
 Alabarce, M. G., & Bravalheri, A. (2018). Overview of South-Bound
Interfaces for Software-Defined Optical Networks. In 2018 20th
International Conference on Transparent Optical Networks, ICTON 2018:
Proceedings of a meeting held 1-5 July 2018, Bucharest, Romania. (Vol.
2018-July). [8473494] (International Conference on Transparent Optical
Networks (ICTON)). IEEE Computer Society.
https://doi.org/10.1109/ICTON.2018.8473494

Peer reviewed version

License (if available):
Other

Link to published version (if available):
10.1109/ICTON.2018.8473494

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online
via IEEE at https://doi.org/10.1109/ICTON.2018.8473494 . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/196597267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/ICTON.2018.8473494
https://doi.org/10.1109/ICTON.2018.8473494
https://research-information.bris.ac.uk/en/publications/overview-of-southbound-interfaces-for-softwaredefined-optical-networks(c56c7430-df20-49a3-898d-fcdc169b97c3).html
https://research-information.bris.ac.uk/en/publications/overview-of-southbound-interfaces-for-softwaredefined-optical-networks(c56c7430-df20-49a3-898d-fcdc169b97c3).html

Overview of South-Bound Interfaces for

Software-Defined Optical Networks

Miquel Garrich Alabarce, Member, IEEE, Anderson Bravalheri*

Universidad Politécnica de Cartagena, Cuartel de Antiguones, Plaza del Hospital 1, 30202 Cartagena, Spain

* High Performance Networks Group, Faculty of Engineering, University of Bristol, BS8 1TH, UK

Tel: (34) 968 338 946, e-mail: miquel.garrich@upct.es

ABSTRACT

In SDN-enabled networks, the control plane and data plane interaction relies on open SouthBound Interfaces

(SBIs) so that the SDN controller exercises direct control over the data plane elements. In this paper, we review

current initiatives of SBI to control optical components which include ad-hoc extensions of OpenFlow and YANG

modelling proposals combined with the NETCONF / RESTCONF protocols. Then we overview different tools

and frameworks available for quick prototyping and deployment of software services that are compliant with such

interfaces. Finally, we discuss the advantages and drawbacks of the reviewed initiatives considered key enablers

for standardized end-to-end network programmability.

Keywords: Software defined networking, optical networks, programmatic interfaces.

1. INTRODUCTION

Software Defined Networking (SDN) enables advanced network programmability because it decouples the

forwarding data plane actions from the control plane decisions [1], thus potentially overcoming the limitations of

current network infrastructure and enabling many new functionalities [2]. In SDN, SouthBound Interfaces (SBI)

play a key role because are used from the SDN controller to directly control data plane elements. OpenFlow [3] is

a remarkable example of SBI, which used to update packet handling rules in the flow table which governs the

behavior of the switches. Undeniably, OpenFlow has become the industrial standard in electronic packet networks.

In optical networks, SDN is attracting notable interest due to its applicability to control and manage the specific

optical (photonic) transmission and switching characteristics of the optical domain [4]. Software-Defined Optical

Networks (SDONs) aim to exploit the flexibility of SDN control to support networking applications with an

underlying optical network infrastructure [5]. A comprehensive survey of techniques applying SDN to optical

networks can be found in [6], which includes virtualization and orchestration aspects for SDONs. Although [6]

remarks the importance of simplified management strategies, it provides a limited view of the models that would

be required for a centralized optical network management. Indeed, common abstractions and interfaces are

essential in SDONs to enable open and vendor agnostic management of optical equipment. This aspect is deeply

covered in [7], which surveys and compares the most important models and proposes an intent interface to create

virtual topologies based on the existing models. In this context, a clear driver that motivates the existence of several

proposals are different views of network operators on their requirements, operational needs and particular use

cases may lead to a variety of optical network models, covering various aspects ranging from device-oriented up

to generic descriptions of optical network elements. Consequently, initiatives regarding white-box and openness

of optical networks are attracting the interest of telecom operators aiming to define an open unified vendor-

independent network [8].

In this paper, we review current initiatives of SBI to control optical components which include ad-hoc extensions

of OpenFlow and YANG modelling proposals combined with NETCONF / RESTCONF protocols. Then we

overview different tools and frameworks available for quick prototyping and deployment of software services that

are compliant with such interfaces. Finally, we discuss the advantages and drawbacks of the reviewed initiatives.

2. SOUTH-BOUND INTERFACES AND PROTOCOLS

2.1 OpenFlow

OpenFlow (OF) was proposed as a standard protocol to enable the separation of the data and control plane in

packet networks. Originally based on convergent principles of operation shared among several electronic switch

vendors [3], the OF protocol is intended to be simple and assumes that network switches can handle received

packets by following rules contained in a table. Each rule describes a condition (e.g. input port, header values) that

triggers specific actions (e.g. forward the packet to an output port, modify/discard the packet) when matched.

Therefore, the network programmability is achieved by changing (and chaining) different flow tables.

The same model cannot be directly applied to a circuit switching equipment and in particular to ROADMs, due

to the lack of packet structure. However, information flows inside optical circuits can be matched according to

physical parameters (e.g. central frequency of the carrier wave, bandwidth), in the same way packets are matched

according to header values. Optical channels can be “forwarded” between two different fibers (similarly to packets

steered between two switch ports), or even “modified” (if you have a colorless ROADM). As a result, OF

extensions were proposed to enable the SDN control of optical networks [4], which led to an architectural proposal

for a unified control and management of circuit-based (optical) and packet-based electronic networks [5].

The architecture proposed by Channegowda et al, shown in Fig. 1

(adapted from [5]) is based on an extension of the OF protocol to

enable an abstraction that unifies and generalizes the flow concept

to both the optical domain (including fixed and flexible grids) and

the packet-switched network. The extension of the OF protocol is

implemented in the flow switching rules by applying specific

technological fields in the flow tables of the “generic” OF switch.

Moreover, the proposal in [5] also includes inter-domain rules

implemented in the flow tables so that technological constraints can

be applied for specific traffic that traverses different technologies.

2.2 NETCONF/RESTCONF protocols and YANG modelling

The NETCONF protocol was created by IETF as an effort to standardize the access and configuration of network

equipment, and to address the weakness of the Simple Network Management Protocol (SNMP) [9][10].

NETCONF is a remote procedure call (RPC) protocol that uses extensible markup language (XML) for data

serialization [11], allowing network operators to change static and runtime configurations in a diverse range of

devices. This protocol stablishes main operations for configuration and state management aside from allowing

extensions by means of defined capabilities [12]. The XML messages exchanged during NETCONF sessions are

defined on a per-device basis, however formalized using the YANG modelling language [13]. This language allows

mapping configuration parameters and status information for each device in a tree-data structure.

With the pervasiveness of web services and the increasing advantages in exposing Application Programming

Interfaces (APIs) through HTTP connections, a subset of the NETCONF semantics was transferred to a

RESTful [14] context, originating the RESTCONF protocol. In RESTCONF, important pieces of the hierarchical

data-structure defined in the YANG modules correspond to REST “resources” that can be accessed/manipulated

using GET, POST, PUT, PATCH and DELETE HTTP methods. In turn, these methods basically provide that same

functionality that the main NETCONF configuration and state management operations [13].

OpenROADM [15] is a Multi-Source Agreement (MSA) that defines optical interoperability specifications and

YANG models which currently counts on 15 members including world leading vendors and telecom operators.

In summary, OpenROADM targets multi-vendor, interchangeable and inter-workable optical functions with

standard APIs written in YANG modelling language that can be accessed through an SDN controller using

NETCONF. YANG models include pluggable optics with interoperable line-side given that client sides are

currently well covered in other standards. Flexible interoperable ROADMs include YANG models to capture

colorless and directionless (CD) and contentionless (CDC) characteristics.

OpenConfig [16] is a project that provides a common data model for management interfaces that network

operators can use to configure and monitor any equipment regardless of vendor. OpenConfig includes a set of

vendor neutral data models that address different technologies and which are derived from operational needs, use

cases and requirements from operators. The main objective in OpenConfig is to standardize the management

interface or APIs to network elements, regardless of data-plane function. In the optical domain, OpenConfig

describes a set of five models for the optical transport systems (e.g., OSC, amplifiers, terminals and ROADMs).

OpenDevice [17] is an adaptation of the proposals done in OpenROADM and OpenConfig with the addition

of a declarative part with specific functionalities. In particular, Infinera and Lumentum recently demonstrated [17]

an automated service management and automated optical power control based on YANG modelling in which

optical signals were expressed between the two vendors’ ROADMs and terminals.

3. SOFTWARE TOOLS AND FRAMEWORKS FOR CLIENT AND SERVER/AGENT CREATION

Software components in the SDN ecosystem can undertake two distinct roles. The client usually corresponds to

the SDN controller or a program used by human operators devoted to perform configurations in the network. The

server commonly corresponds to a device, another program, or even a simulation, that must react to the requests

sent according to the specific protocol, performing (or pretending to perform) the network configuration itself. The

server is also referred as “agent” or “daemon”. In this section we explore the available solutions for SBI in SDONs.

3.1 OpenFlow

Since the OpenFlow protocol is historically related to the origin of SDN, the most common way of configuring

OF-enabled switches is via SDN controllers. As a result, libraries implementing an OpenFlow client are scarce

and usually outdated. However, a few implementations focusing on packet parsing and generation can be used to

implement OpenFlow clients and servers, thus, the implementation of optical extensions is not straightforward.

Loxigen is a tool that generates OpenFlow bindings for C, Python and Java, highly updated and maintained by

the Floodlight SDN controller team [18]. Pio is a Ruby library maintained by the Trema OpenFlow

Framework [19], that supports version 1.3 of the protocol. Ofpmsg-js is a JavaScript library maintained by the

Flowgrammable group [20], that supports versions up to 1.5. Python-openflow is an updated Python library,

maintained by the members of the Kytos opensource SDN project [21].

Figure 1. Flow definitions for different

technology domains. Adapted from [5].

OpenFlow
protocol

SDN controller

Input
Port

VLAN
ID

Ethernet IP TCP

PORT Lambda VCG
Time
Slot

Signal
Type

PORT
Central
freq.

Bandwidth
Signal
Type

Packet flow

Fixed-grid

flow

Flexi-grid

flow

OpenFlow
switch

Flow Table

OpenFlow interface

Flow ids.

OpenVSwitch (OVS) [22], backed by the Linux Foundation, is a

virtual switch implementation, that can be controlled by several standard

protocols and works as reference implementation due to its broad

adoption in virtualized environments. OVS is very well documented,

however, since the project focus on commodity hardware

implementation, adapting it to custom and prototypical solutions requires

deep knowledge/familiarity of the source code and the Linux kernel.

Indigo project [23], maintained by the Floodlight community, is an

alternative to OVS, and implements an OpenFlow switch agent focusing

in equipment manufacturers. In order to fulfil its vision, the project is

based in a modular design that provides all the common functionality, but relies on a separated developer-specific

hardware abstraction layer, which may turn the process of implementing prototypes or simulations easier.

Unfortunately, Indigo documentation is not as available as OVS.

3.2 NETCONF

NETCONF have been used to directly configure the equipment since its creation, and just more recently it was

adopted as the second most promoted standard for SBI in SDN controllers. Therefore a plethora of different client

implementations is available in popular programming languages, e.g. [24], [25], [26] and [27], however most of

them still require manually composing the XML content for the messages. Conversely, a very limited number of

tools is available for implementing NETCONF agents.

ConfD is a proprietary framework created by Tail-f (owned by Cisco), distributed under two different

categories of licenses. The basic edition is offered without cost but supports a very limited subset of features, for

instance, just the C and Erlang APIs are available, and the documentation is sparse. On the other hand, the premium

edition is commercialised with the complete set of features, including Python API and customer support [28]. The

framework is able to compile the YANG models provided by the developer, automatically generating the

infrastructure necessary to run the NETCONF server. Additionally, it creates a persistence layer which stores all

the information modelled as a tree data structure. Associated to the persistence layer, an event-based system creates

a communication bus that enables developers to react to configuration requests (executing custom operations in

the underlying equipment or simulation), and to operational status changes (publishing them to the storage layer).

This architecture is show in Fig. 2. Due to the complexity of the solution, the choice of the programming language

(optimized for runtime performance) and the lack of openness (as a closed source software), the learning curve of

ConfD is steep, and creating custom agents can be cumbersome for developers inexperienced in the framework.

Netopeer2 is an opensource alternative to ConfD developed and maintained by CESNET [29]. The toolset is

implemented using a modular approach and follows similar operating principles to ConfD (Fig. 2). Within

Netopeer2 architecture, libnetconf2 [30] is used to compose the NETCONF interface, implementing the

protocol internals, while sysrepo [31] creates a database responsible for storing configuration and operational

data. libyang [32] is widely used to compile and validate the YANG modules provided by the user to create the

data schema input for the other software components. Basic documentation is provided including simple examples.

Netopeer2 can provide NETCONF APIs to custom devices or simulations, while custom behaviour can be

implemented dynamically in Python, Java, Go and Lua, in addition to the default C static language, through

sysrepo callbacks (although the available language bindings still resemble the low-level C APIs).

YDK is a development kit created by Cisco to support network programmability based on YANG modules [33].

YDK generates object classes for C++ and Python (with expectations to add support for at least Ruby, Go and C#)

based on the provided models, being able to convert between native data structures, XML and JSON, which is

extremely useful for both NETCONF and RESTCONF server implementations. Similar to Netopeer2, YDK also

makes use of libyang to provide run-time YANG model analysis. In spite of targeting NETCONF client scenario,

YDK can also be used to create agents. Nonetheless, it only supports data mapping and (de)serialization, which

means that all the code necessary to handle NETCONF connections, session management and RPC need to be

created manually by the developer. An alternative approach would be integrating YDK in a ConfD or Netopeer2

deployment, however, this is a complex task that requires strong knowledge about the selected framework and

multi-programming language development.

3.3 RESTCONF

Implementing a RESTCONF client is extremely easy compared with the previous protocols, thanks to the

popularity of HTTP (and especially RESTful) APIs. Almost every programming language provides HTTP libraries

that can be used to perform calls to the RESTCONF API. The same can also be done using popular Unix command

line tools, such as curl [34]. On the other hand, complete RESTCONF server implementations are essentially

restricted to commercial solutions, such as ConfD Premium. Fortunately, web frameworks are extremely popular

in most of the programming languages and, therefore, can be used in conjunction with toolsets such as YDK, to

create RESCONF servers.

Figure 2: ConfD operating principles.

YANG

model

RPC handler /
Event-based

system

Connection / Session
Management

Persistence

Layer

AgentNETCONF

User-implemented callbacks

Hardware device or software simulation

F
ra

m
ew

o
rk

-p
ro

v
id

e
dSDN controller

PyangBind [35], as an alternative to YDK, is a plugin for the popular YANG parser and generator pyang [36],

that is able to convert YANG models into entire object class hierarchies in Python. The resulting code can be then

used to (un)serialize data from/into the JSON format, which, in turn, can power HTTP requests/responses.

Ygot, created in the context of OpenConfig, aims to achieve similar objectives but targeting the Go

programming language [37]. Ygot, is able to validate if Go structures match a defined YANG schema and also

generate bootstrapping code (types/data structure definitions and helper methods). Despite focusing on gRPC

systems (and therefore protobuffers serialisation), the toolset is able to generate/parse JSON messages and thus

can also be used to power classical JSON+HTTP requests/responses.

4. DISCUSSION AND SUMMARY

Although OpenFlow proposals obtained major relevance in the early stages of SDONs, current trends on YANG

modelling proposals combined with the NETCONF / RESTCONF protocols are attracting the interest of the

industry. For instance, OpenROADM and OpenConfig are initiatives aiming to become de-facto SBI standards.

Upon those proposals, different communities propose frameworks that cover a wide range of aspects in SDONs.

In this context, the availability of opensource tools to implement protocol agents during product development or

research programs is fundamental. Indeed, a framework that abstracts away redundant implementations is essential

to provide a common ground that allows the user to focus on the domain specific details. By doing so, the developer

should be able to use high-level dynamic programming languages to iterate quickly and achieve fully functional

proofs of concept which can then be refined, optimized and turned into the production-ready solution.

Inappropriately, the current state of the SDON SBI development does not match these expectations.

OpenFlow agents, regardless of being conceptually simpler and easier to implement in theory, cannot be easily

deployed since the available tools (and the protocol itself) were not created to handle the requirements of an optical

equipment. At the same time, NETCONF and RESTCONF, that can perfectly support the optical domain

specificities, imply in very complex agent implementations for which, no good enough and mature prototyping

toolkit is available. This lack of resources jeopardizes the standardization movement in the SDON community. In

the absence of programming frameworks, divergent implementations start to appear, as already demonstrated by

the early experiments of the OpenConfig initiative in using gRPC as replacement for NETCONF. The SDON

community needs to address these issues, so the efforts in research and development of new technologies and

techniques can be delivered quicker and without requiring needless effort.

ACKNOWLEDGEMENTS: The research leading to these results has received funding from the Eur. Comm. for the H2020-

ICT-2016-2 METRO-HAUL project (G.A. 761727) and the H2020-MSCA-IF-2016 INSPIRING-SNI project (G.A. 750611).

REFERENCES

[1] D. Kreutz, et al., “Software-Defined Networking: A Comprehensive Survey,” Proceedings of the IEEE, 103-1, Jan. 2015.

[2] S. Das, G. Parulkar, and N. McKeown, “Why OpenFlow/SDN can succeed where GMPLS failed,” ECOC, 2012.

[3] N. McKeown, et al., “OpenFlow: Enabling innovation in campus networks,” ACM SIGCOMM, 2008.

[4] S. Gringeri, et al., “Extending software defined network principles to include optical transport,” Com. Mag.,51-3, 2013.

[5] M. Channegowda, R. Nejabati, and D. Simeonidou, “Software-defined optical networks technology and infrastructure:

Enabling software-defined optical network operations [invited],” JOCN, v. 5, n. 10, pp. A274-A282, 2013.

[6] A. S. Thyagaturu, et al., “Software Defined Optical Networks (SDONs): A Comprehensive Survey,” IEEE Comm.

Surveys and Tutorials, vol. 18, no. 4, pp. 2738–2786, 2016.

[7] T. Szyrkowiec, et al., “Optical Network Models and Their Application to Software-Defined Network Management,”

International Journal of Optics, 2017.

[8] E. Riccardi, et al., “An Operator's view on introduction of White Boxes in Optical Networks,” JLT, 2018.

[9] J. Schoenwaelder, “Overview of the 2002 IAB Network Management Workshop,” IETF RFC 3535, 2003.

[10] M. Bjorklund, “YANG—A data modeling language for the network config. proto. (NETCONF),” IETF RFC 6020, 2010.

[11] XML-RPC official web site, http://xmlrpc.scripting.com/

[12] R. Enns, et al., “Network configuration protocol (NETCONF),” IETF RFC 6241, June 2011.

[13] A. Bierman, M. Bjorklund and K. Watsen, “RESTCONF Protocol,” IETF RFC 8040, January 2017.

[14] F. Belqasmi et al., "RESTful web services for service provisioning in next-generation networks: a survey", IEEE

Commun. Mag., vol. 49, no. 12, pp. 66-73, December 2011.

[15] OpenROADM web site http://www.openroadm.org/ [16] OpenConfig web site http://www.openconfig.net/

[17] O. F. Yilmaz, et al., “Automated Management and Control of a Multi-Vendor Disaggregated Network at the L0 Layer,”

OFC, Tu3D.9, San Diego, USA, 2018.

[18] https://github.com/floodlight/loxigen

[19] Parser and gen. Ruby https://github.com/trema/pio

[20] https://github.com/flowgrammable/ofpmsg-js

[21] Python OF lib, https://docs.kytos.io/python-openflow/

[22] OpenVSwitch project, https://www.openvswitch.org/

[23] Indigo project, http://www.projectfloodlight.org/indigo/

[24] Python library https://github.com/ncclient/ncclientt

[25] Ruby library https://github.com/Juniper/net-netconft

[26] Perl library https://github.com/Juniper/netconf-perl

[27] Go library https://github.com/Juniper/go-netconf

[28] Tail-f ConfD, http://www.tail-f.com/confd-basic/

[29] Netopeer2 https://github.com/CESNET/Netopeer2

[30] https://github.com/CESNET/libnetconf2

[31] YANG-based datastore Linux, http://www.sysrepo.org/

[32] https://github.com/CESNET/libyang

[33] Yang Dev. Kit, https://developer.cisco.com/site/ydk/

[34] Curl, com. line tool and library, https://curl.haxx.se/

[35] PyangBind for pyang, http://pynms.io/pyangbind/

[36] https://github.com/mbj4668/pyang/

[37] YANG Go Tools, https://github.com/openconfig/ygot/

http://xmlrpc.scripting.com/
http://www.openroadm.org/
http://www.openconfig.net/
https://github.com/floodlight/loxigen
https://github.com/trema/pio
https://github.com/flowgrammable/ofpmsg-js
https://docs.kytos.io/python-openflow/
https://www.openvswitch.org/
http://www.projectfloodlight.org/indigo/
https://github.com/ncclient/ncclientt
https://github.com/Juniper/net-netconft
https://github.com/Juniper/netconf-perl
https://github.com/Juniper/go-netconf
http://www.tail-f.com/confd-basic/
https://github.com/CESNET/Netopeer2
https://github.com/CESNET/libnetconf2
http://www.sysrepo.org/
https://github.com/CESNET/libyang
https://developer.cisco.com/site/ydk/
https://curl.haxx.se/
http://pynms.io/pyangbind/
https://github.com/mbj4668/pyang
https://github.com/openconfig/ygot/

