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ABSTRACT  

A single-precursor solution approach is developed for depositing stoichiometric BiSI thin films 

featuring pure paraelectric orthorhombic (Pnam) phase. The compact and homogenous films are 

composed of flake-shaped grains oriented anti-planar to the substrate and display a sharp optical 

transition corresponding to a bandgap of 1.57 eV. Optical and Raman signatures of the thin films 

are rationalized using the quasiparticle G0W0@PBE0 and Density Functional Perturbation 

Theory calculations. Electrochemical impedance spectroscopy revealed n-type doping with 

valence and conduction band edges located at 4.6 and 6.2 eV below vacuum level, respectively. 

Planar BiSI solar cells are fabricated with the architecture: glass/FTO/SnO2/BiSI/F8/Au, where 

F8 is poly(9,9-di-n-octylfluorenyl-2,7-diyl), showing record conversion efficiency of 1.32% 

under AM 1.5 illumination.   

 

 

Keywords: BiSI, Thin-Film, Photovoltaic, Power Conversion Losses, Band Structure, 
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INTRODUCTION 

One of the grand challenges in the field of photovoltaic materials is to design stable materials 

which reproduce the outstanding optoelectronic properties of lead organo-halide perovskites 

(LOHPs), such as: (i) > 1 m diffusion lengths, (ii) ~1 s carrier lifetimes, (iii) carrier mobility >  

10 cm2V-1s-1.1,2 These remarkable properties, observed regardless of the preparation method, 

emerge from the inherent defect-tolerant electronic structure featuring no intrinsic deep trap 

states, large band dispersion, and enhanced spin-orbit coupling.3,4 Defect tolerance in LOHPs is 

associated with the partially oxidized Pb2+ cation. Interestingly, similar arguments can be made 

about other polarizable cations with the ns2 lone pair such as In+, Sn2+, Sb3+, Tl+, Bi3+.5,6 

Based on this concept, Bi-based compounds such as AgBiS2, BiFeO3, and Bi2S3 have been 

considered as solar absorbers, delivering power conversion efficiencies between 3.3 and 6.3 %.7–

11 Bi halides have also been investigated including BiI3 (1.2%),12 Cs2AgBiBr6 (2.43%),13 and 

AgBi2I7 (1.2%).6,10,11,14 In addition to defect tolerance, materials such as BiOI and BiSI are also 

characterized by polar crystal structures featuring photoferroic properties and paraelectric phases 

with large dielectric constants.15–19 The performance of BiOI solar cells have progressed from ~ 

0.1% to 1.8 % within last 8 years.20–23 Mullins and co-workers have reported 

photoelectrochemical and solid-state BiSI cells displaying efficiencies of 0.012% and 0.25%, 

respectively.24,25 Considering the lower band gap (1.57 eV) and large absorption cross-section of 

BiSI,26 in comparison to BiOI (1.9-2.0 eV),23 one might expect the former to exhibit better PV 

performance.  

One of the key challenges in fabricating high-performance BiSI solar cells is the presence 

of secondary phases. The ternary phase diagram of Bi-S-I features 4 ternary and over 15 binary 
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stable compositions, thus obtaining pure BiSI film in the required 1:1:1 elemental atomic ratio is 

non-trivial.24,27,28 Designing an optimal cell architecture with a well-aligned electron (ETL) and 

hole-transporting layers (HTL) is another important challenge.  In this report, we describe a new 

solution-based approach, leading to paraelectric BiSI films with a very high degree of phase 

purity as confirmed by quantitative XRD and Raman analysis. Optical and electrochemical 

measurements, complemented by electronic structure calculations, provided information on band 

gap and the band edge energy positions. These measurements guided the design of a solid-state 

cell featuring SnO2 as ETL and poly(9,9-di-n-octylfluorenyl-2,7-diyl) (F8) as HTL, showing 

record conversion efficiency of 1.3% under AM 1.5 illumination. We discuss potential power 

conversion losses associated with deep trap states linked to charged sulfur vacancies.  

 

RESULTS AND DISCUSSION 

The synthesis of phase-pure BiSI thin films was achieved by thermolysis of a single molecular 

precursor consisting of Bi(NO3)3.5H2O, thiourea and NH4I in 2-methoxyethanol and 

acetylacetone (4:1) (exact compositions are given in the Experimental Section). As we have 

demonstrated in previous studies on kesterite and chalcopyrite absorbers, tuning solvent mixtures 

provide better wettability and much higher solubility which is crucial to ensure homogeneous 

film composition.29–32 Indeed, we were not able to generate phase-pure material employing a 

glycol-based precursor used in previous works.24 The highly concentrated molecular precursor 

solution is spin-coated onto the substrate and heated at 200 oC in the air, yielding a homogenous 

and adherent film. The thermolysis temperature is another key factor, with the possibility of 

partial oxidation above 250 oC. 
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Figure 1: Structure and morphology of as-grown BiSI films: (a) X-ray diffraction 

and unit cell structure refined using the Rietveld approach; (b) BiSI structure obtained 

from refinement as seen along the c-axis; (c - d) top-view scanning electron micrograph 

displaying flake-shaped grains at two different magnifications; (e) Raman spectrum 

measured under 785 nm excitation and deconvoluted using five modes at 107, 118, 220, 

229 and 285 cm-1; (f) theoretical Raman spectrum of the BiSI phase featuring a D2h 

point group symmetry, calculated by density functional perturbation theory. The dashed 

line delimits the experimentally accessible range. 

 

The characteristic X-ray Diffraction (XRD) pattern, film morphology and Raman spectrum 

of the BiSI films are illustrated in Figure 1. As shown in Figure 1a, quantitative structure 
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refinement using Rietveld method shows an excellent fit to the orthorhombic BiSI (space group: 

Pnam), with correlation indices Rp and Rwp of 3.64 % and 6.35 %, respectively. No other peaks 

associated with secondary phases such as Bi2S3, BiI3 or BiOI are identified in the diffractogram. 

The refined structural parameters including the atomic positions are provided in the 

supplementary information Table S1, while the crystallographic information file (CIF) can be 

accessed through the Cambridge Structural Database (CCDC 1898290). The lattice parameters of 

the final structure are a = 8.3881(14) Å, b = 10.1099(16) Å and c = 4.1156(7) Å, which are in 

very good agreement with previously reported data on single BiSI crystals.33–35 The relative 

elemental composition of Bi:S:I as estimated from the atomic occupancies 1:0.95:0.97, 

respectively. This stoichiometry is consistent with Energy Dispersive Analysis of X-rays (EDX, 

data not shown), yielding an elemental ratio of 1.04:0.94:0.98, respectively. Figure 1b shows the 

stacks of unit cells of the refined structure along the c-axis. The BiSI structure consists of c-axis 

aligned (Bi2S2I2)n chains with Bi-S distances of 2.539(5) Å and 2.726(3) Å; and Bi-I distances of 

3.6893(12) Å and 3.1586(12) Å. These chains are held together by weak van der Waals 

interactions. The SEM micrograph in Figure 1c and d show uniformly distributed flake-shaped 

grains with sharp edges and sizes between 600 and 700 nm, oriented antiparallel to the substrate. 

The flake-like nature of the grain can be rationalized in terms of the bunching of the (Bi2S2I2)n 

chains in the yz-plane. 

As-grown BiSI films exhibit well-defined Raman bands as shown in Figure 1e, which can 

be deconvoluted into five modes at 107, 118, 220, 229 and 285 cm-1. In order to rationalize these 

Raman modes, we carried out density functional perturbation theory (DFPT) calculations leading 

to the spectrum shown in Figure 1f. The dashed line in Figure 1f represents the lower 

wavenumber limit available experimentally. To the best of our knowledge, first-principles 
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calculations of vibrational properties of BiSI have not been reported yet, with previous studies 

relying on qualitative group theoretic normal mode analysis.36 The measured bands found to 

have a one-to-one correspondence with the calculated Raman spectrum, which further confirms 

the paraelectric BiSI phase (D2h point group symmetry). The calculated spectrum also coincides 

well with previous measurements on BiSI single crystals in the range of 10 cm-1 to 300 cm-1.17  

As mentioned above, the ternary phase diagram of Bi-S-I is composed of 4 ternary and over 15 

binary thermodynamically stable compositions simultaneously competing during the synthesis. 

The ensemble of data shown in Figure 1 clearly demonstrates the formation of pure BiSI in 

paraelectric orthorhombic structure, devoid of secondary composition and structural phases.   

Figure 2a shows the transmittance and reflectance spectra of a 150 nm thick BiSI films, 

showing a sharp absorption edge close to 800 nm. The highly textured morphology generates 

diffuse scattering of photons below 1.5 eV. As the indirect and direct band gaps in BiSI are very 

close (see discussion below),16,37 absorption at 1.57 eV is expected to be dominated by direct 

optical transitions,  leading to an absorption coefficient in the range of 5 x104 cm-1. The 

calculated absorption coefficient is plotted as a function of incident photon energy in Figure 2b. 

A band gap of 1.57 eV is determined from extrapolating the sharp absorption edge, which is in 

good agreement with optical measurements performed on single crystals.19,37 The complex nature 

of the band edges in this material, which is discussed further below, prevents the use of 

conventional approaches such as Tauc’s plot for band gap estimations. Indeed, Tauc’s plot can 

be justified if average momentum matrix element square remains independent of photon energy 

and only if density of states at band edge vary as either square (direct transition) or square-root 

function of energy (indirect transition).38 Figure S1 shows that depending on the function used, 

band gap values of 1.62 and 1.50 eV can be obtained assuming either direct or indirect 
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transitions.  Figure 2b also displays the room temperature photoluminescence (PL) spectrum, 

measured with a 2.41 eV excitation source, featuring a peak centered at 1.56 eV. This 

observation further supports our direct analysis of the absorption edge transition from the 

absorption spectrum.  
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Figure 2: Optical properties and electronic structure of BiSI: (a) Transmittance and 

reflectance spectra of 150 nm BiSI films as grown onto 2.5 × 2.5 cm2 glass substrate; 

(b) calculated absorption coefficient (a) as a function of photon energy and room 

temperature photoluminescence spectrum of BiSI films upon 2.41 eV (514 nm) 

excitation source, establishing a direct absorption edge at 1.57 eV; (c) Band structure 

and (d) and density of states of paraelectric BiSI calculated employing GW@PBE0 

formalism. The valence band minimum (VBM) and conduction band maximum (CBM) 

are situated at points between G-Y and G-Z paths, respectively. 
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The band structure and density of states (DOS) of BiSI, as calculated by GW@PBE0 are 

displayed in Figure 2 c and d, respectively. The many-body perturbation theory as formulated in 

quasiparticle GW approximation is the most rigorous method for the calculations of electronic 

structure, with non-selfconsistent single-shot G0W0 approximation being the simplest and least 

expensive to implement.39 Results from G0W0 are rather sensitive to the starting point, with the 

hybrid functional PBE0 considered the most accurate.40 Computational methods are described in 

the Computational Details section. Figure 2c shows that fundamental band gap transition at 1.77 

eV (at 0K) is indirect, while a direct band gap transition is observed at 20 meV higher energy. 

Our calculations closely agree with those reported by Ganose et al. based on hybrid functional 

DFT (HSE06) as well as the empirical quasiparticle self-consistent GW formalisms.16,41 The 

difference between calculated and experimental band gap can be largely rationalised in term of 

electron-phonon coupling effects at room temperature.  The temperature coefficient of the 

bandgap of single crystal BiSI has been reported to be -7 x 10-4 eV/K.26 Thus, the band gap is 

expected to decrease from 1.77 eV calculated at 0K to 1.56 eV at 300K, in excellent agreement 

with the measured value in as-deposited films. The spectral overlap of indirect and direct optical 

transitions is also observed in high performing absorbers such as methylammonium lead 

perovskite, which has been used to rationalize long carrier lifetimes.42 The conduction band is 

significantly more disperse than the valence balance due to spin-orbit coupling effects induced 

by Bi3+, resulting in a smaller effective mass of electrons (me* = 0.53 m0) in comparison to holes 

(mh* = 0.95 m0). The variation of effective masses along the crystal directions are tabulated in 

Table S2, reflecting the anisotropic electronic structure of BiSI. We have also calculated the 

ionization potential (IP) of the films as 6.33 eV following the approached described by Carter 
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and co-workers.43 As discussed below, we shall use this information to identify ETL and HTL 

with appropriate band alignment. 
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Figure 3: Band edges of BiSI and device band alignment: (a) Mott-Schottky plot of a 

BiSI film grown on FTO coated glass substrates in contact with a dichloromethane-

based electrolyte solution. Details of the experimental conditions, including the 

reference potential scale can be found in the Experimental Details section. The 

interfacial capacitance is extracted from fitting electrochemical impedance spectra 

recorded between 7 and 4700 Hz. The flat band potential EFB = 0.23 vs SHE 

corresponds to a CBM energy value of 4.67 eV vs vacuum. (b) Suggested band 

alignment of the F:SnO2/SnO2/BiSI/F8/Au solar cell based on measured EIS data for 

BiSI and SnO2. 
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Figure 3a shows the potential dependence of the interfacial capacitance normalized by the 

geometric area of the BiSI film, employing the Mott-Schottky representation, as obtained from 

electrochemical impedance spectroscopy. Due to the poor stability of BiSI in aqueous 

electrolytes, a dichloromethane-based electrolyte is used as described in Experimental Details. 

The plot exhibits a highly linear trend over a potential range of more than 0.8 V, with a positive 

slope consistent with n-type conductivity. Employing a thermodynamic analysis for this 

electrolyte reported elsewhere,44 the flat band potential of BiSI is estimated at 0.23 V vs SHE, 

which corresponds to CBM located at 4.67 eV vs vacuum. From the estimated optical band gap 

of 1.57 eV and the calculated IP, the VBM position is estimated to be located at 6.24 eV, which 

is close to the value extracted from the GW@PBE0 calculations mentioned above. Based on 

these values, which are also consistent with UPS analysis reported by Hahn et al.,25 a device 

structure of glass/F:SnO2/SnO2/BiSI/F8/Au can be envisaged with the band alignment displayed 

in Figure 3b.45–47  Capacitance measurements of the SnO2 layer (see Experimental details and 

Figure S2) suggest an excellent conduction band alignment with BiSI, while a VBM offset of 

approximately 0.3 eV is predicted with respect to F8. According to this analysis, these devices 

feature a maximum built-in voltage larger than 1 V.    
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Figure 4: PV performance of devices with the architecture 

glass/F:SnO2/SnO2/BiSI(150nm)/F8/Au: (a) J-V characteristics of 16 devices under 

AM 1.5G  simulated illumination and key performance metrics of the best device; (b) 

External quantum efficiency (EQE) spectrum of the champion device; (c) Time-

resolved photoluminescence of BiSI films employing 660 nm excitation, revealing two 

time-constants of 0.09 and 1.03 ns.  
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J-V characteristics of 16 devices, with a BiSI film thickness of 150 nm, under simulated 

AM 1.5G spectrum (100mW/cm2), are shown in Figure 4a. The best-performing device features 

a short-circuit current density (JSC) of 8.44 mA/cm2, open-circuit voltage (VOC) of 445 mV, fill 

factor (FF) of 35.14 % and overall power conversion efficiency of 1.32 %. The latter value is 

more than 5 times larger than the best cell recorded for BiSI.24 The dispersion of device 

parameters is tabulated in Table S3, which display a narrow distribution of 10 % in the 

performance. The spectral response of the best solar cell is presented in Figure 4b. The external 

quantum efficiency (EQE) spectrum is damped by the absorption of SnO2 at wavelengths shorter 

than 340 nm. A band gap of 1.57 eV can be extracted from the absorption edge of BiSI (Figure 

S3), in agreement with the optical measurements (Figure 2b). The drop in EQE values at a 

wavelength longer than 580nm could be an indication of short minority-carrier lifetimes.  

Figure 4c shows time-resolved photoluminescence decay of BiSI films, featuring a bi-

exponential decay with lifetimes of t1 = 0.09 and t2 = 1.03 ns. As reported by Repins et al., 

device efficiencies exhibit a sharp dependence on carrier lifetimes below 10 ns,48 which is also 

responsible for the decay in EQE towards the absorption onset (Figure 4b). These short carrier 

lifetimes along with the high series resistance and low shunt resistances could not only lead to 

ineffective charge collection but also charge separation, limiting both JSC and VOC. The high 

series resistance and low shunt resistances in the devices could be arising from the complex 

transport properties of BiSI, porous morphology and inhomogeneous F8 coverage. As discussed 

earlier, the preferential packing of the BiSI flakes in the film orients the crystal axis with higher 

carrier mobility (low carrier effective mass: mzz) normal to the surface. However, the porous 

nature of the film suggests that BiSI/F8 boundary primarily forms along the direction of low 

carrier mobility (high carrier effective mass: mxx). Indeed, similar effects have been seen in the 
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device based on Sb2Se3 grown as 1-dimensional nanoribbons.49  Consequently, we predict that 

careful optimization of the BiSI film morphology will result in a significant improvement in 

device performance.   

Finally, despite fulfilling several descriptors associated with defect-tolerance, the PL and 

PV performances of our material suggest the presence of bulk recombination centers. In a recent 

report, BiS and VS (i.e. sulfur vacancy) point defects have been calculated as the most probable in 

Bi-rich and S-poor conditions films, creating mid-gap states that could act as recombination 

centres.41 This point is also consistent with the extended criteria of defect tolerance based on 

crystal site symmetry and anion coordination argument recently exposed by Kurchin et al.50 Both 

S and I are in low coordination state and cannot be ascribed to separate sub-structures. As 

illustrated in Figure 1b, BiSI is composed of 1-dimensional (Bi2S2I2)n chains with two smaller 

sulfur atoms forming a bridge separating the two Bi+3 ions. This leads to large relaxations of 

adjacent atoms in the presence of charged sulfur vacancies, leading to deep traps.41  

CONCLUSIONS 

In conclusion, pure polycrystalline orthorhombic BiSI films with a high degree of phase purity 

have been prepared by thermolysis of a single molecular precursor. The films are composed of 

flake-shaped grains stacked in highly compact films over lengths of several micrometers. The 

phase purity was confirmed by quantitative structural refinement of XRD data and modelling 

Raman spectra using DFPT. A band gap of 1.57 eV was estimated by diffuse reflectance spectra, 

which bodes well with GW@PBE0 calculations. Guided by first principle calculation and 

electrochemical experiments, we designed PV devices with the architecture 

glass/F:SnO2/SnO2/BiSI/F8/Au, yielding a record power conversion of 1.32% under AM 1.5G 
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illumination. The power conversion losses were linked to carrier lifetimes of the order of 1 ns as 

probed by time-resolved photoluminescence at room temperature. We consider bulk point 

defects such as BiS and sulfur vacancies as potential bulk recombination sites. Consequently, in 

order to fully exploit the potential of this promising Earth-abundant solar absorber, further 

studies probing the nature of bulk defects are required as well as improving carrier extraction 

rates from ETL and HTL layers. 

EXPERIMENTAL DETAILS  

BiSI films are deposited on 2.5 × 2.5 cm2 sized glass and fluorine doped tin oxide (FTO) coated 

glass substrates using molecular precursor approach. The precursor solution is prepared by 

dissolving Bi(NO3)3.5H2O (0.5 M), thiourea (1 M) and ammonium iodide (1 M), in a 2-

methoxyethanol (4 parts) and acetylacetone (1 part) solvent mixture. Clean substrates are spin-

coated with single precursor solution at 2000 rpm for 60 s, followed by heating at 200 oC in the 

air for 5 minutes to promote the formation of BiSI. Previously reported glycol-based precursor 

solutions were investigated,24 resulting in significantly less phase-pure films. The solvent 

mixture described here was carefully adjusted for not only achieving stable and concentrated 

solutions, but also appropriate wetting of the FTO coated glass. This is a key aspect in the 

preparation of homogenous and adherent pure phase films, with the desired thickness only after a 

single spin-coat. Thermolysis of the molecular precursor was promoted at 200 oC, which is lower 

than in previous approaches based on spray pyrolysis.24 Keeping the conversion temperature as 

low as possible minimize the formation of oxide phases.   

Solar cells are fabricated with the architecture glass/F:SnO2/SnO2/BiSI/F8/Au, where F8 is 

Poly(9,9-di-n-octylfluorenyl-2,7-diyl. Cleaned FTO glass substrate (2.0 × 1.0 cm2) is first spin-
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coated with an ethanolic solution of tin (II) chloride dihydrate at 2000 rpm for 30 s and heated at 

250 oC for 1 hour to form a SnO2 layer acting as ETL.  Following the thermolysis of BiSI, F8 is 

deposited by spin-coating 10 mg/mL solution in chlorobenzene at 2000 rpm for 30 s. The top 

contacts are laid by evaporating Au through shadow masks. All the chemicals used are of 

analytical reagent grade. 

X-ray diffraction of BiSI films is measured in a powder diffractometer (Bruker D8 

advance) fitted with Cu Ka source and a position sensitive Lynxeye detector. The scanning 

electron micrographs of films are acquired using a Jeol iT-300 microscope at 20 kV accelerating 

potential. The elemental analysis is performed through energy dispersive analysis of X-rays 

(EDAX) enabled by Oxford X-max 80 mm2 silicon drift detector fitted in the SEM system. 

Raman and photoluminescence spectroscopies are performed in a Renishaw inVia spectrometer 

employing a 785 nm and 514 nm diode laser excitation sources, respectively. Diffuse reflectance 

spectrum is measured with a Shimadzu UV-2600 spectrophotometer in 600-1100 nm wavelength 

range at 1 nm steps.  

Electrochemical impedance spectroscopy for BiSI films grown on FTO electrodes was 

recorded in the range of 7 to 4700 Hz with a potential modulation of 11 mV rms, using a 

Solatron Modulab system. The electrolyte used in these experiments is tetra-butylammonium 

hexafluorophosphate (NBu4PF6) in dichloromethane, with Pt and Ag wires used as counter and 

pseudo-reference electrodes. The potential scale is corrected against the standard hydrogen 

electrode (SHE) using the formal potential of ferrocene introduced as internal reference.44 The 

films display a purely capacitive response under these conditions.  
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 The Mott-Schottky plot of BiSI film in dichloromethane electrolyte containing NBu4PF6 

is shown in Figure 3a of the paper. The flat band potential (EFB) is estimated from the intercept 

of the linear portion according to the expression: 

 

where A is the geometric surface area (1 cm2),  and  are the relative permittivities of 

BiSI (38 as estimated from DFT) and of free space, respectively. The positive slope of the plot 

confirms n-type conduction and a flat band potential (EFB) of 0.23 V vs SHE is obtained from 

the x-intercept. The location of flat-band in reference to Vacuum is calculated considering SHE 

as 4.44 eV with respect to Vacuum. Donor density (ND) is estimated to be 1.2 x1019 cm-3. 

However, ND is expected to be significantly overestimated considering the highly textured 

topography of the films, increasing the effective surface area.  

J-V characteristics of the solar cells are measured under a simulated AM1.5G (100 

mW/cm2) illumination employing an ABET technologies class ABA solar simulator. The active 

area of the devices is defined by a 4 mm2 square aperture. The external quantum efficiency 

(EQE) spectrum of the best device is collected with a custom-built setup equipped with a 

Bentham TM 300 monochromator; and quartz halogen and Xenon lamps. The light sources are 

calibrated using an NREL certified Si photodiode from Newport Corporation. Time-resolved 

photoluminescence of BiSI films is acquired from a 10 m2 area at 25 oC upon 633 nm 

excitation.  Using a time-correlated single photon counting system incorporated in a TCS SP8 

system coupled to Leica DMi8 inverted microscope, the lifetime decays are collected in 4 ps 

bins.  
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COMPUTATIONAL DETAILS 

Geometry optimization of BiSI unit cell is performed using CASTEP code, with energy and 

force convergences down to 1 x 10-9 eV/atom and 0.001 eV/Å, respectively.51,52 PBE functional 

including Grimme dispersion corrections along with on-the-fly norm-conserving 

pseudopotentials are employed with 400 eV energy cutoff and 0.02 Å-1 spaced Monkhorst-Pack 

grid for k-point sampling.53,54 The resulting Pnam symmetric cell has lattice parameters of a = 

8.480128 Å, b = 4.126914 Å and c = 10.3203228 Å, which are within 1.7 % of the experimental 

values for BiSI natural single crystals.33,55 Raman spectrum is also calculated using CASTEP 

under density functional perturbation theory (DFPT) linear response formalism.  

The electronic structure calculations are performed using single shot GW or the G0W0 

corrections on a preliminary electronic structure obtained with spin-orbit coupling included 

hybrid DFT-PBE0 implementation in ABINIT code.56  The initial DFT calculations are done 

using norm-conserving pseudopotentials and k-point sampling with 0.02 Å-1 spaced Monkhorst-

Pack grid. While G0W0 calculations are performed within Godby–Needs plasmon-pole 

approximation while expanding the dielectric matrix with a ~ 400 eV cut off.57  

The ionization potential (IP) was obtained from electrostatic potential calculations using 

slab model under DFT-PBE formalism in CASTEP. The as-computed IP is corrected for self-

interaction error by adding the quasiparticle correction obtained from the GW calculations, 

following the approach described by Toroker et al.43  
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