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A Sense of Touch for the Shadow Modular Grasper
Nicholas Pestell1, Luke Cramphorn1, Fotios Papadopoulos2 and Nathan F. Lepora1

Abstract—In this study, we have designed and built a set of
tactile fingertips for integration with a commercial, three-fingered
robot hand, the Shadow Modular Grasper. The fingertips are an
evolution of an established optical, biomimetic tactile sensor, the
TacTip. In developing the tactile fingertips, we have progressed
the technology in areas such as miniaturization, development of
custom-shaped finger-pads and integration of multiple sensors.
From these fingertips, we extract a set of high-level features with
intuitive relationships to tactile quantities such as contact location
and pressure. We present a simple linear-regression method for
predicting roll and pitch of the finger-pad relative to a surface
normal and show that the method generalises to unknown depths
and shapes. Finally, we apply this prediction to a grasp-control
method with the Modular Grasper and show that it can adjust
the grasp on three real-world objects from the YCB object set
in order to attain a greater area of contact at each fingertip.

Index Terms—Force and Tactile Sensing; Grasping; Perception
for Grasping and Manipulation; Biomimetics

I. INTRODUCTION

ROBOT hands have seen accelerated development in re-
cent years [1], advancing attributes such as dexterity, grip

strength and ease of use. Two-fingered grippers are deployed
in large numbers for repetitive manufacturing tasks, whereas,
more advanced, multi-fingered hands are yet to find applica-
tions outside of research. Thus, a gap persists for automation
of small scale production, where robots are required to grasp
and manipulate unknown objects [2]. This gap can only be
filled by dexterous, multi-fingered robot hands.

Given the advances in the state-of-the-art of robot hands,
it is surprising such hands have not yet found widespread
application. One contributing factor may be a lack of sufficient
tactile sensing capabilities. Indeed, it is known that humans
rely heavily on their sense of touch to maintain a stable grasp
[3]. Whilst there have been many attempts at improving grasp
stability with the introduction of tactile sensing, primarily
with data-driven approaches [4]–[9], these methods are often
impractical due to the large quantities of training data required
and poor generalisability. In general, the tactile sensors are low
resolution, array-based technologies, which do not allow for
extraction of high-level features with a more direct relationship
to the object being held.
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Fig. 1: Image of the developed tactile sensors integrated with
the Shadow Modular Grasper. Base, proximal and distal joints
are labelled in red, B, P and D respectively. Tactile fingertips
A, B and C are labelled in blue.

This study presents the development of a high-definition,
biomimetic tactile fingertip and its integration with a three-
fingered, fully-actuated, robot hand: the Shadow Robot Com-
pany’s Modular Grasper (Fig. 1).

We extract features from high-dimensional raw tactile im-
ages and infer information relevant to grasp quality using
simple algorithms and relatively small amounts of training
data in comparison to documented data-driven approaches.
The overall aim is to develop a method for improving grasp
quality, that could form part of a higher-level modular grasp
control framework, in a way that is robust to variations such
as object shape, orientation and weight.

II. BACKGROUND AND RELATED WORK

A seminal study by Kawasaki et al. [10] in 2002 set a high
benchmark for forthcoming work into endowing robot hands
with a sense of touch. The authors presented a sophisticated,
16-DOF, anthropomorphic hand, the Gifu hand II. The hand
was equipped with 624 resistive tactile pads distributed across
all five fingers and the palm.

In 2011, Romano et al. [11] conducted an innovative study
into a grasp control framework using touch as an integral
component, using comparatively rudimentary hardware: two
5x3 capacitive tactile sensors and an accelerometer integrated
with the PR2 two-fingered gripper. Different states within the
control system were triggered by hard-coded tactile signals.
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Since Romano’s influential paper, many researchers have
integrated tactile sensors with dexterous robot hands [4], [5],
[7], [9], [12]–[14]. In contrast to the Romano’s study, however,
the trend has been towards data-driven methods:

In [4], an under-actuated, Robotiq gripper was equipped
with 6 array-based pressure sensors. A kernel logistic regres-
sion model, trained with tactile data from 192 grasps, predicted
grasp success to 89% accuracy. Similarly, in [5], two 7x4
capacitive tactile arrays were integrated on the finger-pads of
a Robotiq two-fingered, griper. 1000 grasps trained a CNN to
achieving a prediction accuracy of 88.4%.

The authors of [7] propose a method for re-grasp: a Barrett
hand was equipped with array-based Biotac tactile sensors.
Reinforcement learning was used to predict stable re-grasp of
a single object, trained with a total of 50 hours of real robot
data. Grasp success was improved from 42% to 97%.

The bias towards these data-driven methods is partially due
to low resolution of the tactile sensors employed. Without
sufficient acuity, sensors provide un-intuitive representations
of tactile contact. In contrast, optical tactile sensors, e.g. the
Gelsight [15] and the TacTip [16], provide high-resolution
tactile images which ease interpretation.

The Gelsight was integrated with the Weiss WSG-50 gripper
[9]. Deep CNNs predicted probability of successful re-grasp
given a proposed action achieving a re-grasp success rate of
83.8% using vision and tactile. However, this method required
a large data-set: 6,450 grasps on 65 objects.

Here our presented fingertip design is based on an estab-
lished tactile sensing device: the TacTip [16], [17]. Originally
developed in 2009, the TacTip is an optical tactile sensor with
a biomimetic design based on human tactile sensing [18].

The TacTip has shown potential for integration with robot
hands, e.g. [19] where a TacTip based tactile thumb (Tac-
Thumb) was integrated with the Open-Hand M2 gripper and
[20] where two TacTip devices were mounted as fingertips
on the Open-Hand GR2 gripper. In both of these studies, the
authors utilise a supervised-learning method to achieve precise
in-hand manipulation of custom-made objects.

Whilst the aforementioned literature shows clear benefits
of tactile sensing for grasping, a common shortcoming is
the nature of the tactile data available and/or the amount of
data required to interpret it. Here we present a more flexible
platform by integrating a highly sensitive, high-resolution,
optical tactile sensor with a fully-actuated industrial robot
hand. We demonstrate the potential for this system to improve
grasps on unknown, real-world objects by presenting a method
for grasp adjustment that could feasibly form part of a higher-
level control framework.

III. MATERIALS AND METHODS

A. Shadow Modular Grasper

The Shadow Modular Grasper is fully actuated with 9
degrees of freedom (three per finger). The system is fully
integrated with ROS and the user can control both specific
joints and whole-hand grasps. Each identical finger has base,
proximal and distal joints with one DC motor per joint and
can be easily attached and detached resulting in a modular

system. The full hand has a total mass of 2.7 kg and a payload
of 2 kg and each finger can apply 10 N of normal force. Each
joint has a dedicated torque sensor for closed loop control
and also features a back-drivable gearbox enabling inherent
compliance, which is an essential component when working
in unstructured environments. The whole unit requires only
two connections: power and comms (EtherCAT) [21].

B. Tactile Sensing

1) Tactile Fingertip Design: Tactile sensing is enabled by
replacing the fingertips of the Modular Grasper with three
custom-built tactile sensors (Fig. 1). The fingertips are com-
prised of two main components: a compliant finger-pad which
deforms when contacted and a rigid body which fixes the
camera in place and houses other electronics (Fig. 2).

The finger-pad is fully 3D-printed as a single part with a
multi-material 3D-printer (Stratasys Objet). A sensing surface
‘skin’ is printed in Tango Black+ (Shore A 26-28). The inside
of the skin is tessellated with a triangular pattern of 97
pins (Tango Black+, 3 mm length and 2 mm diameter). White
markers on the end of pins are printed in rigid Vero White
and provide a visual representation of the tactile stimulation. A
rim (Vero White) enables a press-fit connection to the fingertip
body. A clear acrylic sheet (2 mm thick) is glued into the rim
resulting in a small cavity between the skin and the acrylic
lens. This cavity is filled with a two-part cure, clear, silicone
gel (RTV27905, Techsil UK (∼Shore OO 10)) using a manual
injection method. The gel helps to reduce hysteresis while still
enabling deformation.

The finger-pad is press-fit into a hollow body which is 3D-
printed in ABS. A 2.0 megapixel CMOS array USB web-cam
(ELP cameras) is mounted on the back via four M2 screws.
The camera is used in HD mode (1920x1080). Dimensions
of the fingertip body are optimized to enable a view of all
markers whilst minimizing the overall depth of the fingertip.
The markers are illuminated by four LEDs arranged on two
PCB strips of two LEDs each. The PCBs are glued to the
inside of the body, close to the interface with the finger-pad.

body

acrylic lens

compliant skin

markers

rim

wide-angle lens

camera board
distal unit

distal protrusion

Fig. 2: Exploded CAD model of the tactile fingertip.
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(a) (b) (c)

y x

Fig. 3: (a): View of markers imaged by the camera and tracked
with OpenCV. (b): Voronoi tessellation over markers. (c):
Visual representation of surface deformations with centre-of-
pressure shown as a green spot.

The final system employs a wide-angle lens (2.1 mm focal
length, 150◦ view angle), which enables focused images of
the full marker array (Fig. 3a).

2) Hardware Integration: Integration of three sensors has,
to date, not been attempted with TacTip-based sensing. A
solution proposed here is to connect each tactile fingertip to its
own dedicated USB-hub. With three dedicated hubs, the data
transfer occurs in parallel without reducing the frame rates,
∼20 fps per camera.

3) Tactile Feature Extraction: Feature extraction is per-
formed using a Voronoi method previously demonstrated to
achieve direct inference of pressure and contact locations
with the TacTip [22]. Marker positions are tracked with a
simple blob detection algorithm implemented with OpenCV
in Python. A Voronoi tessellation is created over the sensor
skin, treating the marker positions as seeds (Python, SciPy)
(Figs. 3a and b). The areas of each Voronoi cell are related
to local skin deformation, where increased size corresponds to
indentation and hence pressure.

Visual representations of the surface deformation are ob-
tained by interpolating the change in Voronoi cell areas over
the fingertip. A centre-of-pressure, a tactile analogue of centre-
of-mass, is computed as an average of marker positions
weighted by their corresponding cell area (Fig. 3c).

C. Off-line Testing - methods

Orientation of the fingertip relative to the contact surface
may be of importance when grasping an object. For example,
greater frictional forces are achieved with a larger contacting
surface area, which is affected by relative angle between
fingertip and object. Here we examine the ability of the
presented sensor and described feature extraction technique
for perceiving roll and pitch relative to a flat surface.

1) Data collection: The fingertip is mounted as an end-
effector on a six degree-of-freedom robot arm (UR5, Universal
Robotics). The sensor maintains continual contact with a flat
acrylic plate and the robot re-orients the sensor relative to the
plate. Data is sampled randomly from a 2D grid of roll, φ,
and pitch, θ, values, −16◦ ≤ φ ≤ 16◦ and −11◦ ≤ θ ≤ 3◦.

Experimental set-up is shown in Fig. 4. φ and θ angles are
equally space by 2◦ and 1◦ respectively yielding, a total of
NφNθ = 17× 15 = 255 data points.

Three seconds of training data (∼ 60 frames) are collected
for each sample. A sample consists of a time series of centre-
of-pressure vales rki, where 1 ≤ k ≤ Nframes and 1 ≤ i ≤
Ndims; Nframes ' 60 and Ndims = 2 for x and y positions.

Three separate test sets are collected, on the same acrylic
plate, of 200 data points each, sampled at random from a

φ

x

θ

y

ψ

z

Fig. 4: Data collection set-up with tactile fingertip mounted as
an end-effector on a UR5 robot arm. Showing roll, φ, pitch,
θ and yaw, ψ orientations relative to the sensor.

(a) (b) (c)
Fig. 5: (a): Data being collected on the dome stimulus. (b)
and (c): Data being collected on the edge stimulus at ψ = 0
and 90◦ respectively.

continuous space within the same range of φ and θ. Each
set is collected at a different depth since we are interested
the degree to which our methods are pressure invariant. The
depths, -0.5 mm ≤ zl ≤ 0.5 mm, are equally spaced, where
zl = 0mm corresponds to the depth used for training.

The ranges of φ and θ and of z are chosen in combination,
to avoid damage to the sensor but also provide examples
extremely light touch: pressure on the sensor is maximised
when φ and θ are at extremes and z is minimised. The location
of φ and θ ranges additionally provide a contact area which
is maximised when both φ and θ = 0.

To further examine the generalisability of our method we
perform additional tests with data collected on two generic 3D-
printed shapes: a dome and an edge. On the edge, we collect
two sets with different yaw, ψ, angles: 0 and 90◦ respectively
(Fig. 5). Data is collected using the same random sampling
procedure as with the acrylic plate.

We repeat the training and testing data collection procedures
once for each fingertip. This is because of small inconsis-
tencies in the manufacturing procedure which may lead to
different physical and optical responses.

2) Perception: Prior to training, data is averaged across
frames, so each sample has Ndims = 2 features. We map
centre-of-pressure-xy position to φ and θ via three separate
multivariate, linear models: A simple linear model (1st-order
polynomial), 2nd- and 3rd-order polynomials.

D. System Integration - On-line Grasp Adjustment

For the purpose of this study, we intend to use the predicted
φ and θ (Section III-C) to adjust a grasp. Three Python drivers,
one for each sensor, run on the host PC and interact with the
grasp controller (C++) via a ROS-network.
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(d)

y x

(e) (f)

Fig. 6: (a), (b) and (c): Visualisations of surface deformation
with different values of φ and θ with ψ = 0◦. (d), (e) and (f):
Visualisations of surface deformation with different values of
φ and θ with ψ = 90◦.

The high-level strategy consists of independent control of
each joint through its dedicated motor (full actuation). Each
joint can be controlled in either position or torque mode. A
grasp is comprised of two distinct phases: (i) closing phase
and (ii) adjustment phase. These two phases are implemented
within an update loop running at 1 kHz which iteratively
updates joint modes and targets according to sensor data.

i) During the closing phase all joints are controlled in
position mode and commanded to a set of target angles
via a PID which is an implementation of the roscontrol
ROS-package. Throughout this phase, the hand controller is
listening to a set of ‘contact-detection’ ROS-topics, published
by each driver. Contact is determined by upward threshold
crossing on the surface deformation (Fig. 3). Upon contact-
detection each respective finger stops moving.

ii) After all sensors have detected contact the adjustment
phase is entered: the controller switches all proximal joints
to torque mode and applies a fixed squeezing torque to the
object. Base and distal joints remain in position mode and are
servoed with the PID controller used in phase i). PID inputs
are φ and θ predictions for base and distal joints respectively,
thus, the hand attempts to servo the finger-pads to φ and θ =
0. To steady the grasp, this adjustment phase has a time-out
period, the length of which, is obtained from experimentation
(Section IV-B). see Fig. 1 for reference of joint names.

IV. RESULTS

A. Off-line Testing - results

We compared three competing model types (simple, 2nd-
and 3rd-order linear models) for predicting φ and θ (Section
III-C). Our model should accurately approximate training data
whilst generalising to unobserved samples. Table I shows R2

scores for three competing models for all three tips, on test
data collected on the acrylic plate at each test depth (see Fig.
4), the dome and on the edge at ψ = 0 and 90◦ (see Fig. 5).

On the flat plate, where test sets were collected at training
depth (0 mm), the 3rd-order polynomial model achieved the
highest R2 scores over the whole set (0.95, 0.94, and 0.93).
This model, however, under-performed at the two unseen
depths, particularly at 0.5 mm where it achieved the lowest
three R2 scores for the flat stimulus (0.67, 0.28 and 0.40).

In contrast, both 11st- and 2nd-order polynomials performed
more consistently on the flat plate: The lowest R2 scores

(a)

(b)

Fig. 7: (a): Scatter plot of xy-centre-of-pressure vs φ. (b):
Scatter plot of xy-centre-of-pressure vs θ angle. In both plots,
the surface shows a 2nd degree polynomial fit and each colour
represents a constant θ and φ in (a) and (b) respectively.

were 0.72 and 0.71 for the 1st- and 2nd-order polynomials
respectively. This improved consistency is likely due to a lower
variance in the models, giving better generalisation.

All three models are capable of generalising to the dome
stimulus: all R2 scores are above 0.6. As with the unobserved
depths, the worst performing model was the 3rd order polyno-
mial scoring 0.75 averaged across the three tips, vs. 0.88 and
0.86 for 11st- and 2nd-order polynomials respectively.

All three models, however, performed poorly on the edge
at both ψ angle orientations: the highest R2 score was 0.46.
We believe this is caused by a singularity when exposed to
edge like stimuli: the centre-of-pressure remains fixed in the
dimension perpendicular to the edge regardless of φ and θ.
Fig. 6 demonstrates this effect. The centre-of-pressure remains
consistent in the x dimension when ψ = 0◦ and, contrastingly,
it remains consistent in the y dimension when ψ = 90◦

regardless of φ and θ in both cases.
To test this hypothesis we examined R2 scores attained

when making separate predictions of φ and θ for data collected
on the edge. Results of this test are shown in Table II. The
three models perform well at ψ = 0◦ when predicting θ but
poorly when predicting φ. At ψ = 90◦, good performance is
achieved for φ predictions whereas the models perform poorly
when predicting θ. In both cases, ψ = 0◦ and 90◦, better
performance is observed when predicting the dimension which
is parallel to the edge orientation, confirming the singularity
hypothesis. We have, therefore, identified a limitation with
sensing under these conditions.

Based on results from this data, we consider the 2nd-order
model to be the most suitable for predicting φ and θ with the
application to robot hands.

Visualisations of the 2nd-order polynomial model for tip-B
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TABLE I: R2 scores for 1st-, 2nd- and 3rd-order polynomial linear regression for tips A, B and C, as labelled in Fig. 1, calculated
for test sets on the flat acrylic plate at depths of -0.5, 0 and 0.5 mm, the dome and the edge at ψ = 0 and 90◦.

1st order 2nd order 3rd order
Stimulus Flat plate Dome Edge Flat plate Dome Edge Flat plate Dome Edge
Depth (mm) -0.5 0 0.5 0 0 -0.5 0 0.5 0 0 -0.5 0 0.5 0 0
ψ (◦) 0 0 0 0 0 90 0 0 0 0 0 90 0 0 0 0 0 90
tip-A 0.91 0.90 0.91 0.92 0.42 -0.01 0.92 0.91 0.92 0.90 0.46 -0.07 0.84 0.95 0.67 0.82 0.28 -0.03
tip-B 0.87 0.89 0.72 0.87 0.42 0.25 0.89 0.92 0.71 0.87 0.46 0.29 0.85 0.94 0.28 0.83 0.32 0.29
tip-C 0.88 0.88 0.81 0.84 0.36 0.17 0.90 0.90 0.82 0.80 0.36 0.21 0.76 0.93 0.40 0.61 0.21 0.25

TABLE II: R2 scores for separate predictions of φ and θ for
1st- (simple), 2nd- and 3rd-order polynomial linear regression
for tips A, B and C, as labelled in Fig. 1, calculated for test
sets collected on the edge stimulus at ψ of 0 and 90◦.

1st order 2nd order 3rd order
ψ (◦) 0 90 0 90 0 90
target φ θ φ θ φ θ φ θ φ θ φ θ

tip-A 0.33 0.89 0.88 -3.7 0.37 0.92 0.80 -3.7 0.18 0.78 0.76 -3.3
tip-B 0.32 0.87 0.84 -2.5 0.35 0.91 0.86 -2.4 0.23 0.77 0.89 -2.5
tip-C 0.25 0.91 0.96 -4.2 0.25 0.91 0.84 -3.2 0.11 0.70 0.92 -3.4

are shown in Fig. 7. The data is well ordered and the model
appears a suitable fit. We observe strong correlations of centre-
of-pressure-x and -y positions with θ and φ respectively.
This is expected since the x- and y-axis align with θ and
φ respectively. We also observe some correlation of centre-
of-pressure-y and -x positions with and θ and φ respectively,
suggesting both features are useful predictors.

B. On-line Grasp Adjustment

Here we investigate the capabilities of the integrated
Shadow Modular Grasper with tactile fingertips. We look at the
capacity for perceived φ and θ to be used in a grasp adjustment
procedure (Section III-D) and the potential for this to improve
grasp quality on three objects from the YCB object set: A
Rubik’s cube, Pringles can and mustard bottle. Informed by
results in Section IV-A, φ and θ are predicted using a 2nd-order
polynomial regression model.

We have provided a supplementary video containing a
range of grasp attempts on all three objects. Within these are
examples of successful and unsuccessful grasps.

Fig. 8 shows successful grasps of all three objects. Along-
side each image are tactile visualisations from each fingertip.
The objects are initially held in place by a human participant
before passing over to the robot when all three fingers have
made contact. The top row shows images at initial contact
detection (prior to tactile adjustment) and the bottom row
shows images after tactile adjustment, ∼10 s later.

The top and bottom rows of Fig. 8 show noticeable differ-
ences in both the grasp images and the tactile visualisations.
In general, the grasp images show that the fingertips rotated
around each object to minimise φ and θ. Inspection of the
tactile visualisations suggests that overall deformation of each
fingertip increased subsequent to adjustments in all cases.
This suggests that, for these examples, the grasp controller
performed as designed: to increase contact surface area and,
thus, also the frictional forces at each fingertip.

The hand made a good initial grasp of the Pringles can
owing to its symmetrical shape, with φ close to zero prior
to adjustment for all three fingertips. We observe a slight

modification of θ for each fingertip which in-turn increased the
contact surface area. The mustard bottle is the most irregular of
the three presented objects. Despite this, the hand maintained
a stable grasp throughout the adjustment phase and, increased
the contact surface area on all three fingertips.

On the Rubik’s cube, all three fingertips contacted edges
resulting in singularities for predicting φ (Section IV-A).
However, all three fingers moved to settle the centre-of-
pressure in the middle of each finger-pad. For fingertips A and
C we believe this is because initially the centre-of-pressure
was towards the edge of the pad: despite this producing a
measurement singularity, our algorithm perceives an off-set in
φ, so the base joint is servoed to counteract this, thus rolling
the sensor onto the face of the Rubik’s cube. Contrastingly,
fingertip B maintained its location on the edge of the cube
which we consider to again be a consequence of the perceived
φ. The initial centre-of-pressure was near the middle of the
finger-pad, so our algorithm perceived φ to be small. Whilst
this grasp may not maximise the overall contact surface area,
it is a stable configuration given its starting point.

Fig. 9 shows base and distal joint angles and centre-
of-pressure-x and -y positions vs. time when successfully
grasping the Rubik’s cube, for fingers A, B and C, (as labelled
in Fig. 8). All three fingers detect contact at roughly the same
time. Subsequently, joint angles are adjusted before reaching
the time-out, observed as a flattening of the blue curves. A
time-out of 10 s appears to give the hand suitable time to re-
adjust. During the same period, the centre-of-pressure migrates
towards 0 in both dimensions. The shapes of these curves
suggest that hand control performed as designed: to servo base
and distal joints in order to shif the centre-of-pressure to the
middle of each finger-pad.

In the case of unsuccessful grasps (please see supplementary
video), the hand typically ‘spills’ the object. We attribute
this to an ‘over-adjustment’. The hand initially grasps the
object with horizontal forces balanced across all fingertips.
Joints are then adjusted. At some point, prior to time-out,
adjustment moves the hand beyond a stable configuration, i.e.
normal forces exerted by each fingertip become sufficiently
un-balanced to push the object out of a grasp.

V. DISCUSSION

This work is entirely novel in its approach to on-line
grasp adjustment. That is, using tactile sensing to predict the
angle of contact and adjust hand orientation accordingly, thus
maximising the area of contact at each fingertip. Furthermore,
this is the first study into the use of optical biomimetic tactile
sensors with multi-fingered robot hands.
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(B)

(A)
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Fig. 8: Images of the grasps on the Rubik’s cube, Pringles can and mustard bottle, before and after tactile adjustment; top
and bottom rows respectively. Tactile visualisations for the three fingertips are displayed to the right of each grasp image.
Fingertips are labelled on the top left image and visualisations for reference.

(A)

(B)

(C)

Fig. 9: Plots of base and distal joint angles (blue) and xy
centre-of-pressure (red) versus time, for fingers A, B and C,
whilst grasping the Rubik’s cube. Vertical green lines show
when each finger detected contact.

A 2nd-order polynomial model was identified as a suitable
method for predicting φ and θ due to a balance of accuracy
and generalisation. A clear limitation was encountered where
a singularity was observed for predicting orientations when
sensing perpendicular to the edge. This constraint is not lim-
ited to the presented hardware or method since it is produced
by a physical singularity observed in the raw tactile signal.

The designed system was able to successfully grasp and
hold a Rubik’s cube, Pringles can and mustard bottle. The ad-
justment mechanism behaved as designed: to obtain a greater
surface area of contact and a more centrally located pressure,
both of which are likely to improve grasp quality.

A limitation in terms of robustness was exposed: roughly
half the trails were able to maintain a stable grasp throughout
the entire adjustment phase, whilst the remaining trails resulted
in the object being ‘spilled’. The primary cause of failure
was ‘over-adjustment’ resulting in the forces becoming un-
balanced between the fingers.

Recently, OpenAI achieved in-hand manipulation with im-
pressive levels of dexterity using deep reinforcement learning
[23]. To aid training, simulation was used, however, this
is a challenge for touch, hence, this modality was omitted
from their research. This highlights a need for learning-free
approaches to using touch for application with any hand,
without the need for re-training or simulation.

A key benefit of the developed approach for using touch is
that, whilst it requires high-resolution tactile sensing, it can be
easily applied to any robotic hand with the required degrees of
freedom. This is owing to the intuitive output from the sensors
(roll and pitch angle) which can be directly applied to joint
angles of the gripper. As a consequence no prior training with
the robot hand is required.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we presented the integration of an estab-
lished optical tactile sensing technology, the TacTip, with a
three-fingered, commercial robot hand: the Shadow Modular
Grasper. The sensors were tested for predicting roll and pitch
relative to a flat surface and two generic shapes: a dome and
an edge. Finally, we integrated tactile output with the hand
control and demonstrated a novel approach to real-time grasp
adjustment, using predicted roll and pitch angles to adjust the
grasp on three real-world objects for attaining greater contact
surface areas at each finger-pad.

Robustness was identified as an area to improve upon in
further iterations. We believe tuning the time-out period may
help to provide robustness by reducing the chance of over-
adjustment. A suitable time out period could be learned for
each object and adjusted autonomously.

The system developed in this paper could be integrated into
a high-level, modular controller, similar to the approach taken
by Romano et al. [11]. We would like to autonomously and
repeatedly grasp and set down a number of real-world objects.
This could be achieved by mounting the hand on an arm and
using vision to locate objects in the work space. In this way,
a quantitative measure of performance could be attained.
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