
                          Gibson, D., Burghardt, T., Campbell, N., & Canagarajah, N. (2015).
Towards automating visual in-field monitoring of crop health. In 2015
IEEE International Conference on Image Processing (ICIP) Institute of
Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/ICIP.2015.7351537

Peer reviewed version

Link to published version (if available):
10.1109/ICIP.2015.7351537

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at https://ieeexplore.ieee.org/document/7351537 . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1109/ICIP.2015.7351537
https://doi.org/10.1109/ICIP.2015.7351537
https://research-information.bris.ac.uk/en/publications/dc00ba7b-f933-46cc-9fdb-8e3164c44ee8
https://research-information.bris.ac.uk/en/publications/dc00ba7b-f933-46cc-9fdb-8e3164c44ee8


TOWARDS AUTOMATING VISUAL IN-FIELD MONITORING OF CROP HEALTH
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ABSTRACT

We present an application that demonstrates a proof of con-
cept system for automated in-the-field monitoring of disease
in wheat crops. Such in-situ applications are required to be
robust in the presence of clutter, provide rapid and accurate
analysis and are able to operate at scale. We propose a pro-
cessing pipeline that detects key wheat diseases in cluttered
field imagery. First, we describe and evaluate a high dimen-
sional texture descriptor combined with a randomised forest
approach for automated primary leaf recognition. Second, we
show that a combined nearest neighbour classifier and voting
system applied to segmented leaf regions can robustly deter-
mine the presence and type of disease. The system has been
tested on a real-world database of images of wheat leaves cap-
tured in-the-field using a standard smart phone.

Index Terms— ecological informatics, log-Gabor filter,
randomised forests, nearest neighbour voting.

1. INTRODUCTION

Automatically detecting the occurrence of disease in agricul-
tural crops is a challenge of increasing importance [1] as global
demands on food supplies grow. As the pressure on natural
resources increases the need for more efficient farming prac-
tices is required to mitigate crop failure and optimise the use
of pesticides and fertilizers. Early detection of crop disease
onset plays a critical role in how a disease can be success-
fully treated; late detection often leads to significant crop fail-
ure. The Food and Environment Research Agency (FERA),
in the United Kingdom, maintains an e-Agri-based service
that provides online warnings, updates and status of disease
prevalence in several crops across the country [2]. The ser-
vice is maintained by human operators who travel around the
country collecting samples of leaves from known fields and
crops. Currently, the leaves are transported back to FERA
head quarters where researchers visually analysis each leaf to
asses the presence, type and extent of disease. This is an ex-
pensive process that does not scale well; increasing the level
of automation of this process will have a significant impact
of crop monitoring at scale. With the use of smart phones
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Fig. 1: System Overview. An photograph of a crop leaf taken
in the field under natural conditions (a) is presented to the
system. Utilising a randomised forest over log-Gabor filter
responses yields a heat map (b) that allows automated fitting
of a primarily leaf model (c) to the image. Sampling from this
segmentation (d), nearest neighbour classification over Hara-
lik texture descriptors in a colour-difference space (e) is em-
ployed finally to produce a tag that flags disease occurrence
and type.

is becoming common across the globe, we propose an auto-
mated, visually operating disease recognition system able to
process smart phone images taken in the field. Figure 1 pro-
vides an overview of the proposed system. The application
enables a non-expert user to capture images of crop leaves in
a relatively unconstrained manner for uploading to a remote
automatic disease detection and analysis system. The system
output is informative to the user with regard to the type and
levels of disease present, which could be enhanced by sug-
gested actions to be taken to mitigate any risks from disease.

2. BACKGROUND

Various aspects relevant to automatic visual health monitoring
of crops have been studied in previous work [3, 4, 5]. For var-
ious other plants researchers have investigated the suitability
of different acquisition scenarios, feature spaces, normalisa-
tion procedures, and system designs along reports on visual
detectors for diseases in plants other than crops.
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Fig. 2: Field Imagery and Ground Truth. Examples of leaf images (resolved at 3264x2448 resized to 816x612 pixels with
8bit per RGB channel) as captured by an expert from FERA (top row) and the labelled ground truth (bottom row). Images (a)
and (b) contain healthy primary leaves (green) and are labelled as ‘green leaf’ (gl). Images (c) and (d) are examples of Septoria
tritici (st) and images (e) and (f) are examples of yellow rust (yr), primary leaves that are diseased are dark red. The labelling
includes secondary leaves with and without disease (brown (sg), blue (sd)) and leaves where it is hard to tell if disease is present
(purple).

Many methods to detect plant disease in various environ-
ment have been investigated [6, 7]. In [8], segmentation and
statistical methods were used to automate crop health moni-
toring. While being highly automated, such techniques rely
on constrained environmental and crop layout to provide im-
agery that is well suited to standard segmentation approaches.

Advances in segmentation algorithms lead to the develop-
ment of pixel based classification systems [9]. High dimen-
sional features are used to train a classifier which then labels
previous unseen pixels as belonging to a particular class type.
High dimensional pixel feature have also been used to clas-
sify global image content [10]. In both these works Gabor
or log-Gabor features were used [11]. Such complex fea-
tures capture both local edge and blob information at multiple
scales and rotations. While this can increase the dimension-
ality of a given feature vector it is a useful property if the
scale and orientation of the subject is unknown or cannot be
reliable predicted. While neural networks have been used in
such classifier systems support vector machines (SVM) and
AdaBoost [12] have become popular alternatives.

When objects exhibit large variations in orientation and
textural structure model based approaches can become overly
complex and difficult to learn. Ensembles of randomised for-
est have been shown to compete with state-of-the-art learning
algorithms, while avoiding the need for explicit models [13].
For the segmentation of leaves under challenging visual con-
ditions this is an attractive route to investigate. Given a patch
based classification of a scene containing a primary leaf, it is
desirable to extract a leaf object and further classify the leaf
object regarding the presence and type of disease.

We show that a secondary sub-leaf patch based nearest
neighbours approach combined with a leaf based disease vot-
ing system results in an accurate level of leaf disease diag-
nosis. These system and its component approaches are de-
scribed in the following sections.

3. DATA SPECIFICATION

The data set consists of 153 annotated images captured in
the field by a researcher from FERA using a standard smart
phone (see Figure 2, top row). The researcher is an expert
at manually classifying leaves; he captured the data at arm’s
length fully independently from the computer vision team to
avoid biased data. He was asked to choose a framing and
quality level which farmers could capture themselves, and
that allows for a reliable determination and analysis of the
primary leaf.

In order to generate a reliable ground truth, the images
were labelled in a manner similar to that of the PASCAL VOC
challenge [14]. The bottom row of Figure 2 shows several ex-
amples and explains the annotation rationale. Note, that ad-
ditional subclasses have been added in an attempt to disam-
biguate the primary target from very similar secondary leaves
and other clutter (see Figure 2 for details).

The amount of visual variation that is generally present in
these images of leaves captured in the field is significant; leaf
shapes can vary dramatically even within species, leaf colours
and textural properties vary over time, disease patterns are
non-uniformly distributed and in-field environmental condi-
tions constantly change.

4. METHOD

The proposed processing pipeline operates in a staged fash-
ion; starting with the characterisation of primary leaf features,
followed by primary leaf detection, disease feature extraction
over the leaf region, and finally disease classification. The
following section motivates and details these various steps.

Primary Leaf Descriptor. First, the crop leaf in view is
modelled by its texture properties utilising dense, local fea-
tures coupled with a global geometric model. In order to re-
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Fig. 3: Primary Leaf Extraction. Top row shows the per patch based posterior [P (p|Dxy)] of primary leaf presence as output
of the randomised forest for the examples in Figure 2. The bottom row shows the cutout leaf segments as found by primary leaf
detection according to Equation 1. Example (d) shows how the proposed approach fails to separate exactly two very similar
adjacent leaves. The particularly challenging example (f) fails due to primary leaf ambiguity.

solve local appearance properties of this primary leaf against
other content, we filter the image using a subset of the com-
plex 2D log-Gabor filter family gσ,θ, selecting four scales σ
and six orientations θ, as suggested by Kovesi [11].

Individual locations are then represented by a raw feature
vector ([g]1, ..., [g]256) that concatenates the filter responses [g]
over a local spatial 16x16 neighbourhood. Accordingly, each
location is then described by 256 jets of 24 dimensional real
or 48 dimensional real and imaginary entries, which yields
a 6144 or 12288 dimensional uncompressed feature vector
for each location, respectively. Principal component analysis
(PCA) is finally applied to compact the dimensionality pro-
ducing a compressed n-dimensional descriptor D whose di-
mensionality n is set such that the model covers 1-4 standard
deviations of the variance. This allows for a choice regarding
the level of description detail that is coupled to its variance
and, thus, limits the impact of potential overfitting.

Random Forest Classifier. The dimensions of D span a
pattern space over which a spatially localised estimate of pri-
mary leaf p presence can be defined, that is a posteriorP (p|D).
In order to implement this practically, a random forest is trained
on example descriptors of known class, i.e. samples where
P (D|p) ∈ {0, 1}. Training results in the construction of
100 trees using the implementation by [15] over 2-folds of the
data (three-fold cross validation). Note that the classes of pri-
mary disease and primary-no-disease are combined against all
other classes to form the positive set. Once trained, for a given
descriptor them leaf nodes are activated in the forest and give
their individual posterior estimates for primary leaf presence.
They can be collected over the entire forest to provide a prob-
abilistic estimate P (p|Dxy) per descriptor Dxy representing
the textural structure of the image location (x, y).

Primary Leaf Extraction. Applied over the entire (down-
sampled 816x612) input image this yields a heat map that,
once normalised and under the assumption of pixel indepen-
dence, can be interpreted as an estimate of the overall spatial
distribution [P (p|Dxy)] of primary leaf presence. The top

row of Figure 3 exemplifies such maps.
A rectangular leaf regionR of learned constant mean scale

and aspect ratio is fitted by maximising:∑
(x,y)∈R

P (p|Dxy) (1)

Disease Classification. In order to discriminate healthy
from diseased primary leaf segments, sample regions are drawn
from the extracted region and represented in an R-G-colour
difference space as illustrated in Figure 4. This procedure
compactly captures chlorophyllic changes in the leaf indica-
tive of disease. Each sample patch is then characterised by
five Haralick features [16], that is; contrast, correlation, en-
ergy, homogeneity and entropy of the co-occurence function.
A Nearest Neighbour classifier is finally applied in an image-
to-class fashion, following [17], to yield the disease tag of the
system associated to a photograph.

5. RESULTS

There are 51 examples of each class; no disease, septoria trit-
ici and yellow rust, a 151 images in total consisting of over 1.2
million patches, see Figure 2. Three fold cross validation has
been used to train and test the patch classifier. For leaf seg-
mentation both no disease and diseased leaves are considered
as primary leaves, the positive class, while the background
and all other secondary leaves constitute the negative class.
The rectangular leaf region R is used to segment the primary
leaf and the bounding box of R is used to compute the object
classification scores.

Fig. 4: Five patches from an automatically segmented leaf
(left). The diseased areas are highly contrasting in red-green
space (right).



Fig. 5: A plot of AUC for primary leaf segmentation versus
percentage of retained variance in the patch feature set. Val-
ues are the mean on the three validation sets.

Results for Primary Leaf Segmentation. The initial goal
is to segment the primary leaf from the background and other
clutter in the scene. See Figure 3, top row for an example
of the output of the randomised forest. After segmentation
the mean shape is applied using a local greedy search so as
to maximise the the likelihood under the area. The search
is initialised with the largest components of a fully covariant
gaussian mixture model that is fitted to the likelihood output.
Figure 3 bottom row for examples of the output of the mean
shape fitting process.

Performance of patch classification and object segmenta-
tion is shown in Figure 5. The full patch based feature repre-
sentations for the real (REAL) and real plus imaginary (RE-
ALIMAG) log-Gabor components are reduced in dimension-
ality using PCA in the standard manner. The feature sets are
reduced so that one to four standard deviations of the feature
variance is retain for each of the sets of REAL and REAL-
IMG. From Figure 5 it can be seen that accuracy of patch
classification levels out after two standard deviations, around
60 dimensions. However, the object classification peaks at
around two standard deviations, this is attributed to a smoother
output from the patch classifier assisting the shape fitting search
in the presence of noise and dramatic lighting effects.

Results for Disease Analysis. The top 70% output of the
leaf segmentation system is taken as input for disease pres-
ence and type analysis. The output is noisy and contains over-
lapping boundaries, occlusion and shadows. The segmented
leaves where divided into the central 5 equally spaced, 64x64
pixel, patches, Figure 6 shows an example. The 750 patches
were labelled according to there class; no disease, septoria
tritici, yellow rust with an additional outlier class. While the
variation in colour over the image set is large, areas of dis-
ease always exhibit a brownish yellow tint compared to the
relatively uniform greenness of leaf areas without disease. A
red minus green colour space was used to emphasise areas
of disease and Haralick features [16, 18] were used to de-

scribe each patch. The features include; contrast, correlation,
energy, homogeneity and entropy. Figure 6 top, shows the
ROCs for each of the patch type as classified used a k = 4
nearest neighbours approach, with a 50:50 train/test ratio.

In Figure 6 bottom, the final leaf classification is shown.
For each segmented test leaf, the output of the nearest neigh-
bour patch classification is subjected to winner takes all vot-
ing.

Fig. 6: The ROCs for patch classification (top) and for leaf
type classification after winner takes all voting (bottom). The
ROCs for each case of no disease (‘gl’), septoria tritici (‘st’)
and yellow rust (‘yr’) are shown

.
6. CONCLUSION

In this paper we show that framed leaves can be segmented
in highly cluttered and variable images captured in the field.
High dimensional global texture features are used to success-
ful distinguish between the foreground primary leaf and the
background and other clutter. A learnt leaf shape is then ap-
plied to segment the most likely leaf area. A nearest neigh-
bours approach classifies components of the segmented leaf
as either; no disease, septoria tritici or yellow rust. Finally, a
voting system discards outliers and generates a robust disease
type classification or diagnosis.

Future work will involve collecting a much larger num-
ber of disease and non-disease examples across a range of the
most important crop types. The classification of more vari-
able shaped leaves and fruits will be investigated. The visual
structure and extent of disease type within individual crops
will be analysed.
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