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Abstract 

 Data acquired by the Mercury Laser Altimeter and the Mercury Dual Imaging System on 

the MESSENGER spacecraft in orbit about Mercury provide a means to measure the geometry 

of many of the impact craters in Mercury’s northern hemisphere in detail for the first time. The 

combination of topographic and imaging data permit a systematic evaluation of impact crater 

morphometry on Mercury, a new calculation of the diameter Dt at which craters transition with 

increasing diameter from simple to complex forms, and an exploration of the role of target 

properties and impact velocity on final crater size and shape. Measurements of impact crater 

depth on Mercury confirm results from previous studies, with the exception that the depths of 

large complex craters are typically shallower at a given diameter than reported from Mariner 10 

data. Secondary craters on Mercury are generally shallower than primary craters of the same 

diameter. No significant differences are observed between the depths of craters within heavily 

cratered terrain and those of craters within smooth plains. The morphological attributes of craters 

that reflect the transition from simple to complex craters do not appear at the same diameter; 

instead flat floors first appear with increasing diameter in craters at the smallest diameters, 

followed with increasing diameter by reduced crater depth and rim height, and then collapse and 

terracing of crater walls. Differences reported by others in Dt between Mercury and Mars 

(despite the similar surface gravitational acceleration on the two bodies) are confirmed in this 

study. The variations in Dt between Mercury and Mars cannot be adequately attributed to 

differences in either surface properties or mean projectile velocity. 

  



 

 3 

Keywords: Mercury, surface; Impact processes; Cratering 

 

Highlights:  

1. The geometry of 331 primary impact craters on Mercury has been measured. 

2. Fresh craters of a given diameter on Mercury may vary in depth. 

3. Complex craters on Mercury have diameters greater than 11.7 ± 1.2 km. 

4. This transition diameter is larger on Mercury than on Mars. 

5. Depths of simple craters on Mercury and Mars are not statistically different. 
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1. Introduction 

Multiple factors control the geometry of impact craters, including the surface 

gravitational acceleration on the target body (e.g., Pike, 1980) and the physical characteristics of 

the target and projectile (e.g., Fulmer and Roberts, 1963; Gault and Wedekind, 1978; Gault et al., 

1968; Schultz, 1988; Holsapple, 1993; Hermalyn and Schultz, 2011). From the morphometry of 

impact craters, inferences can be made about the respective roles of the physical properties of the 

target (e.g., Kalynn et al., 2013) and the projectile population (e.g., Strom et al., 2005). 

Documenting crater morphometry on Mercury and comparing results with those from Mars are 

of particular interest because of the similar surface gravitational acceleration on those two 

planets. However, Mars and Mercury are characterized by different impactor velocities (Le 

Feuvre and Wieczorek, 2008; Marchi et al., 2012) and surface properties (e.g., Pike, 1980).  

The diameter Dt at which craters transition with increasing diameter from simple (bowl-

shaped) to complex (flat-floored with terraced walls and often with central peaks) forms scales 

with the inverse of the surface gravitational acceleration of the target body (Pike, 1980). Despite 

the similar surface gravitational acceleration (about 3.7 m/s2) on Mercury and Mars, however, 

early studies indicated that the two bodies have somewhat different transition diameters of 10.4 ± 

4 km and 5.8 ± 2 km, respectively (Pike, 1980, 1988), although the uncertainties in those values 

overlap at the one-standard-deviation level.  

Recent studies of Dt on Mercury conducted with data from the MErcury Surface, Space 

ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have yielded different 

values. A study combining shadow measurements made from Mercury Dual Imaging System 

(MDIS) images and Mercury Laser Altimeter (MLA) data acquired during MESSENGER’s first 

two Mercury flybys (M1 and M2, respectively; MESSENGER’s third flyby is denoted M3) 
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reported a Dt value of ~12 km (no uncertainty reported) (Barnouin et al., 2012). A determination 

of Dt with MLA data from the first year of MESSENGER orbital operations yielded a value of 

~8 km (no uncertainty reported) (Talpe et al., 2012). These studies used only the intersection of 

power laws fit to determinations of depth versus diameter for simple and complex craters to 

calculate Dt. Neither study included a more complete assessment of the attributes that mark the 

onset of complex crater morphology (e.g., Pike, 1980, 1988). Possible reasons for the difference 

in Dt between the two studies may result from differences in the crater populations studied (e.g., 

freshness criteria, whether secondary craters may have been included, and the locations of the 

craters used in the study). The erosional degradation of craters over time is known to decrease 

crater depth (Wood et al., 1977), and secondary craters tend to be shallower than primary craters 

(e.g., Schultz and Gault, 1985). The incorporation of degraded craters or secondary craters into a 

Dt calculation may result in a smaller value of Dt, as the inclusion of these shallower craters can 

change the resulting power-law fits (see section 3.3). Freshness criteria used by Talpe et al. 

(2012) were not provided, and those workers did not specify whether only primary craters were 

used. Barnouin et al. (2012) measured only primary craters and assessed crater degradation state 

with the system of Trask (1971). Further, the locations of the craters used in the two studies were 

different. Talpe et al. (2012) focused on polar craters, whereas Barnouin et al. (2012) measured 

craters in near-equatorial regions, so the respective crater populations may have sampled 

different target properties. 

A study of data from the Mars Orbiter Laser Altimeter (MOLA) on the Mars Global 

Surveyor spacecraft yielded a Dt value for Mars of 8.0 ± 0.5 km (Garvin and Frawley, 1998), 

nominally larger than that found earlier by Pike (1980). The former study did not include 

morphologic indicators or track crater freshness in the determination of Dt, but rather relied only 
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on the intersection of the power laws fit to the depth-versus-diameter data for the deepest simple 

and complex craters in the data sets. Robbins and Hynek (2012b) used topography from MOLA 

and images from the Thermal Emission Imaging System (THEMIS) on the Mars Odyssey 

spacecraft to determine a Dt value for Mars of 5.6 ± 2.3 km. Robbins and Hynek (2012b) also 

used morphologic indicators similar to those of Pike (1980) and tracked crater freshness. Studies 

of Dt value for different regions on Mars have yielded different values. Regions interpreted to 

have stronger surfaces (e.g., intact crystalline rocks) have a larger Dt value than regions that 

inferred to be weaker (Boyce et al., 2006; Robbins and Hynek, 2012b). 

If the Dt values of Mercury and Mars are resolvably different, then surface gravitational 

acceleration is not the only factor controlling the transition from simple to complex crater 

morphology, and projectile and surface properties must be investigated. Understanding the role 

of gravitational acceleration versus projectile and surface properties is important in interpreting 

final crater morphometry, in particular when comparing crater morphometry on different bodies. 

Calculating a new Dt for Mercury (with an associated uncertainty) from altimetry data gathered 

by the MESSENGER spacecraft permits a direct comparison with calculations of the Dt of Mars 

from MOLA data (e.g., Robbins and Hynek, 2012b).  

The insertion of the MESSENGER spacecraft into orbit about Mercury in March 2011 

has provided high-resolution images of the surface from MDIS and topographic measurements 

from MLA. The combination of the datasets permits a thorough examination of the morphometry 

of Mercury’s impact crater population at both a resolution and degree of spatial coverage not 

previously available. We have used the classification system of Trask (1971) to identify the 

freshest primary craters for the calculation of Dt. We have assessed several attributes that mark 

the onset of complex crater morphology (Pike, 1980, 1988). These procedures permit a direct 
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comparison of our results with those for Mars (Pike, 1980; Robbins and Hynek, 2012b) as well 

as an examination of whether the Dt estimate depends on the physical diagnostic used. 

In the following sections we give a brief overview of projectile and target properties that 

may control final crater morphometry, discuss the measurement techniques employed with both 

the MLA and MDIS datasets to obtain the depth (d), diameter (D), rim height (h), floor diameter 

(Df), wall width (w), and central uplift height (r) of craters. We then describe how crater 

degradation state was determined and target geology identified. We present our results for the 

variation in d, h, w and r with crater diameter, together with the new value of Dt for Mercury. 

Finally, we discuss the measurements with a focus on implications for the impact cratering 

process on Mercury and Mars, Mercury’s surface properties, and the role of the projectile 

velocity on final crater morphometry. 

 

2. Impact conditions that influence crater morphometry 

The formation of impact craters and the subsequent final crater morphometry are 

controlled by a body’s surface gravitational acceleration (Pike, 1980) and to a lesser extent by 

the properties of the projectile and target (e.g., Holsapple, 1993). Here we review how target and 

projectile properties have been observed to modify final crater morphometry. These observations 

are used below to understand the factors that may be affecting the possible difference in the Dt 

values for Mercury and Mars and variations in crater morphometry across Mercury itself. 

Target properties that have a demonstrated effect on crater size and shape (and thus the Dt 

value) include strength (which is in turn determined by the history of local fracturing and any 

mechanical layering) and porosity. Investigations of the role of target strength during simple 

crater formation (Fulmer and Roberts, 1963; Shoemaker, 1963; Gault et al., 1968; Cintala et al., 
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1977a,b; Holsapple, 1993; Barnouin-Jha et al., 2007) have shown that an increase in target 

strength can restrict the amount of collapse during the temporal transition from transient to final 

crater geometry. The result is that deeper simple craters form in stronger targets. The effect of 

target porosity on final crater depth is not well understood, with some workers reporting both 

shallower and deeper craters in highly porous targets (e.g., Housen and Holsapple, 2003) and 

others reporting only shallower craters in porous targets (Schultz et al., 2005). The interaction 

between target porosity and target strength may be the source of the discrepancy among studies.  

Recent investigations of the d/D ratio on the Moon and Mars indicate that both target 

strength and porosity influence crater morphometry. On the Moon, complex craters in the 

highlands are deeper than craters of similar diameter in the maria (Kalynn et al., 2013). Both the 

greater strength of (and possible layering effects in) mare deposits and the greater porosity of 

highlands material (an average porosity of 12%; Wieczorek et al., 2013) have been cited as the 

source of the differences in the final depth of fresh craters of a given diameter (Kalynn et al., 

2013). On Mars, target strength has been invoked as the primary factor influencing morphometry 

of simple craters, but not complex ones. Most investigators of d/D for fresh or pristine (see 

section 5.4 for a further definition of these terms) simple craters (Boyce et al., 2006; Boyce and 

Garbeil, 2007; Stewart and Valiant, 2006; Robbins and Hynek, 2012a,b) have reported regional 

differences in the d/D ratio of simple craters. Many of these workers invoked target strength 

(Boyce et al., 2006; Stewart and Valiant, 2006) as the main cause of this difference, suggesting 

that stronger targets resist collapse (Boyce et al., 2006). Although Stewart and Valiant (2006) 

suggested that fresh complex craters also vary in d/D with terrain type, a more statistical rigorous 

investigation using a greater number of craters could not confirm this result for complex craters 

(Robbins and Hynek, 2012b).  
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Projectile density, velocity, and the impact angle – the angle that the impactor trajectory 

makes with the surface tangent or horizontal – may contribute to the final shape of observed 

craters. Experimental investigations of low-density projectiles have demonstrated a reduction in 

the depths of craters as a result of limited penetration into the target (e.g., Hermalyn and Schultz, 

2011). Early investigators suggested that low-density objects might be an important component 

of the impactor population at the innermost planet given that comet orbits frequently cross 

Mercury’s orbit (Hartmann, 1981; Horedt and Neukum, 1984; Schultz, 1988; Neukum and 

Ivanov, 1994). A more recent study, however, indicates that the cratering record on Mercury 

resembles closely those of the Moon and Mars, an observation that is best explained if the 

cratering record of all three bodies is dominated by impacts from asteroids (Strom et al., 2005). 

The distribution of projectile densities at Mercury, therefore, is likely to have been similar to 

those for other planets in the inner solar system.  

Unlike projectile density, the distribution of impact velocities on Mercury is very 

different from those on other inner solar system bodies. Dynamical models indicate that the 

mean expected velocity of projectiles is 42 km/s on Mercury, compared with only 10 km/s on 

Mars (Le Feuvre and Wieczorek, 2008; Marchi et al., 2012). Further, these studies have shown 

that the projectile velocity on Mercury is not only greater on average but also substantially more 

variable (20–65 km/s) than on Mars (8–12 km/s). Impact cratering experiments have suggested 

that higher-velocity projectiles produce deeper final (shallower transient) craters (Schultz, 1988; 

Barnouin et al., 2011). Numerical studies have suggested a more complicated situation, where at 

some impact velocity, craters cease becoming deeper and either produce the same d/D (Jutzi and 

Michel, 2014) or produce shallower craters (Bray and Schenk, 2015). 
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Highly oblique impacts (i.e., impact angles less than 15º) are known to produce unusually 

shallow craters for a given projectile diameter from laboratory studies (e.g., Gault and 

Wedekind, 1978; Hessen et al., 2007). In studies of highly oblique impact craters on Venus and 

the Moon, no change in d/D was found when depth was measured from a preexisting surface 

(Herrick and Forsberg-Taylor, 2003), but rim heights were found to vary around the crater. On 

Mercury (as with other bodies), impacts at low impact angles represent only a small fraction of 

the total population and are unlikely to be a major contributor to observed crater geometries 

(Shoemaker, 1962; Le Feuvre and Wieczorek, 2008). Further, highly oblique impacts can be 

recognized from the crater planform, the asymmetric distribution of ejecta and crater rays (e.g., 

Gault and Wedekind, 1978), and the interior structure of craters (e.g., Schultz, 1992). In this 

study, we avoid analyzing any results from craters that possess these oblique impact 

characteristics. 

 

3. Measurements of crater geometry from MLA and MDIS 

The orbital coverage of Mercury’s northern hemisphere by both MLA and MDIS permits 

the assessment of crater degradation state and the measurement of crater geometry at a resolution 

and accuracy not previously possible. The use of MLA data provides an accurate measure of 

crater topography (e.g., Barnouin et al., 2012; Talpe et al., 2012) and avoids the ambiguity 

associated with shadow measurements (see discussion by Pike, 1988). We used individual MLA 

tracks instead of MLA-derived digital elevation models (DEMs). The use of DEMs can be 

problematic for measuring the shapes of small (<10 km diameter) craters because of the size of 

the altimetry footprints (15–100 m) and their along-track spacing (300–800 m, Zuber et al., 

2012). In addition, interpolation between MLA tracks at low latitudes is an issue for smaller 
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craters. For example, the depth for a small crater inferred from a DEM may have been 

interpolated from tracks across the lower walls of a crater and thus not represent the depth of the 

crater floor. This scenario can bias estimates of depth for simple craters, as well as d/D (and Dt) 

values that do not reflect those of the actual crater population. Similar issues have been observed 

with MOLA-derived DEMs for Mars (e.g., Glaze et al., 2003; Barnouin-Jha et al., 2005; Robbins 

and Hynek, 2013). In this study, we therefore measured crater geometry directly from co-

registered MLA tracks and MDIS images (Fig. 1), allowing the topography viewed in the MLA 

tracks to be directly correlated with crater morphology seen in the MDIS images. We also 

restricted our study to craters with D > 3 km. 

For each crater investigated, we used (when available) three MLA tracks that crossed the 

crater. This number was found to be sufficient to measure the natural variation in rim height and 

depth, as well as all other measurements of crater shape. For five craters chosen at random, no 

differences in the results were obtained for rim crest height or crater depth when using five MLA 

tracks rather than three. In all cases, the measured results were well within the errors obtained for 

these measurements when using just three MLA tracks. A similar result was found when 

measuring small craters on the Moon with just two transects (Stopar et al., 2012). For craters 

with D > 20 km, suitable MLA tracks were located on a monochrome base map of Mercury (250 

m pixel scale), which was sufficient for the determination of crater degradation state. Smaller 

craters required the registration of MLA tracks with individual MDIS images at full resolution 

(pixel scales as good as a few tens of meters) to best assess the crater morphometry and 

degradation state. The MLA and MDIS co-registration was excellent (to within one MLA 

footprint, i.e., 60 μrad, better than the pointing of MOLA for example), but occasional offsets 

were noted when the emission angle (measured from vertical) of the MDIS image exceeded 80°. 
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Therefore we used only those MDIS images with emission angles <80°. Each measurement 

reported (e.g., d, h) for a given crater is an average of the results obtained from the three MLA 

tracks. The total uncertainty attributed to each measurement (with the exception of the central 

uplift height) was determined by taking the root mean square of the errors associated with each 

individual measurement (which are described below for each measurement type) and the 

standard deviation of three individual measurements to calculate a final uncertainty. 

The individual MDIS high-resolution images were also used to find MLA tracks that 

bisected (i.e., passed through the center) of small (D < 20 km) craters. Such a bisection was 

required to measure accurately the depth of bowl-shaped craters, since MLA tracks that 

intersected only the sides of simple craters provided inaccurate measures of crater depth. MLA 

transects were considered suitable for analysis if they bisected the crater and the number of 

footprints within each crater was greater than five.  

For larger complex craters, multiple MLA tracks were often available. In such a situation, 

MLA transects that intersected the central uplift (peak or peak ring) of the crater were selected 

first. When fewer than three MLA transects bisected the central uplift, we also used transects that 

sampled other portions of the crater floor for our estimate of depth. When this occurred, the 

depth reported for transects that sampled the central uplift and the depth reported for transects 

that sampled only the crater floor were the same within the uncertainties associated with each 

measurement. Different observers repeated many of the measurements in this study to check for 

observational biases; measurements were consistent within the reported uncertainties. 

Measurements of crater geometrical parameters were stored together with an image of the crater, 

which permitted each crater (outliers in particular) to be investigated relative to the overall 

population when assessing factors influencing crater morphometry on Mercury. All 
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measurements and their associated errors are listed in Table A1 in Appendix 1 for 331 primary 

impact craters on Mercury. 

 

3.1. Crater geometry measurements 

3.1.1. Crater depth and rim height  

To measure a crater’s depth (d) and rim height (h), a function was fit to the individual 

footprints of each MLA transect to remove regional topography. To fit the function, MLA points 

were selected beyond the edge of a crater’s ejecta deposits (carefully avoiding nearby craters, 

scarps, and ejecta deposits from other nearby craters) to at least three crater radii away from the 

center of the crater. A second-order polynomial (found to be a better fit to the background 

topography than a line) was used to remove regional elevation.  

The height of the rim crest was measured on both sides of the crater by selecting the 

highest MLA elevation on the rim crest, when the return was within one MLA footprint of the 

rim crest. Such an approach yields robust results relative to other efforts (e.g., Robbins and 

Hynek, 2012b, 2013) for several reasons. First, the MLA instrument measures range by 

determining the time when the returned pulse first arrives at the detector (it does not measure the 

time to the peak of the pulse). As a result, MLA measurements are biased on average toward 

measuring the highest feature in the footprint (i.e., they are more likely to measure a high rim 

crest). Second, the knowledge of MLA's pointing with respect to MDIS is well understood, to 

within a few pixels of MDIS narrow-angle camera (NAC) data or about one MLA footprint (~15 

m near the poles and ~100 m at the equator). This knowledge means we were able to identify 

MLA returns at locations very near a crater's rim crest and that the rim height reported is the 

height of the crest rather than an average over the rim. The resulting value of h was calculated as 
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the difference between the height of the rim crest and that of the pre-existing surface (inferred 

from regional topography).  Natural variations in rim height were captured by the use of three 

MLA tracks to independently measure h and d. The value of d reported is the average of the 

difference between the height of the rim crest and the lowest MLA-measured elevation of the 

crater floor for three MLA tracks (Fig. 1).  

 

3.1.2. Crater diameter and floor diameter  

The crater diameter (D) was measured by tracing out the rim crest (utilizing the MLA 

track as an additional guide for capturing the precise location of the rim crest) on an MDIS 

image projected in simple cylindrical geometry centered over the crater center and finding a best-

fit circle using least squares to the traced points. The fits were made after converting the traces 

into measurements of distance (by recalculating the center from the least squares fit). The floor 

diameter Df, defined by the average diameter of the intersection of the flat floor with the crater 

wall, was measured with the same methodology. The uncertainty of each measured D (and Df) is 

equal to one standard deviation of the errors in the fit of a circle to the crater’s rim outline. The 

final reported value of D (and Df) for a given crater is the mean of three measurements, each 

using a different MLA track as an additional guide. The measurement was repeated three times 

to achieve a best estimate of D (and Df), given the error introduced when hand-tracing a crater 

rim crest (or floor diameter). Most of the uncertainty in D (and Df) can be attributed to the lack 

of circularity that naturally occurs in most craters.  

 

3.1.3. Central uplift height 



 

 15 

The height r of the central uplift was recorded only for a subset of the craters 

investigated. The selection of suitable central uplift measurements was achieved through 

inspection of the location of an MLA track on an MDIS image and the use of shadow length 

measurements as guides to help identify a representative high point. Only measurements taken 

from profiles where the MLA track sampled the highest point in the central uplift structure are 

reported in this study. The value of r was taken as the difference between the highest elevation 

measurement on the central uplift and the average of the six lowest elevation measurements of 

the crater floor. The uncertainty in r was calculated from the standard deviation of the difference 

in the six lowest elevation measurements on the crater floor.  

 

3.1.4. Wall width 

The wall width (w) of craters was calculated from the Df and D values for the crater: 

w = (D – Df)/2           (1)  

The uncertainty in the measurement was calculated by propagation of the uncertainties in Df and 

D. 

 

3.2. Crater observations 

3.2.1. Classification of crater degradation  

The MDIS base map and individual images were used to identify the relative degradation 

state of each crater analyzed on the basis of the morphological criteria of Trask (1971). In this 

system, class 5 craters are the freshest and have crisp rims, well-preserved ejecta, and visible 

rays. Class 4 craters have few superimposed craters and fresh ejecta and rims, but no visible rays. 

Class 3 craters have degraded rims and terraces and may have been infilled by smooth plains. 
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Class 2 craters lack visible ejecta, may have some volcanic infilling, and have numerous 

superimposed craters. Finally, class 1 craters may have only a partially preserved rim (for further 

details see McCauley et al., 1981; Spudis and Prosser, 1984; Spudis and Guest, 1988; Barnouin 

et al., 2012). The focus of this study is on craters of classes 3–5, though several class-2 craters 

are also included (see Section 4.4). 

 

3.2.2. Target terrain 

Craters were identified as hosted by either smooth plains or cratered terrain. The smooth 

plains are primarily volcanic in origin, sparsely cratered, and level to gently sloping (Trask and 

Guest, 1975; Denevi et al. 2013). The cratered terrain is the term adopted here for older terrain 

that surrounds smooth plains deposits and includes the intercrater plains, heavily cratered terrain, 

and basin ejecta units defined on the basis of Mariner 10 images (Trask and Guest, 1975). We 

used the map of smooth plains derived from MDIS images by Denevi et al. (2013) as a guide to 

determine the surrounding terrain type for each crater measured.  

 

3.2.3. Crater type 

The craters in this study were identified as simple, complex with a central peak, or 

complex with a central ring. Simple craters were identified on the basis of a bowl-shaped 

interior, possibly with a flat floor, but without a central uplift. Complex craters were identified 

on the basis of a central uplift structure (either a central peak or central ring). Central rings were 

differentiated from central peaks by the distinctive ring geometry and continuation of the flat 

floor inside the ring. For most craters, this identification was made from the MDIS base map and 
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individual monochrome images, but for smaller (D = 3–20 km) high-latitude craters (with the 

interior shadowed) this identification was made from the MLA transects.  

 

3.2.4. Secondary craters 

Secondary craters were also measured in this study. These craters were distinguishable 

from the primary craters listed in Table A1 in Appendix 1, but measurements were made with 

the same methods as those outlined in section 3.1. Secondary craters form by the impact of both 

clusters of blocks and individual blocks ejected during the formation of a (larger) primary crater. 

These projectiles are more likely to have lower velocities and impact at more oblique angles than 

for primary impacts (e.g., Schultz and Gault, 1985). Secondary craters were identified as small 

craters in linear arrays or clusters, usually, but not always, in the vicinity of larger impact craters. 

These secondary craters lack crisp rims, are often elliptical, and commonly are found in crater 

chains. Because of higher impact velocities on Mercury than on other terrestrial planets, 

secondary craters can be larger (at diameters less than 10 km secondary craters are more 

abundant than primary craters, Strom et al., 2008). The morphology of large secondary craters 

may lack some of the standard diagnostics of secondary craters elsewhere (because of their size 

and lack of association with either a cluster of craters or a crater ray), and some of these 

secondary craters may therefore have been included in the primary population examined in this 

study. Each crater was inspected for indicators of secondary crater morphology, and we are 

confident that the majority of craters reported here as primaries are actual primary craters. 

However, some of the small-to-medium-sized craters (D < ~20 km) in our study population 

could nonetheless be secondary craters that are far from their primary and lack classical 

secondary crater morphological features. 
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3.3. Transition diameter 

The diameter Dt at which craters transition, with increasing diameter, from simple to 

complex morphology was calculated from both the quantitative and qualitative indicators of the 

onset of complex crater geometry, following the method outlined by Pike (1980, 1988). In this 

method the transition diameter is calculated from the intersection of power laws fit separately to 

depth/diameter (d/D) versus rim height/diameter (h/D) data for simple and complex craters, as 

well as the diameter of the smallest complex crater and the diameter of the largest simple crater. 

It also makes use of such morphologic attributes as the median diameter of the onset of flat 

floors (visible in MLA transects), wall slumps (wall failure that appears to be contemporaneous 

with the final stages of crater formation), and terraces (distinct blocks on the walls of the crater). 

All of these attributes were used to calculate a geometric mean diameter that reflects the 

morphologic transition from simple to complex crater forms on Mercury. 

 

4. Results 

We present the results obtained from measuring the geometry of 331 primary impact 

craters on Mercury (less than the number of craters identified in Mercury’s northern hemisphere 

by Fassett et al. (2011) as a result of our selection criteria outlined in section 3) from data 

obtained during the orbital phase of the MESSENGER mission (see Table A1 in Appendix 1 and 

Fig. 2 for locations of the craters). First, we describe the power laws used to investigate relations 

between depth, rim height, or wall width and diameter. Data on secondary crater depth and rim 

height are compared with primary crater morphometry. Finally, a new Dt value for Mercury is 

calculated.  
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Few of the craters measured had morphologies indicative of low-angle impacts, such as 

asymmetric ejecta deposits, rays, or crater wall width (e.g., Gault and Wedekind, 1978; Schultz, 

1992). In the analysis process we excluded craters with these morphologies (to better understand 

the other factors that may be contributing to crater morphometry variations), and thus, the results 

below minimize impact-angle effects (the craters in Table A1 in Appendix 1 do not include 

craters identified as resulting from low-angle impacts). 

 

4.1. Power laws fit to the measurements for simple and complex craters 

Power laws were fit to measurements of d versus D and h versus D for the population of 

simple craters and independently for the population of complex craters, and a power law was fit 

to measurements of w versus D for complex craters. Results were analyzed for both the entire 

crater population and for only the freshest craters (classes 4 and 5). We looked specifically at 

class-4 and class-5 craters because their shapes have not been substantially modified by post-

impact degradation. For the fits to data from the simple crater population, only craters 5–10 km 

in diameter were used. The lower bound of 5 km in diameter was chosen because of the 

difficulties mentioned above with measuring the depths of smaller craters, e.g., as a result of 

MLA not sampling the deepest portion of the crater floor. The upper bound of 10 km was chosen 

to avoid craters that may be transitional to complex morphologies (this diameter value was 

chosen after evaluating the break in slope in Fig. 3). Likewise, a 15-km-diameter lower bound 

was chosen for the complex crater population to avoid including craters with simple-crater 

morphologic characteristics. 

 

4.2. Depth versus diameter  



 

 20 

As with other terrestrial planets, the depth (d) of impact craters on Mercury scales with 

increasing diameter (D) (Fig. 3). A noticeable break in slope in the relation between d and D 

occurs at a diameter of approximately 8–11 km; that break marks the approximate transition 

between simple and complex craters. The relation between d and D is broadly similar to that 

reported by Pike (1988) from images acquired during the Mariner 10 flybys, but several 

important differences can be observed. Large complex craters in this study are shallower than the 

Pike (1988) measurements, consistent with results reported by Barnouin et al. (2012) from the 

MESSENGER flybys. An example of this difference is the complex crater Brahms (centered at 

58.30ºN, 182.72ºE, D = 97.3 ± 1.6 km). This crater was reported to be >3.15 km deep by Pike 

(1988), but MLA profiles show the depth to be 2.8 ± 0.1 km. The difference is likely due to 

inaccuracies in the original shadow-based measurements of depth, either because of the difficulty 

in measuring shadows over broad crater walls with extensive slump blocks or poor viewing 

geometry. 

Several complex craters are outliers to the general population. Close inspection of these 

craters with MDIS images shows that their interiors have been modified subsequent to impact 

(e.g., by superposed younger craters or the formation of pits, Fig. 4). A few large simple craters 

(6–10 km in diameter) are deeper than the range Pike (1988) reported, but the majority of simple 

craters (3–10 km in diameter) are consistent with the results of his study. Further inspection of 

the anomalously deep simple craters using MDIS images did not reveal any clear reason (such as 

those associated with larger craters) for the differences in depth. Therefore, these craters are 

interpreted to have larger depths than typical as a direct result of their formation. 

The power laws fit to d versus D for a variety of subsets of the impact crater population 

are reported in Table 1. The fits are compared with results from MESSENGER flyby altimetry 
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and imaging data (Barnouin et al., 2012), orbital MLA data acquired for craters at high northern 

latitudes (Talpe et al., 2012), and Mariner 10 flyby images (Pike, 1988). The power law fit to 

measurements for the fresh (classes 4 and 5) simple crater population has a shallower slope than 

that for the entire sampled population for this crater morphology. For complex craters, the slope 

of the power law for the fresh crater population and the entire population are both less than the 

slope reported by Pike (1988). This difference is the result of the smaller depths of large complex 

craters in this study, as mentioned above.   

 

4.3. Measurements of rim height, wall width, and central uplift height 

Our database indicates that crater rim height increases with diameter (Fig. 5), and a clear 

break in slope is observed between simple and complex craters (at ~11 km diameter). The power 

laws fit to the data for h versus D for complex craters have shallower slopes than the equivalent 

laws for simple craters. The power laws for both the fresh (classes 4 and 5) simple craters and 

the entire sampled population of simple craters are similar to results from previous studies (Table 

2).  

The wall width (w) of the complex craters was measured in this study to explore the role 

of wall collapse, an important aspect of the transition from transient cavity to final crater 

morphometry. Larger wall widths may be diagnostic of substantial crater collapse. On Mercury, 

the relation between w and D shows little variation for smaller (D<50 km) complex craters (Fig. 

6). For larger complex craters (D>60 km), in contrast, an increased spread in w is observed for a 

given D. The power laws fit to the data (Table 3) are similar for the fresh and entire complex 

crater populations. 
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Past studies of central uplift height (r) on Mercury (e.g., Pike, 1988) have documented an 

increase in r with increasing D, an observation that is confirmed here (Fig. 7). The relation 

between r and D, though, shows greater scatter than other crater morphometric relations. Central 

uplift height can vary by up to an order of magnitude for similarly sized small (D = 15–30 km) 

complex craters. For large complex craters, variations in central uplift height are smaller in 

relative magnitude but can still exceed 1 km. Some of the variation can be attributed to MLA 

range measurements not always sampling the very highest portion of the central uplift. We did 

not calculate power laws because of the large scatter within the data set for r versus D. 

 

4.4. Crater morphological class 

Crater degradation influences crater morphometry. Fresh impact craters are usually 

deeper than older and more degraded craters (Fig. 8a), as previously reported for Mercury (e.g., 

Pike, 1988; Barnouin et al., 2012), although there are some deviations from this trend. For 

example, within the freshest crater population (classes 4 and 5), some variations in d are 

observed across all diameters (no systematic variations in d are observed between class-4 and 

class-5 craters). These differences in depth (see example in section 4.2) can be up to 30–50% of 

the total depth of the crater and are not always correlated with terrain type. These differences are 

much larger than the 200–300 m variation in depth found in complex craters on the Moon 

(Kalynn et al., 2013). 

Crater degradation on Mercury also affects rim height and central uplift height. Relations 

between h and D and between r and D (Fig. 8b,c) depend on degradation, with the freshest 

craters (class 5) having the largest h and r values for a given D. Within the other fresh (class 4) 

and moderately degraded (class 3) classes of craters, the spreads in the relations for h versus D 
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and r versus D are comparable. No clear dependence of w versus D on degradation is observed 

(Fig. 8d). 

 

4.5. Target geology 

 Differing target properties among geologic units is known to influence crater 

morphometry. On the Moon, complex craters in the maria are generally shallower than craters in 

the highlands (Pike, 1974; Kalynn et al., 2013). On Mars, distinct geological units show distinct 

d/D values for simple craters (Boyce et al., 2006; Stewart and Valiant, 2006; Robbins and 

Hynek, 2012a,b). On Mercury, individual crater depths may be slightly deeper within the 

cratered terrain than in the smooth plains (Fig. 9a), but such a difference cannot be established 

with significance for the entire population. More craters were measured in the smooth plains than 

the cratered terrain due to issues in properly capturing the rim heights of craters (from difficulties 

in fitting a plane to the surrounding terrain) in the cratered terrain. Since no statistically 

significant difference is found between crater populations in the different terrains, no bias was 

introduced into our overall measurements of crater morphometry. The relations for h versus D, r 

versus D, and w versus D show no clear dependence on target geology (Fig. 9b–d). 

 

4.6. Secondary craters 

The morphologies of secondary craters on Mercury are similar to those on other bodies. 

Secondary craters (see Table A2 in Appendix 1) are usually shallower than simple primary 

craters (Fig. 10a). The smaller d is expected as a result of the lower impact velocities (<4.3 km/s, 

Mercury’s escape velocity), the likely clustered nature of many secondary impactors, and often 

oblique impact angles (the result of blocks ejected on ballistic trajectories from the primary 
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crater) of the impactors. The spread in d versus D, though, does overlap with that for primary 

craters. The relation for h versus D for secondary craters (Fig. 10b) shows no clear difference 

from that for primary craters. 

 

4.7. Transition diameter 

The high-resolution topography from MESSENGER permits a new estimate of Dt for 

Mercury to be calculated and compared with the Dt value for Mars. On Mercury, the intercept of 

the power laws for relations between d and D for fresh simple and complex craters indicates a Dt 

value of 10.2 km, larger than the value reported by Talpe et al. (2012). The other morphologic 

indicators that differ between simple and complex morphologies show transitions at different 

onset diameters. The median diameter of the onset of flat floors occurs at D = 9.6 km, that for 

wall slumps at D = 10.3 km, that for terraces at D = 14.4 km, and that from the intersection of the 

power laws fit to relations between h and D for simple and complex craters at D = 13.0 km. 

When all morphologic indicators are considered (Fig. 11a–c, Table 4; see section 3.3), the best 

overall estimate of Dt is 11.7 ± 1.2 km, a result consistent with the Mariner 10 (Pike, 1988) and 

MESSENGER (Barnouin et al., 2012) flyby results.  

 

5. Discussion 

The morphometric relations of impact craters on Mercury measured from MESSENGER 

data are similar to those reported previously, with crater depth, rim height, wall width, and 

central uplift height increasing with increasing diameter (Pike, 1988; Barnouin et al., 2012; Talpe 

et al., 2012). Variations in morphometry are consistent with a transition from simple to complex 

craters at a diameter of ~12 km. The spread in wall width for larger-diameter craters could be 
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evidence of the beginning of the transition from complex crater to basin morphologies. Baker et 

al. (2011) identified the onset diameter for peak-ring basins at 126 +33

−26
 km, larger than the 

diameter (~60 km) at which wall width begins to vary, but their study included peak-ring basins 

as small as 83 km in diameter (within the range of diameters of craters in this study that display a 

large spread in w at a given D). Although these broad trends in crater morphology hold in 

general, small deviations throughout the population provide insight into the impact cratering 

process, and are of interest when comparing crater geometry on Mercury to that on Mars (since 

both bodies have similar surface gravitational acceleration). 

 

5.1. Target properties 

We compared the morphometry of craters in different geologic units on Mercury for 

insight into their relative physical properties (e.g., strength or porosity). Fresh complex craters in 

the cratered terrain may be slightly deeper than similar-sized craters in the smooth plains, but any 

differences in depth are not statistically significant.  The lack of a significant difference in the 

depth of craters between geologic terrains on Mercury could be due to a smaller age difference 

between the smooth plains and cratered terrains relative to the larger age difference between the 

maria and highlands on the Moon. The possible volcanic origin of both the intercrater plains 

(e.g., Trask and Guest, 1975; Whitten et al., 2014) and smooth plains (e.g., Trask and Guest, 

1975; Spudis and Guest, 1988; Denevi et al., 2013) may also contribute to reducing the 

difference in crater depth between the two units (when compared with the lunar maria and 

highlands, which have different origins). Other factors that may contribute to the difference in 

observable terrain effects between craters on Mercury and on the Moon include the the higher 

surface gravitational acceleration of Mercury (which requires stronger rocks to resist 
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gravitational collapse) and the wider range in impact velocities at Mercury, the effect of which 

may overwhelm other factors (see section 5.3). This mix of possible contributing factors implies 

that the significant difference in depth between individual craters such as the class-5 craters 

Fonteyn and Cunningham (Fig. 12) is probably not a consequence of the different terrains 

in which they formed (since no similar differences are seen in neighboring fresh craters), but is 

due to some other difference in their formation process. The lack of difference in d/D between 

terrains on Mercury also differs from results for simple craters on Mars, where differences in d/D 

among different geologic units have been observed (Boyce et al., 2006; Robbins and Hynek, 

2012b, 2013). However, the Mercury results are similar to those on Mars for complex craters, 

where statistical analyses show no variations in d/D with differing terrain (Boyce and Garbeil, 

2007; Robbins and Hynek, 2012a,b, 2013). 

 

5.2. Crater morphological class 

Since fresh craters are used to calculate the Dt value, sampling was focused on crater 

classes 3 and higher. For the morphological classes examined in this study (including the few 

class-2 craters measured), the freshest craters (class 5) tend to be the deepest, but variations in 

depth are seen even within the freshest morphological class. Likewise, rim height is reduced with 

degradation state, whereas wall width remains unchanged. The decrease in crater depth and rim 

height can be attributed to the action of later small impacts that erode the rims and infill the 

crater with ejecta, a finding consistent with previously reported observations (Wood et al., 1977; 

Pike, 1980, 1988; Barnouin et al., 2012).  

 

5.3. Impact velocity  



 

 27 

Within the fresh (classes 4 and 5) to moderately fresh (class 3) crater populations, most 

craters of a given size show little to no variation in depth. There nonetheless are a few craters 

where significant differences in depth are seen that do not correlate with geologic unit or state of 

crater degradation. The differences in depth of these craters are larger than those found on Mars 

(e.g., Robbins and Hynek, 2013) and the Moon (Kalynn et al., 2013) in fresh craters within the 

same geologic unit. An example of this variability (Fig. 13) is provided by craters Atget (25.6ºN, 

166.42ºE; D = 102 ± 1.1 km; d = 3.2 ± 0.5 km; class 4) and Hokusai (57.69ºN, 16.87ºE; D = 97.3 

± 1.1 km; d = 2.3 ± 0.2 km; class 5). The two craters differ in depth by 0.9 km, well in excess of 

their associated measurement errors. Both craters are also within the smooth plains as mapped by 

Denevi et al. (2013), so neither degradation nor target character is likely to have caused the large 

depth difference.  

Dynamical models indicate that a large range in impact velocity (20–65 km/s) is expected 

at Mercury, a range substantially greater than for other planets in the inner solar system (Le 

Feuvre and Wieczorek, 2008; Marchi et al., 2012). High-velocity impacts on Mercury have also 

been previously cited as an explanation for the higher rim crests of craters on Mercury than on 

the Moon (Cintala, 1979).  

Laboratory cratering experiments have documented an increase in transient crater depth 

with decreasing projectile velocity, as a result of the increased penetration of lower-velocity 

projectiles (Schultz, 1988; Barnouin et al., 2011). During a low-velocity impact, the time of 

contact (coupling) between the target and projectile is longer than during a high-velocity event. 

Because the shock wave travels more slowly through the projectile (because of the lower initial 

velocity of the projectile), the projectile survives longer. This additional coupling time permits 

the projectile to penetrate deeper into the target. In laboratory experiments, this effect yields a 



 

 28 

deep transient crater with steep walls (Barnouin-Jha et al., 2007; Barnouin et al., 2011). The 

steep walls collapse more fully than walls produced by faster projectiles, resulting in a shallower 

final crater (Schultz, 1988; Barnouin et al., 2011).   

Simple hydrodynamic analyses (e.g., Gault and Heitowit, 1963; Cheng et al., 1999) also 

indicate that projectile speed differences could substantially influence the normalized penetration 

depth of an impactor relative to crater diameter. A numerical study of the lower range of impact 

velocities for simple craters on Pluto shows an increase in the d/D ratio of craters with increasing 

impact velocity and then a gradual decrease (at an inflection point) to a steady leveling off of d/D 

with further increases in velocity above ~2 km/s (Bray and Schenk, 2014). This study was 

performed for icy targets with different surface strengths and properties than expected on 

Mercury. The Bray and Schenk results align with experimental evidence for the low range of 

impact velocities, but differs for velocities 3–6 km/s, for which laboratory results show d/D 

continuing to increase with velocity (Barnouin et al., 2011). Bray and Schenk (2014) noted that 

the details of the d/D variation with velocity changes with different model parameters. A study 

using a different numerical algorithm suggests that the inflection in d/D versus velocity could 

occur at a velocity of 5 km/s (Jutzi and Michel, 2014), which might explain why no inflection 

point is observed in the laboratory. The inflection point could also explain why the majority of 

craters on Mercury show little variation in d/D even with the high expected range in velocity. 

Nevertheless, craters Hokusai and Atget show a large difference in depth, and impact velocity 

cannot be ruled out as a factor. 

 

5.4. Comparing transition diameter and crater depth on Mercury and Mars 
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Mercury and Mars provide a means to explore the roles of projectile and target properties 

on crater morphometry in a natural experiment, in which the surface gravitational acceleration is 

held approximately constant. The transition diameter Dt for Mercury is 11.7 ± 1.2, whereas the 

global Dt value for Mars is 5.6 ± 1.2 (Robbins and Hynek, 2012b), confirming the difference in 

Dt found in previous studies (Pike, 1980, 1988). 

No statistical difference exists between d/D values for Mercury relative to those for Mars 

at a given D (Fig. 14). The similarity in d/D on Mars and Mercury is in contrast to reports from 

prior studies, mainly due to recent studies of the d/D ratio on Mars. For Mars, Robbins and 

Hynek (2012b) distinguish between deepest and fresh craters when generating their d/D fits. The 

deepest-crater method most likely captures the original depths of Martian craters (Boyce and 

Garbeil, 2007; Robbins and Hynek, 2012b) given the high the erosional rates on Mars. On 

Mercury, the distinction between deepest and fresh craters is not relevant, for two reasons: (1) 

the erosion rate on Mercury is lower; and (2) some of the freshest craters on the planet (e.g., 

Hokusai) are among the shallowest at their diameter. The comparison in Fig. 14 is for deepest 

crater results for Mars. What then drives the difference in Dt, but not crater depth, between these 

two bodies? Previous studies (e.g., Pike, 1980, 1988) cited surface properties as the source, 

including different volatile contents and geologic histories. Past authors proposed that weaker 

rocks on Mars collapse at a smaller diameter to form complex craters, whereas on Mercury the 

stronger rocks resist collapse until a larger diameter is reached.  But such a proposal is not 

consistent with the similar d/D values for the two bodies for simple craters. Recall that for Mars, 

d/D for simple craters and Dt change with terrain, and these changes are thought to be a 

consequence of target strength. This result potentially negates the importance of strength in 
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controlling the difference in Dt between Mercury and Mars, given that the relations between d/D 

and D for simple craters on the two bodies are not statistically different. 

Can different impact velocities account for the difference in Dt but maintain the similarity 

in d/D versus D for simple craters on Mars and Mercury? In laboratory experiments, higher-

velocity impacts can produce deeper final craters (Barnouin et al., 2011), at least for velocities 

less than a specific impact velocity at which an inflection point occurs in the relation with 

velocity (Jutzi and Michel, 2014; Bray and Schenk, 2014). On Mars, where the average impact 

velocity is lower, this effect would produce deeper transient craters than the shallower transient 

craters on Mercury. The Martian transient craters could collapse at a smaller diameter and 

generate complex craters with a smaller transition diameter than on Mercury. If the transient 

cavities on Mars were deeper, shallower final craters would most likely result (because of the 

substantial collapse of the transient crater walls), but this effect is not observed. The combination 

of different Dt values for Mercury and Mars and a similar d/D relation with D for simple craters 

is not well explained by our current understanding of the effects of either target properties or 

variations in impact velocity. Further research on how both factors influence final crater 

morphology is warranted. 

 

5.5. Transition diameter 

The transition from simple to complex morphology begins, with increasing crater 

diameter, with a change in the crater depth at a given crater diameter. This effect is followed, 

with crater diameter increasing further, by the gradual transition to a flat floor, wall slumping, 

the appearance of a central peak, terracing, and finally a change in the rim height. This pattern 
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(Fig. 15) was documented at Mercury by Pike (1988) and is seen as well on the Moon 

(Shoemaker, 1962). 

This sequence in the development of the morphological characteristics of complex craters 

with increasing diameter can guide understanding of the processes that drive the formation of 

complex craters. The early onset of the change in depth and the appearance of flat floors is 

supported by experimental (e.g., Barnouin-Jha et al., 2007) and numerical (e.g., O'Keefe and 

Ahrens, 1993) evidence that, as craters grow, they first reach a maximum depth but continue to 

grow laterally. Some inevitable wall collapse in the last stage of the cratering process widens and 

shoals the crater floor further, with impact melt pooling at the bottom of the crater. The collapse 

first leads to terracing and eventually, with sufficient terracing and collapse, the reduction of rim-

height. Isostatic rebound will also contribute to the flattening of a crater and the elevation of the 

central uplift (Pike, 1988). 

 

6. Conclusions 

MESSENGER’s orbital mission phase has provided the needed coverage by MLA and 

MDIS to quantify the morphometry of Mercury’s impact craters and to provide a new and more 

comprehensive determination of the transition diameter from simple to complex craters. The 

observations have been compared with previous studies of craters on Mercury, and with studies 

of crater morphometry on the Moon and Mars. The main results of the study indicate: 

1. Crater depth, rim height, wall width, and central uplift height all increase with increasing 

crater diameter. The depths of large complex craters are shallower than those inferred 

from Mariner 10 images (Pike, 1988) but are consistent with measurements made from 

MESSENGER flyby data (Barnouin et al., 2012). 
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2. An updated value of the diameter (Dt) of 11.7 ± 1.2 km marking the transition with 

increasing diameter from simple to complex craters on Mercury was calculated using the 

methodology described by Pike (1980, 1988). This value differs from Dt for Mars (5.6 ± 

2.3 km; Robbins and Hynek, 2012b), even though both bodies have nearly identical 

surface gravitational acceleration. No statistical difference in the relation between d/D 

and D for simple craters is found between Mercury and Mars. 

3. Near-field secondary craters on Mercury are typically shallower than primary craters, 

although rim heights appear similar. 

4. Within the fresh crater population (for craters in the same geologic province), variations 

in crater depth may be observed. This variability may be evidence for velocity-driven 

variations in crater depth on Mercury, the result of Mercury’s large range in expected 

projectile velocities (e.g., Le Feuvre and Wieczorek, 2008). 

5. Depths of craters within the cratered terrain and of craters in the smooth plains are not 

statistically distinguishable. 

6. The transition from simple to complex crater morphology does not appear at the same 

crater diameter for all of the morphological attributes. For the craters measured in this 

study, crater depth and floor shape are modified at a smaller diameter than crater rim and 

walls and at a smaller diameter than that at which central peaks first appear.  
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Fig. 1. Schematic illustration of the methodology for measuring crater depth (d), diameter (D), 

rim height (h), central peak height (r), and floor diameter (Df) from the MLA and MDIS data.  

The crater shown is an unnamed, 28-km-diameter crater. 
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Fig. 2. Map of the locations of simple and complex craters on Mercury considered here divided 

by degradation class. The simple craters are represented by squares and the complex craters by 

triangles. Class 3 craters have orange symbols, class 4 craters have purple symbols, and class 5 

craters have green symbols. The background map is the interpolated topography from MLA and 

ranges from 40° to 90°N. Thirty craters located south of 40°N are not shown. 
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Fig. 3. Comparison of the relation between depth and diameter for the craters in this study (MLA 

Orbital) with results from the MESSENGER (Barnouin et al., 2012) and Mariner 10 (Pike, 1988) 

flybys. For the MESSENGER flybys, measurements made from MDIS images (M1–M3) and 

MLA (M1–M2) data are shown. The two complex craters that are outliers (both in the diameter 

range 60–70 km and unusually deep) compared with the main body of measurements from this 

study show evidence for post-impact modification (including large craters on the floor and 

possible volcanic vents, see Fig. 4). 
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Fig. 4. The crater Navoi, 68.6 ± 3.0 km in diameter, is unusually deep (4.4 ± 0.4 km) as a result 

of a depression in the interior that likely postdated the formation of the crater. The depression 

may be volcanic in origin (e.g., a vent structure). This crater and others with obvious post-

cratering modification were removed from the more detailed exploration of crater morphometry 

shown in Figs. 8 and 9 and from the determination of power law relations. 
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Fig. 5. Relation between the rim height (h) and diameter (D) for all craters in this study. A break 

in slope between the simple and complex populations can be seen at a diameter of ~11 km. 
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Fig. 6. Relation between wall width (w) and diameter (D) for all complex craters in this study. 

Note that the spread in w at a given D increases for diameters greater than ~60 km.  
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Fig. 7. Relation between central peak/ring height (r) and diameter (D) for all complex craters in 

this study. Note the large spread in r for all diameters of complex craters in this study. 
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Fig. 8. Comparison of the relation between several morphological attributes and diameter for 

craters in morphological classes 3–5 (class-5 craters are the freshest). (a) Depth versus diameter. 

The deepest craters are not the necessarily the freshest. (b) Rim height versus diameter. (c) 

Central peak versus diameter. (d) Wall width versus diameter. 
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Fig. 9. (a) Relations between d and D, (b) h and D, (c) r and D, and (d) w and D for classes 4–5 

craters in smooth plains versus cratered terrain.  
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Fig. 10. (a) Relations between depth and diameter for primary versus secondary craters (all 

classes). Secondary craters are generally shallower, but the two populations overlap. (b) 

Relations between rim height and diameter for primary versus secondary craters (all classes). 
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Fig. 11. The presence or absence of (a) flat floors, (b) terraces, and (c) wall slumps in craters of 

diameter less than 20 km, evaluated from both MLA profiles and MDIS images. The median 

diameter of overlap between “present” and “not present” was used to calculate the Dt value for 

Mercury. 
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Fig. 12. The craters (a) Fonteyn (32.85ºN, 95.67ºE) and (b) Cunningham (30.40ºN, 157.18ºE), 

both fresh, class-5 craters. Fonteyn, found in cratered terrain (D= 29.0 ± 1.3; d= 2.3 ± 0.2), is 

deeper than Cunningham (D= 35.8 ± 0.5; d= 1.9 ± 0.1), which formed in smooth plains. 
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Fig. 13. The craters (a) Atget (25.6ºN, 166.42ºE; D = 102 ± 1.1 km; d = 3.2 ± 0.5 km; class 4) 

and (b) Hokusai (57.69ºN, 16.87ºE ; D = 97.3 ± 1.1 km; d = 2.3 ± 0.2 km; class 5), both craters 

within smooth plains units. The difference in topography on either side of Atget (a) was 

corrected before the crater depth was measured (see Section 3.1.1 for more information). 
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Fig. 14. Power laws fit to values of d versus D on Mercury and Mars. The power laws for craters 

on Mars (dashed lines) are from Robbins and Hynek (2012b). The power laws for craters on 

Mercury (solid lines) are from this study (see Table 1). The gray region represents the standard 

error on the Mercury power-law fits.  
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Fig. 15. Examples of craters with the morphologies used to identify the diameter of the onset of 

complex craters: (a) 503 (81.53ºN, 129.19ºE; D = 10.7 ± 0.7 km), a bowl-shaped crater. (b) 440 

(76.20ºN, 135.35ºE; D = 8.7 ± 0.7 km), a flat-floored crater. (c) 499 (81.84ºN, 34.19ºE; D = 15.9 

± 1.1 km), exhibiting wall collapse. (d) 1037 (78.42ºN, 97.96ºE; D = 18.9 ± 0.7), exhibiting 

terracing.  



 

 59 

Table 1. Power laws fit to crater depth versus diameter from this work and earlier studies.  

 
MESSENGER orbital 

data (this study)  

MESSENGER flyby 

data (Barnouin et al., 

2012) 

MESSENGER 

orbital data 

(Talpe et al., 

2012) 

Mariner 10 

flyby images 

(Pike, 1988)1 

Simple, 

classes 4 and 

5 (5–10 km 

diameter) 

 

𝑑

= (0.22 ± 0.05)𝐷(0.86 ± 0.12) 
𝑑 = (0.18 ± 0.10)𝐷(0.98 ± 0.04) 𝑁𝐴 𝑑 = 0.199𝐷0.995 

Complex, 

classes 4 and 

5 

 

𝑑 = (1.02 ± 0.10)𝐷(0.20± 0.03) 𝑁𝐴 𝑁𝐴 𝑑 = 0.492𝐷0.418 

All simple 𝑑

= (0.17 ± 0.04)𝐷(0.96 ± 0.11) 
𝑑 = (0.18 ± 0.10)𝐷(0.98 ± 0.04) 𝑑 = 0.138𝐷0.970 

 

𝑁𝐴 

All complex 𝑑

= (0.89 ± 0. .06)𝐷(0.24 ± 0.02) 
𝑁𝐴 𝑑 = 0.77𝐷0.24 

 

𝑁𝐴 

1Pike (1988) did not distinguish craters on the basis of the Trask (1971) morphological 

classification, but instead measured only “fresh craters,” which appear to correspond to classes 4 

and 5. 
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Table 2. Power laws fit to crater rim height versus diameter from this work and earlier studies.  

 MESSENGER orbital data (this study) 

Mariner 10 flyby images (Pike, 

1988) 

Simple, classes 4 

and 5 

(5–10 km) 

ℎ = (0.02 ± 0.02)𝐷(1.32 ± 0.43) ℎ = 0.052𝐷0.930 

Complex, classes 4 

and 5 
ℎ = (0.31 ± 0.09)𝐷(0.21 ± 0.07) ℎ = 0.150𝐷0.487 

All simple ℎ = (0.02 ± 0.01)𝐷(1.19 ± 0.32) 𝑁𝐴 

All complex ℎ = (0.25 ± 0.06)𝐷(0.28 ± 0.06) 𝑁𝐴 
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Table 3. Power laws fit to crater wall width versus diameter from this work.  

 

MESSENGER orbital data (this 

study) 

Complex, classes 4 and 5 𝑤 = (1.65 ± 0.50)𝐷(0.47 ± 0.08) 

All complex 𝑤 = (0.92 ± 0.30)𝐷(0.62 ± 0.07) 

  



 

 62 

Table 4. Transition diameter (Dt) from simple to complex crater obtained for each morphologic 

attribute.  

 

Morphologic attribute  Statistic Diameter (km) 

d versus D 
Intersection of fits 

10.2 

h versus D 
Intersection of fits 

13.0 

Complex crater Smallest complex crater  
10.1 

Simple crater Largest simple crater 16.4 

Terraces 
Median D of overlap1 

14.4 

Flat floor Median D of overlap1 9.6 

Wall slump 
Median D of overlap1 

10.3 

Final Dt Geometric mean  11.7 ± 1.2 
1The median of the diameters of craters in the diameter interval containing both craters with a 

terrace (or flat floor, or wall slump) and craters without. 


