time and recalculating the IVW 

estimate. 

The analyses were performed using the R (https://www.r-project.org/) package 

Two-sample MR package 39. 

 

 

RESULTS 

 

Effect of ADHD susceptibility on BMI  

Results for the effect of ADHD susceptibility on BMI are expressed as change in 

BMI standard deviation (SD) units per each additional unit the ln(odds ratio) of ADHD, 

that is the natural logarithm of the odds ratio. The negative estimates indicate a negative 

(inverse) association; positive estimate indicates a positive association; a point estimate 

equal to zero indicates no association.  

Overall, the evidence ADHD genetic liability causally affects BMI was 

inconsistent across data sources and methods. In the main analyses (IVW), we found 

some evidence that higher ADHD liability increases BMI in EGG (β=0.095, 95% CI: 

0.011 to 0.179, p=0.025) and UK Biobank (β=0.074, 95% CI: 0.027 to 0.118, p=0.002), 

but not in GIANT (β=0.023, 95% CI: -0.018 to 0.065, p=0.280) (Figure 1a; Figure 1c; 

Figure 1b, Supplementary Table 4). In sensitivity analyses using methods that are more 

robust to pleiotropic instruments, we observed similar results for penalized weighted 
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median and weighted mode, but inconsistent results for MR-Egger (Supplementary 

Table 4). MR-Egger estimates were in the opposite direction to IVW estimates in UK 

Biobank (β= -0.059, 95% CI: -0.248 to 0.129, p=0.554) and GIANT (β= -0.065, 95% 

CI: -0.255 to 0.124, p=0.518) (Figure 1c; Supplementary Figure 1c; Supplementary 

Table 4). 

The MR-Egger intercept yielded no strong indication of unbalanced horizontal 

pleiotropy (β= -0.008, 95% CI: -0.043 to 0.028, p=0.691; β=0.013, 95% CI: -0.005 to 

0.030, p=0.200; and β=0.008, 95% CI: -0.009 to 0.026, p=0.375, for EGG, UK Biobank 

and GIANT respectively). The leave-one-out analyses yielded no strong indication that 

there were influential instruments (Supplementary Figure 2a; Supplementary Figure 2b; 

Supplementary Figure 2c). 

 

Effect of BMI on ADHD susceptibility 

 

Results for the effect of BMI on ADHD susceptibility are expressed as change in 

ln(odds ratio) of ADHD per each additional SD unit of BMI. The negative estimates 

indicate a negative (inverse) association; positive estimate indicates a positive 

association; a point estimate equal to zero indicates no association. 

We observed consistent evidence of a positive effect of BMI on ADHD both 

when using instruments identified in the EGG childhood BMI GWAS (β=0.324, 

95%CI: 0.198 to 0.449, p<0.001), and when using instruments identified in the GIANT 

adulthood BMI GWAS (β=0.402, 95%CI: 0.228 to 0.575, p<0.001), using the IVW 

method (Figure 2a; Figure 2b; Supplementary Table 4; Supplementary Figure 3a; 

Supplementary Figure 3b). Similar results were obtained across the other Mendelian 

randomization methods (i.e. MR-Egger, penalized weighted median and weighted 
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mode) (Supplementary Table 4; Supplementary Figure 3a; Supplementary Figure 3b). 

The MR-Egger interpret did not provide strong indication of unbalanced horizontal 

pleiotropy (β= -0.009, 95%CI: -0.051 to 0.032, p=0.664 and β= -0.005, 95%CI: -0.019 

to 0.008, p=0.438 for EGG and GIANT respectively). The leave-one-out analyses 

provided not strong indication that there were influential instruments (Supplementary 

Figure 4a; Supplementary Figure 4b). 

 

Effect of BMI on ADHD susceptibility: subgroup analyses by biological pathway  

 

To further explore the positive effect of BMI on ADHD risk suggested by our 

Mendelian randomization analyses, we performed additional sensitivity analysis in 

which the genetic instruments associated with BMI were classified as related to 

neurological or other pathways, as classified by Locke et al. (2015) 27 and used by 

Hartwig et al. (2016) 25 (Supplementary Table 3). The rationale for this analysis is 

based on the GIANT BMI GWAS results 27, which observed an important enrichment 

of neurological pathways in the genetic etiology of BMI. Then, it is possible that the 

positive association between high BMI and ADHD is led by genetic instruments 

involved in neural mechanisms that affect both BMI and ADHD independently 25. 

However, results were similar when stratifying the genetic instruments in this way. The 

IVW effect estimates were 0.377 (95%CI 0.082 to 0.673, p= 0.012) for instruments 

involved in neurological pathways, compared to 0.415 (95%CI 0.199 to 0.631, p< 

0.001) for other instruments per 1 SD increase in BMI (Figure 3b; Figure 3a; 

Supplementary Table 5). In sensitivity analyses using other Mendelian randomization 

methods, point estimates were even larger for instruments not implicated in 

neurological pathways (Figure 3b; Figure 3a; Supplementary Table 5; Supplementary 
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Figure 5b; Supplementary Figure 5a, Supplementary Figure 5b). The leave-one-out 

analysis provided no strong indication that there were influential instruments 

(Supplementary Figure 6a; Supplementary Figure 6b). 

 

DISCUSSION 

 

In the present study, we assessed causality in the association between ADHD 

and BMI using bidirectional two-sample Mendelian randomization. In the analyses with 

BMI as the exposure and ADHD as the outcome, our findings indicated a causal effect 

of higher BMI on higher ADHD risk. This result was robust to several sensitivity 

analyses exploring bias due to horizontal pleiotropy in different ways. For ADHD 

genetic liability as the exposure and BMI as the outcome, the main analysis suggested a 

causal effect of higher ADHD liability on higher BMI. However, this finding did not 

replicate across different datasets and were inconsistent across different Mendelian 

randomization estimators. 

A recent systematic review and meta-analysis of 42 studies with clinical and 

population-based samples reported an association between obesity and ADHD in 

children/adolescents and adults 12. Longitudinal studies indicate that ADHD in 

childhood is associated with higher BMI and obesity risk in adulthood, suggesting that 

ADHD precedes BMI 16-18, 40. This has led to hypotheses where ADHD triggers weight 

gain by deregulating eating behavior in several ways: (i) impulsivity would contribute 

to deficient inhibitory and delay aversion and, consequently, over-consumption 41, (ii) 

inattention would facilitate adhering to unhealthy dietary patterns 41-44, (iii) 

organizational and attention difficulties would trigger compensatory mechanisms 

leading to compulsive eating and reduced caloric expenditure 45, 46. 
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However, disentangling the direction of causal effects between conditions of 

high complexity and long latency is challenging in classical observational settings, 

including those of longitudinal design, due to issues of residual confounding and reverse 

causality. In our study, we used genetic instruments for both BMI and ADHD risk as 

proxies for exposure to these phenotypes in order to avoid issues with reverse causality 

(since germ-line genotypes precede phenotypes) and residual confounding (as genetic 

instruments tend not to be related to classical confounding factors) 47. In contrast to the 

aforementioned large meta-analysis, we did not find robust evidence for an effect of 

ADHD liability on BMI. On the other hand, we did find consistent evidence for a risk-

increasing effect of higher BMI on ADHD. 

The mechanisms potentially involved in this direction are unknown and require 

further investigation. Sleep disruption has been suggested by the most recent systematic 

review and meta-analysis as a possible contributor for this association between obesity 

and ADHD 21, 22. It is mainly based on the reports of higher frequency of  short sleep 

duration, Delayed Sleep Phase Syndrome (SDPS) 21, and late circadian rhythm among 

both individuals with obesity and with ADHD 48. According to this hypothesis, the 

discontinuation of sleep in obese individuals would lead to symptoms of ADHD 21, 22, 49, 

50.  However, evidence supporting this is too incipient and whether sleep disruption 

could be a plausible mediator of the relation between BMI and ADHD, especially 

among children, remains to be elucidated. 

 Another possible mechanism is the proinflammatory state induced by obesity 51, 

which may be a risk factor for ADHD 52 . In addition, chronic hyperglycemia may 

impair learning and memory processing 52, most commonly through affecting the frontal 

and hippocampal regions responsible for attention, cognition and motor planning. 
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Changes in these areas can lead to inattention, loss of emotions and behavioral 

inhibition, which may explain the risk of developing ADHD symptoms later 52.  

 The strengths of our study include the large sample size, the use of 

bidirectional Mendelian randomization to estimate the effect between the phenotypes in 

both directions, and the use of extensive sensitivity analyses to evaluate robustness of 

our results to horizontal pleiotropy. Some limitations of this study should also be 

considered. As any other causal inference method, Mendelian randomization relies on 

assumptions, some of which are untestable. Assumption (i) – the relevance assumption 

– states that genetic instruments should be strongly associated with the exposure of 

interest. This is the only IV assumption that is fully testable. To avoid including weak 

instruments, we only selected independent genetic instruments that were strongly 

associated with the exposure (P<5.0×10-8) in large datasets (N= 55 374 for ADHD 

instruments and N=339 226 for BMI instruments).  

Assumption (ii) – the independence assumption – refers to the fact that genetic 

instruments should not be related to confounding factors of the exposure-outcome 

association. Although genetic instruments are generally uncorrelated with classical 

confounding factors 47, assumption (ii) could be violated in case of population 

stratification where there are subgroups within the study population that have different 

frequencies of the alleles of interest and which concomitantly have different risk of 

having the outcome. To minimize population stratification bias, we restricted our 

analyses to only or predominantly European populations and used data from genome-

wide association studies that strictly accounted for population structure (Supplementary 

Table 3). 

Assumption (iii) – the exclusion restriction – states that genetic instruments 

should only affect the outcome through the exposure. This would be violated due to 
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horizontal pleiotropy, where the genetic instruments affect both the exposure and the 

outcome through independent pathways. It is impossible to empirically rule out that 

horizontal pleiotropy is driving the results. However, our results were consistent across 

a series of sensitivity analyses using different Mendelian randomization methods that 

rely on different assumptions about horizontal pleiotropy, thus strengthening causal 

inference 53. These analyses revealed a consistent effect of BMI on ADHD, but 

inconsistent results in the opposite direction. We also stratified our analysis according to 

the putative pathway regulated by the mapped genes for each genetic variant (neuronal 

or other pathways) as one would expect that, if the association between BMI and 

ADHD was explained by a common shared neurological mechanism (e.g. dopaminergic 

pathways, reward system and satiety), results would be inflated for the stratum of 

instruments assigned to neuronal pathways compared to results for the other stratum. 

However, estimates were comparable suggesting that this is unlikely to explain our 

findings. 

 The fact that we have found stronger evidence for an effect of high BMI on 

ADHD risk than for an effect in the opposite directions should be interpret with caution 

since many more genetic instruments were available to test the effect of BMI (N = 77 

variants) than the effect of ADHD liability (N = 12 variants). Therefore, we cannot 

completely rule out the possibility that we were underpowered to detect modest effects 

of ADHD liability on BMI. 

 Genetic instruments tend to reflect lifelong differences in phenotypes and, 

therefore, Mendelian randomization studies cannot identify whether there is a critical 

timing for the effect of the exposure. Therefore, even though we investigated the effect 

of BMI at different life stages (childhood and adulthood), it should be noted that BMI is 

genetically correlated across these stages. Therefore, it is possible that the effect that we 
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see for adulthood BMI might be in fact capturing an effect of BMI early in life or vice-

versa. Similarly, as maternal and offspring genotypes are correlated, the estimated 

effects of own BMI on ADHD risk could be reflecting the effect of in utero exposure to 

high maternal BMI.  

 To the best of our knowledge, this is the first Mendelian randomization study 

to probe the bidirectional relation between BMI and ADHD. We found consistent 

evidence for an effect of high BMI on ADHD risk that was replicated in independent 

samples and robust to sensitivity analyses and inconsistent evidence for an effect in the 

opposite direction contrasting with findings from conventional observational studies. 

Further studies are needed to confirm these findings and to clarify potential mechanisms 

underlying this effect. 
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Figure Legends 

 

Figure 1. Causal relationship between ADHD as exposure and BMI considering 

different datasets. Forest plots showing the effect of genetically enhanced ADHD 

(PGC) on BMI considering EGG data (n = 9 genetic instruments) (A); GIANT (n = 10 

genetic instruments) (B); and UK Biobank (n = 9 genetic instruments) (C). The results 

are shown for three effect estimates of MR tests. Forest plots show each genetic variant 

with the 95% confidence interval of the estimate of weighted mode, MR-Egger, 

penalized weighted median and inverse weighted variance results. 

 

Figure 2. Causal relationship between BMI as exposure ADHD considering different 

datasets. Forest plots showing the effect of genetically enhanced BMI (EGG) on ADHD 

(PGC) (n=16 genetic instruments) (A); and BMI (GIANT) on ADHD (PGC) (n=72 

genetic instruments) (B). The results are shown for three effect estimates of MR tests. 

Forest plots show each genetic variant with the 95% confidence interval of the estimate 

of weighted mode, MR-Egger, penalized weighted median and inverse weighted 

variance results. 

 

Figure 3. Causal relationship considering functional pathways derived from BMI 

instrumental variables as exposure. Forest plots showing the effect of genetically 

enhanced BMI (GIANT) as exposure and ADHD (PGC) for neurological pathways 

(n=42 genetic instruments) (A); and for other pathways (n=30 genetic instruments) (B). 

Forest plots show each genetic variant with the 95% confidence interval of the estimate 

of weighted mode, MR-Egger, penalized weighted median and inverse weighted 

variance results. 
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