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Abstract 

This paper reviews a way of investigating health and welfare problems in captive wild animals (e.g. 

those in zoos, aviaries, aquaria or aquaculture systems) that has great potential, but to date has been 

little used: systematically comparing species with few or no health and welfare issues to those more 

prone to problems. Doing so empirically pinpoints species-typical welfare risk and protective factors 

(such as aspects of their natural behavioral biology): information which can then be used to help 

prevent or remedy problems by suggesting new ways to improve housing and husbandry, and by 

identifying species intrinsically best suited to captivity. We provide a detailed, step-by-step ‘how to’ 

guide for researchers interested in using these techniques, including guidance on how to statistically 
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control for the inherent similarities shared by related species: an important concern because simple, 

cross-species comparisons that do not do this may well fail to meet statistical assumptions of non-

independence. The few relevant studies that have investigated captive wild animals’ welfare problems 

using this method are described. Overall, such approaches reap value from the great number and 

diversity of species held in captivity (e.g. the many thousands of species held in zoos); can yield new 

insights from existing data and published results; render previously intractable welfare questions 

(such as “do birds need to fly?” or “do Carnivora need to hunt?”) amenable to study; and generate 

evidence-based principles for integrating animal welfare into collection planning. 
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Introduction 

Ensuring good animal health and welfare is part of the ethos of modern zoos (AZA, 2018; 

EAZA, 2013; Hill & Broom, 2009; WAZA, 2018). Indeed, the World Association of Zoos and 

Aquariums (WAZA) states: “zoos and aquariums have a responsibility to achieve high standards of 

animal welfare” (Mellor, Hunt, & Gusset, 2015). This reflects moral and legal obligations that 

animals kept by humans should be well cared for (e.g. GOV.UK, 2013; Hill & Broom, 2009; RSPCA, 

2018). But good welfare yields practical benefits too. For example, good animal welfare improves the 

public’s perception of captive facilities (e.g. Miller, 2012), and also helps zoos meet their aims of 

achieving self-sustaining populations (Hosey, Melfi, & Pankhurst, 2013) by ensuring that as many 

individuals as required successfully mate and produce viable progeny. This is because poor welfare 

can compromise libido, fertility, parental care, and survivorship (e.g. Bronson et al., 2007; Díez-León 

et al., 2013; Mason, Leipoldt, & de Jonge, 1995; Peng et al., 2007).  

Zoos keep a vast, diverse taxonomic array of animals. For terrestrial vertebrates alone, 

Species360 zoos hold nearly 4,000 species (Conde et al., 2013) and, therefore, species-specific, 

specialized research is often required to optimize husbandry. Zoo health and welfare researchers have 

three main research methods at their disposal, two of which are already commonplace. One is 

experimental. Here, the effects of experimentally providing a treatment are recorded, with subjects 

often acting as their own controls. Examples include studies of the effects of UV provision on broad-

snouted caiman (Caiman latirostris, Daudin, 1802) (Siroski, Poletta, Fernandez, Ortega, & Merchant, 

2012); of carotenoid supplementation on southern corroboree tadpoles (Pseudophryne corroboree, 

Moore, 1953) (Byrne & Silla, 2017); of dietary manipulations on lemurs (Britt, Cowlard, Baker, & 

Plowman, 2015); and myriad environmental enrichment studies (e.g. Schneider, Nogge, & Kolter, 

2014; Wallace, Kingston‐Jones, Ford, & Semple, 2013). Similar ‘pseudo-experimental’ research 

instead opportunistically studies the effects of non-experimental manipulations, such as the impacts of 
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visitor-generated noise (e.g. Quadros, Goulart, Passos, Vecci, & Young, 2014) and inter-zoo transfers 

(e.g. Schmid, Heistermann, Ganslosser, & Hodges, 2001; Snyder et al., 2012).  

The second common research approach is epidemiological. Here, unplanned, pre-existing 

variation in various aspects of husbandry or health care is used in a between-subject approach (e.g. 

comparing animals across different enclosures or zoos). Examples include: Blay and Côté (2001)’s 

survey of enclosure-related effects on breeding and mortality in Humboldt penguins (Spheniscus 

humboldti, Meyen, 1834); research into effects of birth origin on the survivorship of zoo elephants 

(Loxodonta africana, Blumenbach, 1797; Elephas maximus, Linnaeus, 1758: Clubb et al., 2009); and 

recent multi-zoo studies of housing- and husbandry-related risk factors for stereotypic behavior in 

polar bears (Ursus maritimus, Phipps, 1774) (Shepherdson, Lewis, Carlstead, Bauman & Perrin, 

2013) and elephants (Greco et al., 2016).  

The third research approach is the focus of our paper: exploring the correlates of variation 

across different species (where ‘species’, rather than individual, enclosure, or zoo, is the unit of 

replication). Like epidemiological approaches, this methodology exploits pre-existing variation in 

health and welfare problems: here, variation between different species. It then identifies what makes 

some species prone to welfare problems in captivity, but others – sometimes even closely related 

species – instead resilient and apparently protected from such issues. Conservation biologists working 

on in situ populations have long used this approach to reveal why species differ in extinction risk, 

vulnerability to human exploitation, invasiveness, and other conservation-related attributes (e.g. 

Cardillo et al., 2005; Fisher & Owens, 2004), and it has huge potential for advancing the 

understanding of zoo animal welfare (Clubb & Mason, 2004; Mason, 2010). However, this approach 

has been relatively little used to date, perhaps because it requires formal “phylogenetic comparative 

methods” (PCMs): statistical methods permitting correct statistical comparison across species (e.g. 

Cornwell & Nakagawa, 2017).   

The purpose of this review is therefore to provide an introduction to PCMs tailored for 

researchers interested in studying welfare problems in zoos, aquaria, and similar systems. First, we 
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first explain how, if used naïvely, research into between-species variation can fail to meet statistical 

assumptions of non-independence; why this matters; and how this problem can be solved statistically. 

We then describe the few studies to investigate captive wild animals’ welfare problems using PCMs. 

Next we provide a step-by-step ‘how to’ guide to using these techniques, including how to statistically 

control for e non-independence of related species. To end, we discuss how this approach for 

understanding and improving animal welfare can complement other methodologies, and how it may 

even have unique value, making previously intractable questions tractable and providing principles to 

assist collection planning. 

 

Why use “phylogenetic” comparative methods when 

comparing species? 

The principle behind comparing species to test welfare-related hypotheses is quite simple. If, 

for example, one wanted to test the hypothesis that being able to fly is important for avian welfare, 

one would collect data on welfare indicators (e.g. stereotypic behavior, egg hatchability, chick 

mortality, or the prevalence of opportunistic infections, cf. Appleby, Olsson, & Galindo, 2018; Hill & 

Broom, 2009; Mason & Veasey, 2010) from a range of species that differ in reliance on flight in the 

wild. If being able to fly is important for captive bird welfare, this makes the testable prediction that 

naturally flightless species should have the best captive welfare (because they have no flight behavior 

to be constrained); while species that fly a lot, for example relying on flight to feed or migrate, should 

have the poorest welfare, because naturally strong flying motivations are frustrated. This thus predicts 

a positive relationship between metrics of species-typical reliance on flight in nature and species-

typical captive welfare problems (see Fig. 1A).  

  However, the simple regression depicted in Fig. 1A is inappropriate. Recognized for decades 

(e.g. Clutton-Brock & Harvey, 1977), comparing species as though each is an independent datapoint 
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(a key assumption of most standard statistical tests) is problematic. This is because species are part of 

hierarchical structures (or ‘phylogenies’), and so typically cannot be considered independent from 

each other (Felsenstein, 1985; Grafen, 1989; Harvey & Rambaut, 1998; Martins & Garland, 1991; 

Purvis & Rambaut, 1995). Such shared ancestry often results in non-independence, or 

pseudoreplication, because closely related species are likely to resemble each other, sharing similar 

evolved and non-evolved attributes (Harvey & Pagel, 1991). This similarity based on relatedness is 

termed ‘phylogenetic signal’ (Blomberg, Garland, & Ives, 2003; Grafen, 1989; Pagel, 1999). If this is 

ignored and standard statistical tests used, species are incorrectly assumed to be statistically 

independent (Diaz-Uriarte & Garland, 1996; though see: Revell, 2010), and phylogeny may confound 

the analysis. 

***FIGURE 1 HERE PLEASE*** 

Why this matters is illustrated by the (fictitious) data in Fig. 1B. This reveals that the data 

shown in Fig. 1A come from two separate groups of closely related species which cluster together, 

effectively reducing our eight (pseudoreplicative) datapoints to just two groupings of similar birds. 

The flamingo species are all intrinsically similar to one another in their low reliance on flight, but also 

in being large-bodied, aquatic filter-feeders, dramatic-looking to human visitors, etc. Likewise, the 

swallows are all intrinsically similar to each other in their heavy reliance on flight, but also in being 

small-bodied, insectivorous, duller in appearance to humans, etc. Ignoring phylogeny thus makes it 

impossible to validly assess whether there is a correlation between daily time spent flying and signs of 

poor welfare, because any of the attributes that flamingos share with one another (and do not share 

with swallows) might equally explain the apparent relationship (cf. Cuthill, 2005). Our fictitious 

example thus reveals the regression in Fig. 1A to be a Type I error: there is no convincing evidence 

that constraints on flying predict poor welfare, because within each group, the relatively greater fliers 

do not have the poorest welfare. Thus after parsing out phylogenetic relatedness, different patterns can 

emerge from species data; and when they do, these are the ones that test hypotheses validly.  
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But how to parse out such relatedness statistically? Felsenstein (1985)’s seminal paper was 

the first to show how to statistically solve this problem by incorporating phylogenetic relationships 

between species into analyses. This paper presented a method called ‘phylogenetic independent 

contrasts’ (see “Data analysis and interpretation”, below, for details), and thus ‘phylogenetic 

comparative methods’ (PCMs) were born. PCMs have since undergone rapid development, with 

various options now available, such ‘phylogenetic generalized least squares regressions’ (Grafen, 

1989) (see “Data analysis and interpretation”, below, for details).  Are PCMs essential when 

comparing species to test hypotheses? The simple answer is yes, to avoid pseudoreplication. PCMs 

have thus robustly withstood criticism from some (e.g. Björklund, 1997; Westoby, Leishman, & Lord, 

1995). Furthermore, not using PCMs to analyze species data can alter results. Simulation studies 

repeatedly demonstrate that PCMs out-perform standard statistical tests (e.g. Revell, 2010), reducing 

both Type I (e.g. Diaz-Uriarte & Garland, 1996) and Type II error rates, so increasing statistical 

power (Arnold, Matthews, & Nunn, 2010). PCMs are therefore widely accepted as the correct way to 

analyze species data when testing hypotheses (with Felsenstein’s seminal paper since accruing over 

5,500 citations, Web of Science [WoS] accessed 03/20/18), and are mainstream research tools for 

evolutionary biologists and behavioral ecologists (reviewed by Cornwell & Nakagawa, 2017; 

Freckleton, 2009). 

 

PCMs and welfare issues in captive wild animals: an 

overview of past research 

PCMs have started to be used to investigate captive wild animal welfare issues, testing 

hypotheses about risk factors by correlating species-typical attributes (typically aspects of wild 

behavior, biology or ecology: candidate predictor variables) with measures of species-typical welfare 
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(e.g. captive animals’ infant mortality rates or behavioral problems: outcome variables). We 

summarize these studies next. 

 Focusing on captive Carnivora, Clubb and Mason (2003, 2007) collated data on stereotypic 

behavior across 33 species. After tests for serial independence to assess similarity between pairs of 

species (Abouheif, 1999), the authors used phylogenetic independent contrasts (PICs) to test two 

broad hypotheses. One was that wide-ranging species are at risk of stereotypic route-tracing (an idea 

proposed decades earlier by canid researchers [Forthman-Quick, 1984]); the other, that restricting 

hunting compromises well-being. Their analyses revealed that traveling large distances in the wild, 

and being both large-bodied and wide-ranging, were risk factors for route-tracing and elevated captive 

infant mortality (CIM). Reliance on hunting, in contrast, seemed not to predict poor captive welfare. 

The authors suggested that these results could inform collection planning: “it might be sensible – both 

more cost-effective and humane – for zoos to focus on those carnivores inherently best suited to 

current, or at least readily achievable, enclosure sizes and enrichment/husbandry regimes. Wide-

ranging species instead could be conserved in specialized breeding centres … or instead via in situ 

approaches” (Clubb & Mason 2007).  They also proposed that mimicking aspects of wide-ranging 

Carnivores’ lives could enhance well-being via “substantial increases in space; greater numbers of 

viewpoints; …more spatial and/or stimulus complexity and less day-to-day environmental 

predictability — combined (importantly) with the ability of the animals to control their own access to 

such increased variability; and more scope to approach or retreat from the public, conspecifics, and 

other stimuli, at will”.  

Capitalizing on new PIC software, a larger database, and an updated phylogeny, Kroshko et 

al. (2016) replicated this work. They confirmed the relationship between route-tracing and large daily 

travel distances/home range sizes, but found the latter no longer depended on body size, and that the 

daily travel distance effect was a mere by-product of home range size. This suggests the relationship 

between home range size and route-tracing is not mediated by active locomotion, leading the authors 

to re-emphasize the likely value of husbandry enhancements designed to emulate the variety and 
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control wide-ranging animals likely experience in the wild. Long chase distances also now tentatively 

emerged as a risk factor for route-tracing, albeit from a sample size of just five species. CIM, 

however, was no longer predicted by any aspect of wild biology, leaving the great variation in 

species-typical Carnivora CIM “an urgent topic for future work, one best addressed using both a 

broader range of species-typical potential risk factors and [ZIMS] data on infant mortality”. Partly to 

look at this, species differences in Carnivora welfare are now being re-investigated, incorporating six 

more years of data and applying a newer PCM approach, phylogenetic generalized least squares 

(PGLS) regressions (Bandeli, Mellor, & Mason, 2017; Mellor, Mendl, Bandeli, Cuthill, & Mason, 

2017). 

Next to use PCMs was a Swiss team who, with collaborators, investigated patterns in the 

mortality rates of zoo-housed Ruminants. Their main PCM study applied PGLS to 78 Ruminantia 

species (Müller et al., 2011). Each species’ average captive life expectancy, expressed as a proportion 

of its maximum recorded life expectancy (‘relative life expectancy’: rLE) was used to assess 

husbandry success (Müller et al., 2011; Müller, Lackey, Streich, Hatt, & Clauss, 2010). Several 

hypotheses were tested about risk and protective factors for rLE, the authors arguing that results could 

help to optimize husbandry and identify types of species for which “a higher husbandry success can 

more easily be achieved”. In later complementary studies, senescence rates (albeit combining non-

PCM with PCM [PGLS] analyses) (Lemaître, Gaillard, Lackey, Clauss, & Müller, 2013) and seasonal 

mortality patterns (Carisch et al. 2017) were also examined for many of the same species.  

One important hypothesis tested was that the intensive population management related to 

having a studbook would enhance rLE. This was supported: studbook-managed species had 

significantly longer rLEs than non-studbook species (Müller et al. 2011). Turning to intrinsic aspects 

of biology, two plausible hypotheses were rejected. One rejected hypothesis was related to natural 

social structure: that “…density-dependent influences on LE (social stress, contact with pathogens) 

should have a higher impact in solitary and pair-living species, which are less adapted to crowded 

conditions (as in zoos)”. Their second non-supported hypothesis was that, because most relevant zoos 
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were located in temperate regions, tropical species would have reduced rLE. Results instead 

“indicat[ed] that climatic stress in (sub-)tropic species that are kept in the temperate zone does … not 

play an important role”. Subsequently, Carisch et al. (2017) similarly found that the latitude of a 

Ruminant species’ origin (across 88 species) did not appear to predict over-winter mortality rates in 

zoos.  

The fourth hypothesis tested by Müller et al. (2011) was supported. Mating system affected 

rLE: males from polygynous species were found to have reduced rLEs. Carisch et al. (2017) similarly 

found some apparent effects of mating system on seasonal mortality at the onset of rut in zoo-housed 

cervids of both sexes, leading them to advise that “husbandry measures aimed at protecting females 

from rutting males are important, especially in cervids”.  

Finally, a fifth, dietary-related hypothesis was also supported, inspired by a previous non-

PCM result from deer suggesting that grazing species have longer rLEs in zoos than browsing species 

(Müller et al., 2010). In Müller et al. (2011) the same pattern emerged for female Ruminants: 

naturally grazing species were longer-lived in captivity, thus corroborating “the subjective experience 

that browsers demonstrate a higher nutrition-related mortality in captivity and are more challenging 

to keep when compared with grazing species, owing to the complex logistics of providing browse”. 

Lemaître et al. (2013) subsequently analyzed senescence rates in a subset of 22 species for which age-

specific wild mortality data were also available. Typically, aging rates were lower in zoos than in the 

wild, but this difference was most marked for grazers (of both sexes). These authors concluded “this 

indicates that animals in zoos perform the better compared to free-ranging conditions the more they 

are grazers”, and emphasized again “the difficulty of keeping browser species in captivity”. 

Our final examples come from studies on Primates and the sole avian PCM study. Across 24 

primate species, Pomerantz, Meiri, & Terkel (2013) used PGLS to reveal that, somewhat similar to 

the first Carnivora study (Clubb & Mason, 2003; 2007), long wild daily travel distances tended to 

predict stereotypic route-tracing. Additionally, large natural group sizes predicted another abnormal 
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behaviour, hair-pulling. These researchers argued that such research “facilitates detection of the more 

‘susceptible’ species, as well as enabling the decision-makers to focus on specific environmental 

factors in order to improve the primates’ psychological welfare.”  Specific husbandry 

recommendations were for activity levels to be increased (for instance via “incorporating modular 

structures within the enclosure, allowing for easy and frequent change of the environment”), along 

with the creation of “more opportunities for positive social interactions for the animals. Where 

possible, it is recommended to house groups in numbers similar to those reported in the wild.” 

Lastly, McDonald Kinkaid (2015) applied PICs to 201 Psittaciforme species kept by 

aviculturalists or as pets (work currently being replicated using PGLS and an updated phylogeny). 

Unlike the Primate study, she found no effect of sociality; however, naturally effortful modes of 

foraging and relatively large brains (a proxy for intelligence), were both risk factors for stereotypic 

behavior in captive pet parrots. Furthermore, naturally effortful modes of foraging also predicted 

reduced captive reproductive success, as did being classed as ‘endangered’, with a trend for similar 

effects of brain size. The author concluded: “We can use this information to make informed 

predictions about the suitability for captivity of different species … my findings suggest that the two 

best predictors of this should be high natural foraging effort and large relative brain volume, such 

that species characterized by either one (or both) of these risk factors are intrinsically predisposed to 

adjust relatively poorly to captive conditions”. In terms of husbandry improvements, McDonald 

Kinkaid recommended supplying more naturalistic diets, and enrichment opportunities to learn and 

problem solve. She added, “it would now be useful to perform comparative analyses for other 

similarly large-brained or relatively intelligent taxa – like corvids, primates, or cetaceans – in order 

to determine whether some of the same biological risk factors identified for parrots also predict 

relatively poor welfare among those groups”. This highlights some of the exciting research questions 

that PCMs are uniquely able to tackle (and we suggest more in the next section).  
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Using PCMs to test welfare-relevant hypotheses: a step-

by-step guide  

This section provides a ‘how to’ guide for future welfare studies, based on the studies just described, 

other relevant studies using zoo data, and PCM studies from other fields.  

Hypothesis generation 

As with any research, the first step is specifying the hypotheses and their predictions, since 

these determine which precise data are required (e.g. which specific species-level variables need 

quantifying). This might involve devising new hypotheses by reading about the species and welfare 

problems of interest, or instead identifying pre-existing hypotheses from the literature. Table 1 lists 

several published, but as yet untested, research ideas and their predictions: all ideal topics for future 

PCM studies.  

Some specific hypotheses may arise from speculating about behavioral needs (like our ‘does 

restricting flight affect bird welfare?’ example earlier; or the question, ‘do carnivores need to hunt?’: 

see Table 1). Others may be inspired by patterns of unexplained variation in species-typical welfare. 

As we saw above, for instance, it was apparent differences between species that led to the testable 

hypotheses that being wide-ranging is a risk factor for route-tracing, and that being a browser predicts 

relatively short captive lifespans (with similar species differences generating the hypothesis that prey 

species hide their pain: see Table 1). In other cases, observed variation in captive welfare may prompt 

more open-ended research, with an array of competing hypotheses being tested. Why captive 

Carnivores show such variation in captive infant mortality is one case in point, potential predictors 

being any factor that could stress Carnivore mothers, and /or make infants more or less vulnerable to 

premature death.  

***TABLE 1 HERE PLEASE – UNTESTED HYPOTHESES*** 
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Data collection when using PCMs: general considerations 

A single summary statistic is usually calculated, one per species, for each variable, and 

including as many species as possible maximizes power. Blomberg et al. (2003), for example, argue 

that at least 20 species are required for acceptable power and Type I error rates. Examples of species-

level summary statistics might include (depending on the hypotheses under test): median home range 

size, whether or not a prey species, and/or median enclosure size (as potential predictor variables); 

and typical life expectancy, reproductive output, and /or median time budget spent on stereotypic 

behavior (as potential outcome variables). Where appropriate, median values are recommended over 

means, to reduce effects of outliers and skew in the raw data (Gittleman, 1989).  

  A key assumption of species-level summary statistics is that they do represent species-typical 

norms (Ives, Midford, & Garland, 2007): thus assuming that either intra-specific (within species) 

variation is absent (Garamszegi, 2014; Ives et al., 2007), or the population has been sampled well 

enough that intra-specific variation is well-captured in the data (e.g. Garamszegi, 2014). However, 

intra-specific variability can sometimes be rather large (e.g. for behavioral traits), and biases can be 

introduced by, for instance, data collection differences, sub-population differences, and small and/or 

unequal sample sizes between species (Garamszegi & Møller, 2010). Practical ways to minimize such 

effects of intra-specific variation are to use data from as many individuals from as many locations as 

feasible; and/or to impose a minimum sample size of individuals per species (on determining suitable 

intra-specific sample sizes and for analyses overall see: Garamszegi, 2014). For example, in the 

Kroshko et al. (2016) and McDonald Kinkaid (2015) studies, for inclusion each species had to be 

represented by ≥5 individuals; while in Müller et al. (2010; 2011) the minimum was 45. Another 

possible solution, though not always feasible, is to statistically account for intra-specific variation and 

sampling error (Symonds & Blomberg, 2014), which then improves the estimation of parameters 

when models are run (Ives et al., 2007) – an approach touched on further below. 
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Next we describe potential sources of and methods for collecting data on health and welfare 

outcome variables, outlining the benefits and limitations of each. After this, we turn to potential 

predictor variables. 

 

Outcome variable: data collection 

Accessing zoo-generated datasets, e.g. ZIMS and studbooks 

CIM values in the Carnivora studies (Clubb & Mason, 2003, 2007; Kroshko et al., 2016) were 

extracted from International Zoo Yearbooks, which published infant mortality reports. This practice 

stopped in 2000, however, making this data source increasingly historical. In collaboration with 

individual zoos, veterinary records can also be useful sources of data relating to health and disease 

(e.g. Miller, Hogan, & Meehan, 2016). For longevity and mortality data, studbooks (in collaboration 

with species’ studbook keepers) are also potentially useful, though not used in PCM research as yet. 

An alternative, up-to-date, and far more extensive source of data is the Zoological Information 

Management System (ZIMS), a worldwide member zoo database. Research requests can be made to 

“Species 360” (formerly the International Species Information System [ISIS]) for ZIMS husbandry- 

or veterinary-related data and studbook information on individuals from many thousands of species 

(Species360, 2018). ZIMS data can potentially provide impressive statistical power, and also widely 

samples global populations. For example, access to ZIMS data allowed Müller et al. (2011), to create 

a dataset of 166,901 individuals across 78 species for their Ruminantia study. However, if planning to 

use ZIMS data, one practical consideration is that applications for access can take up to a year to be 

processed, and may be denied (e.g. Kroshko, 2015; McDonald Kinkaid, 2015). For relatively short-

term studies, such as PhD projects, relying on such data is therefore unwise.   

Whatever the source, data must always be checked for errors. In ZIMS, for example, 

husbandry and veterinary data quality and type can vary between collections; birth and death records 
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can be missing; and animals may be lost to audit when moved between institutions (e.g. Mace & 

Pelletier, 2007; L. Rowden, 2015 pers. comm.).  Therefore, data should be checked for obvious errors 

and internal consistency, and ideally cross-referenced with other sources and/or validated by 

contacting zoos holding individuals with dubious entries (e.g. Clubb et al., 2009). Questionable data 

that cannot be corrected by such means should be excluded.  

Surveying animal carers, e.g. keeping staff 

Surveys can cheaply, efficiently gather data on many animals from many collections (cf. 

Lewis, Shepherdson, Owens, & Keele, 2010; Munson, 1993): ideal for PCM studies. For example, 

using an online survey of pet owners, McDonald Kinkaid (2015) quite rapidly collected data on 

stereotypic behavior and medical conditions for over 1,400 individual pet parrots from 74 species 

worldwide. Surveys can also capture a large sample of the overall population, making them good for 

assessing prevalence (% affected animals), since this measure only requires simple yes/no answers 

from respondents. However, time demands on animal care staff must be considered: zoo surveys, for 

instance, should be designed thoughtfully to not over-burden staff time and enhance chances of good 

return rates (see: Plowman, Hosey, & Stevenson, 2006). Surveys are less effective for quantitative 

data like behavioral time-budgets, since it is unrealistic to expect participants to make lengthy 

behavioral observations. Noise is also likely to affect survey data due to idiosyncratic responses from 

different people, although this can be mitigated by surveying numerous species and building up large 

sample sizes for each one.  

Extracting data from published research 

Using ready-published data is efficient, and can also allow coverage of diverse collections 

worldwide. The Carnivora studies extracted observational data on stereotypic behavior from 173 

studies using this method (Clubb &  Mason, 2003, 2007; Kroshko et al., 2016), yielding data on over 

1,300 individuals across 51 species from collections worldwide. For each species, values were 

summarized across individuals to calculate a single statistic: median % observations spent 
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stereotyping by affected animals. McDonald Kinkaid (2015) likewise used publications to obtain 

Psittaciforme reproduction data: captive hatch rates for 122 species from North America and, using an 

expert technical report, the relative breeding difficulty of 141 species.  

This approach has limitations, however. If combining multiple sources, data will not be 

standardized (cf. Garamszegi & Møller, 2010), necessitating quality checks. For instance, for 

behavioral data, included studies should use consistent data collection methods, and arguably focus on 

stably housed subjects (since recent changes in e.g., social grouping or enrichment, may affect how 

representative behavioral data are). The resulting dataset will likely contain gaps, with some species 

being well-represented but others under-sampled or even absent, sometimes because of study biases 

(cf. Melfi, 2009). Furthermore, in Carnivora (and perhaps other taxa), research is skewed towards 

stereotypic over non-stereotypic individuals, especially in enrichment studies (Kroshko, 2015). This 

biased sampling means that subjects are not a random sample of the overall population, preventing 

accurate estimates of prevalence and/or true population means. 

Collecting data by direct observation 

Direct observation is ideal for collecting accurate, standardized behavioral data. Furthermore, 

for stereotypic behavior, both prevalence and average time budgets can be calculated, since 

populations can be sampled at random, without biases towards stereotypers. But this data quality 

comes at a price: direct observation is time-consuming and financially costly, potentially limiting a 

study’s scope. Thus Pomerantz et al. (2013) only assessed 214 individuals (albeit representing 24 

species), from just six Israeli zoos. This may introduce noise from individual and site idiosyncrasies 

and limit their findings’ generalizability. A potential solution to this problem, if applied with care, 

might be to use zoo visitors (cf. e.g. Williams, Porter, Hart, & Goodenough, 2012) to collect data 

across multiple sites and even countries: an approach not yet used in PCM research. 

Outcome variable: sources of potential confounds 
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As mentioned above, outcome variable data can be affected by several sources of noise (non-

systematic error), and by biases towards certain species and individuals. Two potential sources of 

systematic confound can further influence welfare-related variables: extrinsic effects of captive 

management, and intrinsic differences in pace of life and reproductive strategy. 

Extrinsic influences of captive management can clearly affect outcome variables (illustrated 

in the studbook effects on Ruminant lifespan, for example). In some cases this might add noise to 

data. For example, Müller et al. (2010; 2011) recognised that a potential confound specific to their 

Ruminata studies was the selective culling of surplus animals which, if unaccounted for, would 

artificially reduce species’ rLEs. This was handled during data processing by excluding animals that 

died within two years of birth (so potentially culled). In other cases, management effects may, if they 

vary systematically across species, potentially create artefactual relationships between intrinsic 

species-typical attributes and outcome variables (thus Type I errors), or mask real relationships 

(causing Type II errors). To illustrate with Kroshko et al. (2016)’s Carnivora study, typical housing 

conditions were found to covary with annual home range size: naturally widely ranging species were 

often kept in enclosures with little cover. How can one ensure that the home range effect on route-

tracing really results from home range size and not this correlated aspect of husbandry? The answer is 

to include such confounding variables as statistical controls (as these authors did: home range size 

really does predict route-tracing, even after controlling for the amount of cover: Kroshko et al., 2016). 

 Considering extrinsic effects of captive management during early stages of the research 

allows appropriate husbandry and environmental data to be collected, or gleaned from publications or 

survey questions. One way to then check for potential confounds (cf. Kroshko et al., 2016) is to 

correlate each husbandry/environmental variable against each species-typical wild attribute (using 

appropriate PCM tests). Should significant relationships emerge, such confounds can be controlled for 

by inclusion in subsequent models. This method is particularly useful for datasets with missing values 

for different variables. Another approach (cf. Pomerantz et al., 2013) is to include husbandry variables 
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into all hypothesis-testing models (though unless the dataset is complete, this will cause the loss of 

species with incomplete data).  

The second major potential source of confound is intrinsic variation in pace of life and 

reproductive strategy. For example, simply using infant mortality (IM) or reproductive rate as welfare 

indicators would be naïve since these can reflect intrinsic, evolved differences between species in 

reproductive strategy (e.g. whether infants are altricial). Using maximum recorded captive lifespan as 

an outcome variable would also be inappropriate, as lifespan is intrinsically related to body mass 

(smaller-bodied species tending to have shorter lives than larger species, sensu Hill, 1950). Therefore, 

for life history-related outcome variables, evolved intrinsic differences between species must be 

understood and factored in before inferring any effects of captivity. For example, when Clubb and 

Mason (2003, 2007) found that natural home range sizes predicted CIM, they then gained data on 

wild IMs to check that wide rangers did not just naturally have high IMs. Similarly, McDonald 

Kinkaid (2015) corrected parrots’ hatch rates in captivity with wild rates, to control for intrinsic 

species differences in reproductive rate. Finally, in Müller et al. (2010) and Müller et al. (2011)’s 

Ruminant work, as we saw, intrinsic life expectancy was controlled for by calculating the ratio of 

mean lifespan in captivity to the maximum ever recorded for each species. Response to captivity per 

se could then validly be inferred from this derived ‘rLE’ outcome variable. 

 

Predictor variables: data collection  

All the PCM studies described above used published sources (e.g. journals) to obtain values 

for species-typical values for potential predictor variables: a cost-effective, although quite time-

consuming, method. Just as for outcome variables, calculated species-typical values are likely to be 

more accurate if gleaned from many sources; and researchers should ensure these meet quality criteria 

based on, e.g., techniques used, representativeness of the wild populations sampled, data collection 
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time periods, etc. (see e.g. Clubb & Mason, 2007). Research effort (estimated based on the number of 

papers published per species) can also be controlled for by including it in statistical models if a 

potential confound (e.g. for estimates of species-typical innovation rates, see McDonald Kinkaid 

2015, following Overington, Morand-Ferron, Boogert, & Lefebvre, 2009). Once quality data have 

been compiled, values can then be appropriately summarized to yield a single summary value per 

species. Note that it is most efficient to collect predictor variable data after the subset of species with 

good quality outcome data has been identified. However, the collation of predictor variable data 

should ideally be conducted blind to outcome variable values, to avoid risks of bias.  

Textbooks can also yield values for species-typical attributes (cf. McDonald Kinkaid, 2015; 

Müller et al., 2011), as can books and theses from specialist university libraries. Experts can also be 

valid sources: they may have unpublished information or be able to provide estimates of species-

typical attributes. Furthermore, for some taxa there are freely available databases collating species-

typical wild ecology and behavior from many studies, e.g. Mammalian Species accounts (American 

Society of Mammalogists, 2017) and PanTHERIA (Jones et al., 2009) (see also Ecological Archives: 

ESA, 2016). Both Kroshko et al. (2016) and Pomerantz et al. (2013) took advantage of such sources. 

Using these databases is highly time-saving, although inclusion criteria and sources used should be 

carefully assessed to judge data quality (Bielby et al., 2007; Lemaître, Müller, & Clauss, 2014).   

In some instances, researchers may be unable to find the precise predictor variable data 

needed to test a hypothesis. For example, despite flight and travel distances being plausible potential 

risk factors for poor parrot welfare, McDonald Kinkaid (2015) could not find these data. Quantitative 

data on daily foraging activity budgets of wild Psittaciformes were also scarce. However, based on 

characteristics of the main food in typical wild diets, and consulting with experts, McDonald Kinkaid 

(2015) devised a simple, broad categorical descriptor: relatively ‘high’ or ‘low’ natural foraging 

effort, allowing her to investigate relationships between relatively effortful natural foraging and 

captive welfare. Generating valid predictor variables may thus require some lateral thinking. Finally, 

while data on species-typical behavior and biology are the typical predictors, one study used the 
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discrepancies between wild and captive norms. Pomerantz et al. (2013) collected data on average 

primate group sizes in zoos and those in the wild to create a ‘group size ratio’ (captive/wild) predictor. 

This quantified the degree of mismatch between wild and captive conditions for each species; the 

greater the mismatch (i.e. smaller values), the more hair-pulling was observed (see Fig. 2 in 

Pomerantz et al., 2013).  This could be a useful approach for future welfare PCM researchers to 

consider. 

Predictor variables: sources of potential confounds 

Correlated aspects of species’ biology are the main sources of confound for predictor 

variables. One relevant example is body size, which co-varies with many aspects of most species’ life-

histories and biology (e.g. Gittleman, 1986). In Carnivora, for example, body size co-varied with 

home range size (larger-bodied species having larger home ranges). Had analyses naïvely been 

performed to test the predictive power of home range size alone, body size per se could have 

explained the apparent range size effect. Here, this was managed by including body size in home 

range size models as a covariate, allowing assessment of home range size effects independently of 

body size (Clubb & Mason, 2003, 2007; Kroshko et al., 2016). Another example is daily distance 

traveled and home range size, which both emerged as correlated risk factors for route-tracing. 

Kroshko et al. (2016) disentangled their effects by including both predictors into the same model, so 

revealing the apparent daily distance traveled effect to be merely a ‘side-effect’ of home range size. 

Ongoing research is now investigating further whether other natural correlates of Carnivora home 

range (such as metabolic rate) are the true predictors of route-tracing (Bandeli et al., 2017).  

To avoid correlated aspects of species’ biology acting as confounds, reading about your 

species of interest is thus essential, as this pre-warns of interrelated aspects of species’ biology. 

Checking for collinearity between predictor variables within your dataset is also good practice, 

including any correlates as covariates in final models where appropriate. Another solution might be to 

run so-called “phylogenetic path analyses” (Gonzalez-Voyer & Von Hardenberg, 2014; Hardenberg 

& Gonzalez-Voyer, 2013; van der Bijl, 2017), a topic we outline in Table 2.  
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Data analysis and interpretation  

Creating the dataset 

Microsoft Excel is a good software package for collating data, calculating species’ summary 

statistics, and constructing final comparative datasets (with summary statistics for outcome and 

predictor variable(s) arranged in columns, and each species in its own row). Microsoft Access is also 

useful (though more challenging to use) for constructing complex databases, especially for parsing out 

different types of data from various sources. From these spreadsheets or databases, data can then 

easily be transferred into statistical packages such as R, Mesquite, etc. (see Table 2). Careful data 

entry checks for errors and outliers should be made throughout all calculations and the final dataset 

construction.   

Sourcing phylogenetic trees 

All PCM studies require a phylogenetic ‘tree’ for the species of interest (e.g. Cornwell & 

Nakagawa, 2017). Effectively a branching diagram depicting hypothesized relationships among 

species (Baum, 2008) (see Fig. 2), this sums up how closely related – and thus potentially non-

independent – the species are. For analyses, trees usually need to be in NEXUS or Newick formats, 

which are readable for PCM software (Felsenstein et al., 1990; Maddison, Swofford, & Maddison, 

1997). For most taxa, tree files can be sourced by searching ecological and evolutionary literature, and 

generally speaking, newer trees are preferable since they reflect the most up-to-date knowledge on 

relationships between taxa (Arnold et al., 2010). The structure of the tree, and thus relatedness of the 

species, is then factored in during PCM analyses (as discussed below).  

****FIGURE 2 HERE PLEASE: TREE*** 

               Trees only display hypothesized relationships between species: when reconstructing historic 

events, some uncertainty surrounds the precise patterns and/or timings of phylogenetic relationships 
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(sensu Arnold et al., 2010). Consequently, generally no one tree is definitively correct, and trees are 

constantly being refined to reflect updated knowledge. Nevertheless, PCM statistical tests assume that 

a given tree’s topology and relationships between species are known and correct (Felsenstein, 1985; 

Garland, Bennett, & Rezende, 2005). Therefore, evolutionary researchers often use consensus trees 

that sum up agreement between multiple trees (Adams, 1972). Also it is recommended to perform 

analyses across a tree ‘block’ (a set of similar, though slightly different, likely trees: e.g. Arnold et al., 

2010). More certain nodes appear more frequently in the block, less certain nodes less frequently, 

representing uncertainty in the phylogeny (Arnold et al., 2010). Analyses are then performed across 

the whole block (with this accounting for topological and branch length uncertainty), so producing 

robust results for which associated confidence intervals can also be generated (e.g. Arnold et al., 

2010; Jetz, Thomas, Joy, Hartmann, & Mooers, 2012). Results are then reported, not only as summary 

values (e.g. median P values and slopes) but also with the 95% confidence intervals for each (e.g. Su, 

Cassey, Vall-llosera, & Blackburn, 2015). Tree blocks are usually freely available from online 

literature (e.g. Arnold et al., 2010; Jetz et al., 2012; Jetz et al., 2014; TreeBASE, 2016), with 

particularly useful exercise files and data from: www.10ktrees.nunn-lab.org/howToUse.html. 

Running the statistical analyses 

As already outlined, two commonly used PCM statistical tests are PICs and PGLS. Both are 

extensively reviewed elsewhere, so here we provide brief outlines, highlighting key papers for further 

reading. Other types of PCM test are also available, depending on specific requirements (Table 2 

summarizing some of these). 

Phylogenetic independent contrasts (PICs) 

 The rationale underlying PICs (Felsenstein 1985), is that while related species are non-

independent, the differences – or contrasts – between them are independent, representing evolution 

since the species diverged. PICs assume that more recently diverged species (typically those with 

shorter branch lengths since their last shared node) will be particularly similar to each other, because 
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little time has passed since divergence. In contrast, species diverging long ago (with relatively long 

branch lengths since their last shared node) are assumed to be less similar to each other, because more 

time has passed, and more evolution occurred, since divergence. This assumption, which PICs are 

robust to minor deviations from (Diaz-Uriarte & Garland, 1996), reflects the so-called ‘Brownian 

Motion’ model of evolution: one of genetic drift with no selection, simply occurring to a greater 

extent with the passage of more evolutionary time (sensu Felsenstein, 1985). 

PICs handle this as follows. First, for each variable, contrasts are calculated between pairs of 

species or ancestral nodes. Thus the original set of N non-independent species datapoints are 

converted to N – 1 independent contrasts (see Fig. 3). Next, each contrast is divided by its standard 

deviation (the square root of the sum of the relevant branch lengths), to account for how much 

evolutionary time has passed since divergence (Felsenstein, 1985). These ‘standardized contrasts’ are 

now suitable for conventional statistical analysis (e.g. Gittleman & Luh, 1992). Note that because the 

absolute distance of each contrast from the origin is important, rather than their positions relative to 

one another, regressions using contrasts should be forced through the origin during analyses (e.g. 

Garland, Harvey, & Ives, 1992).  

 Felsenstein (2008) has more recently extended his original PIC method to account for the 

intra-specific variation discussed earlier (e.g. that caused by sampling error). Values from individuals 

are used to calculate species-specific means for each attribute, and a weighting factor based on each 

species’ sample size is then incorporated into the contrasts calculations. 

 

***FIGURE 3 HERE PLEASE (PIC FIGURE)*** 

Phylogenetic generalized least squares regressions (PGLS) 

 PGLS (Grafen, 1989) involves linear regression models that effectively incorporate the tree’s 

topology and branch lengths into the regression equation (Freckleton, Harvey, & Pagel, 2002; Garland 

et al., 2005; Pagel, 1999). During PGLS, the model estimates how similar species’ trait values would 
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be if they evolved by Brownian Motion. The earliest forms of PGLS then incorporated statistical 

controls for this pattern into each analysis, to ‘partial it out’ and so prevent it from influencing the 

final results. In later refinements of PGLS, models assess the extent to which this pattern (i.e. the one 

expected if traits evolved by Brownian Motion) actually occurs in the dataset being analyzed, in turn 

allowing this degree of phylogenetic signal to be statistically corrected for.  This highlights a major 

benefit of modern-day PGLS: the generation of a metric termed ‘Pagel’s Lambda’ that captures the 

degree of phylogenetic signal present (Freckleton et al., 2002; Pagel, 1999; Revell, 2010). Lambda 

varies from 1 (strong signal, as implied in Brownian Motion) to 0 (no signal, with even close sister 

species being statistically independent) (Pagel, 1999). When lambda is 1, PGLS thus returns results 

identical to PICs; when lambda is 0, PGLS performs near identically to standard regressions which 

treat species’ datapoints as independent (Pagel, 1999; Revell, 2010); while at intermediate values, the 

non-independence between species is corrected for according to the amount of inter-correlation found 

(Pagel, 1999; Revell, 2010). Thus, PGLS can flexibly control for the actual amount of signal present 

rather than, as with PICs, assuming strong signal is present.  

PGLS can also potentially incorporate different evolutionary models (e.g. by using the R 

Package ‘ape’: Paradis, 2012). These include: Ornstein-Uhlenbeck, which models ‘stabilizing 

selection’, wherein attribute evolution is constrained within an optimum range (more realistic for 

some attributes, e.g. mammalian body size [Harmon et al., 2010]); and other evolutionary patterns, 

like adaptive radiation, where attributes evolve rapidly immediately after species diverge, slowing 

towards the tips of the tree (Early Burst: Harmon et al., 2010). Furthermore, intra-specific variation 

can potentially be incorporated into PGLS models, by providing the standard error associated with 

attributes’ values, or inputting individuals’ values for each attribute (Revell, 2012 based on Ives et al., 

2007). For further reading, Symonds and Blomberg (2014) provide an excellent overview of PGLS. 

***TABLE 2 HERE PLEASE - DIFFERENT TESTS *** 
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Presenting and interpreting the results   

The results of PCM analyses – test statistics, P values, degrees of freedom, and effect sizes 

like R2 – are reported in much the same way as those for other statistical outputs. For PGLS, Pagel’s 

Lambda (Pagel, 1999) should also be reported. Often effect sizes can be rather small, even when 

models and terms are significant (Freckleton, 2009). Effect sizes should therefore be reported to 

permit appropriate interpretations of results. Conversely, when sample sizes are small (N = <20, sensu 

Blomberg et al., 2003), non-significant results may represent low statistical power rather than truly 

absent relationships. Additionally, if analyses are performed across a tree block, then results can and 

should include the associated 95% confidence intervals (which indicate the ranges within which true 

values likely lie).   

Visual representations, such as graphs of correlations between attributes, are also useful. They 

can provide visual information, not just on effect sizes and the explanatory value of predictor 

variables, but also on potential outliers, and on thresholds that may exist (below which species have 

no apparent welfare problems, but above which signs of poor welfare are clear). However, because 

graphs from PIC models use contrast values rather than species’ values, axes values will be somewhat 

arbitrary and non-informative (despite accurately depicting relationships). Alternatively, species’ 

values may be plotted on the relevant axes as per standard regressions. This will not illustrate the 

PCM statistics run (as should be stated in figure legends), but is more intuitive to understand. 

Researchers using PGLS should ensure they plot the PGLS regression line, which will be ‘weighted’ 

appropriately to that particular analysis (Symonds & Blomberg, 2014).  

By validly testing hypotheses to identify risk and protective factors, PCM results can be 

interpreted in three main ways to improve animal welfare. First, they can identify vulnerable 

‘problem’ species to target for special care. Second, the principles they yield can help predict which 

additional species beyond those in the dataset, are likely, or not, to be at risk of health and welfare 

problems. Third, they can generate novel ideas about how to improve husbandry (e.g. via altering 

species’ typical diets or enclosure characteristics). Such manipulations can also test the causality of 
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relationships. PCM outputs merely represent correlations between wild biology predictors and 

welfare-relevant outcomes: even after carefully considering the various correlates of predictor 

variables and systematic confounds of outcome variables, and performing ‘path’ analyses (see Table 

2), true causality cannot be assumed (sensu Garland et al., 2005; Gittleman, 1989). But PCM outputs 

do yield causal hypotheses, which can potentially be tested experimentally. PCMs can thus inform 

future work that uses the other two complementary approaches to welfare research, the results of 

which can help to both test causal hypotheses and improve animal husbandry. 

 

Discussion  

  We hope this review encourages more researchers to use PCMs to investigate health and 

welfare issues in captive wild animals. Many members of wild and semi-wild species are housed in 

contexts as diverse as farms and domestic homes (Mason et al., 2013), and this approach could be 

relevant to all of them if applied by aquaculturalists, aviculturalists, and others. However, PCMs are 

particularly useful for zoos and aquaria for the following reasons: these institutions actively aim to 

promote animal welfare in evidence-based ways; much research has already been conducted on zoo 

animals, making existing theses and publications ripe for collation and meta-analysis; zoos have 

already collected vast amounts of welfare-relevant data (e.g. via ZIMS), the incredible value of which 

has barely been harnessed; and finally, the size and diversity of global zoological collections (Conde, 

Flesness, Colchero, Jones, & Scheuerlein, 2011) makes the “20 species” minimum suggested by some 

(e.g. Blomberg et al., 2003) an easy challenge to meet. Zoo researchers are thus enviably positioned to 

capitalize on PCM-based research. We recognize that applying PCMs can be technically daunting: 

good trees must be sought and potentially complex statistical analyses performed. But many helpful 

resources are readily available: papers and books (we particularly recommend Arnold et al., 2010; 

Freckleton, 2009; and Symonds & Blomberg, 2014); online lecture notes, primers, and forums;  

software support; and experts in many universities’ biology, ecology, and zoology departments. 
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Furthermore, the benefits of running PCMs to investigate welfare issues are worth the effort.  

For one, PCMs represent an economical, efficient complement to experimentation and 

epidemiology – the traditional methods for studying zoo animal health and welfare. Using the 

published literature alone, we found nearly 20 untested hypotheses that are ideal for testing using 

PCMs (Table 1), with many more possible beyond these. Furthermore, PCMs can address welfare 

research questions that would be logistically or ethically impossible to investigate in other ways (cf. 

Clubb & Mason, 2004; Clubb & Mason, 2007). Such questions include whether being intelligent, or 

unable to hunt, migrate, or fly, compromises welfare in captive animals, and whether prey animals 

have evolved to mask states of pain or sickness from potential predators. PCMs are unique in making 

these fundamentally fascinating and practically important questions amenable to study.  

Second, just like other methods of investigating welfare issues, PCM results can indicate 

effective ways in which to improve husbandry; but because they can also address questions hard to 

tackle via experimentation or epidemiology, the insights they yield can be novel. As reviewed above, 

PCMs have thus generated evidence-based recommendations to supply Carnivores with more variety 

and control, in order to reduce route-tracing; to provide Ruminants that browse in the wild with more 

natural diets in captivity, in order to reduce nutrition-related mortality; to protect female Ruminants, 

especially Cervidae, from rutting males in order to reduce seasonal deaths; to house zoo primates in 

naturalistic group sizes, and encourage active travel, in order to reduce two forms of abnormal 

behaviour; and to supply captive parrots with more naturalistic diets, along with opportunities to learn 

and problem-solve, in order to enhance their welfare. Furthermore, by identifying the most 

‘susceptible’ species (cf. Pomerantz et al., 2013), such as Ruminant species with the lowest rLEs 

(Müller et al., 2011), PCMs can highlight those it might be most important to target for 

improvements.   

A third major benefit of using PCMs to investigate welfare issues is that the data collated and 

results generated could have great benefits for global collection planning. PCMs, as we have seen, can 

identify both specific species intrinsically unlikely to thrive in zoo conditions, and also broad types of 
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species at risk of welfare problems. While one response may be to target such species for special care, 

an alternative is to phase them out in favor of species revealed to be intrinsically likely to thrive in zoo 

conditions and protected from welfare problems. Such recommendations may be negatively received 

by some in the zoo community, but we propose that factoring animal welfare into collection planning 

is both strategic and practical (see Table 3). Most of the 4000 species currently represented in zoos are 

in populations too small to be viable (e.g. Conde et al., 2013; Lees & Wilcken, 2009). Furthermore, 

zoos have limited spatial and financial resources (e.g. Conde et al., 2013; Fa, Funk, & O'Connell, 

2011; Gusset, Fa, & Sutherland, 2014; Lees & Wilcken, 2009; McGowan, Traylor-Holzer, & Leus, 

2017). It is thus important to decide which species zoos should focus on (e.g. Conde et al., 2013; Fa et 

al., 2011; Gusset et al., 2014). Endangeredness has been proposed as one criterion, but in reality, 

diverse factors are currently at play in collection planning (Bowkett, 2014; Fa et al., 2011). If species-

typical welfare explicitly played a role in such decisions, the benefits would range from practical and 

economic advantages to improvements in the viability and conservation relevance of captive 

populations (e.g. due to reduced rates of domestication) (see Table 3). PCMs could thus be part of a 

holistic approach involving evidence-based, welfare-guided collection planning, with the ultimate 

goal of ensuring that all captive populations can readily be kept successfully (e.g. Alroy, 2015; Conde 

et al., 2013; Gusset et al., 2014; Kaumanns & Singh, 2015). 

***TABLE 3 HERE PLEASE: BENEFITS OF CONSIDERING WELFARE***  

 

Conclusions 

1. PCMs are powerful tools for captive wild animal welfare researchers, yielding novel insights 

into welfare that can be both practically and fundamentally valuable.  
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2. Results of PCM studies can be used to improve welfare, by guiding tailored changes to 

husbandry and enrichment; and to help prioritize conservation efforts, by identifying and even 

predicting which species can be most viably cared for practically, financially, and ethically.   

3. The staggering array of species held in zoos means they have potential to be a phenomenal 

research resource. With PCMs used in relatively few welfare studies to date, and many 

untested hypotheses still awaiting research, there is now plentiful scope for zoo researchers 

and others to further develop and apply this exciting methodology.  
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Table 1. Table outlining pre-existing published but as yet untested hypotheses relevant to zoo animal welfare. All of these could be addressed using 

PCMs.  

Hypothesis Taxa Prediction Measurable predictor variable(s) for testing 

the prediction  

I. Attributes related to ecological or behavioral plasticity: 

Ecological generalism preadapts 

species to good welfare in captivity 

(Mason et al., 2013)  

 

All 

 

Generalists should have better welfare† 

in captivity than specialists  

 

Number of habitats found in; geographical 

range; latitudinal range  

Resilience / adaptability to 

environmental change preadapts 

species to good welfare in captivity 

(Mason et al., 2013) 

All  

 

Species that can cope with sudden 

environmental change in the wild 

should have better welfare† in captivity  

 than species which cannot 

Whether or not  species persist/thrive when 

exposed to urbanization; whether or not  

invasive (corrected for ‘propagule effects’, sensu 

Veltman, Nee & Crawley, 1996); whether or not 

thrive after reintroduction attempts (again, 

corrected for ‘propagule effects’, Veltman et al., 
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1996)  

Species with little cognition-

mediated behavioral plasticity will be 

too inflexible to adjust to captivity 

(Maple, 1979) 

 

All  

 

Less intelligent species should have 

poorer welfare† in captivity than more 

intelligent species  

Relative brain volume; measures of behavioral 

innovation rates (from e.g Ducatez et al., 2015; 

Lefebvre, Reader, & Sol, 2013; Lefebvre & Sol, 

2008) 

Captive environment is too 

unstimulating (‘boring’) for 

intelligent species (Grimm, 2011; 

Maple, 1979) 

 

Primates (Maple, 

1979) 

& 

Cetacea (Grimm, 

2011)  

More intelligent species  should have 

poorer welfare† in captivity than less 

intelligent species 

As above 

II. Attributes related to being a prey species: 

Prey species hide their pain from 

observers (Kahn and Line, 2007) 

All  

 

Prey species should be at higher risk of 

what human carers perceive as sudden 

Whether or not prey species as adults; whether 

typically predated by sight /auditory cues 
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instances of severe illness or death; 

while non-prey species have longer 

periods of detectable clinical illness 

 

Fear of humans predisposes species to 

poor welfare in captivity (Hediger, 

1950) 

All Bold species should have better 

welfare† in captivity than timid species 

 

Flight distance from stressors (especially 

humans); whether or not species is stressed by 

ecotourism (Mason, 2010) 

 

III. Attributes related to ranging behavior: 

Restrictions on traveling long distances 

compromise welfare (Couquiaud, 

2005) 

Cetacea Coastal (shallow water), little-ranging 

species should have better welfare† in 

aquaria than open-ocean pelagic (deep 

water) species  

Daily/annual distances traveled; maximum 

distances traveled from coast to open-ocean; 

coastal versus pelagic 

Restrictions on ranging and/or Psittaciformes Little-ranging, resident species should Daily distances traveled (including for species 
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migration compromise welfare (Mason 

et al., 2013; Mason, 2010) 

(but potentially all 

avians) 

have better welfare in captivity† than 

widely-ranging and/or migratory ones 

 

that do not fly); migratory versus resident. 

Restrictions on ranging compromise 

Callitrichidae welfare (Mason & 

Mendl, 1997) 

Marmosets and 

tamarins 

Naturally wide-ranging callitrichid 

species should have poorer† welfare in 

laboratories and zoos than naturally 

little-ranging species 

Daily distance traveled; typical home-range size 

The home-range effect on stereotypic 

route-tracing relates to a lack of 

control and/or novelty in the captive 

environment (Kroshko et al., 2016) 

Carnivora  Relatively nomadic species should 

show more route-tracing in captivity 

than species whose annual range is 

very similar to their daily range.  

Ratio of daily ranging:annual ranging; annual 

number of den sites used; number of habitat 

types typically experienced by wild individuals 

(Kroshko et al., 2016) 

IV. Attributes related to natural foraging niche 

Hunting behavior is a behavioral 

‘need’ that gives rise to stereotypic 

Carnivora  Pursuit hunters should be at higher risk 

of route-tracing than species with other 

hunting style / species that do not hunt 

% day spent hunting; prey chase distance; 

hunting style; top speed when hunting; killing 

methods used; gaits used during chase; eating 
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route-tracing (Kroshko et al., 2016) at all  

 

patterns used post-kill (Kroshko et al., 2016) 

 

Post-feeding oral stereotypic behaviors  

derive from localized food searching 

(Mason & Mendl, 1997; Mason, 2010) 

Ungulata and 

other taxa 

containing patch-

feeders 

 

Species that are typically patch-feeders 

should be at higher risk of abnormal 

oral behaviours (e.g. tongue-rolling) 

than species that graze or browse less 

selectively  

Patchiness of food; ratio of time spent searching: 

time spent consuming food 

Regurgitation and reingestion relates to 

not being able to ‘trickle-feed’ as in 

the wild (Struck, Videan, Fritz, & 

Murphy., 2007) 

 

Primates Species that spend more time feeding 

in the wild should be more likely to 

show regurgitation and reingestion  

than species which naturally spend 

little time feeding 

 

Time spent foraging; number of eating bouts per 

day 

Dietary generalism preadapts species All Dietary generalists should have better Degree of dietary specialism   
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to good welfare in captivity (Mason, 

2015)  

welfare† in captivity than dietary 

specialists  

IV. Attributes related to other types of natural behavior: 

Welfare problems relate to restricted 

flying in captivity  

(Mellor, 2014; Schmid, Doherr, & 

Steiger, 2006) 

  

Psittaciformes 

(but potentially all 

avians) 

Species highly reliant on flight should 

have poorer welfare† in captivity than 

species that naturally show little or no 

flight 

 

Number of hours spent flying/day in the wild; 

size of flight muscles in wild birds; natural 

reliance on flight to feed; natural reliance on 

flight to migrate 

Restrictions on arboreality 

compromise Callitrichidae welfare 

(Prescott & Buchanan-Smith, 2004) 

Marmosets and 

tamarins 

Species that naturally use higher 

regions of the forest canopy and/or 

little use the forest floor should have 

poorer† welfare in captivity than 

species that naturally use lower parts 

of the canopy and the forest floor 

Canopy levels used; ratio of time spent on forest 

floor: in trees; nest height in the wild 
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Restrictions on diving compromise 

welfare in Cetacea (Couquiaud, 2005) 

Cetacea Shallow water species should have  

better† welfare in aquaria than deep 

water species 

 

Maximum dive distance; number of dives per 

day; maximum time spent at maximum depth 

underwater  

† Welfare could be assessed via e.g. good reproductive outputs; long lifespans; low stereotypic behaviour etc. (see text). 

 

Table 2. Reference table summarizing some currently used PCM statistical tests (including software packages that facilitate these tests, 

with website links where appropriate).  

Test Preferred/required 

format of outcome 

variable 

Preferred/required 

format of predictor 

variables  

Comments 

PICs  Continuous with 

normally distributed 

Continuous, though can Relatively easy to use 



Mellor et al.                                             Phylogenetic comparative methods for zoos 

 
 

 

 

Available in 

Mesquite (Maddison & 

Maddison, 2011);   

www.mesquiteproject.or

g/) 

using the 

PDAP:PDTREE module 

(Midford, Garland, & 

Maddison, 2010) 

www.mesquiteproject.or

g/pdap_mesquite/ 

 

R (Team, 2015: www.r-

residuals be adapted for categorical  

 

One predictor only  

 

Good for poorly resolved trees, e.g. without branch length information, 

and/or with polytomies (Garland et al., 1992; Pagel, 1992) 

 

Easy to make simple modifications of the PIC procedure, e.g. apply different 

branch length transformations for different traits (Garland et al., 1992; 

Rezende, Bozinovic, & Garland, 2004), or assign branch lengths to be 

arbitrary or all equal if branch length information is missing (Grafen, 1989; 

Pagel, 1992) 

 

Robust to some violations of test assumptions (Garland et al., 1992) 

 

Typically does not incorporate non-Brownian Motion models of evolution 

(but see Freckleton, 2012), but can partially correct for this by transforming 

http://www.mesquiteproject.org/
http://www.mesquiteproject.org/
http://www.mesquiteproject.org/pdap_mesquite/
http://www.mesquiteproject.org/pdap_mesquite/
http://www.r-project.org/
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project.org/ 

using the packages ‘ape’ 

(Paradis, Claude, & 

Strimmer, 2004), 

‘caper’ (Orme, 2013)  

 

BayesTraits (Pagel & 

Meade, 2014): 

www.evolution.rdg.ac.u

k/BayesTraits.html  

 

PHYLIP (Felsenstein, 

2016): 

www.evolution.genetics

branch lengths (Diaz-Uriarte & Garland, 1996; Garland et al., 1992) 

 

Possible to account for intra-specific variation in the Contrast program in 

PHYLIP (Felsenstein, 2008) 

 

 

Can therefore be too conservative, overcorrecting for this assumed strong 

signal (Diniz-Filho & Torres, 2002), so increasing Type II error 

 

Creates non-intuitive graphs: contrast values are arbitrary (and can be 

biologically impossible negative values); contrasts can also be between an 

extant tip species and an estimated value for an ancestral node species, or 

between ancestral nodes, potentially even for historically impossible 

variables like ancestral enclosure size or IUCN status (correct, but non-

http://www.r-project.org/
http://www.evolution.rdg.ac.uk/BayesTraits.html
http://www.evolution.rdg.ac.uk/BayesTraits.html
http://www.evolution.genetics.washington.edu/phylip.html
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.washington.edu/phylip.

html 

 

Comparative analysis by 

independent contrasts 

(CAIC) for Macs 

(Purvis & Rambaut, 

1995): 

http://www.bio.ic.ac.uk/

evolve/software/caic/  

 

intuitive) 

 

Best for bivariate models; more complex models can be constructed using the 

contrast values from several individual models with the same outcome 

variable and different predictor variables (Garland et al., 2005) but this is 

time-consuming 

 

 

PGLS 

  

Available in: 

Continuous, though also 

performs well with 

pseudo-continuous 

ordinal (Graber, 2013), 

Continuous, categorical  

 

Multiple predictors 

Can incorporate models of evolution aside from Brownian Motion (e.g. in 

‘ape’: Paradis, 2012), such as Ornstein-Uhlenbeck and Early Burst (Harmon 

et al., 2010; Symonds and Blomberg, 2014) 

http://www.evolution.genetics.washington.edu/phylip.html
http://www.evolution.genetics.washington.edu/phylip.html
http://www.bio.ic.ac.uk/evolve/software/caic/
http://www.bio.ic.ac.uk/evolve/software/caic/
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 R (Team, 2015; www.r-

project.org/) 

using the packages ‘ape’ 

(Paradis et al., 2004), 

‘caper’ (Orme, 2013), 

‘phytools’ (Revell, 

2012), and ‘Rphylopars’ 

(Goolsby, Bruggeman, 

& Ané, 2016) 

 

BayesTraits (Pagel and 

Meade, 2014): 

www.evolution.rdg.ac.u

k/BayesTraits.html 

with normally 

distributed residuals  

 

Thus weights for the phylogenetic signal that is actually present (Symonds 

and Blomberg, 2014), so not overly conservative 

 

For continuous variables can estimate intra-specific variation and 

measurement error using 'phytools' (Revell, 2012) or ‘Rphylopars’ (Goolsby 

et al., 2016), both in R (and based on Ives et al., 2007) 

 

Can easily use categorical predictor variables (Grafen, 1989) 

 

Intuitive graphs: species datapoints are plotted, with a PGLS regression line 

fitted (Symonds and Blomberg, 2014) 

 

https://www.r-project.org/
https://www.r-project.org/
http://www.evolution.rdg.ac.uk/BayesTraits.html
http://www.evolution.rdg.ac.uk/BayesTraits.html
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Working with a poorly resolved phylogeny is possible (Symonds and 

Blomberg, 2014), but more difficult than PICs 

 

Need to use parameter estimates to obtain effect sizes and confidence 

intervals (Symonds and Blomberg, 2014) 

 

Phylogenetic logistic 

regression  

 

Available in:  

R (Team, 2015; www.r-

project.org/) 

using the package 

‘phylolm’ (Ho & Ané, 

Binary (Ives & Garland, 

2010) 

Continuous, categorical 

(Ives & Garland, 2010) 

 

Multiple predictors 

Gives an estimation of the strength of phylogenetic signal (Ives & Garland, 

2010) 

 

Like PGLS, it weights according to signal present (performing as per 

standard logistic regression if there is no signal: Ives & Garland, 2010) 

 

Estimate of signal is only accurate if the binary outcome is relatively well 

balanced (i.e. similar number of 0s and 1s); otherwise performs poorly 

http://www.r-project.org/
http://www.r-project.org/
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2014) 

 

(Graber, 2013) 

 

Only models Ornstein-Uhlenbeck as standard (Ives & Garland, 2010)  (but 

see: Ané, 2014) 

 

Phylogenetic 

generalized estimating 

equations 

 

Available in:  

R (Team, 2015; www.r-

project.org/) 

using the package ‘ape’ 

Continuous or discrete 

(counts or frequencies), 

normally or non-

normally distributed  

(e.g., gamma or 

Poisson) (Paradis & 

Claude, 2002) 

 

Continuous, categorical 

(Paradis & Claude, 2002) 

 

Multiple predictors  

(Paradis & Claude, 2002) 

Good for non-normally distributed outcome data 

 

Particularly recommended for discrete data (counts or frequencies) (Paradis 

& Claude, 2002) 

 

The expected variance-covariance matrix structure is not really appropriate 

for binary data (Ives & Garland, 2010) 

 

https://www.r-project.org/
https://www.r-project.org/
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(Paradis et al., 2004)  Increased Type I error rates under certain circumstances (perhaps due to the 

degrees of freedom being an estimation of the true number) (Paradis & 

Claude, 2002) 

 

Does not give an estimation of phylogenetic signal (Graber, 2013) 

 

Phylogenetic 

generalized linear 

mixed models 

(Bayesian inference 

using MCMC) 

 

Available in:  

R (Team, 2015; www.r-

Continuous or discrete 

(counts or frequencies), 

normal and non-

normally distributed, 

categorical, binary, 

ordinal  

 

Multiple outcomes 

Continuous, categorical  

 

Multiple predictors 

Can separates out phylogenetic and environmental effects (Hadfield, 2010): 

potentially particularly interesting for zoo researchers 

 

Can incorporate measurement error (Hadfield & Nakagawa, 2010) (easier for 

outcome variables than predictors; Hadfield, J. pers. comm.) 

 

Useful for non-normal data (Hadfield, 2010) 

http://www.r-project.org/
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project.org/) 

using the package 

‘MCMCglmm’ 

(Hadfield, 2010) 

 

WinBugs (Lunn, 

Thomas, Best, & 

Spiegelhalter, 2000): 

www.mrc-

bsu.cam.ac.uk/software/

bugs/the-bugs-project-

winbugs/  

 

Note that the R package 

(Hadfield, 2010)  

 

 

Bayesian inference is a very different philosophy from more common 

frequentist statistics; users may have to invest time familiarizing themselves 

with this. Such differences include choosing sensible priors (though default 

ones are available) (Graber, 2013) 

 

For continuous data, only Brownian Motion is modeled (Martins, Diniz-

Filho, & Housworth, 2002) 

 

Analyses can be time-consuming (Hadfield, 2010) 

http://www.r-project.org/
http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
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is faster, and more user-

friendly (Hadfield, 

2010) 

 

Phylogenetic path 

analysis 

 

Available in:  

R (Team, 2015; www.r-

project.org/) 

using the package 

‘phylopath’ (van der 

Bijl, 2017) 

Continuous, with 

normally distributed 

residuals 

Continuous, categorical  

 

Multiple predictors 

Incorporates PGLS (to account for relatedness among species), into a model-

testing procedure to unpick the most likely directional, causal relationships 

between predictors (Gonzalez-Voyer & von Hardenberg, 2014) 

 

Using standardized path coefficients, can compare the relative strength of 

each causal relationship in a model (Gonzalez-Voyer & von Hardenberg, 

2014) 

 

Can incorporate various models of evolution (Gonzalez-Voyer & von 

Hardenberg, 2014) 

http://www.r-project.org/
http://www.r-project.org/
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If variables show strong collinearity, this can affect parameter estimation 

(Freckleton, 2011) and may reduce power (Gonzalez-Voyer & von 

Hardenberg, 2014). At lower levels, however, this method is an effective way 

to unravel collinearity between predictors (Gonzalez-Voyer & von 

Hardenberg, 2014) 

 

Slightly less power than non-phylogenetic path analyses, except under 

scenarios of strong signal; offset by decreased Type I error rates, even at 

weak levels of signal, compared to non-phylogenetic path analyses 

(Gonzalez-Voyer & von Hardenberg, 2014) 

 

Not yet possible to account for intra-specific variation (Gonzalez-Voyer & 

von Hardenberg, 2014) 
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Table 3. Benefits of factoring species-typical captive welfare into collection planning: a 

potentially valuable role for PCMs 

Type of benefit How achieved Why important 

Improved animal welfare Phasing out species prone to 

poor welfare; prioritizing 

species prone to good welfare 

WAZA recommends that zoos 

should meet animals’ 

behavioral and physical needs 

(Fa et al., 2011; Mellor et 

al.,2015). Some welfare 

problems (e.g. manifest in 

stereotypic behavior and infant 

mortality) negatively affect 

public perception (e.g. Miller, 

2012) 

 

Efficient use of space, funds, 

and other resources 

Prioritizing species already pre-

disposed to good welfare, 

obviates needs for extensive 

research or resource allocation 

into improving welfare 

Zoos have limited space and 

funds (e.g. Conde et al., 2013; 

Fa et al., 2011; Gusset  et al., 

2014; Lees & Wilcken, 2009; 

McGowan, Traylor-Holzer, & 

Leus, 2017) 

 

Easy to maintain viable, self-

sustaining populations 

Species intrinsically prone to 

good welfare can readily be 

held in many zoos, and easily 

Large effective population sizes 

are important for genetic 

viability (e.g. Conde et al., 
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achieve large effective 

populations sizes and self-

sustainability 

2013; Fa et al., 2011; Lees & 

Wilcken, 2009); captive 

populations should also be net 

sources of animals, not net sinks 

(e.g. Clubb et al., 2009; Fa et 

al., 2011; McGowan et al., 

2017) 

 

Reduced domestication Species in which most 

individuals successfully 

reproduce are under weaker 

selection pressures than species 

in which only a small fraction 

of individuals do 

If the population kept in zoos 

are to represent those in the 

wild, genetic adaptation to 

captivity is undesirable (Fa et 

al., 2011; McDougall, Réale, 

Sol, & Reader, 2006; O'Regan 

& Kitchener, 2005) 
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Figure legends 

Figure 1. Hypothetical example of an investigation between species-typical biology and species-

typical welfare. 

 In this hypothetical example, a researcher wishes to investigate the relationship between reliance on 

flight (daily flight time) in the wild, and signs of poor captive welfare. A) At first glance, there 

appears to be a positive correlation between the two (though one would like a larger sample size than 

eight; see text). This might lead the researcher to naively conclude that being heavily reliant on flight 

is a risk factor for poor welfare in birds. B) However, here it is clear that rather than eight independent 

datapoints, we have two clusters of closely related species, so effectively reducing our sample size to 

just two. Before inferring any relationship between daily flight time and welfare, one must first 

control for non-independence amongst the species by statistically accounting for phylogeny (see text).  

Photo credits: www.pixabay.com  

 

Figure 2. Example of a phylogenetic tree. 

This figure depicts a basic tree, a branching diagram depicting hypothesized relationships between 

these four species (Baum, 2008). From the base, the ‘root’ represents a common ancestor from which 

all species on the tree are descended. A ‘node’ is a split between branches, representing a speciation 

event wherein two daughter species (typically) evolve from a parent, ancestral species. Occasionally, 

three or more daughter species branch from a node: a ‘polytomy’ (an example is shown here, as the 

parent species of A and B, and species C and D). Polytomies can be ‘soft’, reflecting uncertainty 

about order of divergence, or ‘hard’ representing a genuine multiple speciation event (Maddison, 

1989). The lines connecting the nodes are ‘branches’. When branch ‘lengths’ are provided, they 

represent distance in evolutionary time since species spilt (Baum, 2008). The ends of the terminal 
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branches are the ‘tips’ of the tree: each one corresponds to a species, and their ordering and 

arrangement is the tree’s ‘topology’ (Baum, 2008). Note that this tree is ‘ultrametric’ i.e. all tips are 

the same distance from the root). The structure of the tree, and thus relatedness of the species, is 

factored in during PCM analyses (as discussed in the “Data analysis and interpretation” section). 

 

Figure 3.  Worked example of PICs calculations.  

In this hypothetical phylogeny (A), squares and diamonds represent extant species, and circles 

represent their ancestors. Values for two attributes of interest, X and Y, are shown for each species 

(these are calculated rather than measured directly for ancestors, shown in italics). For a particular 

attribute, differences between the values of that attribute for pairs of related species represent 

phylogenetically independent datapoints, or contrasts (e.g., the difference between X values for the 

pair of species represented by squares is one contrast; and the difference between X values for the pair 

represented by diamonds is another).  

As shown in (B), the two sets of contrasts (one for each of the two attributes) can be plotted against 

each other in order to determine whether the traits are correlated, independent of phylogeny 

(calculations for each contrast are shown in gray along the dotted lines). In this example, the greater 

the value of the X contrast, the greater the value of the Y; this suggests the traits are positively 

correlated. Note that more contrasts would clearly be needed for statistical testing, and that “raw” 

contrasts like these would need to be standardized by dividing them by their standard deviations 

(square root of the sum of the branch lengths between the species) before analysis via conventional 

statistics. The standardization effectively corrects for the degree of expected phenotypic divergence 

given the passage of time and a Brownian Motion model of evolution (see text). 

Panels (A-B) are adapted from Figure 2 in Clubb & Mason, 2004. 

 


