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ABSTRACT

In this paper, we provide a preliminary study of basic require-
ments for autonomous UAV cinematography via 2D target
tracking. Our contribution is two-fold. First, we develop a
mathematical framework so as to determine hardware cam-
era requirements (specifically, focal length), on a represen-
tative case study, i.e., orbiting a still or moving target. Sec-
ond, we examine the on-board software requirements in or-
der to successfully achieve autonomous target following. To
this end, we evaluate the performance of state-of-the-art real-
time 2D visual trackers in videos captured by commercial
drones. Overall, it was found that state-of-the-art 2D visual
trackers are dependable and fast enough to be used in drone
cinematography, particularly when combined with periodic
target re-detection. A proposed variant of the Staple tracker
achieved the best balance between real-time performance and
tracking accuracy, on a dataset composed of 31 sports videos
recorded by commercial drones.

Index Terms— UAV cinematography, video tracking,
target following, target tracking, UAV shot types

1. INTRODUCTION

Unmanned Aerial Vehicles (“UAVs”, or “drones”), are a re-
cent addition to the cinematographer’s arsenal. By exploit-
ing their agility and ability to fly, drones are potentially able
to capture video streams that would be impossible otherwise.
One of the most demanding media production applications is
the aerial coverage of live outdoor (e.g., sports) events, since
it mainly involves filming multiple moving targets (e.g., ath-
letes, boats, cars etc.). The drones must capture stable, non-
cluttered and visually pleasing AV streams, which requires
demanding drone piloting skills or impressive drone intelli-
gence. Therefore, there is an increased need of defining the
potentials and limitations of drone application to cinematog-
raphy.

The fundamental principle for autonomous UAV moving
target shooting is the drone’s ability to perceive and manip-
ulate information about the target position/orientation in the
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3D space. Towards this end, advanced vision-based meth-
ods [1, 2, 3, 4, 5, 6, 7] can be employed. The overall ap-
proach is the following. First, the target is detected/tracked
in a video stream captured by a drone camera, over a series
of successive video frames. The relative target position in the
3D space is estimated by using the 2D coordinates of the de-
tected/tracked moving target and, thereby, the drone makes a
decision to move itself or the camera gimbal. The whole pro-
cedure should be executed fast enough in order to maintain
the target in the camera field of view. Although such algo-
rithms have already been implemented in commercial drones,
their reliability is subject to constraints that have not been in-
vestigated thoroughly in the past, thus making updated theo-
retical analysis (e.g., [3]) necessary. Theoretical constraints
that should be taken under consideration include the drone
(and gimbal) maneuverability, as well as the drone’s target
perception capability.

This paper is structured as follows. In Section 2, we de-
scribe the related work in 2D visual tracking, as well as our
proposed implementation for a UAV platform. In 3, we an-
alyze the theoretical foundation of the orbitting movement,
as a representative case study. Conducted experiments on 2D
tracking are analyzed in Section 4 and finally, our conclusions
are drawn in Section 5.

2. 2D TRACKING OVERVIEW
The most successful and recent 2D tracking approaches em-
ploy the tracking-by-detection approach [8, 9, 10]. That is,
a discrimination model w is learned incrementally within the
successive frames, and detects/recognizes the target ROI in
the next frame. This discrimination model can be viewed as a
Ridge Regression problem:

min
w

N∑
i=1

(wTxi − yi)2 + λ‖w‖2, (1)

where xi are the samples and yi their regression targets, and
λ a regularization parameter. This problem has the following
closed-form solution [11]:

w = (XTX + λI)−1XTy, (2)

where each row of X contains the samples xi and y contains
the elements yi, and I is an identity matrix of appropriate



dimensions. However, in order to properly train a tracker,
besides using the actual target ROI in the search region, sam-
ples resulted after circular shifts of the target ROI inside the
tracker search region, should be employed as well. By using
a dense sampling strategy, it induces the periodic assumption
of the local image patches. Therefore, when good sampling
practices are followed, the data matrix X is circulant [10],
and can be expressed as X = C(x). As a circulant matrix, it
has the following property:

X = FHdiag(Fx)F , (3)

where F is the so-called DFT matrix, and FH is its Hermitian
transpose. By replacing (3) in (2), we obtain:

ŵ∗ =
x̂∗ � ŷ

x̂∗ � x̂+ λ
, (4)

where � denotes element-wise operations, ŵ is the FFT
transform of w, and ŵ∗ is the complex-conjugate of ŵ, and
the same equivalent notation is used for x and y.

Therefore, for a test feature patch z, we calculate its cor-
relation map r̂ in the frequency domain for calculations pur-
poses:

r̂ = ŵ � ẑ, (5)

and the inverse FFT of r̂ is the correlation map in the spatial
domain, i.e., our detected object.

In order for the correlation filter to be able to adapt to
occlusions, changes to target scale/pose/angle, illumination
changes etc., the filter is required to be updated, ideally in
a per frame basis. As have been proposed by [12], the Mini-
mum Output Sum of Squared Error (MOSSE) filter is updated
as follows:

ŵf =
Af
Bf

, (6)

Af = (1− h)Af−1 + h
(
x̂∗
f � ŷf

)
(7)

Bf = (1− h)Bf−1 + h
(
x̂∗
f � x̂f + λ

)
, (8)

where 0 < h ≤ 1 is the so-called learning rate, which is in
essence a balance between learning from the last frame and
forgetting all the previous frames.

In general, correlation-based trackers mostly differ on the
issue of representing the initial ROI, i.e., by employing dif-
ferent feature descriptors. fHOG features, color histograms,
deep neural representations have all been tried and tested
[13]. The DSST tracker [8] operates by extracting fHOG
features from the initial and target ROIs. This is applied to
both translation and scale tracking. The Staple tracker [9]
is an extension of DSST that exploits both fHOG and color
histogram features. The different descriptor types are fused
in a weighted fashion, to formulate a correlation filter that
considers them both during its training. Finally, our proposed
Staple2 implementation combines all the above approaches
and is described below.

2.1. Proposed Staple2 implementation

Since our implementation was based on the Staple tracker
[9], we refer to our proposed method as Staple2, here-
after. Since we focus on UAV tracking, we have intro-
duced elements of the FAST [1] tracker to Staple. That
is, we have introduced the Peak-to-Sidelobe-Ratio metric
to estimate the tracking quality (for the correlation map ex-
tracted by the Staple tracker), that is computed as follows:
PSR = max(r)−mean(r)

std(r) . Depending on the quality, we
have defined 2 thresholds t1 and t2, where t1 > t2, leaving
3 states: a) PSR > t1, the algorithm tracks and updates
its discrimination model, b) t1 > PRS > t2, tracking is
allowed, but the discrimination model is not updated and
c) PSR < t2, the target is re-detected in the entire frame
with the discrimination model learnt by the tracker. Overall,
Staple2 is more robust and also faster, since the model is not
updated in every single frame.

3. CASE STUDY: ORBITTING A TARGET
A very common scenario in UAV cinematography is an-
alyzed below as a representative case study, i.e., orbiting
a still or moving target (ORBIT). In this case, the cam-
era gimbal is slowly rotating, so as to always keep the still
or linearly moving target properly framed, while the UAV
(semi-)circles around the target and, simultaneously, follows
the latter’s linear trajectory (if any) [14, 15]. Given a camera
frame-rate of T , time t is discrete, non-negative and pro-
ceeds in steps of 1

T seconds. t = 0 indicates the start of an
ORBIT shooting session. At each time instance t, the 3D
positions of the UAV (X̃t = [x̃t1, x̃t2, x̃t3]

T ) and the target
(P̃t = [p̃t1, p̃t2, p̃t3]

T ), as well as an estimated 3D target
velocity vector (Ũt = [ũt1, ũt2, ũt3]

T ), are known in a fixed,
orthonormal, right-handed World Coordinate System (WCS),
with its z-axis vertical to a local tangent plane, parallel to the
sea level (hereafter called “ground plane”).

Additionally, at each time instance t, a current, orthonor-
mal, right-handed target-centered coordinate system (TCS)
is defined. Its origin lies on the current target position, its
z-axis is vertical to the ground plane and its x-axis is the
L2-normalized projection of the current target velocity vector
onto the ground plane. In case of a still target, the TCS x-axis
is defined as parallel to the projection of the vector P̃0 − X̃0

onto the ground plane. In both coordinate systems, the x− y
plane is parallel to the ground plane and the z-component is
called “altitude”. Below, vectors expressed in TCS are de-
noted without the tilde symbol (e.g., Xt, Pt and Ut). Due
to the way TCS is defined, it holds that ut2 = 0. The 3D
scene point at which the camera looks at time instance t is
denoted by Lt (in TCS), thus defining the “LookAt vector”
Ot = Lt − Xt. i, j, and k are the TCS axis unit vectors
(corresponding to the x-axis, the y-axis and the z-axis, re-
spectively).

During shooting an ORBIT, a current, orthonormal, right-
handed target-centered coordinate system (TCS) is defined, in



which the UAV altitude remains constant, but may vary in the
World Coordinate System (WCS). The parameters that must
be specified are the desired 3D Euclidean distance λ3D =
‖X̃t − P̃t‖2 = ‖Xt‖2 (constant over time), the angle of the
entire rotation to be performed around the target (θ) and the
desired UAV angular velocity ω. Additionally, we can easily
derive the starting angle θ0 formed by the TCS x-axis (of time
instance 0) and the projection of the known initial position X0

onto the TCS x−y-plane. Then, ORBIT may be described in
TCS using a planar circular motion:

t ∈ [0,
T θ

ω
] (9)

θ0 = arctan

(
x02
x01

)
(10)

xt3 = x03,∀t (11)

λ =
√
λ23D − x2t3 (12)

Xt = [λ cos (t
ω

T
+ θ0), λ sin (t

ω

T
+ θ0), xt3]

T (13)

Lt = Pt. (14)

Based on the above abstract description we would like to
specify the maximum allowable camera focal length f (deter-
mining zoom level), so that 2D visual tracking is not lost in-
between successive video frames due to rapid object motion.
Given that tracker behavior varies per algorithm, we simply
assume a maximum search radius Rmax (in pixels) defining
the video frame area within which the tracked object ROI of
time instance t+ 1 must lie, relatively to the ROI position of
time instance t, in order to permit successful tracking. This
is true of all trackers. Thus, a distance Rt between two tem-
porally successive target ROIs, where Rt > Rmax, implies
tracking failure. The case where Rt = Rmax marks the limit
scenario where the tracker marginally succeeds.

We also assume that, during time instance t, the target
ROI was at the center of the video frame. However, since
˜Pt+1 itself is in fact estimated using tracking information, it

is assumed initially unknown at time instance t + 1. There-
fore, ˜Lt+1 still coincides with the known, previous 3D target
position and the actual target ROI of time t+ 1 must be lo-
cated via tracking, so that ˜Pt+1 gets estimated. Due to this
uncertainty, below, the TCS is fixed to that of time instance
0. Without loss of generality, we assume t = 0 and examine
an entire ORBIT shooting session as repeated transitions be-
tween the first (t = 0) and the second video frame (by proper
manipulation of θ0).

Moreover, we can assume that the difference in tar-
get/UAV altitude between successive time instances is negli-
gible in most realistic scenarios. Thus, the following hold:

Xt = [λ cos (θ0), λ sin (θ0), xt3]
T (15)

Xt+1 = [λ cos (
ω

T
+ θ0)+

u1
T
, λ sin (t

ω

T
+ θ0), xt3]

T (16)

Pt = [0, 0, 0]T (17)

Pt+1 = [
u1
T
, 0, 0]T (18)

Based on the above and the equations linking 3D world
coordinates with pixel coordinates [16], the following hold:

xd(t+ 1) = ox −
f

sx

RT
1 (Pt+1 −Xt+1)

RT
3 (Pt+1 −Xt+1)

(19)

yd(t+ 1) = oy −
f

sy

RT
2 (Pt+1 −Xt+1)

RT
3 (Pt+1 −Xt+1)

(20)

where ox, oy define the image center in pixel coordinates,
sx, sy denote the pixel size (in mm) along the horizontal and
vertical directions, and xd(t+1), yd(t+1) are the target cen-
ter pixel coordinates at time instance t + 1. R1, R2 and R3

refer, respectively, to the first, second and third row of the ro-
tation matrix R that orients the camera gimbal according to
the LookAt vector and the current camera/UAV position. R is
easily derived as a change-of-basis matrix, transforming from
world to camera coordinates [17].

Using the above formulas, the limit constraint previously
mentioned and the assumption that the target ROI was at the
center of the t-th video frame, we arrive at the following equa-
tion:

Rmax =
√
(xd(t+ 1)− ox)2 + (yd(t+ 1)− oy)2. (21)

By substituting and solving for f , the following expres-
sion is derived from Eq. (21):

f =
Rmaxsxsy

∣∣T (x2t3 + λ2
)
+ ut1λ cos

(
θ0 +

ω
T

)∣∣
ut1

√
s2xx

2
t3(λT cos(θ0+ ω

T )+ut1)
2
+λ4s2yT

2 sin4(θ0+ ω
T )+D

T 2(λ2+x2
t3)+2λTut1 cos(θ0+ ω

T )+u2
t1

,

(22)
where:

D = λ2s2y sin
2
(
θ0 +

ω

T

)(
T 2x2t3 + λT cos

(
θ0 +

ω

T

)
E + u2t1

)
,

(23)
E =

(
λT cos

(
θ0 +

ω

T

)
+ 2ut1

)
. (24)

Eq. (22) provides the maximum focal length f as a func-
tion of the current target velocity and the current UAV posi-
tion, relatively to the target. It can be evaluated at each video
frame of an ORBIT shooting session, so that the maximum
zoom level can be determined. Other hardware specifications
can be derived by following a similar analysis.

4. EMPIRICAL EVALUATION AND CUDA
ACCELERATION

In this section, we describe the experiments conducted in
order to evaluate the performance of state-of-the-art 2D
trackers, for the outdoor sports tracking scenario. To this
end, we have collected 31 sports videos recorded by com-
mercial drones, including long term tracking examples (e.g.,



(a) Precision Plots (b) Success Rates (One-pass evaluation) (c) Average duration of overlap

Fig. 1: Tracking Evaluation Results

4min), depicting boat/bike/rowing races, football games,
wake-boarding races. Our implementation included the 13 of
the best performing trackers from both the VOT 2016 chal-
lenge [18] and the UAV tracking benchmark [19], using a
similar procedure, along with our proposed Staple2 tracker.
We have used a CPU C++ serial implementation for all track-
ers. The limitations of our evaluation platform include that
a) the CPU of this platform is stronger than a common drone
processing unit and b) no parallel implementation potentials
could be evaluated thoroughly. Thus, we partially parallelized
the most appropriate tracker using CUDA.

The 2D tracking evaluation results are summarized in Fig-
ure 1. Figure 1a depicts the best 10 tracker Precision plots,
i.e., the ratio of successful frames whose tracker output is
within the given threshold (x-axis of the plot, in pixels) from
the ground-truth, measured by the center distance between
bounding boxes. Figure 1b depicts the 10 best Success Rates,
i.e., the ratio of the frames whose tracked box has more over-
lap with the ground-truth box than the threshold. The val-
ues in the brackets in the figures are the AUC (area under
curve), each of which is the average of all success rates at dif-
ferent thresholds when the thresholds are evenly distributed.
Finally, Figure 1c depicts the percentage of the total duration
of the sequence (averaged over all sequences), on which the
the trackers managed to keep a p% precision threshold, in 5%
increments, which is in essence, how dependable a tracker is
for target following purposes.

As it can be seen, the best tracking precision is obtained
by Staple plus, which is an implementation of classic Staple
[9] with enhanced features [18], having a speed of about 7 fps.
In the UAV target following scenario, even with an i7 CPU
on-board, this tracker would definitely miss some frames, a
fact that limits the maximum supported target speed, as it has
been noted in the literature [20]. The second best implemen-
tation is the proposed, much faster Staple2 (49 fps). Finally,
as it can be seen in Figure 1c, Staple2 maintains at least 10%
overlap with the ground truth for the entire video duration,
making it the most dependable choice for UAV target follow-
ing applications among the tested algorithms.

Since Staple2 was found to be the most appropriate
tracker for UAV target following applications, we have pro-

filed its code and found the hot spots. The most taxing spot
was a function that resizes and extracts the fHOG features,
since multiple various-scaled windows are extracted are anal-
ysed to detect the scale changes. Thus, we decided to acceler-
ate this part of the code using CUDA, having two benefits: a)
The previous implementation was optimized with x86 SIMD
extensions which is incompatible with ARM architectures,
like e.g., platform Nvidia Jetson TX2, b) many other trackers
(including Staple, FAST, DSST) employ the same function
for scale estimation. Evaluation was performed on a desktop
PC with an NVIDIA QUADRO K620 GPU. The correspond-
ing execution time of the function that resizes and extracts
the fHOG features for the various scales was measured both
on CPU and GPU. This is an important measure, since it
represents 45% of tracking execution time according to our
profiling. Using CUDA, above ×3 acceleration was obtained
compared to the CPU version (runtime of 3ms on CPU, 0.9ms
on GPU).

5. CONCLUSION
In this paper, we provide a theoretical treatment of the repre-
sentative UAV orbit case. Our findings can be exploited for
specifying UAV hardware and, moreover, as a heuristic for
determining the possible UAV target-following scenarios un-
der specific drone-camera configurations. Additionally, we
have also considered the relevant software requirements for
2D visual target tracking and conducted corresponding exper-
iments in aerial sports videos. We have determined the most
appropriate 2D visual tracking implementation by combining
findings from several state-of-the-art methods. 2D tracking
can be dependably employed for target following, if com-
bined with occasional whole frame detection. Currently, it is
typical for tracking scale to be addressed as a single optimiza-
tion problem, while, in essence, it is two separate problems
that can be solved separately. Staple showcases the advan-
tages of such an approach, which should be more thoroughly
investigated in the future.
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