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ABSTRACT
Translating the complex, multi-dimensional data produced by sim-
ulations of biomolecules into an intelligible form is a major chal-
lenge in computational chemistry and biology. The so-called “free
energy landscape” is amongst the most fundamental concepts used
by scientists to understand both static and dynamic properties of
biomolecular systems. In this paper we use Markov models to
design a strategy for mapping features of this landscape to sonic
parameters, for use in conjunction with visual display techniques
such as structural animations and free energy diagrams. This al-
lows for concurrent visual display of the physical configuration of
a biomolecule and auditory display of characteristics of the cor-
responding free energy landscape. The resulting sonification pro-
vides information about the relative free energy features of a given
configuration including its stability.

1. INTRODUCTION

1.1. Project context

Richard Feynman famously stated [1] that “everything that living
things do can be understood in terms of the jigglings and wig-
glings of atoms”. A complete understanding of how these atomic
jigglings and wigglings give rise to the structure, dynamics and
function of biomolecules remains an outstanding scientific chal-
lenge with implications across a wide range of disciplines. For
example, dynamical processes like protein folding are implicated
in neurological diseases (e.g. Alzheimer’s) [2] and conformational
changes in enzymes are linked to their biological function [3].

Computer simulation is an important tool to understand
biomolecular dynamics because of its ability to reveal chemical
information at the atomic level with a high degree of temporal and
spatial resolution [4, 5]. Its popularity is associated with three de-
velopments: accurate and computationally efficient ways of mod-
eling the interactions between atoms (the atomic ‘force-field’)[6],
the increasing availability of highly parallel computer architectures
such as general purpose graphical processing units (GP-GPUs)[7],
and a variety of user friendly software packages which exploit both
these developments [8, 9]. This has enabled the study of bigger
systems at longer timescales, moving the dynamics of biomolecu-
lar systems into the ‘big-data’ era [10].

This work is licensed under Creative Commons Attribution Non
Commercial 4.0 International License. The full terms of the License are
available at http://creativecommons.org/licenses/by-nc/4.0

Extracting scientific information from the output of computer
simulations is difficult owing to the quantity of data available. Out-
put from molecular dynamics (MD) simulations [11] include time
series of atomic positions (known as trajectories) and associated
data (e.g., system energy, volume, pressure, etc.). Making sense of
this data requires reducing the dimensionality by removing irrele-
vant features and producing an accurate but understandable model
of the process being investigated. Analysing trajectories is com-
monly performed through visual display using animations of the
molecules (often with atoms rendered as balls and chemical bonds
as sticks). However, there is typically far too much data for a re-
searcher to understand. Dimensionality reduction is achieved by
only displaying certain atoms while features of the data can be
calculated and mapped to visual aesthetics. For example, common
structural motifs in proteins, such as alpha-helices, can be drawn
as a cartoon helix on top of the molecular structure to highlight
their presence. A particularly important feature of the system is its
free energy. Any given molecular configuration has an associated
free energy, from which several important properties can be calcu-
lated [12]. Often described as a “landscape”, free energy is com-
monly represented as a topographical contour map. “Mapping” the
free energy landscape of biomolecular systems remains a signifi-
cant challenge. Nevertheless, understanding how a molecule’s 3D
structure relates to its free energy landscape is crucial for scientists
to gain an understanding of biomolecular dynamics. The software
package MolPX [13] has attempted this by linking two separate
visual objects - molecular animations and free energy diagrams.
However this strategy has two drawbacks: (1) the free energy land-
scape is limited to two dimensions and (2) the researcher’s focus
is split across the two visual objects. Display of higher dimen-
sional landscapes is possible by combinations of two dimensional
projections but this only exacerbates problem (2). Sonification has
the ability to overcome problems with displaying high dimensional
free energy landscapes: the topography and important features of
the landscape can be heard concurrently with visual structural in-
formation. However, creating a sonic representation of features
of the free energy landscape presents a number of technical and
design related challenges which are explored in this paper.

1.2. Sonification techniques for molecular data

Two major techniques for approaching an auditory display chal-
lenge are model-based and parameter mapping sonification (PM-
Son). Model-based techniques aim to transform a dataset into a
dynamic model, which one can interact with and aurally exam-
ine [14]. In contrast, PMSon exposes features that describe the
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data and maps these to sonic parameters. Previous sonifications
of molecular simulation data seemed to have favoured PMSon
and auditory icons/earcons rather than model-based techniques.
This is likely because MD simulations already represent a physi-
cal model (see section 2.2) and adapting this dynamical system for
the purposes of model-based sonification is challenging.

Rau et. al. [15] demonstrate a PMSon for interrogating fea-
tures of a static molecule in the Megamol [16] visualization frame-
work. Their approach was to create audio representations of fea-
tures that are known to be chemically interesting, such as the form-
ing and breaking of hydrogen bonds. Sumo is a plug-in for the
Python based molecular simulation environment PyMol [17].This
project had the fairly broad aim of providing a general framework
for implementing various sonifications within PyMol. A relevant
example application created parameterized earcons by mapping
the pairwise distances of all atoms of an amino acid onto the pa-
rameters of a set of resonant filters. These were offset in both
time and space according to their deviation from a reference amino
acid. Although no formal studies were undertaken, the designers
observed that it was possible to distinguish between them and thus
perceive conformational differences in the molecule [18]. Grond
et al show a technique for mapping structural information of sec-
ondary RNA structures to sonic parameters with a view to aiding
browsing and classification; however, there was no attempt to son-
ically render dynamical walks along free energy surfaces, which is
our focus here. [19]. Hermann describes some of the critical is-
sues that arise when designing a PMSon, observing that mappings
are not necessarily transparent to a first time listener without some
kind of “code book” [20]. This point is reiterated by Wishart when
describing the design of his piece, Supernova, which sonified as-
tronomical observations: “...there is no particular reason to use one
mapping rather than another. As a result, the sonic outcome would
be entirely dependent on the mapping chosen.” [21].

1.3. Molecular representation

Representational arbitrariness is a particularly interesting issue
when it comes to atomistic and molecular representations, owing
to the fact that they are too small to be experienced directly, ei-
ther visually or aurally. There is an inevitable degree of flexibil-
ity when designing representations of imperceptible phenomenon,
which is evident in the range of available molecular visualisation
approaches, e.g., Pauling’s paper protein helices [22], Kendrew’s
metal, wood and plastic protein structures [23], and the increas-
ingly common digital ’ribbon renderings’.[24]. When it comes to
sonification, rendering conventions are far from established. De-
picting an atom as a sphere is, in some sense, an arbitrary deci-
sion, but makes some sense insofar as both are spatially delimited.
Attempting to define such a clearly delimited object in the audio
realm is not as straightforward, neither spatially nor composition-
ally. It is difficult to assert what constitutes a single atomistic ob-
ject in a piece of sound design.

However, there are a wide range of “non-local” properties im-
portant in biomolecular science (e.g. potential energy, free energy,
electrostatic energy, temperature, conformational state member-
ship, etc.). Such properties are extremely difficult to visualize us-
ing conventional rendering strategies (and even if there were effec-
tive strategies, would lead to significant visual congestion) owing
to their non-locality. We believe that such properties are the most
interesting to explore in a sonification context: hence our focus on
free energy in this work.

There is a question of the level of intervention that the soni-
fication designer should take. If a dataset is rendered as directly
as possible (i.e. converted to audio), then perhaps any audible fea-
tures present must be features of the data. But this rule may de-
pend on the source and type of data (plus artifacts of the trans-
form). For example, a set of measurements of how temperature
changes over time might be treated differently to a non-local pa-
rameter that represents the overall instability of a system. In the
latter case, it may be necessary to map the data in a less direct way
to convey its provenance. Scaletti [25] categorises the directness
of mappings through the idea of different orders: for 0th order, the
data is directly read as an audio waveform, for 1st order the data
is used to modulate a carrier signal. The approach presented here
uses many 1st order, one-to-many [26] mappings that attempt to
create a certain perceptual effect related to the significance of a
given feature. A problem that may be encountered with this ap-
proach is that it is atheroetical; the decisions made are based on
some subjective sound design process and the results often repre-
sent the designer’s sensibilities just as much as the underlying data
set [27]. The techniques used in this project are primarily param-
eter mappings, which certainly do encounter some of the issues
raised above. Acknowledging these issues is important although
addressing them all in detail is out of scope for this paper.

This work extends the practice of molecular sonification by
seeking an auditory display of how a molecule walks along a free
energy landscape and its relation to fundamental dynamic pro-
cesses of biomolecules, something that builds on our previous
work developing real-time sonification strategies for molecular dy-
namics simulations ([28, 29, 30]). In these prior works, we sonified
atomistic systems and events including atomic collisions, atomic
clustering, and vibrational spectra. This work focuses on the fea-
tures of molecular systems. A simulation of the biomolecule Ala-
nine dipeptide (AD) is analysed using both hidden and observed
Markov models to extract features of the underlying free energy
landscape. These features are then mapped to sonic parameters
to generate coupled visual and auditory display of structural and
dynamic information respectively.

This paper is organized as follows: section 2 explains some
of the underlying physical ideas and the modeling of biomolecular
dynamics, section 3 explains our sonification strategy, some details
of the implementation are given in section 4, and our conclusions
and outlook for further work are given in section 6. An example of
the sonification described in this paper can be found at
https://vimeo.com/255391814.

2. BIOMOLECULAR CONFORMATIONAL DYNAMICS

2.1. Free energy landscape

Biomolecules such as proteins and nucleic acids are dynamic ob-
jects comprised of n atoms, each of which interacts with other
atoms in the same molecule and the cellular environment. A
molecular system has 3n degrees of freedom: each atom moves
in the x, y, and z direction. Typically biomolecules are comprised
of thousands of atoms, leading to high-dimensional dynamics.

At any given time, a molecule adopts a particular shape, or
conformational state. Researchers are typically interested in un-
derstanding the networks of conformational states that character-
ize a particular molecule. Networks of highly connected states in
which the system has a relatively long residence time are called
metastable states. Of particular interest in many applications is

https://vimeo.com/255391814
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understanding how long it takes a molecule to travel between dif-
ferent metastable states. Conformational states are of interest be-
cause they are directly linked to the molecule’s function, insight
[31] which has been verified extensively through experiments [32]
and computational studies [33, 34].

Any given conformational state has an associated free energy.
Highly probable conformations have a lower free energy than im-
probable conformations. Rises and falls in free energy as a func-
tion of molecular shape (atomic coordinates) define a free energy
landscape, which is illustrated in further detail in what follows.

2.2. Molecular dynamics simulation

The output of MD simulations are a series of regularly timed snap-
shots (frames) of atomic configurations as the system evolves,
called trajectories. An animated example trajectory can be viewed
at https://vimeo.com/255526473. With enough trajec-
tories it is possible to understand the probability that a molecule
occupies certain states, and develop a corresponding map of the
free energy landscape. The primary challenge in constructing such
maps arises from the system’s high dimensionality. Researchers
are therefore focussing on dimensionality reduction techniques
for identifying only those coordinates (or combinations of coordi-
nates) which take the system from one metastable state to another.

2.3. Markov Models

Markov state models have found widespread use in recent years
as a dimensionality reduction technique to analyze the metastable
dynamics of biomolecules [35]. Their popularity stems from their
ability to produce predictive and easy to understand results as well
as their ability to parallelize the problem of resolving very long
timescale processes. Markov models transform a trajectory into a
chain of n discrete states. These states are called observed states
(or sometimes microstates) and form the data from which both
types of Markov model can be estimated. In general we refer to
a chain as xt and a specific element by its position in the chain:
x2 = 3 denotes that the second frame of the chain is in state 3. We
refer to the set of all possible discrete states as x. There are two re-
lated and widespread approaches: observed Markov state models
[36] and hidden Markov models [37]. This work uses both.

An observed Markov state model (or simply Markov state
model, MSM) assumes the probability of transitioning to observed
state b in a time τ given we are in state a, P (xt+τ = b|xt = a),
only depends on the states a and b and not on the states visited at
times t − 1, t − 2, ..., 0. This property is known as the Markov
property and any chain that satisfies this is known as Markovian.
The dynamical information of the MSM is contained within a tran-
sition matrix, T(τ), whose elements are the conditional transition
probabilities, i.e. T (τ)a,b = P (xt+τ = b|xt = a).

The primary problem with observed Markov state models is
that they contain too much information: the observed states need
clustering into a smaller number of metastable states in order to
make quantitative predictions about their dynamics. A hidden
Markov model (HMM) represents a sort of fuzzy clustering of the
observed states into a set of metastable states (or hidden states,
X), i.e. instead of describing a particular conformation (observed
state) as unambiguously belonging to a metastable state, a prob-
ability of membership is given. A HMM consists of a transi-
tion matrix for the metastable states and a membership matrix
M whose elements are the conditional probability of being in

Figure 1: Atomic structure of Alanine dipeptide (AD). The cylin-
ders represent chemical bonds and their intersections represent
atoms. Grey, blue, red and white colors are carbon, nitrogen, oxy-
gen and hydrogen atoms respectively. The atoms involved in the
φ, ψ dihedral angles are labeled and highlighted as spheres. The φ
angle is formed from the intersection of the planes formed by the
atoms (C1, N, CA) and (N, CA, C2). The ψ angle is formed from
the planes formed by the atoms (N, CA, C2) and (CA, C2, O).

a metastable state (A) given a particular observed state (a), i.e.
MA,a = P (Xt = A|xt = a). HMMs work well in describing
biomolecular dynamics in the regime where the underlying dy-
namics are metastable. In other words the proportion of observed
states with membership probabilities intermediate between 0 and
1 are small in comparison with the total number of observed states.

2.4. Alanine Dipeptide Model

The “hello world” example of a biomolecule exhibiting metastable
dynamics is Alanine dipeptide (AD), as shown in figure 1. The
metastable dynamics of AD are reasonably well described with
reference to two dihedral angles made by atoms in the peptide
bonds [38], the φ and ψ angles, also shown figure 1. The free
energy landscape of AD projected onto these two dimensions is
shown in figure 2A. The light yellow colour denotes free energy
wells, i.e. regions with a low value of free energy which define
the metastable states. The lighter purple regions are those which
are visited only briefly on the way to a metastable well, known as
transition regions. As the dihedral angles are periodic, conforma-
tions with φ/ψ = 180◦ are equal to those with φ/ψ = −180◦.
This means that rather than a 2D plane, the free energy landscape
actually resides on a torus, i.e. each edge of the chart should be
wrapped around to meet the opposite side. For the sake of simplic-
ity we show it here in the form in which it is typically rendered by
practitioners in the field.

For the purposes of this paper two models were created - an
observed MSM and a HMM. Details of the data and calculations
used to generate the models can be found in section 4. The esti-
mated transition matrix for the MSM results in 500 eigenvectors
which describe the various relaxation modes of the dynamics. The
first eigenvector q1 is equal to the stationary distribution, µ(x).
The next three eigenvectors are slow relaxation modes (q2,3,4)
which define population transfer between metastable states. The
next five eigenvectors (q5−9) are fast relaxation modes which
define population transfer within metastable states. Each relax-
ation mode has an associated timescale (the corresponding eigen-
value). The remaining eigenvectors were discarded as the associ-
ated timescales for these modes was faster than the time resolution
of the data used to estimate the model and so were not considered
statistically robust. The HMM was estimated by assuming four
metastable states. The results are shown in figure 2. Figure 2D
shows the metastable state transition matrix, T. Each circle repre-

https://vimeo.com/255526473
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Figure 2: The hidden Markov model for AD. A: The free energy landscape of AD projected onto the peptide φ and ψ dihedral angles.
The lighter the colour the lower the free energy and hence the more stable those atomic configurations. The yellow regions define four
metastable basins centered on coordinates (60◦, 60◦), (60◦,−120◦), (−120◦,−60◦), (−120◦, 120◦). The purple regions are not visited
during the simulations used as input for the model. The black circles are the centers of 500 observed states for both the observed and
hidden Markov models. Each frame of the trajectory is assigned to the nearest observed state.B1-4: Each panel represents rows 1 - 4 of the
membership matrix. Each circle represents an observed state coloured according to its membership probability to each metastable state. C:
Ten sampled conformations of each metastable state of AD overlaid over the center of their free energy well. The hydrogen atoms have
been removed for clarity. D: The transition matrix and stationary distribution of metastable states. Each circle represents a metastable state
with the area of each circle proportional to the stationary distribution. The arrows between each state show possible transitions with the
width proportional to the conditional transition probability (also shown in the white boxes on each arrow).

sents a metastable state with the area of the circle proportional to
its stationary distribution, µ(X1,...,4). The arrows show the con-
ditional probability of transitioning to each state. For example, the
probability of transitioning from state 1 to state 4 is 6.79%. State 4
is by far the most stable, followed by 3, 2 and then 1. As there are
no transition regions between state 1 and 3 and between 2 and 4,
the probability of transitions between these pairs of states is zero.
Figure 2C shows an overlay of ten characteristic structures for each
metastable state, overlaid over their respective free energy wells.
Figures 2B1-4 show the rows of the membership matrix. Each cir-
cle represents one of the observed states, coloured according to the
membership probability to each metastable state. The partitioning
of the basins is clearly shown by the regions of black circles (high
probability of metastable membership) vs. white circles (low prob-
ability of metastable membership).

3. SONIFICATION

The sonification is designed to convey features of the free energy
landscape concurrently alongside visual display of structural infor-
mation, i.e., a molecular animation from an example trajectory. It
therefore requires three objects: a model of AD dynamics, an ex-
ample trajectory and an animation of the example trajectory. In this
work the data used to estimate the model of AD (the input trajec-
tories) are different to the example trajectory although in principle
trajectories from the input data could be used as example trajecto-
ries. The following section provides a description of the features
derived from the data followed by a description of the components
of the sonification and how features of the data are mapped to syn-
thesis parameters.

3.1. Free Energy Landscape Features

The features of the data are split into two categories: static and
dynamic. Static features are derived from the properties of the AD

Type Scope Parameter Layer
Dynamic Intra Free Energy

(
F (a)

)
B

Fast Mode
(
[qi]a

)
C

Inter Shannon Entropy
(
Ha

)
A

Membership
probability

(
[M]a

)
A

Static Well min
(
UL[h]

)
A

Well max
(
UB[h]

)
A

Histogram area
(
A[h]

)
A

Table 1: Simulation features exposed via OSC. Type refers to
whether the features are fixed at time 0 (static) or change at each
trajectory frame (dynamic). Scope refers to whether the features
relate to transitions between states (inter) or within a state (intra).

molecule and do not change after they are initialised at time 0. Dy-
namic features are those derived from each frame (i.e. from each
observed state) of the example trajectory as well as the model fea-
tures. As well as categorizing the features as static or dynamic, a
further distinction is drawn between those that relate to changes
within the current metastable state (intrastate) and those that per-
tain to changes between the metastable states (interstate). Table 1
summarizes these two categorizations. This second classification
is useful because it draws the distinction between features based
on characteristics of the physical dynamics rather than how they
were generated. The interstate features represent the most phys-
ically important characteristics of the dynamics and free energy
landscape and so form the core of the mapping strategy.

Firstly, we discuss static features: these are derived from the
shape of the free energy wells associated with each metastable
state. Each part of the free energy landscape is assigned a prob-
ability of membership to a metastable state so the limits of each
well are not well defined. In order to overcome this problem each
observed state is assigned to the metastable state for which it has
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the highest probability of membership. The three static features for
each metastable state, UB[h], LB[h], A[h] are interstate features.
They are principally related to two physical characteristics: the
relative stability and conformational flexibility of each metastable
state. The focus of the mapping strategy is to find a way to de-
scribe them aurally. The free energy for each observed state a,
F (a) = −kT ln(µ([x]a)) was calculated and scaled to lie in the
range (0, 1). Here k refers to the Boltzmann constant and T to
the temperature. The static features for each metastable state were
derived from a histogram of the free energies of observed states
assigned to that metastable state. We denote the histogram for
metastable state A as hA(F ) (or h in general). The properties we
derive from h(F ) are (1) its upper bound, UB[h], (2) its lower
bound LB[h] (3) its area A[h] =

∫ 1

0
dFh(F ). The histograms

for states 1 (blue) and 4 (pink) are shown in figure 5. The model
has four metastable states meaning there are 4 × 3 = 12 static
features. The upper and lower bounds are related to the free en-
ergy well minima and maxima for each metastable state. The area
of the histograms is proportional to the overall volume of the free
energy well.

Secondly, we discuss dynamic features: these change with
each observed state in the example trajectory. For each ob-
served state they are: (1) its probability of membership to each
of the four metastable states, (2) the Shannon entropy of its
metastable state assignments (3) its absolute free energy, (4) its
projection into the five fast relaxation modes. For each observed
state there are 4 + 1 + 1 + 5 = 11 dynamic features. The
membership probability describes the probability that a given ob-
served state can be assigned to a given metastable state. For ob-
served state a there are four membership probabilities given by
([M]1,a, [M]2,a, [M]3,a, [M]4,a). The information or Shannon
entropy is a measure of the degree of certainty with which the
assignment of an observed state to a particular metastable state
can be made. The Shannon entropy for an observed state a, Ha

is given by Ha = −
∑4

i=1[M]i,a ln([M]i,a). Ha = 0 in-
dicates the observed state is definitely in one metastable state.
Ha = ln(4) ≈ 1.4 indicates it is equally likely to be in any of
the four metastable states. The free energy of observed state a,
F (a) measures the observed state’s global stability. These were
the same free energies used in the calculation of the static features
in section 3.1. The projection of observed state a onto the i’th fast
relaxation modes is given by [qi]a. Large oscillations in a pro-
jection indicate that the system is relaxing along that mode. The
values of these projections were scaled to lie in the range (−1, 1).
Figure 3 shows the dynamic features for a section of an example
trajectory.

3.2. Sonification Layers

As the molecule traverses different regions of the free energy land-
scape the sonification conveys information about its properties
with the following layers in the audio stream: (A) a continuous
pad sound representing membership of different metastable states
and their properties, (B) a pulse sound representing the stability of
the system and (C) a set of synthesized tones that represent how
the system is changing within each metastable state.
The Pad Sound (A) was constructed as follows:

1 Representation: The pad sound represents features of the
well in the free energy landscape corresponding to the current
metastable state assignment.
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Figure 3: The dynamic features of the model. Each panel shows
how a model features varies over 0.1ns (100 frames) of the ex-
ample trajectory. State 1-4 show the membership probability of
each frame’s observed state to each metastable state. The values
in each frame across all four panels sum to 1. Shannon entropy
measures the uncertainty of the assignment of each observed state
to the metastable states. High entropy indicates an observed state
could be considered to belong to more than one metastable state.
Free energy is the free energy of each observed state, the lower the
free energy the more stable the state. Mode 5 is the first fast re-
laxation mode which redistributes population within a metastable
state. The other four fast modes are not shown.

2 Synthesis: Created using a subtractive, polyphonic synthesiser
with noise as a source signal. The basic signal flow of a sin-
gle voice is shown in Figure 4 . The main parameters are the
Q value of the resonant filter, the depth and rate of frequency
modulations for each voice and the amplitude of each voice.

3 Mapping: Each metastable state is characterised by a set of
notes referred to as a note cluster. This design arises from the
desire to represent metastable state transitions by tonal group-
ings, a musical device that non-trained listeners should be able
to perceive. The maximum note range is predefined to three oc-
taves. The relative values of A[h] for each metastable state de-
fines the number of notes in its corresponding note cluster, these
notes are then evenly distributed between the lowest and highest
notes. The values of LB[h] and UB[h] define the lowest and
highest notes of each cluster respectively. This is shown in fig-
ure 5 for metastable states 1 and 4. State 4 (pink) has a smaller
range, but a larger area resulting in a dense, tightly spaced note
cluster at the lower extent of the note range. State 1 (blue) has a
large range but small area resulting in a more sparse note clus-
ter. State 4 has its lower bound below that of state 1 and so
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Figure 4: Single synthesis voice as used for each note of a
metastable state note cluster. The set of multiple instances (one
per note) form the pad sound. The inputs are the frequency of each
note in the note cluster and the entropy. The note cluster is deter-
mined by the membership probability values at the current frame.

the lowest note of the cluster is below that of state 1. An ac-
cepted limitation of this mapping is that it does not attempt to
classify the clusters in terms of their harmonic relationships. In-
stead, it deals with them as distributions of notes within a range,
with a given extent and density. It may be possible to create a
hierarchy of tonal groupings from which to choose but this is
highly genre specific. This is an outstanding issue in that listen-
ers may interpret the harmonic relationship of two note clusters
as significant when this is not intended as part of the mapping
(e.g. stacked whole tones vs. stacked fourths). The membership
probabilities (M) control the choice of note cluster by linearly
interpolating between the values defined by the static parame-
ters of each state. This means that if [M]1,a = 1 then the clus-
ter defined by the static properties of metastable state 1 will be
used. In the case that [M]1,a = [M]2,a = 0.5 then the lowest
and highest notes will lie halfway between those defined by the
static parameters of state 1 and 2. Large values of the Shannon
entropy (H) represent observed states which could be assigned
to more than one metastable state, physically this means they
are in transition regions between two metastable states. H is
mapped to the width and rate of frequency modulations of the
voices for the note clusters as well as the bandwidth of the filter
such that it tends toward noise for higher values of H . This is a
one-to-many mapping that is designed to create a perceptual ef-
fect of instability. H tends to remain at 0 with occasional spikes
as the system transitions. This is shown in figure 3 where there
are spikes between 80.05 and 80.06 nanoseconds as transitions
occur between all four states. These spikes, although fleeting,
are important features. To emphasise transitions an asymmet-
ric smoothing function is employed such thatH values increase
quickly but decrease slowly.

The Pulse sound (B) was constructed as follows:

1 Representation: The overall stability of the current observed
state in relation to the global minimum. The pulse sound is de-
signed to underpin the entire sonification. The rationale here is
that a rhythmic kick drum sound is commonly used as a rhyth-
mic marker upon which all other elements are constructed. This
mirrors the way in which the free energy landscape underpins
the dynamics of the physical system.

Figure 5: The mapping of static properties of the metastable states
to note clusters. Each of the observed states was first assigned to
exactly one metastable state. The bottom chart shows the distribu-
tion of free energies of observed states which have been assigned
to the metastable states 1 (blue) and 4 (pink). States 2 and 3 are not
shown for clarity. The coloured notes of the keyboard are the note
clusters used to represent the metastable states. The relative upper
and lower bounds of the distributions determine the highest and
lowest notes in the cluster (as shown by the vertical connectors).
The relative area of each distribution determines the number of
notes in the note cluster. The ratio of the areas of state 4’s distribu-
tion to state 1’s distribution is approximately 3:1. This determines
the 9:3 ratio of the number of notes in each note cluster.

2 Synthesis: Generated by sweeping the frequency of a sine
wave from approximately 130Hz to 20Hz over a short period
(100-550ms) and passing it through a hard clipping function
and stereo delay line. The relevant parameters are the rate at
which the sweep is triggered, the length of time the sweep takes,
the amount of drive in the hard clipping function and the amount
of feedback in the delay path.

3 Mapping: The synthesis parameters are mapped to the absolute
free energy F (xt). The variable is inverted and filtered logarith-
mically. The filter settings are slightly different for each synthe-
sis parameter but, in general terms, act to allow fast increases in
its values and slow decreases to ensure the temporal alignment
between visual and sonic representations. The (F (xt)) of each
observed state measures its stability relative to the global free
energy minimum. This feature allows the sonification to draw
a distinction between an observed state being globally unstable
and yet part of a relatively stable metastable state (or vice versa).

Within-Metastable State Tones (C) were constructed as follows:
1 Representation: The extent to which the system is relaxing

along one of the fast modes. This gives an impression of high
frequency movements of the molecule that are not represented
by the membership probabilities.

2 Synthesis: The fast mode projections are oscillatory signals be-
tween -1 and 1 and are exported as PCM wav files (a 0th order
mapping in Scaletti’s terminology [25]). At the 20Hz frame-
rate being used for the animation the oscillations are subsonic.
Scanned synthesis is used in order to render the content as au-
dible [39]. The relevant parameter is the audio file that is used
as the wavetable to be scanned. Other parameters that affect the
sound are the window size and the scanning frequency.
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3 Mapping: Scanned synthesis was developed to allow for the di-
rect manipulation of synthesis timbre using a physical model
and represents an extension of wavetable synthesis. In this case
it allows for a rolling window of the audio buffer to be scanned
at a given frequency, with the effect that increased frequency
and amplitude of oscillation in the window results in a brighter
timbre. These can be heard panned from hard left (mode q5) to
hard right (mode q9). The scanning frequency is defined by the
lowest note of the set of note clusters (effectively the root of the
most stable state).

4. IMPLEMENTATION

The simulation data was taken from a publicly available repository
which accompanies the paper [38] found at https://simtk.
org/projects/alanine-dipeptide/. A full explanation
of the methods used to generate the data are given in the paper. All
modelling was done using the Python 3.5 programming language,
the Markov models were generated by PyEMMA 2.4 [40]. Both
the HMM and MSM used the same set of 500 observed states and
each were estimated with a lag time of τ = 1.0ps. The HMM
was estimated by specifying four metastable states. This number
was chosen so that the approximation of metastability was most
accurate at the lag time used. The molecular animations were gen-
erated using VMD [24]. A 500ns long example trajectory was used
in the sonification. This was generated from the HMM, rather than
using an input trajectory as they were all of insufficient length to
sample each metastable state regularly. While this trajectory does
not strictly obey the original equations of motion used to gener-
ate the input data it reproduces all the modelled features (transi-
tion probabilities, relaxation time-scales, stationary distribution)
and so is indistinguishable from a trajectory generated using the
original equations of motion. A Python script, using the package
OSC 1.6.4, was used to create a client which sent the static and
dynamic parameters as messages to the audio processing software.
The messages were sent using the OSC protocol. The dynamic
parameters were sent at a rate of 20 trajectory frames per second
(corresponding to a ratio of 20ps to 1s simulation to physical time).
The audio processing was implemented in Max/MSP.

Everything required to reproduce this work (except
the input data which can be downloaded separately) can
be found at https://osf.io/rzp3k/?view_only=
b5802dfce6da4dd59dfb6b406ae033f0.

5. EXAMPLE SONIFICATION

The example provided (link in sec. 1) shows an animation of an
excerpt of trajectory data for Alanine Dipeptide accompanied by
our sonification. This section provides a description of the audi-
ble features and how they relate to the mapping strategy. The pad
layer (A) provides information about the structure of the free en-
ergy landscape for the configuration at a given frame; it can be
heard ramping between the note clusters defined by the static fea-
tures of the four metastable states. It stays primarily in state 4,
as this is the most stable. At 00:13 the animation shows a sig-
nificant change in the dihedral angles; this is linked to a change
in the metastable state and a shift to a different well on the free
energy landscape, which is depicted by the change in note clus-
ter of the pad sound. The noise/wind effect that can be heard at
00:10 is caused by an increase in the Shannon entropy and gives
an indication that there is some uncertainty in the assignment of

the current observed state. The pulse/kick layer (B) is correlated
to the absolute free energy; at 00:10, the current metastable state
has a lower absolute free energy and the rate, level of distortion
and delay feedback are increased resulting in the sound becoming
more prominent. The layer representing the fast relaxation modes
(C) can be heard as the metallic, buzzing sounds panned across
the sound-field. The scanned synthesis method means that ampli-
tude and frequency of activity in the data is correlated to density of
spectra and amplitude of the synthesiser. So an increase in bright-
ness of this sound on the left of the sound-field indicates that the
molecule is relaxing along the first of the five modes used.

6. CONCLUSIONS AND FUTURE WORK

We have presented a strategy for representing features of the dy-
namics and the free energy landscape of Alanine Dipetide with
sound. This auditory display can be used in tandem with visual dis-
play techniques to help build an understanding of how the physical
structure of AD relates to the underlying free energy landscape and
the resulting dynamic processes. Future user studies with domain
experts will allow an assessment of the efficacy of the sonification;
a sketch for this would entail participants viewing an animation of
a simulation trajectory with and without the various layers of the
sonification to assess if and how they show an increased apprecia-
tion of the free energy dynamics. In the future we hope to extend
this implementation to allow a degree of interactivity in manipu-
lating the example trajectory. Initially, this would take the form
of allowing the user to manipulate the playback position, speed
and loop points of the trajectory. This would allow them to focus
on regions of interest in the dynamics. In the long term, allow-
ing the user to manipulate the example trajectory using interactive
molecular dynamics (for example, NanoSimbox [41]) and hear the
resultant sonic effects is an exciting prospect and opens up the pos-
sibility of using the system as an instrument for musical expression
as well as data exploration.
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