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Abstract 13 

We reconstruct crustal structure along the Lesser Antilles island arc using an inversion 14 

approach combining constraints from petrology of magmatic crustal xenoliths and seismic 15 

receiver functions. Xenoliths show considerable island-to-island variation in xenolith 16 

petrology from plagioclase-free ultramafic lithologies to gabbros and gabbronorites with 17 

variable proportions of amphibole, indicative of changing magma differentiation depths. 18 

Xenoliths represent predominantly cumulate compositions with equilibration depths in the 19 

range 5 to 40 km. We use xenolith mineral modes and compositions to calculate seismic 20 

velocities (vP, vS) and density at the estimated equilibration depths. We create a five-layer 21 

model of crustal structure for testing against receiver functions (RF) from island seismic 22 

stations along the arc. Lowermost layer (5) comprises peridotite with physical characteristics 23 
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of mantle xenoliths from Grenada. Uppermost layer (1) consists of 5 km of volcaniclastics 24 

and sediments, whose physical properties are determined via a grid inversion routine. The 25 

three middle layers (2) to (4) comprise igneous arc crust with compositions corresponding to 26 

the xenoliths sampled at each island. By inversion we obtain a petrological best-fit for the RF 27 

on each island to establish the nature and thicknesses of layers (2) to (4). 28 

 29 

Along the arc we see variations in the depth and strength of both Moho and mid-crustal 30 

discontinuity (MCD) on length-scales of tens of km. Moho depths vary from 25 to 37 km; 31 

MCD from 11 and 32 km. The Moho is the dominant discontinuity beneath some islands (St. 32 

Kitts, Guadeloupe, Martinique, Grenada), whereas the MCD dominates beneath others (Saba, 33 

St. Eustatius). Along-arc variability in MCD depth and strength is consistent with variation in 34 

estimated magmatic H2O contents and differentiations depths that, in turn, influence xenolith 35 

lithologies. A striking feature is steep, along-arc gradients in vP similar to those observed at 36 

other oceanic arcs. These gradients reflect abrupt changes in rates and processes of magma 37 

generation in the underlying crust and mantle. We find no evidence for large, interconnected 38 

bodies of partial melt beneath the Lesser Antilles. Instead, the crustal velocity structure is 39 

consistent with magma differentiation in vertically-extensive, crystal mush-dominated 40 

reservoirs. Along-arc variation in crustal structure may reflect heterogeneous upwelling 41 

within the mantle wedge, itself driven by variation in slab-derived H2O fluxes. 42 

 43 

Highlights 44 

 Arc crustal structure modelled by integrating petrology of 230 igneous xenoliths with 45 

seismic data from 23 islands 46 

 Crust comprises four layers defined on basis of xenolith composition, calculated 47 

seismic properties and receiver functions 48 
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 Steep lateral velocity gradients and irregular along-arc variations in depth to Moho 49 

and mid-crustal discontinuity  50 

 Lateral variation consistent with island-to-island variation in xenolith petrology  51 

 Velocity structure reflects heterogeneous upwelling within the mantle wedge, driven 52 

by variation in slab-derived H2O fluxes 53 

 54 

Keywords: island arc; crustal structure; magma differentiation; xenoliths; seismic properties 55 

of rocks; receiver functions 56 

 57 

 58 

1. Introduction 59 

1.1 Background 60 

The layered nature of Earth's continental crust is the time-integrated product of magmatic 61 

differentiation (Rudnick & Fountain, 1995). At convergent margin sites of active crust 62 

formation, subducted slabs release H2O-rich fluids into the mantle wedge, inducing partial 63 

melting of peridotite to generates hydrous magmas of broadly basaltic composition. 64 

Subsequent magmatic differentiation converts mantle-derived basalts into more evolved 65 

compositions (e.g., andesites, granites) characteristic of mature continental crust. In the early 66 

stages of differentiation Mg-rich mineral phases (olivine, pyroxenes) separate as ultramafic 67 

cumulates from increasingly silica-rich melts. The appearance of plagioclase is delayed due 68 

to the hydrous nature of the parent basalt, such that gabbroic (plagioclase-bearing) cumulates 69 

only appear after ~40% crystallisation and andesitic melts with ~60 wt% SiO2 after ~70% 70 

crystallisation (Nandedkar et al., 2014). The exact proportions depend on the original 71 

magmatic H2O contents, differentiation depths and styles, and the extent of assimilation of 72 

older crust. Regardless of these details, chemical differentiation at arcs generates significant 73 
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volumes of mafic and ultramafic solid residues. For bulk crustal compositions to become 74 

broadly andesitic (Rudnick & Fountain, 1995) requires that some residual material is 75 

displaced into the underlying mantle, either by downwards foundering (‘delamination’ – Jull 76 

& Kelemen, 2001) or by upwards migration of the seismic Moho to coincide with the 77 

appearance of plagioclase.  78 

 79 

The constitution of the crust can be elucidated through studies of exhumed arc sections (e.g., 80 

Jagoutz & Behn, 2013), crustal xenoliths in volcanic rocks, or geophysical properties (e.g., 81 

Shillington et al., 2004; Kodaira et al., 2007). There is consensus that the continental crust 82 

comprises at least three layers, characterised by downwards increasing P-wave velocities 83 

(Rudnick & Fountain, 1995). Middle crust has an andesitic composition (61 wt% SiO2; 3 84 

wt% MgO), whereas lower crust is more mafic (52% SiO2; 7% MgO). The uppermost crust is 85 

predominantly felsic igneous (66% SiO2, 2% MgO), although the prevalence of variously 86 

fractured and unconsolidated volcanic and sedimentary rocks complicates the picture. For 87 

this reason, it is reasonable to divide the upper layer into an igneous lower part and a 88 

volcanic-sedimentary upper part. Some part of arc crust may comprise pre-existing, 89 

overriding plate upon which the magmatic arc was built, although recent studies in western 90 

Mognolia and the Izu Bonin Mariana arc (Gianola et al., 2017; Ishizuka et al., 2018) suggest 91 

such material is conspicuously absent. 92 

 93 

Globally, crustal thickness and velocity structure of oceanic arcs is highly variable (Fig. 1). 94 

Some arcs conform to a simple three-layer structure (e.g., Sunda, Kermadec, New Britain), 95 

whereas others are more complex (e.g., Mariana, Aleutians, New Ireland).  The Moho is not 96 

always well-resolved (e.g., Lesser and Greater Antilles). The apparent diversity of arc 97 
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structure, both between and within oceanic arcs, suggests significant complexity in crust 98 

formation and evolution. 99 

 100 

Resolving crustal structure is both a geophysical and petrological problem. Whereas 101 

geophysics can resolve vertical and lateral variation in rock properties (vP, vS, density), their 102 

interpretation in terms of igneous processes and lithologies requires a petrological 103 

framework. To provide such a framework, we take as our study site the Lesser Antilles arc 104 

(LAA), an active, slow-subduction intra-oceanic arc that is well instrumented geophysically, 105 

well characterised geologically, and known to show significant along arc variation in 106 

structure and petrology (Fig. 1, Boynton et al., 1979; Arculus & Wills, 1980). We combine 107 

petrology and mineralogy of more than 200 crustal xenoliths from eleven volcanic islands 108 

along LAA with seismic data from 23 remote island stations to investigate crustal structure in 109 

such a way that one approach informs the other.  We compare our findings to other oceanic 110 

arcs and speculate on crustal structure and crust-forming processes more generally.  111 

 112 

1.2 The Lesser Antilles 113 

The LAA is an active, mature, intra-oceanic arc extending ~750 km from South America to 114 

the Greater Antilles. The arc is a manifestation of slow, westward subduction of the North 115 

and South American plates beneath the Caribbean plate. A review of the geological, 116 

geochemical and tectonic setting of LAA is provided by Macdonald et al. (2002) and Smith 117 

et al. (2013). LAA crustal structure was summarised by Schlaphorst et al. (2018). 118 

 119 

LAA comprises eleven major volcanic islands and an archipelago of nineteen small islands 120 

(the Grenadines) between St. Vincent and Grenada (Fig. 2). The arc bifurcates north of 121 

Martinique producing inactive eastern and active western limbs. The active arc can be 122 
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divided into northern, central and southern segments with Wadati-Benioff zone dips varying 123 

from 50-60° in the north to sub-vertical in the south. Over the last 0.1 Ma volcanism has been 124 

more prominent in the central segment, as reflected in larger volcanic edifices. Average 125 

magma production rates (162 km
3
km

-1
Myr

-1
; Jicha & Jagoutz, 2015) fall at the lower end of 126 

intra-oceanic arcs worldwide.  127 

 128 

Compositions of LAA volcanic and plutonic rocks span the global arc array (Fig. 3), from 129 

MgO-rich picrites and ankaramites on some islands (e.g., St. Vincent, Grenada, Martinique) 130 

to voluminous dacites and rhyodacites on others (e.g., Dominica, St. Lucia). The northern and 131 

central segments are predominantly andesitic with minor basalt, dacite and rare rhyolite (e.g., 132 

Toothill et al., 2006). The southern segment is dominated by basalts and basaltic-andesites, 133 

including primitive, hydrous, MgO-rich (>12 wt%) basalts (e.g., Macdonald et al. 2002). The 134 

high (>20 wt%) Al2O3 contents of basalts (Fig. 3b) reflect elevated magmatic H2O contents. 135 

On the basis of Fe-Mg partitioning between olivine and melt for magmas of known 136 

Fe2O3/FeO, truly primitive magmas, i.e. those in equilibrium with olivine Fo≥90, are limited 137 

almost entirely to basalts (≤50 wt SiO2) from the southern segment (Fig. 3c). Very few more 138 

evolved magmas, e.g. basaltic andesites (≤55 wt SiO2), may also be primitive. Isotopic data 139 

show that the magmatic history of most LAA islands is dominated by igneous differentiation 140 

processes with limited assimilation of older sialic crust or sediments (e.g., Macdonald et al. 141 

2002; Toothill et al., 2006; Tollan et al., 2012; Bezard et al., 2014). Crustal contamination is 142 

most pronounced on St. Lucia and Martinique (Bezard et al., 2015). 143 

 144 

Igneous xenoliths occur on all LAA islands (Wills, 1974; Arculus & Wills, 1980). Xenoliths 145 

are mineralogically and texturally diverse, both within individual islands and along the arc 146 

(e.g., Arculus & Wills, 1980; Cooper et al., 2016; Camejo-Harry et al., 2018). Melekhova et 147 
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al. (2017) subdivide xenoliths into those that represent instantaneous solid extracts from one 148 

or more magma batches (“cumulates”) and those whose compositions match erupted lavas 149 

and have mineralogies and textures consistent with protracted solidification of magma 150 

(“plutonics”). Cumulate xenoliths may contain significant quantities of trapped melt (e.g. 151 

Stamper et al., 2014) and it is likely that there is a continuum from cumulate to plutonic types 152 

according to this simple terminology. Geobarometry of LAA cumulate xenoliths (e.g., 153 

Stamper et al., 2014; Ziberna et al., 2017; Melekhova et al., 2017) yields crystallisation 154 

pressures between 2 and 10 kbar, indicating that xenoliths sample igneous crust over a 155 

significant depth range. 156 

 157 

The LAA has been the subject of several major geophysical experiments (Boynton et al., 158 

1979; Christeson et al., 2008; Kopp et al., 2011; Laigle et al., 2013), summarised in Figure 1, 159 

and a recent study of along-arc variations in crustal thickness using receiver functions 160 

(Arnaiz-Rodrígues et al., 2016). Estimated crustal thickness ranges from 22 to 37 km. 161 

Boynton et al. (1979) identified two seismic refractors that subdivide the crust into layers. 162 

Their upper crustal layer is of plutonic igneous origin (Wadge, 1986) with an average vP of 163 

6.2 km·s
-1

; its base varies significantly in depth (2 to 20 km) along strike. The uppermost 164 

portion of the upper layer has lower seismic velocities (vP <6 km·s
-1

) and densities and is 165 

likely composed of volcaniclastic and sedimentary rocks with abundant fractures and pores 166 

(Kiddle et al., 2010; Kopp et al., 2011). Gravity data from Guadeloupe (Gailler et al., 2013) 167 

show that this layer is approximately 4 km thick. The lower crustal layer of Boynton et al. 168 

(1979), immediately overlying the mantle, has average vP = 6.9 km·s
-1

 and is thought to 169 

represent dense mafic igneous rocks, including cumulates. 170 

 171 
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Kopp et al. (2011) and Christeson et al. (2008) produced detailed seismic models of crustal 172 

structure between Dominica and Guadeloupe and south of Grenada respectively. They 173 

confirmed a layered crustal structure to that proposed by Boynton et al. (1979), albeit with 174 

smoother vertical velocity gradient. For both profiles sub-arc vP ranges from 1.4 to 7.3 km/s, 175 

with most crust having vP of 5.2 to 7.3 km/s (Fig. 1). Neither survey was able to constrain 176 

well the sub-arc Moho.  177 

 178 

2. Crustal xenoliths 179 

During five field campaigns (2009-2017) we sampled every island in LAA, recovering just 180 

under 900 coarse-grained igneous xenoliths both in situ and, predominantly, ex situ in river 181 

drainages and reworked volcanic deposits. Xenoliths display great variation in mineralogy 182 

and texture (Fig. 4) from hornblendite and wehrlite through gabbro and troctolite to quartz-183 

hornblende leuconorite and diorite (e.g., Wills, 1974; Arculus & Wills, 1980, Kiddle et al., 184 

2010, Stamper et al., 2014). The ubiquity of igneous xenoliths suggest that they represent 185 

building blocks of LAA crust, providing a window into the entire differentiation history of 186 

arc magmas from their source to eruption. Diversity in xenolith mineralogy reflects variation 187 

in the composition of mantle-derived parent magmas, especially H2O contents, and the 188 

differentiation paths they follow through the crust (Melekhova et al., 2015). 189 

 190 

2.1  Xenolith assemblages and modes 191 

Despite their textural diversity, the mineralogy of crustal xenoliths is relatively 192 

straightforward. More than 99% comprise permutations of eight mineral groups: olivine, 193 

clinopyroxene, orthopyroxene, amphibole, plagioclase, magnetite, ilmenite and quartz. 194 

Relative modal abundances of plagioclase and amphibole are significant (Fig. 5) and 195 
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plagioclase-free assemblages are uncommon, found only on Grenada, Bequia and St. 196 

Vincent. Accessory minerals include apatite, analcime, biotite, sulphides and zircon. 197 

 198 

Graphical comparison of xenolith mineral modes of from eleven islands is shown in Figure 5.  199 

The overall mafic (plagioclase-poor) character of xenoliths from the southern islands of 200 

Grenada, Carriacou and Bequia stands in sharp contrast to the predominance of felsic phases 201 

(notably plagioclase) in St. Kitts, Montserrat, Guadeloupe and St. Lucia.  Orthopyroxene is 202 

rare or absent from southern islands xenoliths. The main mineral assemblages and textures, 203 

from south to north, are as follows (cf. Arculus & Wills, 1980). 204 

Grenada xenoliths are dominated by mafic minerals with abundant hornblende and 205 

clinopyroxene and include plagioclase-free varieties (Fig. 4a) that are otherwise rare 206 

(Stamper et al., 2014). Orthopyroxene is lacking; iddingsitised olivine is common. Most 207 

xenoliths have adcumulate textures.  208 

Carriacou xenoliths are dominated by clinopyroxene, amphibole and plagioclase. Olivine is 209 

uncommon; orthopyroxene is lacking. A distinct feature is the presence of quartz and apatite 210 

in diorites, the abundance of sulphides, and presence of interstitial analcime in few samples. 211 

Textures range from adcumulates to porphyritic-phaneritic (Fig. 4b) and granoblastic 212 

varieties. 213 

Bequia xenoliths have the most diverse assemblages from a single island ranging from 214 

ultramafic to felsic (≤75wt% plagioclase), with olivine (iddingsitized), amphibole, 215 

clinopyroxene, plagioclase and spinel plus rare orthopyroxene and ilmenite.  Textures range 216 

from adcumulate to orthocumulate with variable crystallisation sequences (Camejo-Harry et 217 

al., 2018).  218 

St. Vincent xenoliths are characterised by abundant olivine and negligible orthopyroxene with 219 

well-equilibrated, predominantly adcumulate textures and a lack of mineral zoning (Tollan et 220 
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al., 2012). Distinctive features include the presence of troctolites, with or without hornblende 221 

(Fig. 4c), and olivine hornblendites.  222 

St. Lucia xenoliths differ from other southern islands in being very evolved (high Fe/Mg) and 223 

dominated by amphibole and plagioclase. Olivine is rare, orthopyroxene predominates over 224 

clinopyroxene (Fig. 4d), and quartz and biotite are common. Cumulate textures are rare; most 225 

samples resemble quenched mushes with abundant interstitial material.   226 

Martinique xenoliths are predominantly igneous, with sparse cordierite-bearing hornfelses. 227 

All xenoliths are plagioclase-bearing, with variable proportions of olivine (troctolites), 228 

clinopyroxene, orthopyroxene, amphibole and spinel, commonly with interstitial melt 229 

(Cooper et al., 2016). 230 

Dominica xenoliths show low variability assemblages dominated by olivine, clinopyroxene 231 

and plagioclase (Fig. 4e), often with well-equilibrated textures (Ziberna et al., 2017) that 232 

resemble those on Carriacou. Olivine is partially iddingsitized. 233 

Guadeloupe xenoliths are dominated modally by plagioclase. Relatively primitive samples 234 

contain varying proportions of olivine, pyroxene, amphibole, and spinel, whereas more 235 

evolved samples contain quartz, biotite, magnetite, ilmenite, apatite, orthoclase, sulfide and 236 

rare zircon (Fig. 4f). Most xenoliths appear isotropic and homogeneous, yet texturally 237 

diverse, with both igneous and metamorphic (hornfelsed) varieties. 238 

Montserrat xenoliths, similar to Guadeloupe and St. Lucia, are distinctively felsic and 239 

olivine-free. Assemblages are dominated by noritic and gabbroic anorthosites and 240 

hornblende-gabbros. Other common varieties include quartz-diorite and metamorphosed 241 

biotite-gabbro. Cumulate and crescumulate textures abound (Kiddle et al., 2010).  242 

St. Kitts xenoliths are dominated by exceptionally calcic plagioclase (An≤100; Melekhova et 243 

al., 2017) and amphibole, typically in reaction relationship with pyroxene and olivine. Both 244 

cumulate and plutonic varieties occur. Important characteristics include the presence of two 245 
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pyroxenes, biotite, apatite, and coexisting ilmenite and magnetite. Interstitial melt is 246 

common. 247 

St. Eustatius mineral assemblages and textures are similar to those of Martinique (Cooper et 248 

al., submitted). Orthopyroxene occurs only in non-cumulate (plutonic) gabbros. 249 

 250 

3. Methods 251 

3.1 Petrological constraints: physical properties of crustal xenoliths 252 

Fifty to seventy xenoliths per island were studied and divided into textural and mineralogical 253 

groups from which representative samples were analysed. Mineral major element chemistry 254 

was analysed on polished carbon-coated thin-sections using Cameca SX100 and JEOL 8530F 255 

electron microprobes at University of Bristol and the Australian National University 256 

respectively. Analytical conditions were 15 or 20 kV accelerating voltage and 10 nA focused 257 

beam. Modal abundances of major mineral phases (≥0.5 vol%) were obtained by point-258 

counting (900 to 3000 points per thin-section). Volume modes were converted into mass 259 

fraction modes using appropriate mineral densities.  260 

 261 

Physical properties of rocks (vP, vS, density) can be calculated from mineral compositions 262 

and proportions, provided that a reasonable estimate of temperature and pressure are 263 

available (e.g., Müntener and Ulmer, 2006, Jagoutz and Behn, 2013). We retrieved physical 264 

properties of LAA xenoliths, using their mass fraction modes and mineral compositions, with 265 

the algorithm of Hacker & Abers (2016) for the nine major islands with seismic stations: 266 

Grenada (Stamper et al., 2014); St. Vincent (Tollan et al., 2012); St. Lucia (Wills, 1974 and 267 

our unpublished data); Martinique (Cooper et al., 2016); Dominica (Wills, 1974); 268 

Guadeloupe (our unpublished data); Montserrat (Kiddle et al., 2010); St. Kitts (Melekhova et 269 

al., 2017); and St. Eustatius (Cooper et al., submitted). Modal abundances for each island are 270 
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reported in Supplementary Table S2. For all solid solutions we calculated the proportions of 271 

end-members; for amphibole we used the generic “hornblende” in the Hacker & Abers 272 

(2016) database. The modal proportion of quartz is consistently very low, making distinction 273 

between α-quartz and β-quartz (cf. Jagoutz & Behn, 2013) immaterial for calculating 274 

physical properties 275 

 276 

Pressure-temperature (P–T) conditions of xenolith equilibration were estimated using a 277 

variety of geobarometers and geothermometers (e.g., Ziberna et al., 2017; Supplementary 278 

Tab. S2), together with constraints from phase equilibrium experiments performed on 279 

appropriate starting compositions (cf. Stamper et al., 2014). For the majority of islands 280 

studied magmatic H2O contents were estimated based on melt inclusion analyses (Bouvier et 281 

al., 2008, Melekhova et al, 2017, Cooper et al., submitted). Knowing H2O content, phase 282 

assemblages and mineral composition of studied xenoliths (particularly, Fo content of olivine 283 

and An content of plagioclase) helped us to narrow the existing experimental dataset (~1500 284 

experiments) to obtain reliable P and T. The full dataset of calculated physical properties and 285 

P-T estimates, including methods used and uncertainties, is given in Supplementary Table S2. 286 

Because of the counteracting effects of increasing P and T on physical properties, realistic 287 

deviations from estimated P-T values have little bearing on the calculated properties, i.e. <1% 288 

relative in vP and <0.008 in vP / vS ratio. We also calculated physical properties of peridotite 289 

beneath LAA using mantle xenoliths from Grenada (Parkinson et al., 2003; Stamper et al., 290 

2014). Mantle xenoliths are not found on any other island in the LAA. 291 

 292 

3.1 Geophysical constraints: seismic properties and structure  293 

Broadband seismic data from various regional networks were collected (Fig. 2); for 294 

Montserrat, Guadeloupe and Martinique more than one station is available. Teleseismic 295 
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events were filtered using a 2
nd

 order Butterworth bandpass filter from 0.4 Hz to 3 Hz and 296 

only events with a clear P-phase were selected (Schlaphorst et al., 2018). We use the 297 

extended-time multi-taper frequency-domain cross-correlation receiver-function (ETMTRF) 298 

of Helffrich (2006) and an H–K stacking method similar to Thompson et al. (2010). H–K 299 

stacking is based on theoretical arrival times of converted phases and derives values for the 300 

depth (H) to a seismic discontinuity and the average P-wave to S-wave ratio (K=vP/vS) of the 301 

overlying crustal layer. As noted by Schlaphorst et al. (2018), a significant disadvantage of 302 

H–K stacking is its reliance on a single discontinuity separating two layers, such as upper and 303 

lower crust (mid-crustal discontinuity - MCD) or crust and mantle (Moho). In the case of 304 

layered crust with multiple discontinuities peaks in the RF caused by different discontinuities 305 

can overlie each other, complicating the H–K stacking results. For example, on Martinique, 306 

H–K stacking shows a strong, well-resolved discontinuity at 28.3 ± 1.1 km (Fig. 3a), whereas 307 

on St. Lucia, the discontinuity is placed much deeper (46.5 ± 1.8 km) and the solution is very 308 

poorly resolved. At some islands H values are too shallow, producing unrealistic depths to 309 

the Moho or missing it altogether. Schlaphorst et al. (2018) concluded that H–K stacking 310 

results for layered crust can be easily misinterpreted and proposed an inversion modelling 311 

approach to overcome this problem. In combination with petrology, their approach provides a 312 

powerful tool to distinguish between one or more MCD and the Moho, and to resolve the 313 

seismic properties (vP, vP/vS) of multiple layers, even at island seismic stations with relatively 314 

high noise. 315 

 316 

We apply a combination of the grid-search and inversion methods of Schlaphorst et al. (2018) 317 

to the RF assuming a four-layer crust plus underlying mantle within the following 318 

petrological framework: uppermost crustal layer (1) composed of loosely consolidated and 319 
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fractured volcaniclastic rocks, sediments and lavas; upper (2), middle (3) and lower (4) 320 

crustal layers composed of plutonic igneous rocks; and a peridotitic mantle layer (5). 321 

 322 

Physical properties of surface layer (1) are controlled primarily by fracture density and 323 

degree of consolidation, rather than the lithology per se. Therefore, for layer (1), we first 324 

invert the RF using the method of Ammon et al. (1990) assuming five 1-km thick subsidiary 325 

layers (1a-e). Total thickness of layer (1) is fixed at 5 km, consistent with the geophysical 326 

data of Christeson et al. (2008), Kiddle et al. (2010) and Gailler et al. (2013). 327 

 328 

Crustal layers (2), (3) and (4) consist of the various xenolith lithologies for which physical 329 

properties were calculated. Beneath each island we identify a range of plausible lithologies 330 

for each of the three layers, based on our P-T estimates (Fig. 6c, Supplementary Tab. S2). On 331 

the basis of our textural observations and thermobarometric calculations layer (4) is found to 332 

be consistently cumulate in character, whereas layers (2) and (3) represent mixtures of 333 

cumulate and plutonic (solidified magmas or mushes) lithologies (Supplementary Tab. S2). 334 

We then perform a grid-search using the calculated vP, vS, vP/vS and density of each lithology 335 

to find those that yields a best-fit to the RF for that island. We assume that all melt has either 336 

been extracted or is isolated at very low melt fraction along grain boundaries, consistent with 337 

the low melt fractions observed in xenoliths (see below).  338 

 339 

Physical properties of mantle layer (5) were based on Grenadian peridotite xenoliths 340 

(Parkinson et al., 2003; Stamper et al., 2014): vP=8.00 km·s
-1

, vS=4.43 km·s
-1

, rho=3.33 341 

kg·m
-3

. The same values were used for the entire LAA as there is insufficient evidence from 342 

petrology or seismology to justify along-arc variation in mantle vP. For comparison the 343 
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seismic profiles of Christeson et al (2008) and Kopp et al. (2011) yield sub-arc mantle vP of 344 

7.7 km/s and 8.0 km/s, respectively. 345 

 346 

4. Results 347 

Our physical property calculations indicate that the permissible range of vP/vS for each island 348 

is narrow (Fig. 6a, Supplementary Tab. S2). On average, vP/vS varies between 1.79 to 1.88 349 

for vP from 6.2 to 7.4 km·s
-1

 (Fig. 6 a & b and Supplementary Tab. S2). In contrast to 350 

Müntener & Ulmer (2006) calculated xenolith vP values never exceed 7.8 km·s
-1

 and are 351 

therefore consistently lower than the mantle (Fig. 6a). The relationship between density and 352 

vP is non-linear (Fig. 6b). Densities of mantle xenoliths from Grenada and ultramafic crustal 353 

xenoliths from Grenada and St Vincent are similar, ~ 3.3 g/cm
3
, however the majority of 354 

LAA crustal xenoliths has a narrow range of densities, 2.8-3.0 g/cm
3
. Lithologies dominated 355 

by amphibole + plagioclase ± quartz result in vP values down to 6.2 km·s
-1

, with relatively 356 

low vP/vS (Fig. 6a), whereas calculated vP/vS for plagioclase-dominated lithologies (≥80%) 357 

are up to 1.91 at comparable vP (Fig. 6a).  358 

 359 

Depth distribution of LAA xenoliths (Fig. 6c) suggests that vP of the igneous crust is 360 

variable: 6.2 to 7.0 km·s
-1

 in layer (2), 6.4 to 7.2 km·s
-1

 in layer (3) and 6.8 to 7.4 km·s
-1

 in 361 

layer (4). The range of xenolith physical properties (vP, vS, vP/vS, density) and depth ranges 362 

define the petrological parameter space of our grid-search method to find the combination of 363 

lithology and thickness for each crustal layer beneath each island that best fits the 364 

corresponding RF. Despite our extensive sampling, on the islands of St. Lucia and St. 365 

Eustatius, we have no xenolithic record of potential lower crustal lithologies. Initial models 366 

for these two islands were therefore run without layer (4). However, a good fit to RF was not 367 

achieved, so we introduced a plausible lower crust layer (4) taking values from neighbouring 368 
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St. Vincent and St. Kitts respectively. On any island (e.g. Montserrat) where the best-fit 369 

thickness of a given layer lay within error of zero this layer was omitted, reducing to a three-370 

layer crustal structure. Our inversion approach considers only new, magmatic arc crust. 371 

Schlaphorst et al. (2018) demonstrated that incorporating a layer of vestigial proto-Caribbean 372 

crust (pCc) into the crustal model does not change the depth of the discontinuities in the 373 

inversion results unless the pCc is unrealistically thick (≥20 km). 374 

 375 

Representative best-fit model velocity profiles and synthetic RF for two islands (Martinique 376 

and Grenada) are illustrated in Figure 7. For Martinique two strong discontinuities at 27 km 377 

(Moho) and 13 km (MCD1) were identified (Fig.7a). A weak additional discontinuity 378 

(MCD2) lies just above the Moho at 24 km depth. The best fit for Martinique was achieved 379 

with the following lithologies: layer (2) troctolite, (3) olivine gabbro and (4) hornblende 380 

gabbronorite. For Grenada, the Moho is identified at 29 km and both MCDs are strong (12 381 

and 14 km) with a small intervening low velocity zone (Figs.7b and 8). The best fit for 382 

Grenada was achieved with following lithologies: layer (2) poikilitic-hornblende gabbro, (3) 383 

hornblende gabbro and (4) clinopyroxene hornblendite. Modelled velocity profiles and RF 384 

for all studied islands, obtained as for Martinique and Grenada, are provided in 385 

Supplementary Material and summarised in terms of crustal lithologies in Table 1.  386 

 387 

5. Crustal structure of the Lesser Antilles arc 388 

The vP, vS, vP/vS and density constraints from xenolith petrology combined with RF inversion 389 

provide new insights into LAA velocity structure (Figs. 8). MCD depths and vP for layers (2) 390 

to (4) are in an excellent agreement with previous work on the southern segment of the arc 391 

(Fig.1 and Schlaphorst et al., 2018). The Moho was not directly observed seismically in 392 

previous studies but was estimated to lie between 24 and 35 km depth (e.g., Boynton et al. 393 
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1979; Christeson et al., 2008; Kopp et al., 2011; Laigle et al., 2013; Arnaiz-Rodrígues et al., 394 

2016).  395 

 396 

Our obtained crustal structure (Fig. 8) shows that MCD and Moho depths are highly variable 397 

over surprisingly short, along-arc distances of tens of kilometres. Arnaiz-Rodrígues et al. 398 

(2016) arrived at a similar conclusion, with up to 10 km change in Moho depth across 399 

Guadeloupe alone. Our Moho depths vary from 24 km (St. Eustatius) to 38 km (e.g. St. Kitts 400 

and Dominica). The seismic velocity of layers (2), (3) and (4) also varies laterally. The 401 

modelled four-layer crustal structure yields two MCD, however one of them is usually 402 

stronger than the other. Depth to the MCD between layers (3) and (4) changes from 12 to 32 403 

km, whilst that between layers (2) and (3) is from 6 to 15 km. Beneath St. Lucia, layer (2) is 404 

very thin (~2 km); beneath Montserrat it is absent. Beneath Grenada 2 km-thick layer (3) has 405 

a lower vP than overlying layer (2); St. Eustatius has a very thin (1 km) layer (4) with lower 406 

vP than overlying layer (3). Variation in vP along the arc is non-systematic. For example, we 407 

observe a high vP mid-crustal layer (3) under Martinique and St. Eustatius (6.97 and 7.14 408 

km/s respectively), but a low layer (3) vP of 6.55 km/s under Grenada (Figs. 8 and 9). Lower 409 

crustal layer (4) vP varies from 7.43 km/s beneath Montserrat to 6.75 km/s beneath St. Kitts 410 

just 90 km to the north. Our along-arc variability in discontinuity depths (Fig. 8) is similar to 411 

that of Boynton et al. (1979). 412 

 413 

Our preferred final, five-layer P-wave velocity model (Fig. 8) for LAA is as follows. The 5 414 

km-thick upper layer (1) has highly variable vP due to lithological heterogeneity. P-wave 415 

velocities are 6.2 to 6.86 km·s
-1

 in the upper crust (layer 2) in the depth range of 6 to 15 km, 416 

6.46 to 7.18 km·s
-1

 in the middle crust (layer 3) in the depth range 12 to 32 km, and 6.75 to 417 

7.43 km·s
-1

 in the lower crust (layer 4) in the depth range 26 to 38 km.  418 
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 419 

5. Interpretation and discussion 420 

Our petrologically-informed crustal model for LAA (Fig. 8) resembles that of other oceanic 421 

island arcs (Fig. 1) including those, subject to high-resolution seismic experiments, such as 422 

the northern segment of Izu-Bonin (Kodaira et al. 2007) and the Aleutians (Shillington et al 423 

2004). To facilitate comparison of LAA with these two arcs, in Figure 9 we present seismic 424 

velocity profiles for all three arcs using the same vertical and horizontal scales and consistent 425 

vP contour intervals of <6 km·s
-1

, 6.0-6.8 km·s
-1

, 6.8-7.8 km·s
-1

 and >7.8 km·s
-1

.  426 

 427 

Several key features emerge. Like LAA, the northern segment of Izu-Bonin and the Aleutians 428 

show the expected downwards increase in vP, together with abrupt lateral variations on 429 

wavelengths of a few tens of km, as previously noted by Kodaira et al. (2007). Both the 6.8 430 

km s
-1

 and 7.8 km s
-1

 contours show considerable along-arc variation in depth, by up to 20 431 

km. Beneath some volcanic islands (e.g., Dominica and Montserrat in LAA; South Sumisu 432 

and Nii-jima in Izu-Bonin; Unalaska and Chuginadak in Aleutians) material with vP in the 433 

range 6.8-7.8 km·s
-1

 extends to very shallow crustal depths, in some cases impinging almost 434 

directly on crustal layer (1). In all three arcs there is no clear correlation between the depths 435 

to the 6.8 and 7.8 km s
-1

 contours, suggestive of strong decoupling between thicknesses of the 436 

different crustal layers. Despite the greater spatial resolution of the crustal structure in Izu-437 

Bonin and Aleutians arcs (Fig. 9), it would appear that the crust in all three arcs displays the 438 

same abrupt lateral variations in physical properties. The diversity of crustal lithologies, as 439 

recorded by xenoliths, is responsible for the change of seismic properties along the LAA 440 

(Figs. 5, 6 and 8). Lateral variations in vP in Izu-Bonin and Aleutians may have a similar 441 

lithological cause, although there is not the same xenolith record with which to evaluate this 442 

possibility. 443 
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 444 

Tamura et al. (2016) compared crustal thickness along the Izu-Bonin arc, obtained from 445 

seismology, with bathymetry. They found a correlation between water depth and crustal 446 

thickness, suggesting that water depth can be used to estimate crustal thickness under the arc. 447 

They ascribe this variation to changes in the nature of mantle-derived magmas, from basalt to 448 

andesite, along the arc. We constructed the along-arc profile for LAA using bathymetric data 449 

for the eastern Caribbean (Fig. 8). Although there is some correlation, it is not as uniform and 450 

straightforward as shown for Izu-Bonin by Tamura et al. (2016), perhaps reflecting the lower 451 

spatial resolution of our study. Nonetheless, water depth and crustal thickness link well for 452 

the southern segment of the arc and for Dominica and Guadeloupe, the largest islands with 453 

the greatest crustal thickness. The most obvious misfit is Martinique, where, despite the 454 

island’s considerable size, the crust is relatively thin.  455 

 456 

Geochemical data from LAA (Fig. 3c) do not support a wide variety of mantle-derived 457 

magmas along the arc, in contrast to the proposition of Tamura et al. (2016) for Izu-Bonin. 458 

The relationship between our calculated crustal structure and magmatic history (magma 459 

compositions, fluxes, volatile contents etc) of each island in LAA remains to be investigated. 460 

However, we can speculate as to possible explanations for along-arc lithological changes. 461 

 462 

Variations in vP could arise through variations in trapped melt fraction within rocks of 463 

broadly similar seismic velocities. The presence of partial melt reduces both vP and vS, but 464 

increases vP/vS significantly, due to the stronger reduction of vS. The extent of vP/vS reduction 465 

depends not only on melt fraction, but also on its distribution. In regions with significant, 466 

distributed partial melt vP/vS ratios of up to 2.00 are observed (Hammond et al., 2011). 467 

However, LAA islands whose H–K stacking results agree with those from RF inversion (e.g. 468 



 20 

Montserrat, Martinique) indicate vP/vS significantly less than 2, suggesting rather little 469 

interconnected partial melt. In their H–K stacking study of the LAA Arnaiz-Rodrigues et al. 470 

(2016) also found vP/vS consistently in the range 1.77-1.87. Melt-rich regions of reduced vP 471 

would correspond to increased vP/vS in Figure 8. If melts are fully interconnected, i.e. melt 472 

wets grain boundaries completely, then it is possible to calculate their effect on vP and vP/vS. 473 

Using the experimental data of Chantel et al. (2016) for anhydrous basaltic melt in an olivine 474 

matrix, we calculate that 5 vol% of fully interconnected melt will reduce vP from 7.6 to 6.6 475 

km s
-1

 with a corresponding increase in vP/vS from 1.79 to 2.01. There is no evidence for 476 

vP/vS >1.9 in either the Aleutians (Shillington et al., 2013) or LAA (Arnaiz-Rodrigues et al, 477 

2016), ruling out variability in interconnected melt fraction as the principal cause of lateral vP 478 

gradients. Nonetheless, it is likely, given the active nature of these arcs, that some isolated 479 

pockets of higher melt fraction exist, beyond the resolution of the seismic methods used. 480 

Alternatively, it may be that the wetting properties of hydrous andesite and basaltic andesite 481 

melts lead to less melt connectivity and consequently less extreme increase in vP/vS than 482 

obtained by Chantel et al. (2016). 483 

 484 

Normal faults orthogonal to the arc (e.g., Feuillet et al., 2002) could also lead to abrupt lateral 485 

variations in crustal structure. However, the apparent decoupling of upper, mid and lower 486 

crustal layer thicknesses mitigates against such an explanation. Variations in thickness of the 487 

pre-subduction crust on the over-riding plate may also play a role, but, as noted above, this is 488 

hard to evaluate from the seismic data alone.  It seems more likely that normal faults, where 489 

present, act to accommodate lateral thickness (and density) variations, for example through 490 

isostatic readjustment, rather than create them. Evidence for relative vertical movements 491 

along the LAA comes from observation of drowned coral reefs. For example, at Les Saintes, 492 

Guadeloupe, Leclerc et al. (2014), estimate subsidence rates of 0.4 mm/yr over the past 125 493 
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kyr. Leclerc et al. (2015) derive a similar subsidence rate (0.3 mm/yr) for drowned reefs off 494 

the coast of Martinique. This subsidence is ascribed to arc-parallel extension (Feuillet et al., 495 

2002), but could conceivably be driven instead by vertical block movement in response to 496 

lateral variation in crustal thickness and/or density. In ductile crust vertical motion driven by 497 

lateral density gradients has been proposed as a mechanism for generating crustal 498 

stratification (e.g. Glazner, 1994) and may ultimately lead to sinking of dense, lower crustal 499 

cumulates into the mantle, i.e. delamination (Jagoutz & Behn, 2013). However, the positive 500 

(albeit non-linear) correlation of vP and density (Fig. 6b; Supplementary Table S2) does not 501 

support a convective process, unless it is enhanced by a significant fraction of partial melt 502 

serving to reduce the density of higher vP cumulates. We argue above that such melt, if 503 

present, cannot be significant in volume and/or interconnected. 504 

 505 

Our preferred interpretation of LAA crustal structure is along-arc variation in the 506 

mechanisms of melt generation and differentiation. These variations can arise from 507 

instabilities along the mantle-slab interface, such as those predicted by the numerical models 508 

of Gerya et al. (2006), or by generation of hot, buoyant regions within the mantle wedge, as 509 

demonstrated by Tamura et al. (2002) for northern Japan. Tamura et al. (2002) suggest that 510 

low velocity regions in the crust are linked to “hot fingers” in the underlying mantle. It is not 511 

clear whether the generation of “hot fingers” is due to lateral variations in wedge temperature 512 

or in the proportion of partial melt generated by the influx of slab-derived fluids, or a 513 

combination of both. In Gerya et al’s (2006) numerical models upwellings, or “cold plumes”, 514 

arising from the slab interface generate lateral variations in melt productivity and 515 

composition within the mantle wedge. The finger-like protuberances of high- and low-vP 516 

crustal material observed in Figure 8 could correspond to the influence of cold plumes as they 517 

impinge on the over-riding plate or to the rise of hot fingers. Both features afford a 518 
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mechanism for arc-parallel, convective motion in the mantle wedge that could drive along-arc 519 

variability in magma flux and chemistry. Along-arc flow of the asthenosphere has been 520 

proposed as an explanation of trench-parallel seismic anisotropy beneath the Tonga-521 

Kermadec and the Marianas arcs (e.g., Menke et al., 2015; Smith et al., 2001). However, the 522 

pattern of anisotropy in the upper-mantle wedge tends to be highly variable, suggesting 523 

variations in the style of upper-mantle flow from one subduction zone to another. 524 

 525 

Generation of buoyant anomalies in the mantle wedge may, in part, be controlled by the 526 

amount of water liberated from the slab (e.g., by serpentine dehydration) that can change 527 

mantle density both by metasomatism (e.g. formation of amphibole or phlogopite peridotite) 528 

and partial melting. This explanation is consistent with the observations of Schlaphorst et al. 529 

(2016), based on b-value variations in upper plate seismicity along LAA, and on variations in 530 

the ratio of fluid mobile and immobile trace elements in magmas along the Aleutians (Manea 531 

et al., 2014). Seismic anomalies related to heterogeneous upwelling in the mantle wedge 532 

beneath the Izu-Bonin arc have been observed by Obana et al. (2010), who also implicate 533 

them in lateral variations in both crustal structure and magma chemistry. 534 

 535 

Lateral variations in the magma differentiation mechanisms along the arc also play a role. It 536 

is now recognised that many crustal magmatic systems comprise vertically extensive 537 

magmatic mushes (Cashman et al. 2017), wherein differentiation occurs not by simple crystal 538 

settling from a dominantly liquid magma chamber, but by upwards, reactive flow of buoyant, 539 

low-degree melts through a crystal-rich (mush) framework. The products of such reactions, in 540 

terms of solid residues, are modulated by the composition (especially H2O content) and flux 541 

of the basaltic, mantle-derived magmas feeding the base of the crust and the internal 542 

architecture of the mush itself (Solano et al. 2012). Variations in input magma chemistry and 543 
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flux could be driven by the heterogeneous upwelling phenomena described above. Different 544 

magma compositions and intensities of upwelling along the arc would drive different types of 545 

mush reservoirs and, consequently, solid residue lithologies. The igneous xenolith record for 546 

LAA is consistent with a laterally variable, mushy system, variously infiltrated and modified 547 

by melts (Tollan et al. 2012; Stamper et al. 2014; Cooper et al. 2016; Melekhova et al. 2017, 548 

Camejo-Harry et al. 2018), as demonstrated by variations in modal mineralogy along the arc 549 

(Fig. 5). Melt infiltration drives reactions that produce diverse eruptible melts and variously 550 

amphibole-bearing and amphibole-free plutonic rocks with differing physical properties (Fig. 551 

6). The migration of vP contours up and down the crustal column would then reflect the 552 

changing mineralogy of the solid residues as partial melts migrate and react upwards. 553 

 554 

In general, solid residues (xenoliths) become more magnesian (higher vP) with depth (Fig. 5) 555 

consistent with polybaric differentiation of mantle-derived magmas (Melekhova et al. 2015). 556 

It is unclear whether the 7.8 km s
-1

 contour in Fig. 9 marks the crustal-mantle boundary (i.e. 557 

Moho sensu strictu), or the change from mafic to ultramafic cumulates. As noted above and 558 

by Müntener & Ulmer (2006), mantle peridotite and ultramafic cumulates have strikingly 559 

similar physical properties that are not readily resolved by the seismic methods employed 560 

here. The difficulty of recognising the Moho in the LAA, and in arcs more generally, likely 561 

reflects the preponderance of ultramafic cumulates at depth, as proposed for the fossil 562 

Kohistan arc by Jagoutz & Behn (2013). 563 

 564 

6. Conclusions 565 

We have elucidated crustal structure along strike in the LAA using a novel approach that 566 

integrates xenolith petrology and seismology. Our approach affords several advantages over a 567 

purely seismological approach, especially in arc settings at stations with significant noise, 568 
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where the H–K stacking method is prone to ambiguity. Combining several local networks, it 569 

has been possible to generate a detailed picture of crustal structure beneath the major islands 570 

of LAA. We show that arc crust is highly variable along-arc on relatively short wavelengths. 571 

One explanation for such variability in the delivery of water to the arc, plausibly via 572 

heterogeneous mantle upwellings that in turn affect the temperature and composition of the 573 

mantle-derived melts supplied to the base of the crust (e.g., Parman et al 2011) and the solid 574 

residues produced during differentiation (e.g., Melekhova et al., 2015). We tentatively note a 575 

spatial correlation between changes in crustal vP and subducting transform faults (Fig. 2), that 576 

are likely water-rich and serpentinised, as previously suggested by Schlaphorst et al. (2016). 577 

In relatively low productivity arcs, such as LAA, crust appears to be composed 578 

predominantly of the solid residues of differentiation processes, with little interstitial trapped 579 

melt. This process is distinct from a classical model of crustal differentiation in which solids 580 

progressively separate from large volumes of melt in crustal magma chambers. Thus, the 581 

mush-dominated architecture that appears to dominate many crustal magmatic systems 582 

(Cashman et al., 2017) may also control the structure of the arc crust. Using magmatic 583 

xenoliths to reconstruct crustal velocity structure is clearly a fruitful avenue that is 584 

complimentary to seismic experiments and to the reconstruction of seismic velocities from 585 

exhumed arc sections. 586 
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 803 

Figure Captions 804 

Figure 1. Comparison of crustal structure of a selection of intra-oceanic arcs based on 805 

seismic refraction experiments (updated and modified from Boynton et al., 1979). The range 806 

in vP (km/s) within individual crustal layers is shown by the double-ended arrows; asterisks 807 

denote an average value for multiple layers. Seismic discontinuities are shown by solid 808 

horizontal lines; the Moho is indicated by an additional dotted line. A question mark indicates 809 
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a poorly resolved Moho. Fine dashed lines represent changes in vP without associated 810 

discontinuity. References for the arcs are provided by Boynton et al. (1979) with the 811 

following additions: Lesser Antilles – (a: S of Grenada, Christeson et al. 2008; b: S of 812 

Guadeloupe, Kopp et al. 2011); Japan – (a: Honshu, Iwasaki et al. 2001); (b: Hokkaido, 813 

Iwasaki et al. 2004); Sunda – (Kieckhefer et al. 1980); Aleutians – (Shillington et al. 2004); 814 

Izu – (Kodaira et al. 2007); Mariana – (Takahashi et al. 2007).  815 

 816 

Figure 2. Map of the Lesser Antilles arc showing the seismic broadband stations used in this 817 

study (red triangles) and newly deployed stations (in yellow) by VoiLA (a NERC-funded 818 

multidisciplinary consortium project). The western, active branch of the arc is shown in 819 

black, the eastern, inactive branch in grey. There are 12 seismic stations on Montserrat in 820 

close proximity. Approximate extrapolation of fracture zones from the downgoing plate to 821 

the sub-arc is illustrated by dotted black lines: FT – Fifteen-Twenty; Ma – Marathon; Me – 822 

Mercurius; Ve – Vema; Do – Doldrums (Schlaphorst et al. 2016).  823 

 824 

Figure 3. Bulk-rock MgO (a) and Al2O3 (b) variations in Lesser Antilles lavas plotted against 825 

SiO2. (c) Plot of SiO2 against of FeO
T
/MgO ratio.  Data with measured FeO and Fe2O3 are 826 

marked by circles with a black outline on (a) and (b). Pink solid line on (c) corresponds to an 827 

FeO/MgO ratio that would correspond to equilibrium with olivine Fo90, using Kd
ol-liq

=0.3. 828 

Magmas that lie on or below this line are potentially primary, i.e. in equilibrium with mantle 829 

olivine Fo≥90. Potential primary magmas in LAA are predominantly basalts. Note absence of 830 

high-MgO basalts in northern islands and abundance of high-Al2O3 basalts and basaltic 831 

andesites. Data are from GEOROC.  832 

 833 
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Figure 4. Photomicrographs of representative xenolith textures and compositions in plane-834 

polarised (ppl) and cross-polarised light (xpl).  (a) Clinopyroxenite (sample GR5-1) with 835 

adcumulate texture (ppl) from Grenada showing large, unzoned clinopyroxene and 836 

hornblende with minor iddingsitised olivine.  (b) Clinopyroxene-gabbro (CR6) from 837 

Carriacou (xpl) with porphyritic-phaneritic texture showing clinopyroxene grains with partial 838 

reaction to amphibole, and abundant oxides. (c) Hornblende-bearing troctolite (xpl) with 839 

adcumulate texture (VS8) from St Vincent. (d) Hornblende gabbronorite (xpl) with 840 

mesocumulate texture from St. Lucia (SL63). (e) Olivine-hornblende gabbro (ppl) with 841 

adcumulate texture from Dominica (DC102), showing considerable alteration of olivine to 842 

iddingsite. (f) Granodiorite (xpl) from Guadeloupe (GD40) showing equigranular texture. 843 

Mineral abbreviations: cpx (clinopyroxene), opx (orthopyroxene), pl (plagioclase), ox (Fe-Ti 844 

oxides), id (iddingsite), qz (quartz). 845 

 846 

Figure 5. Modal proportion of minerals by mass in crustal xenoliths along LAA, ordered 847 

from North to South. Xenoliths for individual islands are listed from bottom to top in order of 848 

decreasing Fo content of olivine, followed by Mg# of clinopyroxene, followed by An content 849 

of plagioclase. Data from Wills, 1974; Tollan et al., 2012; Stamper et al 2014; Cooper et al., 850 

2016; Melekhova et al 2017; Camejo-Harry et al., 2018; unpublished - Supplementary Table 851 

S1. Notice more mafic nature and almost complete absence of orthopyroxene in xenoliths 852 

from the southern segment compared to central and northern segments. Arrows and letters 853 

denote samples shown on Figure 4.  854 

 855 

Figure 6. Seismic properties of LAA xenoliths calculated using the algorithm of Hacker & 856 

Abers (2016). All xenoliths are crustal igneous rocks, except for mantle xenoliths marked 857 

with a cross. Phase proportions were obtained by point counting (Fig. 5); P-T conditions of 858 



 31 

equilibration were estimated by thermobarometry and/or phase petrology. (a) vP/vS ratio 859 

versus vP. Note fields of plagioclase-rich (≥80% plagioclase) xenoliths with relatively low vP 860 

and high vP/vS (dashed grey line) and amphibole-rich (≥80% amphibole + plagioclase ± 861 

quartz) xenoliths (dashed purple line). (b) vP versus density (). Hornblende and 862 

clinopyroxene-rich compositions form Grenada, St Vincent and one from Montserrat show 863 

significantly higher velocities and densities compared to other xenolith lithologies. The 864 

lowest density and velocity xenoliths are granodiorites from Guadeloupe. (c) Relative depths, 865 

estimated from thermobarometry and phase petrology, versus vP. Different layers evaluated 866 

by RF inversion are shown: UC – upper-crustal layer (2), MC – mid-crustal layer (3), LU – 867 

low-crustal layer (4) and M – mantle layer (5).  868 

 869 

Figure 7. Modeled 1-D profiles for density, vP and vS (top) and Receiver Functions (bottom) 870 

for Martinique (A) and Grenada (B). Lower panels show the stacked RFs (black) and the 871 

model RFs (red); grey lines show the pointwise 2σ-jackknife uncertainties. Modelling results 872 

for all other islands can be found in Supplementary Material. 873 

 874 

Figure 8. Compilation of inversion results along LAA from south (Grenada) to north (Statia). 875 

Along-arc bathymetry in the top panel was constructed using latitude-longitude-elevation 876 

data from the global multi-resolution topography (GMRT) synthesis via GeoMapApp, and 877 

the multi-point “path profiler” tool in GlobalMapper20. The bottom panel shows the crustal 878 

vP structure beneath each island based on a five-layer inversion (four crustal layers plus 879 

mantle) using RFs and petrological constraints as described in the text. vP values (km/s) of 880 

each layer are shown for clarity. The Moho is denoted by a thick black line. Note 881 

heterogeneity of the uppermost layer (1) and the abrupt lateral variations in vP and crustal 882 

layer thicknesses. Note that only two crustal layers could be resolved beneath Montserrat. 883 
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 884 

 885 

Figure 9. Comparison of vP structure beneath three oceanic arcs: (a) Northern segment of 886 

Izu-Bonin (Kodaira et al, 2007); (b) Aleutians (Shillington et al. 2004); and (c) Lesser 887 

Antilles (this study). Contour intervals of 6.0, 6.8 and 7.8 km s
-1

 are chosen to aid 888 

comparison. All figures drafted to the same vertical and horizontal scale. Lesser Antilles 889 

structure (c) adapted from Fig 8 using the method in Supplementary Information with 890 

velocities between islands estimated using a third-order polynomial interpolation. Volcanic 891 

islands denoted with triangles, using the following abbreviations: (a) Os – Oh-shima; Nij – 892 

Nii-jima; Myk – Miyake-jima; Mkr – Mikura-jima; Krs – Kurose; Hcj – Hachijo-jima; Shc – 893 

South Hachijo; Ags – Aoga-shima; Myn – Myojin; Sms – South Sumisu; Ssc – South 894 

Sumisu; Tsm – Torishima; (b) Seg – Seguam; Am – Amukta; Yun – Yunaska; Her – Herbert; 895 

Chu – Chuginadak; (c) Ski – St. Kitts; Seus – St. Eustatius (Statia). Note low velocity mid-896 

crustal layer under Grenada and Grenadines, and high velocity region under Statia. Izu-Bonin 897 

and Aleutians seismic data were obtained at much higher resolution than for LAA, yet the 898 

overall lateral variations in vP structure and crustal thickness are similar in all three arcs. 899 
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Table 1. The modeled velocity profiles and MCD and Moho depth. 

 Layer (2) vP 

(km/s) 

r 

(g/cm
3
) 

z* 

(km) 

Layer (3) vP 

(km/s) 

r 

(g/cm
3
) 

z* 

(km) 

Layer (4) vP 

(km/s) 

r 

(g/cm
3
) 

z* 

(km) 

Grenada poikilitic-

hornblende 

gabbro 

(GR4) 

6.86 3.09 12 hornblende 

gabbro (GR42) 

6.55 2.93 14 clinopyroxene 

hornblendite 

(GR17) 

7.3 3.28 29 

St. Vincent hornblende 

troctolite 

(VS8) 

6.77 2.88 12 plagioclase 

hornblendite 

(VS5) 

6.85 3.07 21 olivine 

hornblende 

pyroxenite 

(VS20) 

7.08 3.93 29 

St. Lucia hornblende 

leuco-norite 

(SL107) 

6.51 2.91 6 hornblende 

norite (SL72) 

6.66 2.89 17 olivine-

hornblende 

pyroxenite 

(VS20) 

7.08 3.93 33 

Martinique troctolite 

(MQ55) 

6.69 2.79 13 olivine gabbro 

(MQ13) 

6.97 2.95 24 hornblende 

gabbronorite 

(MQ12) 

6.81 3.05 25 

Dominica olivine 

hornblende 

gabbro 

(D214) 

6.76 3.07 13 olivine 

hornblende 

gabbronorite 

(D410) 

6.80 2.99 23 olivine gabbro 

(D250c) 

7.09 3.04 25 

Guadeloupe granodiorite 

(GD43) 

6.21 2.59 15 diorite (GD39) 6.46 2.89 32 hornblendite 

(GR25) 

6.93 3.23 36 

Montserrat – - - - plagioclase 

hornblendite 

(FB220) 

6.61 3.04 11 plagioclase 

pyroxenite 

(300a) 

7.43 3.22 30 

St. Kitts olivine norite 

(KS11) 

2.96 6.58 10 olivine 

hornblende 

gabbro (KS22) 

2.9 6.6 19 olivine 

hornblende 

gabbro (KS15) 

6.75 3.14 37 

St. Eustatius hornblende 

gabbronorite 

(EU22) 

6.63 2.96 8 olivine 

hornblende 

gabbro (EU77) 

7.18 3.10 24 olivine 

hornblende 

gabbro (KS15) 

6.75 3.14 25 

z* - depth to the bottom of the layer          
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