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ABSTRACT
During recent years, the standardisation committees on video
compression and broadcast formats have worked on ex-
tending practical video frame rates up to 120 frames per
second. Generally, increased video frame rates have been
shown to improve immersion, but at the cost of higher bit
rates. Taking into consideration that the benefits of high
frame rates are content dependent, a decision mechanism
that recommends the appropriate frame rate for the specific
content would provide benefits prior to compression and
transmission. Furthermore, this decision mechanism must
take account of the perceived video quality. The proposed
method extracts and selects suitable spatio-temporal features
and uses a supervised machine learning technique to build
a model that is able to predict, with high accuracy, the
lowest frame rate for which the perceived video quality is
indistinguishable from that of video at the acquisition frame
rate. The results show that it is a promising tool for prior
to compression and delivery processing of videos, such as
content-aware frame rate adaptation.

Index Terms— High frame rate, frame rate selection,
perceptual video quality, spatio-temporal features.

I. INTRODUCTION

Apart from the semantics of the content, the other key
factors of visual experiences that influence immersion are
the spatial resolution, the dynamic range and the frame rate
of the video. While significant work has been reported on
dynamic range extension, less has been reported on the
influence of frame rate, which is the focus of this paper.
Although there has been an increase in the availability
of 4K video at 60 frames per second (fps), the demand
of higher resolutions up to 8K adds pressure to further
increase frame rate [1, 2]. High frame rates are important
as they improve perceptual video quality and reduce the
visibility of motion artefacts (e.g. motion blur, aliasing) [3–
6]. However, increasing the frame rate, significantly raises
bandwidth demands and makes the task of video delivery
even more challenging for the service providers. Taking into
consideration this challenge on one hand and the content-
dependent nature of perceived video quality at different

frame rates on the other hand, a content-driven perceptually-
aware frame rate selection mechanism is required.

Several efforts have been made recently to explore the
relationship between content, frame rate and perceptual
video quality [6–12]. Nasiri et al. [7] built a database
with compressed videos at various frame rates up to 60
fps and based on a subjective study they investigated the
impact of frame rate on perceived video quality and its
relationship with quantization level, spatial resolution, and
spatial and motion complexities. Based on this study, Nasiri
et al. [8] formulated a descriptor of the perceptual aliasing
factor. Both of these works however focused on rather low
frame rates, up to 60 fps. Mackin et al. [6] demonstrated
the relationship between dynamic range and frame rate for
frequencies including and beyond 120 fps.

Besides the studies on the impact of frame rate on percep-
tual quality, some work has also reported new video quality
metrics, predictive models [9–11] or frame rate selection
mechanisms [12]. Ou et al. explored the impact of frame rate
and quantization [9] and later proposed a quality model [10]
as a function of spatial resolution, temporal resolution, and
quantization stepsize, where each of these parameters was
defined by a mathematical expression based on nine spatio-
temporal features. However, the number of features was
relatively high, the range of considered frame rates was
limited to a maximum of 50 fps. Another interesting recent
approach was the video quality metric proposed by Zhang
et al. [11] that extracts features in the wavelet domain from
a video sequence at different temporal resolutions using
spatio-temporal pooling. The metric considers videos at high
frame rates (up to 120 fps) but requires, as inputs, the
video sequences at all potential frame rates. Lastly, Huang
et al. [12] proposed a frame rate selection mechanism with
the aim to meet the “satisfied user ratio”. A feature-based
machine learning approach was proposed and tested on a
dataset with sequences at various frame rates but only up to
60 fps.

This paper presents a relatively low complexity frame rate
selection process that is based on a supervised machine
learning technique that uses only a few spatio-temporal
features extracted from the original HFR sequence and the
outcomes of the one-way Analysis of Variance (ANOVA) on
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Fig. 1: Diagrammatic illustration of the proposed method. The dashed lines and blocks are only used in the offline phase
of the proposed method, while the solid lines and blocks are used in both phases.

the differential mean opinion scores (DMOS) to benchmark
the ground truth. Compared to the recent literature, the
proposed method has the advantage of employing only a
small number of spatio-temporal features extracted from the
original video sequence (only at the acquisition frame rate)
resulting in reduced complexity. Furthermore, it has been
tested with a data set up to 120 fps. After an offline feature
selection process, the selected spatio-temporal features are
used along, with the DMOS-based ground truth, to train a
supervised machine learning model. This approach offers the
potential to minimise acquisition bit rates and hence storage
or transmission requirements prior to compression.

The remainder of the paper is organised as follows.
Section II describes all steps of the proposed perceptual-
aware frame selection method. Section III explains the
testing setup, the evaluation method and discusses the results.
Finally, the conclusions are drawn in Section IV.

II. PROPOSED METHOD
In this section, we describe a method that is able to recom-

mend a frame rate for a short video sequence that has a con-
sistent spatial and temporal behaviour ( i.e. similar spatio-
temporal features across all frames). The aim is to select
the minimum frame rate while maintaining the perceptual
quality of the source sequence. A diagrammatic overview
of the proposed method is illustrated in Fig. 1. The method
is structured in two phases; offline and online. During the
offline phase (all blocks are used), spatio-temporal features
are extracted from the source sequences and after following
a feature selection process, the selected features, along with
the ground truth, are fed into the training model. After the
training phase is complete, the system can be used online
to make a perceptually-aligned frame rate recommendation
based on features selected during training. More details are
provided in the following subsections.

II-A. Feature Extraction
Motion characteristics are critical in relation to temporal

artefacts in video sequences because when the frame rate is
above the critical flicker frequency of about 80fps [4], the
two most significant motion artefacts are blur and strobing.
The amount of motion blur depends on the speed of the

motion, leading to an unnatural change between sharp and
blurred pictures as objects change speed. Strobing is caused
by temporal undersampling. In addition to the temporal
characteristics, spatial attributes of the content are also
very important. In particular, the combination of temporal
and spatial characteristics is related to motion artifacts [3].
Therefore, we employ spatial and temporal low level features
that can effectively identify the impact of these artefacts.
Also, we assume that it is meaningful to extract the spatio-
temporal features per shot as this is typically related to spa-
tial and temporal homogeneity. A total number of 31 features
with their statistics were extracted from the videos at the
acquisition frame rate as explained below and summarized
in Table I.

Since temporal characteristics are very important, many
features that can be defined that relate to them. First, a simple
measure of the temporal variation within a video sequence
can be obtained by the frame difference (FD) between
successive frames. FD tends to give high values not only for
large pixel displacements, but also for very fine and sharp
textures. Thus, in blurry areas it is expected to have lower
values. A similar related feature is the normalised frame
difference (NFD) [9], that is defined by the ratio of FD to the
average standard deviation of the pixel values within a frame.
NFD attempts to connect the intensity contrast to the motion
between successive frames. A more sophisticated temporal
feature is the optical flow (OF), which is computed based on
Farneback’s method [13] and we can extract the mean and
standard deviation of magnitude (mag) and orientation (or)
of the OF vectors.

For the representation of spatial information, and partic-
ularly the intensity contrast between neighboring pixels, we
selected the gray level co-occurrence matrix (GLCM) [14]
and extracted the statistics as described in [15]. GLCM can
also capture the degree of coarseness and directionality of the
neighbouring pixels. GLCM is expected to be significantly
affected by motion blur or strobing artifacts.

In an attempt to include a feature that combines both
spatial and temporal characteristics, we used the tempo-
ral coherence (TC) with its statistics [15]. We also ex-
tracted statistics from the histograms of oriented gradients



Table I: List of features and notations.

Feature Keywords
FD [9] meanFD

NFD [9] meanNFD

HoG [16] meanHoG, stdHoG, skewHoG, kurHoG, entrHoG

OF [13, 15] meanOFmag, stdOFmag, meanOFor, stdOFor

TC [15] meanTCmean, stdTCmean, meanTCstd, stdTCstd,
meanTCskew, stdTCskew, meanTCkur, stdTCkur,
meanTCentr, stdTCentr

GLCM [14, 15] meanGLCMcon, stdGLCMcon, meanGLCMcor,
stdGLCMcor, meanGLCMhom, stdGLCMhom,
meanGLCMenrg, stdGLCMenrg, meanGLCMentr,
stdGLCMentr

(HoG) [16], such as the mean, the standard deviation, the
skewness, the kurtosis and the entropy.

II-B. Feature Selection

In order to build a robust classifier and avoid overfitting,
we need to reduce the dimensionality of the feature space
by selecting a suitable subset. The feature selection process
takes place during the offline phase. It should be noted that
since many of the features are correlated, different subsets
of features can lead to the same results. However, in order
to achieve a low complexity solution we are interested in
finding the subset of features with the lowest cardinality
that achieves the best results. Therefore, a feature selection
and elimination process based on Random Forest (RF)
models, called Recursive Feature Elimination (RFE) [17],
is employed. RFs are a popular type of machine learning
technique that are robust even with high dimensional data
and that also capture both linear and non-linear relationships.
RFs use feature ranking techniques, which can be used for
feature selection. RFE uses feature ranking and iteratively se-
lects subsets of features with different cardinality, computes
the classification accuracy and returns the optimal feature
subset.

II-C. Frame Rate Selection Mechanism

Although the frame rate selection problem could be con-
sidered as a regression problem, it is treated as a classi-
fication problem. This is because the set of frame rates
specified in the standardisation activities is discrete and
consists of a few values. Therefore it is more efficient
to treat it as a classification problem. During the offline
phase and after the feature selection process, the training
of the classification model takes place based on the selected
features that are extracted from the data set used only for
training purposes. During the training phase several machine
learning techniques (mostly based on random forests and
decision trees) are tested and only the most accurate was
used in the online phase to make a perceptually-driven frame
rate recommendation.

Fig. 2: Examples of frames of the BVI-HFR video se-
quences [18], from left to right and top to bottom: typing,
water-splashing, bobble-head, cyclist, flowers, hamster, jog-
gers, sparkler, martial-arts.

III. EVALUATION OF THE PROPOSED METHOD
III-A. Description of the Data Set

We employ BVI-HFR [18] that contains 22 source se-
quences at four different frame rates {15, 30, 60, 120} fps.
As explained in [18], all sequences were natively captured
with a RED Epic-X video camera at 4K UHD spatial reso-
lution and a frame rate of 120 fps using a fully open (360◦)
shutter angle. These sequences were spatially downsampled
to HD resolution into YUV 4:2:0 format. All sequences
are 10 sec in duration without any shot transitions. The
three temporally down-sampled versions were generated by
averaging frames. A few examples of frames from the BVI-
HFR sequences are depicted in Fig. 2. Furthermore, due
to the fact that a fully open shutter angle was used for
the acquisition of the sequences, motion blur artifacts are
expected [5], especially in sequences with objects moving
relative to the camera, as for example the video sequences
cyclist and joggers in Fig. 2. This characteristic of the data
set is important for the feature selection process, since it
affects the spatio-temporal characteristics and thus the fea-
tures. It should be noted that we expect feature combinations
to vary with shutter angle and this is the topic of future work.

III-B. Forming the Ground Truth
Mackin et al. [18] have conducted an ANOVA on the

participants opinion scores in BVI-HFR comparing the video
sequences at 60 fps and 120 fps to test the significant
difference between the examined frame rates. The ANOVA
analysis showed that some sequences will have clear per-
ceptual quality benefits at 120 fps compared to 60 fps,
while other sequences have no significant difference. Based
on these results (see Table 2 in [18]), we set the ground
truth for the recommended frame rates of the BVI-HFR
sequences as reported in Table II. For 10 out of 22 BVI-
HFR video sequences the 60 fps is the subjectively selected
lowest frame rate (perceptually no significant difference from
the acquisition frame rate), while for the other 12 video
sequences the acquisition frame rate of 120 fps is selected. A



common characteristic of most of the sequences that benefit
from the highest available frame rate is that the camera is
moving.

Table II: Ground truth as derived from the ANOVA on the
subjective tests in [18].

Optimal
Frame Rate

Video Sequences

120 fps 1. books, 2. catch, 3. catch-track, 4. cyclist, 5.
golf-side, 6. hamster, 7. joggers, 8. library, 9. plasma,
10. pour, 11. typing, 12. water-splashing

60 fps 1. bobblehead, 2. bouncyball, 3. flowers, 4.
guitar-focus, 5. lamppost, 6. leaves-wall, 7.
martial-arts, 8. pond, 9. sparkler, 10. water-ripples

III-C. Test Setup
One of the limitations of the evaluation presented here

is that BVI-HFR is the only publicly available high frame
rate data set that has been subjectively evaluated and it is
rather small, comprising only 22 video sequences. These
sequences are uniform but of course cannot cover the full
space of spatio-temporal features. The size of the training
set and its coverage of the parameter space is critical for
the training of any machine learning classification model
in order to achieve good performance. To overcome this,
we use a five-fold cross-validation method with a random
selection of the folds. Particularly, in every iteration, 80%
of the data set (18 video sequences) is used for training and
20% (4 video sequences) for testing. After the fifth iteration,
the classification accuracy is averaged over all five iterations
and an overall confusion matrix is given.

III-D. Results and Discussion
Feature Selection: The results from the feature selection
are summarised in Fig. 3 and Fig. 4. Figure 3 illustrates the
ranking of the features using RFs with the Mean Decrease
Gini index [17]. As it can be seen, the features with the
higher ranking are those that capture the temporal behaviour,
namely the temporal standard deviation of the features. The
feature that is ranked with the highest score is stdGLCMhom.
It is interesting that the second feature is stdGLCMcon,
which is linearly correlated to stdGLCMhom. The third is
stdOFmag which is a better candidate feature since it is
not highly correlated to stdGLCMhom and could therefore
capture different characteristics.

Regarding the optimal minimum subset of features, the
results of the RFE method following a five-fold cross-
validation are depicted in Fig. 4. The plot shows the
performance of different subsets of features with different
cardinalities. As the solid marker indicates in the plot, the
suggested minimum number of features is two. The selected
features are stdGLCMhom and stdOFmag (as expected from
the ranking). stdGLCMhom denotes the temporal standard
deviation in the GLCM homogeneity, which describes how
diagonal the GLCM matrix is. The more blurry a sequence,
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Fig. 3: RF-based Feature Ranking using the Mean Decrease
Gini index.
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Table III: Confusion Matrix and AUC values of the pro-
posed frame rate selection method.

Using Bagged Predicted Frame Rate
Decision Trees 60 fps 120 fps AUC

Ground 60 fps 9 1 0.99

Truth 120 fps 0 12 0.99

the less diagonal the GLCM is. stdOFmag is related to the
motion blur and expresses the unnatural effect of change
between sharp and blurred frames. It is important to note
that the selected subset of features highly depends on the
acquisition parameters of the data set. For instance, had
the video sequences been captured with a different shutter
angle, different temporal artefacts might have been better
represented by different features.
Frame Rate Selection: Several different classification meth-
ods (with varying kernels) were employed such as K-Nearest
Neighbours, Support Vector Machines, Decision Trees, Ran-
dom Forests, etc. Most of the classification methods led to
similar results (over 90% classification accuracy and similar
confusion matrices), but here we present the results from the
method that achieved the highest accuracy using the subset
of the two selected spatio-temporal features. The proposed
frame rate selection method reached 95.5% accuracy by
using a five-fold cross-validation with Bagged Decision
Trees [17]. The confusion matrix along with the Area Under



the Curve (AUC) values per class of frame rate are reported
in Table III. As can be observed, the AUC values are very
high (maximum value equals to 1) and equal for the two
classes showing a high accuracy in the prediction per class.

From Table III, we point out two important observations
for the accuracy of the recommended frame rate. First, it
is important to note that for the critical class of the 120
fps, the accuracy of the selected frame rate is 100%, since
for all 12 sequences of the class the optimal frame rate is
predicted. The confusion matrix also shows that there is only
one misclassified video sequence from the class of the 60
fps; “flowers”. For this sequence, instead of selecting 60 fps,
the highest frame rate is predicted as the optimal. Although
this is not a correct frame rate selection (according to
subjective opinions), the decision will not adversely impact
the perceived video quality since the higher frame rate is
selected. The reasons behind this misclassification can be
explained by the content features of this sequence. Despite
the fact that the sequence is static, its spatial characteristics
have misled the classification model. The sequence has a
dense high frequency content that can be interpreted as
prone to temporal aliasing artifacts. Furthermore, for the
“flowers” sequence, a big part of the frame is unfocused,
causing blurriness. This means that the spatial features are
comparable to those of other sequences that have blurry areas
caused my motion artifacts.

IV. CONCLUSION
In this paper, we investigated the relationship between

high frame rate and spatio-temporal features in video. This
resulted in a two-phase method that can recommend an opti-
mal frame rate for a shot at which the perceived video quality
is not significantly different from that of the original video.
In the offline phase, the feature extraction and selection
processes take place as well as the training of the machine
learning model. In the online phase, the selected spatio-
temporal features are extracted from the test sequences and
the trained model is employed to recommend the lowest
available frame rate without any perceptual quality degra-
dation. The proposed method has the advantage of requiring
only the original video sequences to make a frame rate
recommendation. The results are promising with the benefit
of no perceptual quality degradation nevertheless the limited
available high frame rate video data set.

Future work includes the subjective evaluation of the
perceived video quality of new video sequences at various
frame rates for further validation of the proposed method.
Finally, the proposed method will be further extended to
make decisions on the adaptation of other video parameters
related to immersion (e.g. spatial resolution, shutter angle).
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