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Abstract 

Background: The 5-year mortality rate for pancreatic cancer is amongst the highest of all cancers. 

Greater understanding of underlying causes could inform population-wide intervention strategies for 

prevention. Summary genetic data from genome-wide association studies (GWAS) have become 

available for thousands of phenotypes. These data can be exploited in Mendelian randomization (MR) 

phenome-wide association studies (PheWAS) to efficiently screen the phenome for potential 

determinants of disease risk. 

Methods: We conducted an MR-PheWAS of pancreatic cancer using 486 phenotypes, proxied by 9124 

genetic variants, and summary genetic data from a GWAS of pancreatic cancer (7,110 cancer cases; 

7,264 controls). Odds ratios and 95% confidence intervals per 1 SD increase in each phenotype were 

generated.  

Results: We found evidence that previously reported risk factors of body mass index (1.46; 1.20 to 

1.78) and hip circumference (1.42; 1.21 to 1.67) were associated with pancreatic cancer. We also found 

evidence of novel associations with metabolites that have not previously been implicated in pancreatic 

cancer: fibrinogen-cleavage peptide (1.60; 1.31 to 1.95) and O-sulfo-L-tyrosine (0.58; 0.46 to 0.74). An 

inverse association was also observed with lung adenocarcinoma (0.63; 0.54 to 0.74). 

Conclusions: Markers of adiposity (BMI and hip circumference) are potential intervention targets for 

pancreatic cancer prevention. Further clarification of the causal relevance of fibrinogen cleavage 

peptides and O-sulfo-L-tyrosine in pancreatic cancer aetiology is required, as is the basis of our 

observed association with lung adenocarcinoma. 

Impact: For pancreatic cancer, MR-PheWAS can augment existing risk factor knowledge and generate 

novel hypotheses to investigate. 
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Introduction 

People diagnosed with pancreatic cancer have a very poor prognosis, with a less than 5% five-

year survival rate(1); symptoms do not manifest until the cancer is at an advanced stage and the disease 

is rarely detected early. Greater understanding of the aetiology of pancreatic cancer could reduce its 

burden by informing whole-population or risk-stratified prevention strategies.  

Risk factors previously reported for pancreatic cancer include cigarette smoking(2), type 2 

diabetes(3), adiposity(4) and chronic pancreatitis(5). However, these reports are based on observational 

epidemiological studies, which are prone to unmeasured or residual confounding and reverse causation, 

precluding robust causal inference. Furthermore, conventional epidemiological studies often test a 

narrow set of hypotheses using prior subject knowledge, typically based on other observational studies. 

Whilst essential, these approaches can constrict a field of research, and preoccupation with previously-

hypothesised risk factors can prevent both the identification of novel risk factors and prioritization of 

causal associations(6). 

Mendelian randomization (MR) is a well-established type of instrumental variable (IV) analysis 

that addresses some of the shortcomings of conventional observational studies by using genetic anchors 

to appraise the causal relevance of exposures in disease(7). It is an increasingly recognised and powerful 

tool for identifying causes of a broad spectrum of outcomes, including cancer(8, 9). Two-sample MR 

uses summary-level data from published genome-wide association studies (GWASs) to allow causal 

appraisal of hypothesized exposure-outcome associations using gene-exposure and gene-outcome 

associations collected in separate studies(10-12). This method can be extended to appraise causality in 

a hypothesis-free manner, appraising 1-to-many, many-to-1 or many-to-many exposure-outcome 

combinations, in an approach known as a MR phenome-wide association study (MR-PheWAS)(13, 14). 

Here, we used MR-PheWAS to screen the phenome for potential causes of pancreatic cancer. 

Our aims were twofold: to identify potentially novel causes of pancreatic cancer that may not have been 

captured using previous epidemiological approaches, and to prioritise hypotheses identified in current 

literature. 
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Materials and Methods 

Data preparation 

Genetic instruments for phenotypes  

Two-sample MR was conducted using the TwoSampleMR R package(15). Genetic data on 

cognitive, anthropometric, metabolic, immune and behavioural phenotypes were obtained from the MR-

Base database of harmonised GWAS summary data (Supplementary Figure 1). All phenotypes 

possessing robust genetic proxies (defined as P<5e-8) with which to conduct MR analyses were 

considered for further analysis (N=523).  Duplicate (N=17) and non-European studies (N=8) were 

excluded from the analysis at this stage, leaving 498 potential phenotypes for analysis. Genetic 

instruments for each phenotype were single-nucleotide polymorphisms (SNPs) independently 

associated with the phenotype of interest after linkage disequilibrium (LD) clumping 

(window=10,000kb; r2=0.1). For each identified SNP, the reported effect size was expressed as a one 

standard deviation (SD) increase in the level of the phenotype per risk allele, along with the standard 

error (SE). In the case of a binary phenotype (e.g. presence or absence of coronary heart disease), the 

reported effect size was expressed as a log-odds ratio (OR). The single largest or most recent summary 

GWAS data were used per phenotype, systematically prioritised by the instrument extraction function 

(extract_instruments) of the TwoSampleMR R package and preventing bias from sample overlap from 

multiple GWAS for exposure phenotypes. For each genetic variant associated with the identified 

phenotypes, effect-estimates and SEs were extracted from the summary genetic data for pancreatic 

cancer.  

To harmonise the data, effect alleles in the pancreatic cancer summary data were coded to 

reflect the phenotype increasing allele, using allele frequencies to resolve strand ambiguities for 

palindromic SNPs (A/T or C/G). Those phenotypes that did not have genetic variants in the pancreatic 

cancer GWAS were excluded (N = 12), resulting in a final list of 486 phenotypes on which to perform 

MR analyses. These phenotypes are tabulated in Supplementary Table 1, which details the phenotype 
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name, the corresponding author or contributing consortium, the sample size of the contributing GWAS, 

the number of SNPs in the GWAS and the original units of each phenotype.  

Pancreatic cancer data   

GWAS data from people of European descent with pancreatic cancer and matched controls 

were obtained from the PanScan (12 studies) and PanC4 (10 studies) consortia through the National 

Centre for Biotechnology Information (NCBI) Database of Genotypes and Phenotypes (dbGaP)(16) 

(Study Accession: phs000206.v3.p2 and phs000648.v1.p1; project reference #9314). PanScan and 

PanC4 were initially published in three releases: PanScan I (1,788 cases and 1,769 controls), PanScan 

II (1,696 cases and 1,563 controls) and PanC4 (3,626 cases and 3,932 controls)(17-19). The samples 

were originally genotyped using Illumina HumanHap550 (PanScan I), Human610-Quad (PanScan II) 

and HumanOmniExpressExome-8v1 (PanC4) arrays. A summary of the characteristics of the consortia 

and contributing studies is provided in Supplementary Tables 2a and 2b.  

Initial quality control steps and analyses were performed within each publication set at the 

International Agency for the Research of Cancer (IARC), Lyon. After removing duplicates, related 

samples, samples with sex discrepancy and population outliers, 7,110 cases and 7,264 controls remained 

across the three combined consortia. Genotype imputation was performed using the Michigan 

Imputation Server(20). Genotypes were pre-phased using SHAPEIT v2(21) and imputed with 

Minimach v3(22) using the Haplotype Reference Consortium panel(23). After imputation, SNPs with 

an imputation quality (R2) lower than 0.7 were removed from the datasets. Effect estimates for 

pancreatic cancer risk were obtained after adjusting for age, sex and principal components for 

population stratification using R software (R version 3.3.1). Results from each PanScan release were 

then combined using a fixed-effects inverse-variance approach implemented in METAL(24). Finally, 

outcome data were converted from a “chromosome: position” format to reference SNP cluster ID (rsID), 

using the “biomaRt” R package(25) with human genome build 19 (hg19) as reference, to generate SNP 

IDs that were in the format expected by the TwoSampleMR R package.  

Power Calculations 
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 Low power can be a limitation of MR because genetic polymorphisms typically explain a small 

amount of phenotypic variance. We calculated a-priori power, based on a median sample size of 14905, 

across a range of pre-defined phenotypic variances and effect sizes (Figure 1). The median variance 

explained by SNP IVs for our 486 phenotypes was 3.3%. At this variance, our power calculations 

indicated we had 80% power to detect a minimum odds ratio (OR) of 1.14 (beta of 0.13), at an alpha of 

0.05. 

Mendelian randomization analyses  

We used maximum likelihood(26) and multiplicative random effects inverse-variance weighted 

(MRE IVW)(27, 28) MR analyses when the number of SNPs instrumenting a phenotype was greater 

than 1. Both have been proposed for MR analyses when using summary genetic data with phenotype 

instruments containing multiple SNPs(29). An MRE model allows for heterogeneity between the causal 

estimates targeted by the genetic variants by allowing over-dispersion in the regression model. Under-

dispersion is not permitted (in case of under-dispersion, the residual standard error is set to 1, as in a 

fixed-effect analysis). For phenotypes instrumented by a single SNP, we derived Wald ratio effect 

estimates(29, 30). Results were expressed ORs with a corresponding 95% confidence interval (CI) per 

1 standard deviation (SD) increase in continuous traits (e.g. height), and as ORs with 95% CI per 2-fold 

increase(31) (interpreted as a doubling in odds) for binary traits (e.g. type 2 diabetes). 

To correct for multiple testing, the correlation structure amongst the analysed phenotypes was 

estimated using PhenoSpD(32), which implements principal component analysis to identify 

independent variables using GWAS summary-level statistics. Firstly, a correlation matrix of phenotypes 

was built using metaCCA(33), estimating Pearson pair-wise correlations between the GWAS summary 

data for each phenotype. Once the correlation matrix was built, the effective number of independent 

phenotypes was estimated using matrix spectral decomposition(34, 35). PhenoSpD overestimates the 

number of independent variables as it treats phenotypes from separate studies as entirely independent 

when it is likely they are not. Therefore, our Bonferroni correction for multiple testing is likely 

particularly conservative.  
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Sensitivity analyses 

MR-Egger regression(36) was used as a sensitivity analysis to detect bias due to horizontal 

pleiotropy in the causal estimates. Horizontal pleiotropy is where a genetic variant affects the outcome 

via a different biological pathway from the phenotype under investigation and is a violation of a key 

assumption of MR (see Supplementary Figure 3). MR-Egger regression performs a weighted linear 

regression of the SNP-disease and SNP-phenotype associations, the intercept of which is not 

constrained to the origin and can therefore be used to detect and estimate the magnitude of horizontal 

pleiotropy(36). Deviation from the origin in an MR-Egger regression may suggest the effect of the SNP 

is operating via a separate pathway. MR-Egger is less efficient when the number of SNPs is low (N<4), 

therefore we omitted this analysis where phenotypes were proxied by 3 or fewer SNPs. Additionally, 

we assessed evidence of heterogeneity between SNPs (another potential indication of horizontal 

pleiotropy and other violations of MR assumptions) for the causal effect estimates of the phenotype on 

pancreatic cancer using forest plots and Cochran’s Q test. Finally, we investigated whether effect 

estimates were different in men and women, and across the different studies within each consortium 

using the Q test for heterogeneity (37). 

Results 

Using PhenoSpD, we estimated that the 486 phenotypes we investigated corresponded to 312 

independent tests(32). To aid interpretation of our MR analyses, we set a P-value threshold of 1.6e-4 

(0.05/312) to suggest evidence of association and to prioritise phenotypes for follow-up analyses. Five 

phenotypes were associated with pancreatic cancer at this threshold (Figure 2, Table 1). The results of 

the MR analyses for all phenotypes are shown in Supplementary Table 3. Of the 5 associations, 2 

were inversely related to pancreatic cancer: lung adenocarcinoma (OR for pancreatic cancer [95% CI]: 

0.63 [0.54 to 0.74] per doubling in the odds of lung adenocarcinoma; P: 1.68e-8) and the metabolite O-

sulfo-L-tyrosine (0.58 [0.46 to 0.74] per SD increase; P: 2.45e-5). The other 3 phenotypes were 

positively related to pancreatic cancer (OR [95% CI per SD increase]: ADpSGEGDFXAEGGGVR* (a 

fibrinogen cleavage peptide) (1.60 [1.31 to 1.95]; P: 1.50e-3); hip circumference (1.42 [1.21 to 1.67]; P: 
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3.92e-4); and body mass index (1.46 [1.20 to 1.78]; P: 4.02e-6). Maximum likelihood effect estimates 

were consistent with IVW estimates for these associations (Table 1). 

There was evidence that the effect of hip circumference on pancreatic cancer varied by 

pancreatic cancer consortium (Q: 26.52, P: 1.75e-06), but this was not observed for 

ADpSGEGDFXAEGGGVR* (Q: 1.57, P: 0.46), lung adenocarcinoma (Q: 0.19, P: 0.91), O-sulfo-L-

tyrosine (Q: 4.80, P: 0.09) or BMI (Q: 1.56, P: 0.46) (Figure 3). There was also evidence that effects 

varied by sex for hip circumference (Q: 25.3, P: 4.86e-7), but not ADpSGEGDFXAEGGGVR* (Q: 2.67, 

P: 0.10), lung adenocarcinoma (Q: 0.43, P: 0.51), O-sulfo-L-tyrosine (Q: 0.13, P: 0.72) or BMI (Q: 

0.00, P: 0.95) (Figure 4).  

There was clear evidence of heterogeneity in associations with pancreatic cancer amongst the 

individual SNPs used as IVs for body mass index (Q: 186.61, P: 0.01), hip circumference (Q: 105.67, 

P: 4.02e-6), lung adenocarcinoma (Q: 36.64, P: 5.47e-8), ADpSGEGDFXAEGGGVR* (Q: 10.08, P: 

1.50e-3) and O-sulfo-L-tyrosine (Q:13.45, P: 2.45e-4) (Supplementary Figure 2a-e). The observed 

heterogeneity is consistent with violations of IV assumptions, such as the presence of horizontal 

pleiotropy. Intercept tests from MR-Egger regression did not, however, indicate strong evidence for 

bias from unbalanced pleiotropy for body mass index (OR: 1.00, 95% CI: 0.98 to 1.02 P: 0.84) and hip 

circumference (OR: 1.00, 95% CI: 0.98 to 1.03, P: 0.75). In addition, effect estimates from MR-Egger 

regression for hip circumference (OR: 1.18, 95% CI: 0.54 to 2.50, P: 0.68) and body mass index (OR: 

1.35, 95% CI: 0.71 to 2.51, P: 0.36) were broadly compatible with results based on the maximum 

likelihood and IVW methods, albeit with wide confidence intervals (see Table 1). Whilst an inverse 

association was seen for lung adenocarcinoma and pancreatic cancer, the intercept from MR-Egger 

regression was negative (OR: 0.83, 95% CI: 0.51 to 1.35 P: 0.52) and the slope was in the opposite 

direction to the effect observed in the main analysis (OR: 1.57, 95% CI: 0.20 to 11.17, P: 0.71).  

ADpSGEGDFXAEGGGVR* and O-sulfo-L-tyrosine were both instrumented by 2 SNPs, thus 

MR-Egger could not be used to assess horizontal pleiotropy for these phenotypes. Associations for both 

metabolites appeared to be largely driven by rs651007 (a SNP found in the ABO blood group region). 

The evidence for a causal effect of ADpSGEGDFXAEGGGVR* on pancreatic cancer was weaker for 
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the second SNP (rs601338) used to instrument ADpSGEGDFXAEGGGVR* (OR: 1.04, 95% CI: 0.75 

to 1.44, P:0.81).  Similarly, the evidence for a causal effect of O-sulfo-L-tyrosine was weaker for the 

other SNP (rs6151429) used to instrument O-sulfo-L-tyrosine (OR: 0.84, 95% CI: 0.62 to 1.14, P:0.26).  

Of the most established observational phenotypes with pancreatic cancer (smoking, diabetes, 

chronic pancreatitis and adiposity)(38, 39) only pancreatitis could not be instrumented and only 

adiposity passed our P-value threshold for further evaluation. The odds ratio (95% CI) for pancreatic 

cancer per SD increase in cigarettes smoked per day was 1.27 (0.67 to 2.42, P: 0.46) and was 1.02 (0.95 

to 1.10, P: 0.56) per doubling in the odds of type 2 diabetes (Supplementary Table 3).  

Discussion 

 We undertook an MR-PheWAS of the association of 486 phenotypes with pancreatic cancer, 

including cognitive, anthropometric, metabolic, immune and behavioural phenotypes. We provide 

evidence that 5 of the 486 phenotypes we tested were associated with pancreatic cancer: BMI; hip 

circumference; ADpSGEGDFXAEGGGVR* (a fibrinogen cleavage peptide); O-sulfo-L-tyrosine; and 

lung adenocarcinoma.  

The association of higher BMI with risk of pancreatic cancer is similar to findings from 

conventional observational studies, including the IARC Handbook Working Group(40), who reference 

Genkinger et al.(4) as the largest meta-analysis of body fatness on pancreatic cancer (OR for highest 

BMI category vs normal: 1.5, 95% CI: 1.2 to 1.8). Our results also agree with the BMI finding in a MR 

study using PanScan data by Carreras-Torres et al. (OR per SD increase in BMI: 1.3, 95% CI: 1.1 to 

1.7)(41). Additionally, they did not change substantially in our sensitivity analyses, thus likely do not 

violate MR assumptions and are compatible with a causal effect. 

Hip circumference, whilst potentially reflecting the observational association of general 

adiposity with pancreatic cancer, has not been previously implicated as a specific risk factor. Despite 

evidence of heterogeneity in effect-estimates when we stratified our analyses by PanScan study and 

sex, the direction of effect of sex- and study-specific estimates for hip circumference were the same. 

Thus, only the magnitude of the positive effect is uncertain for hip-circumference. The SNPs for hip 
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circumference show little evidence of sex-specific effects in the original GWAS(42), but consistent 

with findings in observational studies(43), the observed heterogeneity in this study suggests the effect 

of hip circumference on pancreatic cancer is stronger in females than males. Alternatively, the observed 

heterogeneity could reflect differences in strength of association between the IV SNPs and hip 

circumference between males and females; a violation of two-sample MR assumptions, casting doubt 

on the reliability of this result.  

For the BMI and hip circumference analyses, 17 SNPs were common IVs for both phenotypes 

(Supplementary Table 4). Phenotype heterogeneity does not preclude causal inference, but it does 

undermine the ability to infer causality for particular dimensions of heterogeneous exposures, making 

interpretation of MR analyses more difficult(44). As a sensitivity analysis, we repeated MR analysis of 

these phenotypes after removing common SNPs between the hip circumference and BMI IVs(45). We 

obtained odds ratio estimates similar to our original estimates (BMI OR: 1.49, 95% CI: 1.17 to 1.88; 

hip circumference OR: 1.41, 95% CI: 1.18 to 1.69), thereby providing evidence that the original 

observed phenotypic associations of BMI and hip circumference with pancreatic cancer were 

independent; not notably driven by their shared dimension. 

To our knowledge, the two metabolites ADpSGEGDFXAEGGGVR* and O-sulfo-L-tyrosine 

have not previously been associated with pancreatic cancer. There was clear heterogeneity amongst the 

SNPs used as instruments for these metabolites, with the associations being largely attributable to a 

single SNP (rs651007). The other SNPs (rs601338 and rs6151429, instrumenting 

ADpSGEGDFXAEGGGVR* and O-sulfo-L-tyrosine, respectively) showed weaker evidence of an 

association with pancreatic cancer. This suggests that the association of these metabolites with 

pancreatic cancer could reflect horizontal pleiotropy, and that the effect of rs651007 on pancreatic 

cancer may be mediated by some other pathway. A lookup of rs651007 in the National Human Genome 

Research Institute - European Bioinformatics Institute (NHGRI-EBI) GWAS Catalog revealed it to be 

mapped to the ABO gene; a locus that has been shown to be significantly associated with risk of 

pancreatic cancer genetically(17) and observationally(46). The ABO locus is associated with the serum 

inflammatory markers of tumour necrosis factor-alpha (TNF-α)(47) and soluble intercellular adhesion 
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molecule 1 (sICAM-1)(48). Inflammation has been reported to play an important role in the initiation 

of pancreatic tumours(49); the ABO locus may therefore influence pancreatic cancer risk by affecting 

systemic inflammation, thus promoting pancreatic carcinogenesis. Alternatively, these metabolites may 

cause pancreatic cancer, but rs601338 and rs6151429 could be subject to negative pleiotropy or not 

truly be associated with the metabolites, biasing our results towards the null. The limited availability of 

SNPs that could be used as instruments for ADpSGEGDFXAEGGGVR* and O-sulfo-L-tyrosine 

constrained our ability to conduct sensitivity analyses to investigate these results further. 

Our results suggest evidence of an association between pancreatic cancer and genetic liability 

to lung adenocarcinoma. A potential explanation for this finding is sample overlap between our 

exposure and outcome, as we cannot reject the possibility that the PanScan control population contained 

individuals who were lung adenocarcinoma cases. However, Wolpin et al. report using cancer-free 

controls in their PanScan GWAS manuscript(50); sample overlap would therefore need to be 

undiagnosed lung cancer cases at the time of study. Given that the 5-year prevalence of lung cancer in 

the general population of Europe is 4.1%(51), we find it unlikely that there would be enough sample 

overlap to substantially bias our effect estimate in this instance. The association between pancreatic 

cancer and lung adenocarcinoma more likely reflects a shared genetic architecture with pancreatic 

cancer that is translated in opposing directions to affect risk in these two diseases. In either case, our 

finding should not be interpreted as a direct causal effect of lung cancer on pancreatic cancer (or vice 

versa). The association between these SNPs and pancreatic cancer require validation in larger GWAS 

and independent replication.   

Smoking and type 2 diabetes, although previously reported risk factors(2, 3, 52, 53), did not 

show strong evidence of an association with pancreatic cancer in our analysis. Whilst the lack of 

association shown for smoking in our analysis could indicate that previous observational associations 

are biased due to confounding or reverse causation, it is also possible that our results reflect low power. 

The SNPs comprising the instrument for smoking (cigarettes per day) are within the CHRNA3 gene 

region, which is reported to proxy for smoking heaviness amongst smokers rather than being 

representative of cigarettes per day in a general population(54, 55). As such, the outcome GWAS data 
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would have to be restricted to current smokers to produce a meaningful effect-estimate. We couldn’t 

stratify in this way due to the sole use of summary GWAS statistics, therefore the effect-estimate 

generated by our analysis is not conclusive. 

Numerous meta-analyses and pooled analyses have been performed looking at the association 

of diabetes and pancreatic cancer, all showing that long-term diabetes is associated with a ≥50% 

increased risk of pancreatic cancer(56-62). Our analysis found little evidence to suggest genetic liability 

to type 2 diabetes has a causal effect on pancreatic cancer; a finding also reported by Carreras-Torres 

et al.(41). 

Strengths  

We appraised the association of a multitude of phenotypes with a rare cancer type in a 

hypothesis-free manner. Our approach features a two-sample MR design, utilising summary-level data; 

a particularly valuable method when the outcome of interest is rare, or when the capacity to investigate 

phenotypes in single studies is limited. For example, given limited power and sample size due to the 

cost of metabolomic platforms, many metabolites would unlikely have been investigated in relation to 

pancreatic cancer risk in observational studies. However, since genetic instruments for a multitude of 

metabolites have been obtained in previous studies with large sample sizes (63, 64), the two-sample 

MR framework allows the appraisal of the causal effect of the metabolome on health and disease.  

Limitations  

One limitation of the approach applied here is that not all possible phenotypes have genetic 

instruments or have not yet been curated in MR-Base. Therefore, some potentially associated 

phenotypes (e.g. occupational phenotypes and chronic pancreatitis) with pancreatic cancer could not be 

appraised. 

Due to the multiple testing burden of this analysis, there was potential for false-negative 

findings. To remain conservative in such a broad approach, we chose to only present phenotypes that 

surpassed a strict Bonferroni correction in our main analysis. However, phenotypes showing weaker 

evidence for association (uncorrected P value <0.05) may contain some true associations and have 
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therefore been included in our Supplementary Materials (p<0.05; see Supplementary Table 3). On the 

other hand, the MR approach may identify false positive findings, particularly if there is a horizontal 

pleiotropic effect of a genetic instrument on the outcome, which was evident for some of the phenotypes 

identified here. 

Given a binary outcome of pancreatic cancer, our MR models (maximum likelihood and IVW) 

are two-stage estimators where the second stage uses a log-linear regression model to derive an OR 

parameter. Estimates from such an approach will be overly precise, as uncertainty in the first-stage 

regression is not accounted for(65). However, this over-precision may be slight if the standard error in 

the first-stage coefficients is low, and can be resolved by using a maximum likelihood method(65). We 

provide maximum likelihood estimates in addition to IVW estimates in our MR-PheWAS analysis; 

these estimates are similar across our main findings, indicating that the two-stage estimator with a 

logistic second-stage model is still a valid test of the null hypothesis here.  

By systematically evaluating the association of all available phenotypes with GWAS data in 

the MR-Base repository of summary genetic data, we may not have had sufficient power to detect a true 

causal association for every analysis conducted; particularly those proxied by low numbers of SNPs, 

which may infer a low phenotypic variance explained. Low numbers of SNPs to proxy a phenotype are 

particularly prevalent when assessing the causal association of metabolites (Kettunen et al.; Shin et al.) 

with pancreatic cancer; these phenotypes account for 255 of the 486 phenotypes tested, with a median 

2 SNPs per metabolite. However, precise measurement of metabolites via nuclear magnetic resonance 

(NMR) and liquid chromatography-mass spectronomy (LC/MS) result in relatively large metabolite 

GWAS per-allele effect sizes and phenotypic variance explained(63, 64). The median variance 

explained by our metabolite phenotypes was 1.8%; at this variance explained, we had 80% power, with 

a median sample size of 14905, to detect an OR of 1.19 (beta of 0.17) at an alpha of 0.05. 

Conclusions  

Within the context of a highly aggressive cancer for which the underlying causes are poorly 

understood, we undertook an MR-PheWAS study which was able to suggest a causal association of a 
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previously identified phenotype for pancreatic cancer in observational epidemiological literature (BMI), 

suggest association between an anthropometric phenotype (hip circumference) with pancreatic cancer, 

and provide insights into some potentially novel mechanisms (metabolic factors and shared genetic 

architecture with lung cancer) for this disease.  
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Tables 

 

Table 1. MR-PheWAS results passing study multiple testing threshold 

Phenotypes passing multiple testing correction for the MR-PheWAS analysis. Maximum likelihood 

odds ratios, confidence intervals and p-values are shown for each phenotype, in addition to the number 

of SNPs used in the IV, a Q-test p-value for SNP heterogeneity, the variance explained, power statistics 

and the inverse-variance weighted odds ratio and confidence interval for each phenotype. SNP: Single-

nucleotide polymorphism; ML: Maximum likelihood; OR: Odds ratio; CI: Confidence interval; Phet: 

P-value of heterogeneity from Q test; IVW: Inverse-variance weighted 

 

  

Exposure 
# 

SNPs 

ML 

OR 
ML CI P Phet R2 F Power 

IVW 

OR 
IVW CI 

Lung adenocarcinoma 4 0.63 0.54 – 0.74 
1.68e-

08 
5.47e-08 N/A N/A N/A 0.72 0.48 – 1.09 

ADpSGEGDFXAEGGGVR* 2 1.60 1.31 – 1.95 
3.08e-

06 
1.50e-03 3.59% 71.6 97.2 1.59 0.85 – 2.97 

O-sulfo-L-tyrosine 2 0.58 0.46 – 0.74 
8.07e-

06 
2.45e-04 1.02% 37.9 58.0 0.58 0.24 – 1.39 

Hip circumference 113 1.42 1.21 – 1.67 
2.41e-

05 
4.02e-04 4.46% 76.1 89.5 1.34 1.05 – 1.70 

Body mass index 109 1.46 1.20 – 1.78 
1.25e-

04 
1.00e-02 2.98% 91.3 81.0 1.44 1.12 – 1.86 
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Figure Legends 

Figure 1. Smoothed line graph showing power calculations for MR analyses with X cases and Y controls 

(median sample size across all exposure GWAS) for genetic IVs explaining different proportions of 

phenotypic variance (0.1%; 0.5%; 1%; 2.5%; 5%; 10%). At our median variance explained of 3.3% 

with our median total sample size of 14905, we have 80% power to detect an odds ratio of 1.14 per SD 

change in exposure. 

 

Figure 2. Volcano plot showing the odds ratio derived from MR analyses of 486 phenotypes against 

incident pancreatic cancer across the x-axis and a corresponding MR analysis p-value (-log10 scale) on 

the y-axis. Units are standardised - continuous traits are in standard deviation units, whereas binary 

traits are in log odds units. Small red points denote analyses with an unadjusted p-value < 0.05. Large 

red points denote analyses with a Bonferroni-adjusted p-value < 0.05 

 

Figure 3. Forest plot of heterogeneity by PanScan study for phenotypes passing multiple testing 

correction. Maximum likelihood odds ratios, confidence intervals and p-values per study are given, in 

addition to I-squared and Q-statistics per phenotype. 

 

Figure 4. Forest plot of heterogeneity in pancreatic cancer MR-PheWAS by sex for phenotypes 

passing multiple testing correction. Maximum likelihood odds ratios, confidence intervals and p-

values for each sex are given, in addition to I-squared and Q-statistics per phenotype. 
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Figures 

Figure 1. Smoothed line graph showing power calculations for MR analyses with X cases and Y controls (median sample size across all exposure GWAS) for 

genetic IVs explaining different proportions of phenotypic variance (0.1%; 0.5%; 1%; 2.5%; 5%; 10%). At our median variance explained of 3.3% with our 

median total sample size of 14905, we have 80% power to detect an odds ratio of 1.14 per SD change in exposure. 
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Figure 2. Volcano plot showing the odds ratio derived from MR analyses of 486 phenotypes against incident pancreatic cancer across the x-axis and a 

corresponding MR analysis p-value (-log10 scale) on the y-axis. Units are standardised - continuous traits are in standard deviation units, whereas binary traits 

are in log odds units. Small red points denote analyses with an unadjusted p-value < 0.05. Large red points denote analyses with a Bonferroni-adjusted p-value 

< 0.05 
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Figure 3. Forest plot of heterogeneity by PanScan study for phenotypes passing multiple testing 

correction. Maximum likelihood odds ratios, confidence intervals and p-values per study are given, in 

addition to I-squared and Q-statistics per phenotype. 
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Figure 4. Forest plot of heterogeneity in pancreatic cancer MR-PheWAS by sex for phenotypes passing 

multiple testing correction. Maximum likelihood odds ratios, confidence intervals and p-values for each 

sex are given, in addition to I-squared and Q-statistics per phenotype. 

 

 

 

 

 


