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Abstract: This article presents the design of the atmospheric control system of a launch vehicle
using the Linear Parameter Varying (LPV) synthesis technique. The main goal is to facilitate
the transfer of this technique, already well known for providing a systematic design approach
with reduced effort, to the European launcher industrial domain. In this paper, a grid-based
LPV approach is applied to the actual VEGA VV05 mission data for the joint design of the
rigid-body controller and the flexible bending filter in one single design procedure. The LPV
controller is analysed in terms of classical linear stability margins and evaluated and compared
with the VEGA baseline controller via Monte-Carlo analyses using a high-fidelity, nonlinear
simulator. The results show that the LPV controller provides satisfactory stability margins
and excellent performance and robustness characteristics while offering a more systematic and
methodological design approach.

Keywords: aerospace control, robust control

1. INTRODUCTION

The design of the atmospheric-phase control system of
a launch vehicle is a challenging control problem. The
controller must be able to provide stabilisation and cope
with different competing performance requirements in the
face of a wide range of system variations, environmental
perturbations and parameters dispersion. Furthermore,
the bending modes caused by the elastic behaviour of
the launch vehicle must be attenuated to ensure robust
stability. The VEGA launcher uses a classical controller
framework for the Thrust Vector Control (TVC) system
(Roux and Cruciani, 2008), which has been proved to
be successful in the eleven flights VEGA has performed
so far. Nonetheless, the need of providing higher robust-
ness/performance as well as reducing the control tuning
effort and cost prior each flight has led to investigate the
use of advanced and robust control techniques such as LPV
control design.

The LPV framework can be considered as an augmentation
of the standard H∞ approach, which is based on Linear
Time Invariant (LTI) models. A LPV model captures the
time-varying behaviour of the system based on a defined
scheduling parameter. This information is used by the
LPV design process to generate in a single step a scheduled
controller on the chosen parameter.
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This approach has been applied to numerous works in
aerospace applications (Balas, 2002; Marcos and Balas,
2004; Marcos and Bennani, 2009, 2011) and also including
launch vehicle control design (Ganet and Ducamp, 2010).

This article extends the work done in reference (Navarro-
Tapia et al., 2017), where a rigid-body non-rate bounded
LPV design was performed. In this case, a rate bounded
design is considered and the flexible-body dynamics of
the launch vehicle are also included. Traditionally, the
design of the rigid-body controller and bending filters are
addressed separately in an iterative fashion. As for the
bending filter design, different design approaches can be
found in the literature. For example, in reference Brito
et al. (2008) a Recursive Least Squares (RLS) method
is used to estimate the most suitable configuration for a
notch filter. Also, in references Orr (2013) and Bedrossian
et al. (2005) the bending filter design is formulated as a
constrained numerical optimization.

In this paper, the design of the rigid-body controller and
bending filters is unified in the same design process. By
proper choice of the frequency-domain design weighting
functions, the LPV synthesis approach can generate a LPV
controller, which performs rigid-body control and bending
stabilization.

The layout of the article is as follows: Section 2 describes
the LPV modeling approach for the VEGA launch vehi-
cle. Section 3 is dedicated to the LPV control synthesis
formulation. Finally, the LPV design is analysed and vali-
dated through Monte-Carlo nonlinear simulations. Finally,
conclusions are given in Section 5.



2. VEGA LAUNCH VEHICLE

VEGA launcher is the new European Small Launch Ve-
hicle developed under the responsibility of the European
Space Agency (ESA) and European Launch Vehicle (ELV
S.p.A.) as prime contractor. The launcher has successfully
performed eleven launches since its maiden flight on 13th

February 2012.

VEGA is a single-body launcher, which follows a four-stage
approach. All stages are controlled using a TVC system
and a roll and attitude control system (RACS) during the
propelled phases.

2.1 VEGA launcher model

The VEGA launcher model is described by the standard
six-degree-of-freedom equations of motion, which account
for the translational and rotational dynamics of the launch
vehicle. Due to axial symmetry of the vehicle about the roll
axis and assuming a low roll rate, the pitch and yaw axes
can be considered uncoupled and more importantly equal.
In this work, the VEGA launch vehicle will be examined
in the yaw plane (see Figure 1).
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Fig. 1. VEGA yaw-motion diagram

The launch vehicle equations are expressed as the sum
of forces and moments from rigid-body, flexible-body and
nozzle dynamics.

mz̈ = ΣF = Fr + Ff + Fn (1)

Jyyψ̈ = ΣM = Mr +Mf +Mn (2)

with m is the vehicle mass, Jyy is the lateral moment of

inertia, z̈ is the linear drift acceleration and ψ̈ the yaw
attitude acceleration.

The reader is referred to Navarro-Tapia et al. (2017) for
further details on the derivation of the rigid-body and
nozzle equations. As for the flexible-body motion, the
dynamics of the ith bending mode are represented by a
2nd order model with a natural frequency ωqi and a low
damping ratio ζqi.

All relevant dynamics are represented using the state-
space formulation shown in equation 3, where the rigid-
and flexible-body contributions are expressed separately.
The matrices of this state-space model are given in equa-
tion 4. The model uses four rigid-body states given by
the drift z, yaw attitude angle ψ and their derivatives

(xr =
[
z ż ψ ψ̇

]T
); two flexible-body states account-

ing for one flexible mode (xf = [q1 q̇1]
T

); three inputs

(uLV =
[
βψ β̈ψ vw

]T
), with βψ the nozzle deflection an-

gle and vw the wind velocity; and five outputs (yLV =[
Qα ψINS ψ̇INS zINS żINS

]T
), which include the load

performance indicator Qα (with Q the dynamic pressure
and α the angle of attack), and the inertial navigation
system (INS) measurements at node location for the four
states. [

ẋr

ẋf

]
=

[
Ar Arf
Afr Af

] [
xr

xf

]
+

[
Br
Bf

]
uLV

yLV = [Cr Cf ]

[
xr

xf

]
+DuLV (3)

A =




0 1 0 0 0 0
0 a1 a3 a2 azq 0
0 0 0 1 0 0
0 a4 a6 a5 aψq 0
0 0 0 0 0 1
0 0 0 0 aqq aqq̇




B =




0 0 0
ap k2 −a1

0 0 0
k1 k3 −a4

0 0 0
aqβ aqβ̈ 0




(4)

C =




0 Q
V Q 0 0 0

0 0 1 0 −Ψ
′
INS1

0
0 0 0 1 0 −Ψ

′
INS1

1 0 −lINS 0 ΨINS1 0
0 1 0 −lINS 0 ΨINS1


D =




0 0 −QV
0 0 0
0 0 0
0 0 0
0 0 0




In the above equations, V is the vehicle velocity, lINS
the distance from the center of gravity (CG) to INS,

and (ΨINS1, Ψ
′
INS1) are the rotational and translational

lengths of the first bending mode at INS respectively. The
rest of the rigid-body matrix coefficients can be found in
reference Navarro-Tapia et al. (2017). The flexible-body
coefficients are given by:

azq = T
mΨ

′
PV P 1; aψq = T

Jyy
(Ψ

′
PV P 1lCG + ΨPV P 1);

aqβ = −TΨPV P 1; aqβ̈ = InΨ
′
PV P 1 −mnlnΨPV P 1;

aqq = −ωq2
1; aqq̇ = −2ζq1ωq1;

(5)

where T is the thrust force, lCG the distance from CG to
the nozzle pivot point (PVP), mn the nozzle engine mass,
In the moment of inertia of the nozzle about PVP and ln
the distance from the nozzle CG to PVP. Numerical values
for the coefficients are not given due to confidentiality
reasons.

2.2 LPV modelling

In order to support the LPV control design, first an LPV
model of VEGA launcher is formulated by expressing the
system as a function of a set of time-varying scheduling
parameters θ(t) as shown in equation 6.



ẋ(t) = A[θ(t)]x(t) +B[θ(t)]uLV (t)

yLV (t) = C[θ(t)]x(t) +D[θ(t)]uLV (t) (6)

The values of θ(t) are defined within a region Ω and have

a known bound on the rate variation v ≤ θ̇ ≤ v. In
addition, note that the time variation of θ(t) is assumed
to be unknown but measurable in real time.

In this work, the VEGA LPV model is built using the re-
cently developed MATLAB toolbox LPVTools (Hjartarson
et al., 2015). In particular, a grid-based approach is em-
ployed using a set of 6 linearised plants throughout the
atmospheric phase (at t = [20 40 50 60 70 90]s). The time-
varying parameter used to build the LPV model is the
non-gravitational velocity (θ = VNG), which is the one
implemented in VEGA for gain scheduling purposes (Roux
and Cruciani, 2008). Figure 2 shows the time evolution
of VNG and its rate, the non-gravitational acceleration
(ANG), for the VEGA VV05 mission. Therefore, in this
case, the region Ω is defined by 6 points within the range
θ = [433− 2345] m/s with rate bound 17 < θ̇ < 40 m/s2.

Fig. 2. Non-gravitational velocity and acceleration for
VEGA VV05 flight

At each grid point, the LPV model is described by the
respective LTI model at that point. However, at flight
instants between the grid points, the LPV system is
linearly interpolated. In order to ensure that the LPV
model captures the main launcher dynamics, the frequency
responses of the LPV model (frozen at specific scheduling
variable instances) and the corresponding LTI models
at those instances are compared. This validation process
can be seen in Navarro-Tapia et al. (2017), where the
LPV model validation is illustrated at two different flight
instants.

3. LINEAR PARAMETER VARYING SYNTHESIS

This section describes the design of the VEGA atmosphe-
ric phase control system using the LPV synthesis tech-
nique.

3.1 Problem formulation

The control design problem is formulated as the genera-
lized plant interconnection shown in Figure 3 (shown in
the next page for clarity), where the main input-output
channels of the closed-loop system are scaled by frequency-
domain weighting functions represented by shaded blocks.

These weighting functions are shaped to specify the control
design objectives and its selection will be discussed in
Section 3.2.

The closed-loop interconnection is composed of 5 main
blocks: K(s, θ) is the LPV controller; GLV (s, θ) is the
VEGA LPV model; GTV C(s) and Gτ (s) represent the
actuator dynamics and the delays originated by the on-
board computers and actuators (more details about these
two models can be found in reference Simpĺıcio et al.
(2016)); and finally, Gw(s, θ) is a LPV wind turbulence
model that is included in the design process to improve
the wind disturbance rejection performance. This block is
described in detail in reference Navarro-Tapia et al. (2017).

The generalised plant interconnection can also be ex-
pressed as a standard H∞ formulation (see Figure 4),
where the closed-loop system is merged into a LPV ge-
neralized plant P (s, θ) which gathers commands, wind
disturbance and sensor noise inputs as exogenous inputs

(d =
[
dc

T dw dn
T
]T

) and error and performance varia-

bles as exogenous outputs (e =
[
eψe eINS

T eQα eu
]T

).
The controller output and inputs are represented by u and

the vector y =
[
ψe ψ̇e ze że

]T
. Finally, vectors e and d are

scaled by the weighting functions forming the augmented
generalised plant P̃ (s, θ). In this case, it has a total of 22
states for each of the grid points.

The LPV synthesis optimisation consists of finding the
controller K(s, θ) which minimises the induced L2 norm
of the cost function in equation 7 for all allowable time-
varying parameter trajectories. For a LTI plant, the in-
duced L2 norm is equivalent to the H∞ norm.

min
K(s,θ)

||Fl(P̃ (s, θ),K(s, θ))||L2 for
θ ∈ Ω

17 < θ̇ < 40 m/s2

(7)

where Fl denotes the lower linear fractional transformation
and represents the transfer function from d′ to e′.

The described LPV synthesis approach is also imple-
mented in the LPVTools toolbox (Hjartarson et al., 2015)
through the command lpvsyn.

3.2 Weighting function selection

Due to the wide dynamic variation of the mission, the
design objectives change along the atmospheric phase.
To cope with that, for each grid point a different set of
weighting functions is defined. And then, LPV models of
the weights Win and Wout are obtained using the same
grid-based approach used for the VEGA LPV modelling.

The design uses the weight setup rationale from reference
Navarro-Tapia et al. (2017). Next, the weighting functions
are briefly described. At the input side, Wc is composed
of constants which are defined to balance the command
channels. Ww represents the standard deviation of the
unitary white noise nw input for the wind disturbance
model Gw(s, θ) while Wn models the sensor noise of each
feedback measurement.

At the output side, WINS is a diagonal matrix which
bounds the classical yaw attitude complementary sensi-
tivity function (Tψ = ψINS/ψc) and also specifies the
lateral control requirements on the design process. Wψe

bounds the yaw sensitivity function (Sψ = ψe/ψc) while
WQα defines a constraint on the maximum α.
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′
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Fig. 3. Generalised plant interconnection for the VEGA LPV control design
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Fig. 4. Standard H∞ interconnection

Finally, in order to attenuate the 1st bending mode and
also reduce the control effort at high frequencies, the con-
trol output u is weighted with the inverse of equation 8 (see
also Figure 5). As it can be seen, W−1

u is composed of two
notch filters centered at the minimum and maximum ex-
pected dispersion of the 1st bending mode frequency due to
uncertainties (ωq1 = [ωq1, ωq1]), plus a second order low-

pass filter F (s, θ), which imposes an actuation bound at
low-frequencies and also provides an attenuation of -30dB
at high frequencies for the upper bending modes. This
double-notch filter configuration offers a good trade-off
between attenuation and phase response. It provides the
necessary design flexibility to attenuate the 1st bending
mode while not degrading so much the rigid-body margins
with phase delay.

W−1
u (s, θ)=

s2 + 0.5s+ (ωq1(θ))2

s2 + 70s+ (ωq1(θ))2

︸ ︷︷ ︸
Notch 1

s2 + 0.5s+ (ωq1(θ))2

s2 + 70s+ (ωq1(θ))2

︸ ︷︷ ︸
Notch 2

F (s, θ)

︸ ︷︷ ︸
Low-pass filter

(8)

3.3 LPV design

As a first step towards the LPV design, a linear H∞ design
is performed at each grid point. The main goal of the
design is to reduce the wind disturbance contribution in
the system. In terms of performance, a load-relief control
mode is employed about the maximum dynamic pressure
region (t=40,50,60s). For the rest of the grid points, the
design is focused on minimising the tracking error while
trying to keep the lateral deviations bounded. The H∞-
norm obtained by these linear designs are in the range
between 1.18 and 1.84.

-60

-40

-20

0

20

Frequency (rad/s)

M
a
g
n
it
u
d
e
(d
B
)

ωq1

ωq1

ωq1

Fig. 5. Bode magnitude plot of W−1
u (s, θ)

Using the interconnection and weighting functions pre-
viously presented, a rate bounded LPV design is performed
using VNG as time-varying parameter with the parameter
grid described in Section 2.2.

The control problem is formulated as a linear matrix
inequality (LMI) problem, which must be solved to ge-
nerate a controller. The constraints on the rate variation
of VNG are included via basis functions Xθ and Yθ. This
design is performed using quadratic basis functions such as
Xθ=X0 + X1θ + X2θ

2 and Yθ = Y0 + Y1θ + Y2θ
2. This

configuration yields a good compromise between perfor-
mance and complexity. For example, constant and linear
dependent basis functions provide very poor performance,
but more complex basis functions result in a very costly
computational process, also due to the high order of the
design plant.

Like the classical H∞ control design approach, the applied
LPV synthesis does not allow defining a specific controller
structure and the resulting controller has as many states
as those used in the design interconnection, which results
in a 22th order controller. The induced L2 norm of the
LPV controller is 2.13 (which is only a 15% increase with
respect to the highest linear H∞ design norm).



4. SIMULATIONS

This section analyses first the LPV design in terms of the
classical linear stability margins. Then, the LPV controller
is compared with the VEGA baseline controller using
ELV’s nonlinear, high-fidelity benchmark with a Monte-
Carlo campaign. It is highlighted that this campaign is
not as intensive as that underwent by the baseline in the
actual verification and validation (V&V) campaign prior
to deployment and launch. Nonetheless, this comparison
provides a fair and reliable assessment on the capability to
improve the design using more methodological tools and
methods.

4.1 Linear analysis

The stability margins are assessed in the frequency domain
through Nichols plots. To that end, the open-loop system
(controller, actuator and launch vehicle model) is re-
arranged and broken at the controller output in order to
reduce the system to a single-input single-output system.

Figure 6 shows the Nichols chart of the closed-loop system
at distinct flight instants. To perform this analysis, a
LTI controller is extracted from the LPV controller by
interpolating at every 10 seconds in the range t=[20,90]s.
Note that the rate of change of θ is fixed to the corres-
ponding value of ANG at each flight instant (see Figure
2). Looking at Figure 6, it can be seen the LPV design
provides satisfactory rigid-body margins while it yields
gain stabilisation for the first and upper bending modes.

Fig. 6. Nichols charts for LPV design at θ̇(t) = ANG(t)

The stability margins are also evaluated at the minimum
and maximum rate of change (θ̇ = 17,40 m/s2). It is
observed that the variation of the margins are less than
1% with respect to the case θ̇(t) = ANG(t), except at
t = 20s and t = 90s, where the differences are below 5%.

4.2 Nonlinear analysis

Finally, the LPV design is implemented and validated
in VEGACONTROL, which is a nonlinear 6 degrees-of-
freedom high-fidelity simulator tailored to simulate the
atmospheric phase for the VEGA launcher. This simulator
allows to scatter more than 125 different operational
parameters by means of normalised flags within the range
[-1,1], being the zero value the nominal condition.

To evaluate the performance and robustness, four Monte-
Carlo (MC) campaigns of 500 runs are performed (the

same four MC set-ups are applied to the LPV design
and the baseline controller used for the VEGA VV05
mission). For each run, the same nominal VEGA VV05
flight trajectory is used but the operational parameters
are all dispersed randomly. Each of the four MC campaign
uses the same scattering flags but a different wind profile
(among them, the estimated wind encountered in VEGA
VV05 mission). Note that the four wind profiles have been
extracted from real measurements and cover strong and
moderate wind gusts at different altitudes.

The baseline controller is implemented using the full
VEGA TVC control architecture shown in reference Roux
and Cruciani (2008), which comprises the rigid-body gains
plus a set of H filters with different purposes. Differently,
the VEGA LPV control structure is only composed of the
LPV controller, which is implemented using a Simulink
block provided in the LPVTools toolbox (Hjartarson et al.,
2015) and a derivative filter H2 to compute the attitude
error rate signal. For the LPV simulation, a simpler H2

filter based on a first order pseudo-derivative configuration
has been synthesized, discretized and implemented.

Safety envelope

Nominal baseline (wind VV05) MC baseline
Nominal LPV (wind VV05) MC LPV

Fig. 7. VEGACONTROL MC Qα analysis

Figure 7 shows the 2000 (=4*500) MC responses for
the aerodynamic load performance indicator Qα versus
Mach for the baseline controller and the LPV design.
In darker lines, the corresponding simulations using the
VEGA VV05 mission estimated wind and the nominal
dispersions are depicted for each controller to serve as
reference.

Comparing both plots, it can be seen that the LPV
controller reduces significantly the aerodynamic loads with
respect to the baseline Qα performance. It should be
remarked that this is not only achieved on a unique wind,
but using the four different wind profiles, which includes
the real wind from the flown VEGA VV05 mission. It
can also be observed that the baseline controller presents
several cases that violate the Qα safety envelope (around
Mach 1.25), while the LPV design manages to reduce this
performance indicator for that Mach point and throughout
the flight envelope.

In addition, a quantitative assessment of the robustness
of both designs for a set of performance indicators (such
as attitude error, drift, or aerodynamic load performance)
is performed. For each MC run, two different metrics



are computed for each indicator: the ∞-norm, which is
equivalent to the maximum value taken by the variable,
and the 2-norm, which accounts for the energy of the
assessed indicator. Figure 8 shows the average of those two
norms normalised with respect to the baseline controller.

Baseline ∞-norm LPV 2-norm LPV

Fig. 8. MC analysis in terms of ∞-norm and 2-norm

Comparing the baseline and the LPV design, it can be
seen that the latter offers improved performance for all
the indicator/norm pairs, except for the ∞-norm of the
actuation at lane B, which is only degraded 2% with
respect to the baseline. Nonetheless, the LPV controller
provides a reduction on the TVC consumption (the 2-norm
of the actuation is reduced 10% at lane A and 5% at lane
B). As for the Qα performance, as it was already observed
in Figure 7, the maximum peaks of the LPV controller are
reduced 22%. The tracking performance is also improved,
particularly over the y-axis. Finally, the drift and drift-
rate performance are significantly improved as it can be
seen at the left-side of Figure 8.

5. CONCLUSION

This paper presents a LPV control design for the VEGA
atmospheric-phase control system. The design is per-
formed using VNG, which is the actual VEGA scheduling
variable, as the scheduling parameter. In addition, infor-
mation about its rate variation (non-gravitational accele-
ration) is also considered in the design process.

A grid-based approach is used to obtain a LPV model of
VEGA launcher. The control problem is formulated as a
robust control design problem, where the requirements are
expressed in terms of weighting functions. The weighting
functions are also defined as grid-based LPV models.
This allows to cope with the large dynamical system
variations and tackle different design strategies at each
design grid point. In order to address the bending mode
attenuation, the control effort is weighted by a double
notch-filter, which results to be very effective providing
gain stabilisation for the first and upper bending modes.
Finally, note that the design framework is augmented
using a LPV wind turbulence Dryden filter to reduce the
performance degradation caused by the wind disturbance.

The LPV controller provides satisfactory linear stability
margins throughout the flight envelope. Furthermore, the
Monte-Carlo simulations exhibit that the LPV controller
provides further improved robust performance with res-
pect to the baseline controller. The same conclusion is

obtained using four different wind profiles, giving a mea-
sure of the wind disturbance rejection capabilities of this
design. In this sense, the wind generator Gw(s, θ) plays an
important role, allowing the optimisation to account for
real wind levels. Also note that the final implementation
of the LPV controller has 23 states, while the baseline
controller has 26 states.

It is important to remark that this synthesis approach
allows to design the rigid-body controller and the flexi-
ble bending filters in one single procedure. This can be
used to reduce the tuning and design effort required for
each mission. Indeed, this work aim was to highlight the
versatility and capabilities of the LPV robust control de-
sign methodologies, which are more systematic and offers
more analysis and design capabilities with respect to the
classical methods.
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