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Abstract—Computerisation of the financial markets has pre-
cipitated an arms-race for ever-faster trading. In combination,
regulatory reform to encourage competition has resulted in
market fragmentation, such that a single financial instrument
can now be traded across multiple venues. This has led to the
proliferation of high-frequency trading (HFT), and the ability to
engage in latency arbitrage (taking advantage of accessing and
acting upon price information before it is received by others). The
impact of HFT and the consequences of latency arbitrage is a
contentious issue. In 2013, Wah and Wellman used an agent-based
model to study latency arbitrage in a fragmented market. They
showed: (a) market efficiency is negatively affected by the actions
of a latency arbitrageur; and (b) introducing a discrete-time
call auction (DCA) eliminates latency arbitrage opportunities
and improves efficiency. Here, we explore and extend Wah and
Wellman’s model, and demonstrate that results are sensitive
to the bid-shading parameter used for zero-intelligence (ZIC)
trading agents. To overcome this, we introduce the more realistic,
minimally intelligent trading algorithm, ZIP. Using ZIP, we
reach contrary conclusions: (a) fragmented markets benefit from
latency arbitrage; and (b) DCAs do not improve efficiency. We
present these results as evidence that the debate on latency
arbitrage in financial markets is far from definitively settled,
and suggest that ABM simulation—a form of decentralised
collective computational intelligence—is a productive method for
understanding and engineering financial systems.

Index Terms—Agent-Based Modelling, Continuous Double
Auction, Discrete-time Call Auction, Latency, Arbitrage, Finan-
cial Markets, Fragmentation, ZIP, ZIC, High-Frequency Trading

I. INTRODUCTION

Computerisation of the financial markets and the competition
for speed has resulted in the rise of high-frequency trading
(HFT)—the use of algorithms to trade at superhuman speeds
with no human intervention—such that positions are often held
for a fraction of a second. As markets have become faster,
they have also become more fragmented. Regulatory reforms
to encourage competition in the markets, such as RegNMS in
the USA and MiFID in Europe, have resulted in a proliferation
of new exchange venues. Therefore, where there would once
have been a central market venue bringing traders together,
modern markets contain multiple venues across which a single
financial instrument can be traded.

Market fragmentation leads to difficulties in traders ac-
cessing up-to-date price information across the market. To

†Contact author, John Cartlidge, is sponsored by Thomson Reuters.

address this issue, RegNMS requires exchanges in the USA
to provide pricing information to a central entity called the
Securities Information Processor (SIP), which in turn publishes
a snapshot of the best prices currently available across all
markets—the National Best Bid and Offer (NBBO).

However, since venues are geographically dislocated, there
is necessarily a delay in the NBBO. Therefore, if a faster third
party HFT is able to obtain the same pricing information and
calculate the NBBO before SIP’s official NBBO is published,
it may be possible for the HFT to identify price disparities
before they become public. Utilising this information, HFT
algorithms may be able to “jump ahead” of competitors to
secure a deal. We consider this form of trading as latency
arbitrage. Arbitrage in general is the practice of taking ad-
vantage of disparities in prices between different markets in
order to secure a profit at zero (or minimal) risk; for example,
by simultaneously buying at $99 in one market and selling at
$100 in another, for a guaranteed risk-free profit of $1. Latency
arbitrage exploits arbitrage opportunities that exist over short
time-scales due to delays in dissemination of information.

Debate rages strong about latency arbitrage, with some
considering it a predatory practice and evidence of a “rigged”
market [1], while others (most often HFT practitioners) pro-
claim the moralistic virtues of HFT as a beneficial liquidity-
providing service [2]. This polarisation of opinion is indicative
of a highly secretive industry in which “everyone knows
that loose lips get pink slips” [3]. The details of algorithmic
trading is considered an existential trade secret to most HFT
firms, leading to a paucity of information for regulators
and researchers. As a result, empirical estimates of latency
arbitrage profits using historical trading data vary considerably.
In 2012, aggregated annual profits from latency arbitrage was
estimated at $21bn [4]. Potential profits from latency arbitrage
opportunities in S&P500 symbols during 2014 was estimated
at $3.03bn [5]. HFT profits (all strategies, not just latency
arbitrage) for 2013 across all US share trading was estimated
at $1.25bn [2]. While, in 2017, it was argued that latency
arbitrage is not a meaningful source of HFT profits [6].

To shed light on this issue and to gain a better theoretical
understanding at the system level, here we use an agent-based
model (ABM) to simulate the effects of latency arbitrage in
fragmented markets. Building upon the ABM introduced by
Wah and Wellman [7], the model contains a population of



traders, multiple continuous double auction (CDA) exchange
venues, a SIP entity that processes market prices and produces
an NBBO (with a delay, controlled by a simulation parameter,
δ), and a latency arbitrageur HFT that has instant access to all
market prices. We initially validate the model implementation
by replicating Wah and Wellman’s results (Section V), before
rigorously exploring and extending the model in Section VI.
We show that the purely stochastic, zero-intelligence (ZIC)
agents [8] used in the original model are sensitive to a bid-
shading parameter, R, which controls the markup (or profit
margin) that agents attempt to secure. To counter this, we
introduce ZIP agents—adaptive trading agents that update
profit margin based on prevailing market conditions [9]. By
using a simple machine learning rule to maximise profits, ZIP
agents have a minimal intelligence, unlike purely stochastic
zero-intelligence agents. Populations of ZIP agents can there-
fore be considered as a decentralised collective computational
intelligence. ZIP agents have previously been shown to be a
better model of human trading; demonstrating more realistic
market dynamics [9], and capable of outperforming human
traders [10]. We show that—counter to the results when using
ZIC agents—fragmented markets populated with ZIP agents
benefit from latency arbitrage; while moving from a continuous
double auction (CDA; the predominant auction mechanism
used in financial markets) to a discrete-time call auction (DCA;
intended to reduce latency arbitrage opportunities) reduces
overall market efficiency. These results have the potential
to impact understanding and regulation of modern financial
markets, while demonstrating a method for engineering better
financial systems.

II. RELATED WORK

Here, we briefly summarise related studies of HFT and la-
tency arbitrage. We begin with empirical studies using real-
world trading data, move on to theoretical models of latency
arbitrage, and end with models of market fragmentation.

A. Empirical studies of HFT
By determining trading strategies using NASDAQ order data
to construct linked sequences of messages, Hasbrouck and
Saar [11] study the effects of low-latency activity—strategies
responding to market events in the millisecond environment—
on dimensions of market quality. Their analysis suggests low-
latency activity improves traditional market quality measures.

Kirilenko et al. [12] study audit-trail data from the 2010
flash crash to discover how HFT traded on that day. They
conclude that while HFT were not responsible for the flash
crash, their activity exacerbated market volatility.

Baron et al. [13] examine trading in one E-mini S&P 500
futures contract over one month. They find that high frequency
traders are highly profitable, and extract over $29 million
of profit. This mostly comes at the expense of opportunistic
investors, but also harms institutional and retail investors.

B. Models of latency arbitrage
Cohen and Szpruch [14] build a mathematical model of a
single market containing two investor types: fast, and slow.

They demonstrate that if the faster trader is able to predict
the trades that the slower trader will make, the fast trader can
realise a risk-free profit. They also show that the response
slower traders might take when knowing faster traders are
present, can reduce market efficiency. Finally, the introduction
of a transaction tax is shown to prevent the fast trading
strategy.

Hanson [15] makes use of agent-based modelling to model
a continuous double auction market with multiple high fre-
quency traders present. Liquidity, efficiency, and surplus in-
crease when the number of traders employing the HFT strategy
is increased. However, volatility also increased and the profits
of the HFT traders were found to possibly come at the expense
of long-term investors.

Jarrow and Protter [16] use a mathematical model to show
that HFT can unknowingly cause mispricings (deviations from
the fundamental value) by collective and independent actions
co-ordinated by the observation of common signals.

C. Modelling market fragmentation

Mendelson [17] presents a theoretical analysis of the effects
of consolidation versus fragmentation in periodic call markets;
finding that fragmentation reduces trade quantity, increases
volatility, and reduces overall surplus. However, the study does
not consider arbitrage between the fragmented markets.

Relatively few prior studies attempt to model latency be-
tween fragmented markets and the arbitrage opportunities that
result. Ding et al. [18] use proprietary data feeds from stock
exchanges, as well as public NBBO data feeds, to provide the
first public evidence that direct access to exchanges and fast
calculation of the NBBO can be used to generate profits. Open
questions are raised about how well current regulation meets
its goals; including whether or not there is sufficient incentive
for public data providers to reduce NBBO latency.

Discrete-time call auctions (DCA) have previously been
proposed as an alternative to continuous double auctions
(CDA) due to their ability, by design, to remove arbitrage
opportunities. Wah and Wellman [7], [19] use an agent-based
approach and a two-market model to study the effects of
the presence of a latency arbitrageur in fragmented markets;
demonstrating that a DCA provides efficiency gains. Wah,
Hurd and Wellman [20] consider market choice: if DCA
markets were available, would anybody use them? To model
this, they give fast and slow agents access to both a CDA
market and a frequent DCA. At equilibrium, they find that
the welfare of the slow agents is generally better in the call
market. They also show that the slow traders seek the refuge
of the frequent DCA when preyed upon by faster traders.

The relative speed of agents has also been shown to affect
market efficiency in experimental human versus agent market
experiments. The presence of fast traders has been shown to
reduce market efficiency [21], and can lead to endogenous
fragmentation within a single market, such that fast (slow)
traders are more likely to execute with fast (slow) traders [22].
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Fig. 1: Clearing operation in a DCA: (a) vertical arrows indi-
cate orders matched at uniform clearing price, 104 (horizontal
dashed line); (b) post-clearing, bold orders remain in the LOB.

In this paper, we explore and extend the agent model of
market fragmentation used by Wah and Wellman [7]. Next,
we introduce the necessary technical background.

III. TECHNICAL BACKGROUND

A. Continuous Double Auction (CDA)

The continuous double auction (CDA) is the predominant
auction mechanism used in today’s financial markets. The
CDA enables buyers and sellers to submit bids (orders to buy)
and offers (orders to sell) at any time. Limit orders specify a
price beyond which the order will not execute. For a buyer, the
bid limit is the maximum price a trader is willing to buy; for a
seller, the offer limit is the minimum price a trader is willing
to sell. Orders arrive at the exchange and—if not immediately
executed—are stored in the limit order book (LOB). The LOB
stores bids ordered by price in descending order, and offers
ordered by price in ascending order. Thus, the top of the
LOB displays the best bid price (pbb, the highest priced buy
order) and best offer price (pbo, the lowest priced sell order);
commonly referred to as the best bid and offer (BBO). When
a new bid to buy (with limit price pnb) enters the exchange,
it will immediately match with the current best offer to sell
if pnb ≥ pbo. A trade will execute at price pbo; the price of
the original resting offer, not the price of the new incoming
order. Likewise, when a new offer to sell (with limit price pno)
arrives, it will match with the current best bid if pno ≤ pbb;
triggering a trade at price pbb (the price of the original resting
bid). When a new order does not immediately execute, it is
stored in the LOB (sorted by price). The exchange publishes
all trades and the current state of the LOB to all traders.

B. Discrete-Time Call Auction (DCA)

In contrast with the immediate execution of the CDA, a
discrete-time call auction (DCA) batches together groups of
orders that arrive during a discrete time interval. At the end
of each time interval, a clearing operation is performed to
match orders and execute trades at a uniform price. Fig. 1

demonstrates how clearing operates. The bid with the highest
limit price, BIDMAX, is matched with the offer with the
lowest limit price, OFFERMIN. Next, the second highest
bid is matched with the second lowest offer. This uncrossing
process continues until orders can no longer be matched; i.e.,
when BIDMAX < OFFERMIN. A uniform transaction price
for all matched trades is calculated as the midpoint between
the lowest matched bid and the highest matched offer. In
Fig. 1, uniform transaction price is the midpoint between
112 and 96 (= 104; as indicated by the dotted line). The
visible BBO immediately after the clear is (108, 115). The
exchange only publishes information about the contents of
the LOB immediately after clearing, thus making DCA a
sealed-bid auction. By clearing at regular intervals, the DCA
eliminates latency arbitrage opportunities as potential latency
arbitrageurs are unable to exploit informational advantages
within the clearing interval.

C. Zero-Intelligence Constrained (ZIC) Traders

Introduced by Gode and Sunder [8] to evaluate efficiency and
equilibration in CDA markets, Zero-Intelligence Constrained
(ZIC) agents are simple traders that submit bid and offer
prices sampled from a uniform distribution. ZIC traders are
constrained not to enter into loss-making trades, therefore bid
and offer prices for agent i are bounded on one side of the
distribution by the agent’s private value, PVi. In this study,
the other side of the distribution is bounded by a bid shading
parameter, R (alternatively referred to as markup, or margin).
For buyer, i, with private value, PVi, bid price bi ∈ U [PVi−
R,PVi]; for seller, i, offer price si ∈ U [PVi, PVi+R]. Despite
the deliberately simplistic design of ZIC, populations of ZIC
traders have been shown to reach allocative efficiency close to
100% [8]; however, in markets where demand and supply is
asymmetric, performance can be significantly lower [9].

D. Zero-Intelligence Plus (ZIP) Traders

Zero-Intelligence Plus (ZIP) agents were developed to over-
come the provable shortcomings of ZIC agents [9]. ZIP agents
are profit-driven traders that adapt using a simple learning
mechanism; adjusting profit margin, µ, to generate a compet-
itive order price, p, based on the current price, q, of the most
recent bid/offer in the market.

At time t, a ZIP trader, i, with limit price (private value),
λi, uses margin, µi, to calculate new order price, pi, as:

pi(t) = λi(1 + µi(t)) (1)

Profit margin, µi, is updated using an adaptation rule based
on the Widrow-Hoff “delta-rule with momentum” [23], as:

µi(t+ 1) =
(pi(t) + Γi(t))

λi
− 1 (2)

Γi(t+ 1) = γiΓi(t) + (1− γi)∆i(t) (3)

∆i(t) = βi(τi(t)− pi(t)) (4)

where βi is the learning rate, γi is momentum coefficient,
and τi(t) is the current target value, calculated using the last



TABLE I: Glossary of acronyms.

Acronym Description

SIP Securities Information Processor
NBBO National Best Bid and Offer (* indicates next NBBO value)
LOB Limit Order Book (bids/offers ordered by price asc./desc.)
CDA Continuous Double Auction
DCA Discrete-time Call Auction
ZIC Zero-Intelligence Constrained (background trader algorithm)
ZIP Zero-Intelligence Plus (background trader algorithm)
LA Latency Arbitrageur
2M 2 Market model (3M: 3 Market model, etc.)

SIP

Traders (M1) Traders (M3)

Market 1

Market 2

Market 3

NBBO

Traders (M2)

Latency Arbitrageur

δ

Fig. 2: Model containing three markets (3M). Each group of
background traders have instant access to a primary market.
SIP is updated with each new best bid and offer from all
markets and, after delay, δ, the NBBO is published to all
traders. The LA has instant access to all markets.

order price observed in the market, q(t), plus or minus a small
random deviation:

τi(t) = Ri(t)q(t) +Ai(t) (5)

Ri(t) is a randomly generated coefficient that sets target
price relative to q(t); and Ai(t) is a (small) random absolute
price perturbation. When the intention is to increase price,
1.05 > Ri > 1 and Ai > 0; to decrease price, 0.95 < Ri < 1
and Ai < 0. For original ZIP implementation details, see
[9, pp.41–45]. For detail on the effects of alternative ZIP
implementations, refer to [24], [25]. In this study, learning
rate βi is independently sampled from a uniform distribution,
such that βi ∈ U [0.1, 0.5]. The momentum coefficient γi is
sampled as: γi ∈ U [0, 0.1]. If the ith trader is a buyer, margin
µi is initialised as µi ∈ U [−0.35,−0.05]; for a seller, initial
µi ∈ U [0.05, 0.35].

IV. SIMULATION MODEL METHODOLOGY

Here, we introduce the agent-based model used in this study.1

Refer to Table I for a glossary of acronyms used throughout.

1For additional details on model, experiments, and results refer to [26].
Model code publicly available at https://github.com/mduffin95/MarketSim

A. Multiple Markets Model

The multiple markets model implemented in this study is an
extension of the design introduced by Wah and Wellman [7].
Fig. 2 presents a schematic of an instantiation of the model
containing three markets (or exchange venues). We refer to
this as a 3M model (likewise, 4M has four markets, etc.).

The model contains a population of background traders,
representing normal retail and institutional investors who do
not employ high frequency trading (HFT) strategies. Traders
are evenly distributed into three pools, with each pool assigned
access to a primary market. Traders have direct and instanta-
neous access to their primary market, and can also view the
National Best Bid and Offer (NBBO) across all markets. If
NBBO prices are better than prices on the primary market, a
trader can select to route an order to other markets to take
advantage of the better price. The NBBO is calculated and
updated by the Securities Information Processor (SIP). SIP
monitors all markets and updates NBBO every time there is
a change to a market’s best bid and offer. The time taken
for SIP to calculate and publish the new NBBO (denoted
NBBO*) is represented by delay, δ. When δ = 0, the NBBO
always accurately reflects the latest prices at each market.
Since traders can route their orders to any market, δ = 0
is therefore equivalent to a single centralised marketplace.
However, when δ > 0, traders view a time-delayed NBBO
that may contain stale prices that are no longer available at
the underlying exchange. This effect is exacerbated as the
value of δ is increased. Finally, the model allows for a latency
arbitrageur (LA) to be positioned between the markets, with
direct and instantaneous access to all. The LA represents HFT
firms with low latency access to markets. Having instantaneous
access, the LA is able to calculate its own private NBBO
immediately. Therefore, when δ > 0, the LA has a more up-to-
date, and therefore more accurate view of the market than the
background traders. The LA uses this advantage to perform
arbitrage across the markets when the opportunities arise.

B. Latency Arbitrageur (LA)

The latency arbitrageur receives instantaneous pricing infor-
mation from all of the markets that it is active in. Whenever
it receives a new quote (BID, OFFER) from one of the
markets it updates the recorded best bid/offer for that market.
It then checks across all markets for an arbitrage opportunity.
It does this by selecting the best bid (BID∗) and the best
offer price (OFFER∗) across all markets and compares them.
If BID∗ > (1 + α)OFFER∗ then a large enough arbitrage
opportunity exists. The variable α is used to create a minimum
threshold, above which it is worthwhile to pursue the arbitrage
opportunity (i.e., so that trading costs are covered). For all
experiments, α = 0.001.

C. Background Traders (ZIC / ZIP)

Background traders arrive to trade one unit at a rate determined
by a Poisson process with rate λ (producing a mean interarrival
time 1/λ). Trader arrival is equivalent to an order arriving at
an exchange, as it takes zero timesteps to send an order.

https://github.com/mduffin95/MarketSim


TABLE II: Default parameter values.

Parameter Value Description

α 0.001 Min profit threshold required for LA to trade
λ 0.075 Mean arrival rate of traders (Poisson process)
ρ 0.0006 Discounting factor for surplus calculation
r̄ 100 000 Mean fundamental value (r̄ ≡ P0 in ZIP exps)
κ 0.05 Degree of fundamental price reversion to mean
R 2000 Range of admissible bid shading values (ZIC)
δ 0–1000 Delay in calculating the NBBO (latency)
T 250 Total number of background traders (ZIC/ZIP)
N 1000 Number of repeated trials per model setting

(graphs plot mean ±95% confidence interval)

Following the model presented in [27], the surplus of
background traders is discounted at a rate determined by
ρ. Surplus before discounting is calculated as the difference
between a trader’s private valuation and the trade price: for
buyers PVi − pt; and for sellers pt − PVi, where pt is trade
execution price, and PVi is the private valuation of the ith
trader. Discounting reduces the surplus of executed orders by a
factor that increases the longer it takes for an order to execute.
This represents the preference of traders for their orders to
execute quickly.2 For a transaction that executes at time t,
between two orders that arrive at times t(i) and t(j), total
discounted surplus is calculated as:

S = e−ρ(t−t(i))(PVi − pt) + e−ρ(t−t(j))(pt − PVj) (6)

In the replication study (Section V), private values are
assigned by perturbing a continuously and randomly varying
fundamental value with mean r̄ = 100 000. The parameter κ
is used to control the degree to which the fundamental value
reverts back to r̄ (see Table II for full list of parameter values
used). For the extension study (Section VI), we switch to using
a symmetric supply and demand schedule to assign private val-
ues. Values are assigned between 63 000 and 137 000 in steps
of 1000, thus giving a fixed equilibrium price P0 = 100 000.
This approach simplifies performance metric calculations.

V. MODEL VALIDATION: REPLICATION RESULTS

To validate our model implementation, we first present a strict
replication of Wah and Wellman’s results. Fig.3 plots total
discounted surplus, S, against latency, δ, for a 2M model
with and without LA present; and also for a single market
(1M) with a central CDA. For 2M markets with LA present,
surplus for background zero-intelligence traders only (ZIC
only) and the combined market surplus of the background
traders and LA (ZIC+LA) are plotted. When δ = 0, the NBBO
is always up-to-date so no arbitrage opportunities emerge
and ZIC orders are always routed to the correct exchange.
Therefore, surplus is equal for all models (S ≈ 2.95× 106).
Total market surplus in the central CDA (SCDA ≈ 2.95× 106)
is invariant to δ as no arbitrage opportunities exist. In the 2M

2Technically, discounting is also applied to the LA’s orders, but since these
always execute instantaneously (because the LA only submits orders when
they are guaranteed to execute) the discount is always equal to zero.
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Fig. 3: Replication validation. Total discounted surplus, S,
against δ in 2M model, with/without LA, and a central CDA.

model with LA present, total surplus tends to a lower value
(limδ→∞ SZIC+LA ≈ 2.8× 106). The surplus (profit) gained by
the LA is the difference between the curves ZIC+LA and ZIC
only. Finally, in the 2M model with no LA, surplus is highest
(limδ→∞ SZIC ≈ 3× 106). Non-overlapping confidence inter-
vals indicate that these differences are statistically significant.
These results are quantitatively very similar to those presented
by Wah and Wellman (compare Fig. 3 with [7, Fig. 5]) and
provide strong validation of correct model implementation.

A. Conclusion: fragmentation benefits markets

The results presented in Fig. 3 show that a fragmented 2M
market with no LA (i.e., a market of ZIC traders only)
produces more surplus than a centralised CDA; i.e., in a two
market model, when δ > 0, SZIC > SCDA > SZIC+LA. Also
observing this effect, Wah and Wellman [7] conclude:

“. . . for continuous markets, fragmentation can actu-
ally provide a benefit, as the separated markets are
less likely to admit inefficient trades (i.e., where both
traders’ values fall on the same side of the longer-
term equilibrium price) that arise due to the vagaries
of arrival sequences.”

We further investigate this unexpected and counterintuitive
result by increasing fragmentation in the model. Specifically,
we observe total discounted surplus, S, as number of mar-
kets is increased (2M, 3M,. . . , 5M). Results (not shown)3

demonstrate that greater fragmentation leads to greater LA
profits. This is expected, given that greater fragmentation
(more markets) is likely to lead to a greater number of
arbitrage opportunities. However, we also see that in markets
both with and without an LA, total surplus, S, continues to
increase as fragmentation is increased. This is unexpected, and
provides further evidence for the counterintuitive conclusion

3Results are presented and discussed fully in [26, Section 4.2].
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Fig. 4: Discounted surplus, S, against interarrival time of
traders, 1/λ. LA profits are eliminated when 1/λ > δ = 20.

that fragmentation benefits markets. We return to this, and in-
vestigate more fully, in Section VI. First, we look at the latency
bounds on arbitrage opportunities in fragmented markets.

B. Arrival rate and latency: an upper bound on arbitrage

Here, we explore the relationship between arrival rate of
traders (λ; more specifically, interarrival time 1/λ) and NBBO
latency, δ, using a 2M model. Arrival rates are set to a constant
value λ (rather than generated by a Poisson process with mean
λ, as previously), and latency is fixed to δ = 20. Fig. 4a shows
a stepped decline in latency arbitrageur surplus, SLA, as the
interarrival time of traders, 1/λ, is increased.4 We see that
SLA = 0 when 1/λ > δ = 20. Therefore, if NBBO delay δ can
be restricted to values below mean interarrival time of traders,
1/λ, then LA profits can be eliminated—i.e., latency arbitrage
is not possible if NBBO delays can be kept below strict upper
bound 1/λ. In the real world, however, this is unlikely to be
achievable in practice; particularly in liquid markets, where
1/λ� 1ms and falling rapidly.5

In Fig. 4b, we see that total discounted surplus of traders
increases as interarrival time increases. At low interarrival
times (i.e., fast arrival rates), surplus is lowered due to poor
order routing based on SIP’s publication of stale NBBO
information. We return to order routing in Section VI-B.

VI. RESULTS: MODEL INVESTIGATION

In this section we extend the model. First, we investigate Wah
and Wellman’s conclusion that fragmentation benefits markets
(see Section V-A), by exploring the effects of bid shading
(Section VI-A). We then introduce ZIP traders into the model
(Section VI-C) and show that the results for central CDA,
central call (DCA), and fragmented markets are very different
to the results for models containing ZIC traders.

Henceforth, to simplify analysis, we alter the method of
allocating private values to traders. Rather than allocating

4SLA decreases in discrete steps due to the way that interarrival time, 1/λ,
divides into NBBO latency, δ = 20. Interarrival times between 7 and 10,
inclusive, divides into 20 twice (e.g. 2 ≡ 7 mod 20), so each produce the
same discounted surplus; similarly for 1/λ ∈ [11..20].

5See Nanex’s animation of a 10ms period of trading in symbol MRK
on May 16, 2013: https://www.youtube.com/watch?v=L5cZaIZ5bWc; and
associated report http://www.nanex.net/Research/IsNBBOIgnored.html.

private values around a continually varying fundamental value
with mean r̄ = 100 000, traders are allocated private val-
ues according to a fixed supply and demand schedule with
equilibrium price P0 = 100 000 (see Section IV-C for de-
tails). This alteration reduces total discounted surplus (for
a central CDA model containing background ZIC traders
SCDA ≈ 2.05× 106, rather than SCDA ≈ 2.95× 106 reported
in Section V). However, all observations reported in Section V
remain consistent—the methodological change introduced to
private value allocation of traders does not otherwise affect
results, apart from reducing S under all settings.

A. Bid shading and efficiency

Fig. 5 shows results of varying R in a 2M model contain-
ing ZIC traders. Three latency settings are plotted: δ = 0
(equivalent to central CDA), δ = 100, and δ = 1000. In
Fig. 5a, total discounted surplus, S, is plotted. For most of
the range of R values shown, we see that surplus for the CDA
is highest (i.e., Sδ=0 > Sδ=100 > Sδ=1000). Only at very low
values of R (right, zoomed region) does this ordering change.
Specifically, when R = 2000—the value used by Wellman
and Wah [7] and replicated in Section V—the CDA produces
the lowest surplus. This demonstrates that Wah and Wellman’s
conclusion that fragmentation benefits markets (Section V-A)
is driven by a simulation artefact resulting from the selection
of bid shading parameter, R. For values of R ≥ 12 000, we
reach the converse conclusion: fragmentation negatively affects
markets.

As R varies from low to high (Fig. 5a), S increases rapidly
at first, reaches a maximum slightly below R = 30 000, and
then declines more gradually. We can better understand this
by considering orders that are traded in the market. Fig. 5b
plots the fraction of trades that involve an extramarginal (EM)
trader.6 We see that at low values of R, the proportion of trades
involving an EM trader is well above 0.6. This fraction falls
as R increases, tending to a value of 0.1 when R ≥ 40 000.
Therefore, if we consider R in relation to competitive equi-
librium, P0 = 100 000, we see that maximum surplus is
generated when R/P0 ≈ 0.3, and inefficient trades fall to
lowest levels when R/P0 ≈ 0.4. These results align well with
those previously shown by Zhan and Friedman [28, Fig. 6].
In particular, Zhan and Friedman showed that CDA markets
generate greatest surplus when traders markup (i.e., bid shade)
by 30%; while surplus loss due to EM traders executing orders
tends to zero when markup is greater than 40%.7 Above
R/P0 ≈ 0.3, total surplus falls because excessive bid shading
stops some intramarginal (IM) traders from making trades

6EM traders are buyers with private value below competitive equilibrium,
vb < P0, and sellers with private value vs > P0. If markets trade consistently
at competitive equilibrium price, P0, then EM traders are unable to trade.

7In Zhan and Friedman’s model [28], markup for trader i is calculated as
a fixed percentage of trader i’s private value, vi. In our model, ZIC traders
randomly select the amount to bid shade (markup) from a uniform distribution
around vi bounded by R. Therefore, in our model inefficient trades tend to
a background level of 10%, rather than fall to zero, as EM trades are still
possible even when values of R are large.

https://www.youtube.com/watch?v=L5cZaIZ5bWc
http://www.nanex.net/Research/IsNBBOIgnored.html
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Fig. 5: (a) Total surplus, S, and (b) inefficient trade fraction for ZIC markets, plotted against bid shading value, R.

they otherwise could make.8 In the search for profit, an IM
trader that shades private value by an excessively large amount
will be unable to trade at competitive equilibrium price, P0.
This reduces total market surplus.

B. Order routing and latency

In Fig. 5b, when R = 2000, we see that the fraction of
EM trading reduces as latency δ is increased. To understand
this, we consider how latency affects order routing in the 2M
model. As latency is increased from δ = 0 to δ = 1000,
the proportion of orders routed incorrectly (i.e., routed to an
exchange based on a stale price in the NBBO that is no longer
available) grows quickly from zero and settles around 20%.9

When an order is incorrectly routed, the price available upon
arrival is a priori unknown, and determined by the arrival of
new orders during the latency period. As intramarginal (IM)
traders are more likely to submit a new best price, then a
poorly routed order effectively offers the opportunity of an
“extra roll of the die” to transact efficiently with an IM trader.
Although relatively small, this effect (when R = 2000) is
enough to lead to the conclusion that fragmentation benefits
markets, presented in the replication results (see Section V).

C. Introducing ZIP traders

We have clearly demonstrated that the bid shading value,
R, has a profound affect on model results containing ZIC
traders. In particular, the value R = 2000 used in the repli-
cation study (Section V) leads directly to the counterintuitive
conclusion that fragmentation benefits markets. To overcome
model reliance on parameter R, we now introduce ZIP traders.
Each ZIP trader, i, individually and autonomously adapts bid-
shading margin, µi, during trading. This is a more realistic
model of human trading and removes the need for R.

Fig 6 shows total surplus for 2M markets containing ZIP
traders. When δ = 0, equivalent to central CDA, we see
SZIP

CDA ≈ 2.57× 106. Under the new private value allocation,
this is higher than the total surplus for a central CDA in ZIC

8IM traders are buyers with private value above competitive equilibrium,
vb ≥ P0, and sellers with private value vs ≤ P0. If markets trade consistently
at competitive equilibrium price, P0, then IM traders are able to trade.

9For detail on order routing and efficiency, see [26, Section 4.42, Fig. 4.7].
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Fig. 6: Surplus for ZIP markets. SZIP
CDA ≈ 2.57× 106.

markets SZIC
CDA ≈ 2.05× 106. In a fragmented market with

no LA, surplus (SZIPnoLA) falls linearly as δ increases. This
is in complete contrast to results in ZIC markets (compare
Fig. 3), where surplus in fragmented markets is higher than
a central CDA. In 2M markets with LA present, we see
that surplus for ZIP traders only (SZIPonly) decreases very
slightly as latency increases; and total surplus for ZIP traders
and LA (SZIP+LA) is greater than for a central CDA. This
suggests that latency arbitrageurs benefit background traders in
a fragmented market, by counteracting the effects of latency,
while generating additional surplus not otherwise available in
a central CDA. Again, this result contrasts with ZIC markets
(Fig. 3), where LA presence is shown to negatively affect
background traders and the market overall.

D. Discrete-time call auction (DCA)

Here, we introduce call auction (DCA) markets and compare
results with CDA markets (Fig. 7) for models containing ZIC
(solid lines) and ZIP (dashed lines) traders. For DCA markets,
latency on the x-axis refers to the clearing interval of the
market; for CDA markets latency refers to NBBO delay, δ.
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Fig. 7: Comparison between CDA and call auction (DCA), for models containing ZIC (solid line) and ZIP (dashed) traders.

Results for ZIC markets accurately replicate those presented
by Wah and Wellman [7, Fig. 7]. The only difference: here,
RMSD falls exponentially in ZIC call markets (Fig. 7e) due to
using a fixed equilibrium value P0; when using a continuously
varying fundamental value with mean r̄, RMSD remains high
for all clearing intervals. When using fixed equilibrium, the
call market is able to aggregate information from all collected
orders to discover the equilibrium. This is not possible when
the equilibrium price continuously changes.

Let us consider call market results in turn:

Surplus (Fig. 7a) ZIC: call markets increase surplus as long
as clearing time is not too long; ZIP: call markets reduce
surplus—they do not help.

Execution time (Fig. 7b) As expected, call markets increase
execution time: increasing linearly with clearing time.
Execution times are higher for ZIP than ZIC (this is
expected, as ZIP waits to trade for higher profit).

Spread (Fig. 7c) ZIC: call markets reduce spread. ZIP:
spreads are much lower for all markets (as traders intelli-
gently post orders close to equilibrium), with call market
spreads similar to 2M NBBO spreads with LA present.

Volatility (Fig. 7d) Volatility is lower in ZIP markets. As
clearing time increases, volatility falls in ZIC markets and
increases in ZIP markets. Shorter DCA clearing times are
best for ZIP; longer clearing times best ZIC.

Price discovery (Fig. 7e) Price discovery is much better in

ZIP markets (i.e., lower RMSD). Little difference in price
discovery between CDA and call market for ZIP traders.

Overall, for ZIP traders, CDA is better than DCA for: sur-
plus (7a) and execution time (7b); similar for spread (7c) and
price discovery (7e); and worse for volatility at low latencies,
better at high latencies (7d). Therefore, CDA outperforms
DCA when traders are modelled using ZIP.

For ZIC traders, DCA is better than CDA for: surplus (7a),
spread (7c), and volatility at longer clearing intervals (7d);
and worse for execution time (7b) and price discovery (7e).
Therefore, there is some evidence for DCA outperforming
CDA when traders are modelled using ZIC (a similar finding
to that presented by Wah and Wellman [7, Fig. 7]).

E. Discussion: The Rise of Periodic Auctions

On 3 Jan 2018, MiFID II regulation came into force, requiring
European trading venues to have greater trading transparency.
As a result, there has been a migration in trading volume from
entirely opaque dark pool venues, to a host of new semi-
transparent periodic auction venues (equivalent to DCA in
the model). Current debate centres around whether periodic
venues have enough transparency of information to enable
algorithms to trade efficiently, whether there is enough price
discovery, and whether they enable unfair opportunities for
brokers to self-match. Regulators, such as the FCA in UK, are
currently investigating [29]. This demonstrates the timeliness



of research into discrete-time call auctions, and the results we
present suggest that the lack of transparency during the call
phase does indeed reduce efficiency in markets (Section VI-D).
Like real-world automated trading systems, ZIP algorithms
require up-to-date price information in order to efficiently
trade. The lack of order transparency during the auction phase
reduces the ability of ZIP traders to optimise profit margins.

VII. CONCLUSIONS

We have presented a strict replication, investigation, and exten-
sion of Wah and Wellman’s [7] agent-based model of latency
arbitrage in a fragmented market. Using a population of zero-
intelligence (ZIC) trading agents, Wah and Wellman’s results
led them to conclude that “market efficiency is negatively
affected by the actions of a latency arbitrageur”, while “a
discrete-time call market. . . eliminates latency arbitrage oppor-
tunities and improves efficiency.” However, we have demon-
strated that results from models using ZIC traders are highly
sensitive to the value selected for bid shading (alternatively
called markup, or margin) parameter R; and the value used by
Wah and Wellman (R = 2000; only 2% of the value of market
equilibrium price) is inefficient for continuous double auction
(CDA) markets, enabling a high proportion of extramarginal
trading (see Fig. 5). This raises doubt on the validity of
Wah and Wellman’s conclusions. We have also shown an
upper bound on the ability to perform latency arbitrage in
fragmented markets (see Fig. 4). If NBBO delays can be
restricted below the mean interarrival time of orders in the
market, then latency arbitrage can be eliminated. In practice,
however, this is extremely difficult—perhaps impossible—to
implement in liquid real-world markets, where interarrival
times can be much less than 1ms.

Most importantly, we have shown that switching to a more
realistic model of trading behaviour (zero-intelligence plus;
ZIP—traders that intelligently adapt profit margin based on
the prevailing market conditions), results are such that: (i)
fragmented markets benefit from LA intervention (see Fig. 6);
and (ii) discrete-time call markets (DCA) do not improve
efficiency when compared with CDA markets (see Fig. 7).

These contrary conclusions indicate the importance of intro-
ducing computational intelligence into trading strategies when
modelling financial markets. We propose that a population of
ZIP agents more accurately models the behaviour of financial
markets than a population of ZIC agents, and therefore our
results are more likely to be indicative of the real world.
However, there remain plenty of avenues of exploration to
perform: (i) understanding how variations on the discrete-
time call auction affects efficiency; (ii) studying the effects
of different order types, such as inter-market sweep orders
(IMSO); (iii) studying HFT strategies that rely on short-term
price predictions rather than latency arbitrage. We reserve
these investigations for future work.
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