
 McConville, R., Liu, W., & Hong, J. (2017). Vertex deduplication based on
string similarity and community membership. In Complex Networks and
Their Applications VI: Proceedings of Complex Networks 2017 (The Sixth
International Conference on Complex Networks and Their Applications) (pp.
178-189). (Studies in Computational Intelligence; Vol. 689). Springer, Cham.
https://doi.org/10.1007/978-3-319-72150-7_15

Peer reviewed version

License (if available):
Other

Link to published version (if available):
10.1007/978-3-319-72150-7_15

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online
via Springer Link at https://doi.org/10.1007/978-3-319-72150-7_15 . Please refer to any applicable terms of use
of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/196597089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-72150-7_15
https://doi.org/10.1007/978-3-319-72150-7_15
https://research-information.bris.ac.uk/en/publications/vertex-deduplication-based-on-string-similarity-and-community-membership(4f48a730-6c70-44f6-877f-49fc354c5484).html
https://research-information.bris.ac.uk/en/publications/vertex-deduplication-based-on-string-similarity-and-community-membership(4f48a730-6c70-44f6-877f-49fc354c5484).html

Vertex Deduplication Based on String Similarity
and Community Membership

Ryan McConville1(B), Weiru Liu1, and Jun Hong2

1 University of Bristol, Bristol, UK
{ryan.mcconville,weiru.liu}@bristol.ac.uk

2 University of the West of England, Bristol, UK
Jun.Hong@uwe.ac.uk

Abstract. Entity resolution is a challenging problem with unresolved
and duplicated entities common in many large real world datasets. New
methods are required for addressing this problem as the use of graphs to
model data continues to proliferate. In this paper we propose a general
framework for the fast resolution of duplicate vertices in graphs. Our
framework utilises locality sensitive hashing for the quick identification
of potential duplicates based on string similarity. However it is clear that
in many tasks string similarity alone is not enough to determine dupli-
cation. This motivates the second aspect of our method which discovers
the community structure in the graph using an ensemble of community
detection algorithms. These communities are then used to augment the
string similarity in the deduplication process. We evaluate our approach
on a real world graph consisting of 620885 vertices and 1129986 edges
and report a high accuracy score on a commercial real world graph.

1 Introduction

Entity Resolution is known by many names ranging from record linkage to data
matching and deduplication. However, they all share a common goal which is to
link or group different manifestations of the same real world entity in a dataset.
Examples of this problem are plenty, such as the existence of different names
for the same object (e.g., airplane, aeroplane, plane), or errors resulting from
data entry (e.g. typos) and abbreviation and formatting differences (e.g. New
York, NY, N. York). Datasets found in the real world, unsurprisingly, tend to
suffer from these problems. Furthermore, since the onset of the ‘Big Data’ era
there is a drive to collect and store as much information as possible; the entity
resolution problem becomes even more important as the increase in amount of
data typically correlates with an increase in data quality issues. In addition to
the increase in the amount of data being generated one must also consider that
much of this data is being generated by separate sources and processes which
raises challenges, for e.g. in record linkage. As a result one can not always proceed
with the analysis or data mining without attempting to improve the data quality.
Data collection, particularly when it is carried out by humans, is a messy process

c© Springer International Publishing AG 2018
C. Cherifi et al. (eds.), Complex Networks & Their Applications VI,
Studies in Computational Intelligence 689, https://doi.org/10.1007/978-3-319-72150-7_15

Vertex Deduplication Based on String Similarity 179

which introduces missing, ambiguous and incomplete values. Further it is typical
that the data may not be well structured.

Much attention previously in entity resolution has focused on traditional
databases but increasingly data is being modeled as networks and graphs mean-
ing previous solutions may no longer be applicable. The field of graph mining
has opened many opportunities for discovering knowledge from the connections
between objects. For example, users within a social network are not just rep-
resented via their own profile, but also by whom they are connected to via
friendship, etc. If the aim is to detect duplicate users within the social network
it is not enough to just analyse names as they do not uniquely identify indi-
viduals, and vice versa. However, if one also takes into account the structural
information of each user in the graph this can improve the entity resolution pro-
cess. While it is possible to attempt resolving each entity by examining only each
individual vertex, graph data provides extra information in the form of the edges
which connect vertices together, and explicitly models the relationship between
different objects.

To clarify, in this work, when a reference is made to resolving entities, it
refers to detecting two entities that are duplicates of each other. That is, given
two objects oi and oj that are dissimilar in some way, but actually refer to the
same entity, the objective is to resolve them to a single object.

As typical datasets become larger it becomes important to consider scalabil-
ity and efficiency. The social network example above may involve hundreds of
millions of vertices and billions of edges. A naive approach to entity resolution
would compute the pairwise similarity of all object pairs in the dataset. This
has an unsatisfactory complexity of O(n2) where n is the number of objects.
There have been a number of approaches in the literature proposed specifi-
cally to reduce the time complexity. A popular approach is the use of ‘blocking’
techniques [17]. These techniques are based on the fast assignment of objects to
blocks, where each block consists of potentially similar objects, and each block is
relatively small. By only performing the pairwise comparisons to objects within
the same block, the number of pairwise comparisons is reduced from O(n2) to
O(b2) where b is the number of objects in the block and b � n.

Assuming it is possible to efficiently discover the candidate sets for entity
resolution, the next challenge is effectively discovering the objects in the can-
didate sets which are true duplicates of each other. In the literature there is a
number of techniques for deduplication and entity resolution, outlined by Getoor
et al. in [12]. Often specific measures are chosen for specific applications. One
example is the use of approximate string matching methods to determine if two
objects are duplicates of each other. For improving performance these methods
are sometimes enhanced with domain specific rules that have been created for
the specific task. A major downside of this approach is that it requires domain
experts to create and maintain these rules, as well as modifications for new data
sources and applications.

Our approach is to use the min-wise independent permutations locality
sensitive hashing scheme (MinHash) [6], which is a locality sensitive hashing

180 R. McConville et al.

algorithm that quickly estimates the Jaccard Similarity between sets of objects.
In this method each object to be processed by MinHash will be the vertex label.
These sets of labels will be quickly processed by the MinHash algorithm to pro-
duce a candidate set which were found to be similar based on the label string.
However, it alone is not sufficient to accurately solve the problem of resolving
duplicate entities in large graphs.

In this work we therefore propose to tackle two of the above outlined chal-
lenges to develop a general purpose algorithm for entity resolution of duplicated
vertices in graphs. We are proposing a novel method which employs ensembles of
community detection algorithms, together with the fast string based similarity
locality sensitive hashing function MinHash, to quickly and accurately discover
duplicate vertices.

The combination of both methods are important, and one without the other
is substantially weaker, or of no use. We expect to find that for most large
graphs, the communities will consist of many vertices, and the vast majority of
those vertices will not be duplicates of each other. Therefore, to check the string
similarity of each and every vertex in the community with the others would be
time consuming and inefficient. Alternatively if we were just to use MinHash,
we would receive many false positive matches due to the legitimate high string
similarity of distinct entities (for e.g. ‘10 Main Street, Dublin, Ireland’ and ‘11
Main Street, Dublin, Ireland’). MinHash alone would detect these as duplicates
due to their high string similarity, but by taking into account the structural
connectivity of these vertices in the graph we hope to determine that it was a
false positive.

In order to evaluate our method, we will use a large real world heterogeneous
graph consisting of people, businesses and their recorded postal addresses, email
addresses and phone numbers.

To summarise, the main contributions are as follows:

• The proposal of a general method of detecting duplicates based on string
similarity and community structure in graphs.

• The description of an algorithm for detecting duplicates based on string sim-
ilarity using locality sensitive hashing and ensembles of community detection
algorithms.

• The empirical evaluation of the method on a real world graph of 620885
vertices and 1129986 edges. It is demonstrated how this method can achieve
high levels of precision, which is a key measure in a commercial setting.

2 Related Work

Entity resolution is an important and well established area of research with sig-
nificant importance to the data quality issues which are frequent in real world
data. Entity resolution has been applied in numerous areas ranging from web
mirror detection [7], data warehousing [5], social network analysis [3] and con-
tinues to be an active area of research [13].

Vertex Deduplication Based on String Similarity 181

Often entity resolution algorithms employ blocking as a means of reducing
the computational complexity of the task, and to increase efficiency [1,13]. How-
ever, many of these techniques don’t always take into account the structural
information often associated with real world data. For example, the SPAN algo-
rithm only considers the similarity of strings, and not the relationship of the
each entity to others. This can be crucial in situations where entity resolution
has to deal with data that may be similar (i.e. a similar string) but the reason
for the difference is unknown.

Fu et al. [11] and Fan et al. [10] both propose approaches for graph based
deduplication. However, both of these methods are domain specific, designed for
either linking household census data or name disambiguation.

Graph partitioning methods more generally have been considered in the lit-
erature, such as Conditional Random Field based methods [9] which creates
models of equivalence between relations. In contrast, in the approach of this
work, the entire dataset will be modeled as graph, and edges will represent the
natural relationship between vertices, that is, for an address, the edge of that
address will connect to the person which the address belongs to.

Linked data has been studied in [2] which focuses on deduplication of linked
data, as well as group detection. They formulate their problem differently to us,
in the form of references obtained from graph objects being mapped to entities
via homogeneous links of references. In the case of this work, the method pro-
posed utilises the natural heterogeneous graph structure in the form of a single
large graph, i.e. there may be no method of creating discrete links.

In summary, to the best of knowledge, this is the first general purpose entity
resolution algorithm for vertex deduplication in graphs using locality sensitive
hashing and ensembles of community detection algorithms.

3 Our Method

In order to describe our framework we must first introduce some preliminaries.

3.1 MinHash

The MinHash [6] algorithm as briefly introduced above is a locality sensitive
hashing algorithm for quickly estimating the Jaccard Similarity between sets.
Generally, locality sensitive hashing algorithms aim to hash objects in such a
way that similar objects are more likely to collide into the same bucket. It is
in these buckets that we will find the potential duplicates which will form the
input to the second stage of our algorithm. Given a graph containing vertices
which may contain duplicate vertices we first extract all the vertex labels. In
a homogeneous graph this will be the labels of all vertices. In a heterogeneous
graph we will extract only the specific type of vertices we wish to deduplicate, as
we can reasonably assume that an address label will never be the duplicate of a
phone number label. By extracting the labels we will have the string information
we can first use to determine potential duplicates. These labels should consist

182 R. McConville et al.

of the unique representation of the vertex, for e.g. the name of a product from
a customer purchasing graph. Rather than operate on the string as a whole,
or the individual characters of it, we break it down into subsequences. This
retains structure of the labels which may be very informative. For example this
can capture common reasons for the deduplication, as in the case of typos or
misplaced characters. This is done via a process called shingling [6].

We define a k-shingle to be a substring of length k, such that the the original
vertex label becomes a set of k-shingles. Next, as part of the MinHash algorithm,
we convert each k-shingle into a signature which is representative of the original
label. The detailed description of the idea of generating MinHash signatures can
be found in Broder [6]. These signatures are only part of the solution for quickly
estimating the similarity between objects. The next step is to further subdivide
the signature produced above into rows(r) and bands(b). Each band will consist
of r hash-values, which are input to another hash function that maps the band
to a new bucket. Importantly there will be b sets of buckets to map to, one set
for each band so no overlapping between bands can occur. Thus we can now say
that if a band from each of the two documents map to the same bucket, they
are candidate pairs based on their string similarity.

MinHash is known to approximate the Jaccard Similarity between sets, and
the choice of r and b have significance in that they determine the probability
that two documents with a Jaccard Similarity of s become candidate pairs. The
other parameter of importance is the k value for extracting the shingles.

Specifically, the probability that the signatures are identical in at least one
band, therefore making them a candidate pair, is 1 − (1 − sr)b. We can exploit
this in order to choose appropriate values for r and b prior to the clustering. The
similarity s at which there is a 50% chance of two items becoming candidate
pairs, at which the rise of the s curve is the steepest, is a function of b and r:
(1/b)1/r.

After the process of transforming input vertex labels into candidate pairs
using MinHash an acknowledgement of a trade-off made should be noted. As
this is a general method of deduplication it is important to limit the amount
of datatype or domain specific cleaning that occurs in the preprocessing step.
For example, for the deduplication of addresses, it seems sensible to extract
ZIP codes and street addresses and process those independently. While one can
reasonably assume that this will increase the effectiveness of the deduplication
process, it would also constrain the ability to generalise it to a wider variety
of datatypes and domains. For this reason this method chooses to assume that
each label is a simple text string.

In summary, each vertex label will be shingled and MinHashed as described
above. The output of the process will be a set of candidate pairs. This candidate
pair set is formed by taking each pair of vertex labels that were hashed to the
same bucket by the MinHash algorithm.

Vertex Deduplication Based on String Similarity 183

Fig. 1. An example illustrating how we can utilise structural features to augment string
similarity

3.2 Structural Features

If one considers the MinHash step as a blocking technique, it would be successful
in that it reduces the number of comparisons to be made from the entire set of
vertices, to a smaller subset of it. However, there is still a requirement to further
compare the similarity of items within the same ‘block’ or ‘bucket’ with each
other. In doing so there is a challenge previously discussed; determining if two
vertices which may have a high string similarity refer truly to the same entity.

Rather than devise domain specific rules or similarity functions, we propose a
method that captures the natural structural properties of the data and therefore
increases its generality. Thus, for each pair of potential duplicate entities in the
MinHash candidate set (block), we should check if they are similar with regard
to some structural connectivity which we will describe soon.

To illustrate, let’s consider two examples (from Fig. 1):

1. John Smith and John Smyth.
2. John Smiht and John Smith.

In Example 1 we intuitively know that Smith and Smyth are potentially two
distinct and relatively well-known variations of the same name. This knowledge
is lost in a naive string comparison. Whereas in Example 2, we know that Smiht
is not a common surname, and is likely an error in the recording or input of the
data. Our challenge is therefore to devise a method of differentiating between
true duplicates (i.e., Example 2) and false positives (i.e., Example 1).

In graph data we propose that such information is contained within the
structural information of the graph and by utilising this we can achieve our
objective. We expect that distance between the two true duplicates (Example 2)

184 R. McConville et al.

would usually be closer than those of the false positive duplicates (Example 1),
as the incorrect duplicate would be connected to vertices in the neighbourhood
of their duplicated entity. One graph theoretic measure we could use is the
shortest path between each pair of potential duplicates. While determining the
shortest path between two vertices is relatively simple and fast, it has one major
drawback. If we were to use the shortest path between two vertices, we would
have to set a specific threshold at which we determine any two vertices within it
to be true duplicates. This does not take into account the number, or strength
of connections between the vertices. For example, given two strongly connected
communities with each connected to the other via a single inter-community edge,
we propose that two vertices within a single community (i.e., connected by an
intra-community edge) are much closer than any two vertices connected by the
inter-community edge. Further setting a threshold may require expert domain
knowledge, as well as coupling the threshold to a specific graph model.

3.2.1 Community Detection
Instead, we propose utilising community detection algorithms as a means of
filtering out false positives such as Example 1.

In an effort to make our method as general as possible, we propose the use of
an ensemble of community detection algorithms. Ensemble methods are common
in the supervised learning setting, where a set of classifiers are constructed and
the combined models are used to improve the performance, for example by taking
an average of their predictions. Ensembles of community detection algorithms
have been previously explored [14], but not in the domain of entity resolution.

We will show how ensembles of community detection algorithms can effec-
tively improve the performance of our task in deduplication. We will choose a set
of community detection algorithms and each will be applied to a graph contain-
ing the vertices we wish to deduplicate. For ensemble methods to be effective it
is generally expected that each of the decision makers would exhibit diversity.
As each algorithm will have its own criteria and method for the detection of
communities we hope to discover diverse sets of communities. We will provide
an analysis of the diversity in our experimental evaluation in Sect. 4.1.

Now that we have introduced and justified two of the major components
of our technique, MinHash and ensembles of community detection algorithms,
we will continue with the description of our method. Following the discovery
of the sets of candidate pairs by MinHash, we will test each candidate pair
by querying their existence in each algorithms set of communities. For each
algorithms communities, we will check if the candidate pair exist in the same
community. If so, we consider this a vote by the algorithm that the candidate
pair is a true duplicate. By checking the candidate pair in each algorithms set of
communities, we hope that these ‘votes’ will leave the true positive duplicates,
while removing the false positives.

Typically in ensemble based algorithms there is a combination step where the
results of each of the models is evaluated before a final judgement is made. Vot-
ing based methods are popular where each method outputs a decision, typically

Vertex Deduplication Based on String Similarity 185

a class or a label, and the majority (or weighted majority) label is chosen as the
final label. We can consider this an estimate of the confidence of the decision.
In our method, each algorithm will produce a set of communities, and if the
candidate pair are in the same community, this is regarded as a vote in favour of
them being duplicate entities. The more of the algorithms that have a duplicate
pair within the same community, the higher the confidence we can have that
they are in fact true duplicates. As discussed later in Sect. 4 the level of confi-
dence required can vary depending on application and thus can be considered a
threshold.

The high level steps of our algorithm MCER are as follows:

1. First, apply each of the community detection algorithms in the ensemble to
the entire graph and store the resulting communities.

2. For a heterogeneous graph, extract all vertex labels into a set that are of the
type to deduplicate. For a homogeneous graph extract all vertices into a set
of labels.

3. Apply the MinHash process, including shingling, to every label in the set.
The output of this will be a candidate set consisting of all potential duplicate
vertex label pairs.

4. For each pair of potential duplicate vertex labels, query the community they
belong to in the communities produced by the ensemble in Step 1. Each time
a pair belongs to the same community consider this a vote in favour of the
candidate pair being true duplicates.

5. For each pair of candidates that received enough votes to meet the confidence
threshold, merge them in the original graph.

4 Experimental Evaluation

While our method is general and can be applied to any graph where string
similarity helps in deduplication, we will provide an empirical evaluation of it
on a large real world dataset for the purposes of address deduplication. The
experimentation was carried out on a heterogeneous graph consisting of 620885
vertices and 1129986 edges. As the graph was heterogeneous, there were multiple
vertex types in this graph, for e.g. there were vertices representing clients (for
e.g. person or business), as well as vertices for addresses, phone numbers and
email addresses.

A description of some known common patterns in the graph will be provided
in order to shed some insight into the data. Usually most people and businesses
would only be associated with a single address, phone number and email address.
However, there may be legitimate and common cases where more than one client
would be associated with an address or phone number. For example, two people
who live in the same household, or two people who work at the same company.
In rare cases, there may be a large number of entities sharing the same address
or phone number. There are known cases where addresses are duplicated due to
numerous data entry and business process reasons. For many reasons it is impor-
tant to ensure addresses are correct. For mailing purposes problems arise when

186 R. McConville et al.

mail is not delivered due to typos or data quality issues, or costs increase when
mail is sent multiple times due to duplication. For fraud detection duplicated
addresses (intentional or unintentional) may conceal key connections between
entities that are not linked due to the duplication.

In this specific experiment a single person or business entity may be con-
nected to any of the other vertex types. The label for each entity vertex was
a unique ID from the original dataset. The label for each address consists of
what would be considered a fairly standard method of representing an address
(building number, street address, city, state, ZIP). The email and phone number
vertex labels were the email address and phone number, respectively.

It is known that duplicate addresses exist in this graph, with some insight
into the reasons why. The data was collected via a number of separate processes
providing numerous opportunities for data to be entered incorrectly into the
system. For example, an address can be entered in inconsistent formats using
various abbreviations dependent on the person entering the address into the
system. It is not uncommon for ‘Road’ to also be entered as ‘RD’, ‘Street’ as
‘ST’, ‘Avenue’ as ‘AV’, ‘Beach’ as ‘BCH’. The same problem can exist for city and
state names. Furthermore, ZIP codes may also be entered in their full format, or
in shorthand. Further, any of these may further contain typos or misspellings.
The extent and variations of addresses are beyond enumeration and thus requires
an unsupervised method of detecting duplications.

The method was evaluated with a number of parameter configurations. The
first key parameter that can be varied is the MinHash threshold t which deter-
mines the estimated Jaccard Similarity required for two labels to be considered
as a candidate pair. Naturally it would be expected that lower thresholds would
result in a larger set of addresses in the candidate set and thus an improved
recall. However, setting the threshold too low may result in increased false posi-
tives which is undesirable. In the analysis the efficiency aspect of this threshold
is reported. In the MinHash stage it took 19 min with both a threshold of 0.7
and 0.85, with 3048157 and 131439 candidate pairs found respectively.

The other key parameter that can be varied is the number of votes required in
order to declare a candidate pair a true duplicate pair. As can be seen in Fig. 2
the majority of candidates had 1 or less votes in favor of them being poten-
tial duplicates. This may indicate the discriminating power of the ensemble in
removing false positives. Further it serves as a form of evidence that an ensem-
ble method is more useful over any single independent use of the algorithms and

Table 1. The performance of the algorithms in the ensemble on the commercial graph.

Algorithm Communities Size of largest Run time (m)

Leading Eigenvector [15] 71065 305952 4

Louvain [4] 71897 85346 9

Label Propagation [16] 459422 5095 32

Fast-Greedy [8] 96547 280423 1290

Vertex Deduplication Based on String Similarity 187

Fig. 2. The number of votes from the ensemble for the candidate pairs.

increases the generality of the method for different variations of communities
that may exist across different graphs.

4.1 Result Analysis

After experimental evaluation, a minimum string similarity threshold t of 0.85
was chosen as it represented the best compromise for the business use case. In
this scenario a much higher precision was preferred, rather than recall given the
business requirements. That is, it is better for some addresses to remain dupli-
cated rather than to incorrectly merge two addresses and create a connection
between people where no connection should exist. For the same reason a confi-
dence threshold of 100% was chosen, or in other words all of the algorithms in
the ensemble placed the candidate pairs in the same community.

Calculating a F1 measure, for example, would be difficult as the large amount
of data is completely unlabeled and to do so would be a considerable manual
task. For the over 4000 duplicates that all of the algorithms in the ensemble had
agreed belonged to the same community, a manual check of a sample of 500 was
performed to check if they were true duplicates. An accuracy of 88% accuracy
was achieved. A large number of failed cases were due to very poorly input
addresses, of which it would have been very challenging for a human analyst to
deduplicate.

4.1.1 Ensemble Community Diversity
Diversity in the ensemble is an important property for a successful ensemble, so
an analysis of the resulting communities found by each of the algorithms used
in the ensemble is provided.

188 R. McConville et al.

As can be seen from Table 1 significant variance exists in both the amount
of communities discovered by the ensemble, ranging from 71065 communities
with the Leading Eigenvector [15] algorithm, to 459422 communities with the
Label Propagation [16] method. Another property that is interesting to note is
the size of the largest communities discovered for each of the algorithms in the
ensemble. These also vary from 5095 vertices in the largest of one algorithm to
305952 vertices in the largest of another. This is an indicator of the refinement
ability of using these community detection algorithms in an ensemble. The Label
Propagation method, with the largest number of communities and also smallest
largest community, provides the strongest refinement.

We note the diversity in the community sizes. The Louvain [4] algorithm
has a small number of communities less than 20 vertices in size, and this is
consistent across the log scale until the latter quarter of 103, where there is an
increase in the occurrence of these larger communities. A number of these larger
communities consisting of over 5000 vertices begin appearing. Note, naturally
the Louvain algorithm produces multiple levels of clustering, and it could be
possible to selectively cut at a specific level to influence the histograms. How-
ever, for this, and other algorithms as appropriate, the optimal communities as
determined by the algorithms were used. In stark contrast to this, the Leading
Eigenvector algorithm, while discovering a similar number of communities less
than 100 vertices in size, discovers only two communities larger than this, at over
one hundred thousand and three hundred thousand vertices in size. The Fast-
Greedy [8] algorithm also found large numbers of smaller communities, although
with more communities in the range of hundreds of vertices than the Leading
Eigenvector and Louvain algorithms. It then consistently detects communities
distributed between one and three hundred thousand vertices in size. The Label
Propagation algorithm detects smaller communities, almost consistently falling
in frequency until around one thousand vertices. After passing 1000 vertices in
sizes, a small number of communities are detected up to around five thousand
vertices in size.

5 Conclusion and Future Work

In this work we proposed a novel method for entity resolution of duplicate ver-
tices based on string similarity and community structure in graphs. In practice
MinHash reduced the number of duplicate checks from a complexity of O(n2)
which was hundreds of billions of comparisons to less than one hundred and
fifty thousand. Due to the coarse nature of this fast method, the false positive
rate is extremely high, particularly when two entities can legitimately have very
high similarity but remain distinct entities. To solve this, we proposed using an
ensemble of community detection algorithms in order to discover diverse sets
of communities. We performed an empirical evaluation of our proposed method
on a real world dataset consisting of 620885 vertices and 1129986 edges. In our
scenario we had a preference for accuracy, as incorrectly resolving two distinct

Vertex Deduplication Based on String Similarity 189

entities was worse than missing two duplicate entities. Therefore, we focused
solely on precision as an evaluation metric and manually confirmed that we
could achieve 88% accuracy.

A direction we suggest for further work would be continued experimentation
on other datasets. Of particular interest are those which have a gold standard set
of entities accurately labeled as duplicates. This would facilitate better empirical
evaluation of the approaches effectiveness as it would permit the use of measures
such as the F1 score which takes into account both precision and recall.

References

1. Baxter, R., Christen, P., Churches, T.: A comparison of fast blocking methods
for record linkage. In: International Conference on Knowledge Discovery and Data
Mining, Workshop, pp. 25–27 (2003)

2. Bhattacharya, I., Getoor, L.: Deduplication and Group Detection using Links.
LinkKDD, pp. 2–11 (2004)

3. Bilgic, M., Licamele, L., Getoor, L., Shneiderman, B.: D-dupe: an interactive tool
for entity resolution in social networks. IEEE VAST 2006, 43–50 (2006)

4. Blondel, V., Guillaume, J.: Fast unfolding of communities in large networks. J.
Stat. Mech. Theory Exp. P10008 (2008)

5. Brizan, D.G., Tansel, A.U.: A survey of entity resolution and record linkage
methodologies. Commun. IIMA 6(3), 41–50 (2006)

6. Broder, A.Z.: On the resemblance and containment of documents. In: Compression
and Complexity of SEQUENCES, pp. 21–29 (1997)

7. Cho, J., Shivakumar, N., Garcia-Molina, H.: Finding replicated Web collections.
ACM SIGMOD Rec. 29(2), 355–366 (2000)

8. Clauset, A., Newman, M., Moore, C.: Finding community structure in very large
networks. Phys. Rev. E 1–6 (2004)

9. Domingos, P.: Multi-relational record linkage. In: Proceedings of the 3rd KDD
Workshop on Multi-Relational Data Mining, pp. 31–48 (2004)

10. Fan, X., Wang, J., Pu, X., Zhou, L., Lv, B.: On graph-based name disambiguation.
J. Data Inf. Qual. 2(2), 1–23 (2011)

11. Fu, Z., Christen, P., Zhou, J.: A graph matching method for historical census
household linkage. Lecture Notes in Computer Science (PART 1), pp. 485–496
(2014)

12. Getoor, L.: Entity resolution for big data. KDD, p. 204 (2013)
13. Getoor, L., Machanavajjhala, A.: Entity resolution: tutorial. VLDB (2012)
14. Kanawati, R.: YASCA: an ensemble-based approach for community detection in

complex networks. Comput. Comb. Cocoon 2014, 657–666 (2014)
15. Newman, M.E.J.: Finding community structure in networks using the eigenvectors

of matrices.pdf. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 74(3), 36, 104
(2006)

16. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks. Phys. Rev. E Stat. Nonlinear Soft
Matter Phys. 76(3), 1–12 (2007)

17. Whang, S.E., Menestrina, D., Koutrika, G., Theobald, M., Garcia-Molina, H.:
Entity resolution with iterative blocking. SIGMOD, p. 219 (2009)

	Vertex Deduplication Based on String Similarity and Community Membership
	1 Introduction
	2 Related Work
	3 Our Method
	3.1 MinHash
	3.2 Structural Features

	4 Experimental Evaluation
	4.1 Result Analysis

	5 Conclusion and Future Work
	References

