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In the series of recent publications [16, 17, 19, 21], we have proposed a novel approach to
the classification of integrable differential/difference equations in three dimensions based on
the requirement that hydrodynamic reductions of the corresponding dispersionless limits are
‘inherited’ by the dispersive equation. Here we extend this to the fully discrete case. Based
on the method of deformations of hydrodynamic reductions, we classify 3D discrete integrable
Hirota-type equations within various particularly interesting subclasses. Our method can be
viewed as an alternative to the conventional multi-dimensional consistency approach.

1 Introduction

This paper is based on the observation that various forms of the three-dimensional (3D) Hirota
difference equation [20] can be obtained as ‘naive’ discretizations of second-order quasilinear par-
tial differential equations (PDEs), by simply replacing partial derivatives ∂ by discrete derivatives
4. Although this recipe should by no means preserve the integrability in general, it does apply
to a whole range of interesting examples. Thus, the dispersionless PDE

(u1 − u2)u12 + (u3 − u1)u13 + (u2 − u3)u23 = 0

gives rise to the lattice KP equation [10, 34, 36],

(41u−42u)412u+ (43u−41u)413u+ (42u−43u)423u = 0. (1)

Similarly, the dispersionless PDE
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results in the Schwarzian KP equation [6, 7, 13, 26, 36],
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Here u(x1, x2, x3) is a function of three (continuous) variables. We use subscripts for partial
derivatives of u with respect to the independent variables xi: ui = uxi , uij = uxixj , ∂i = ∂xi ,
etc. Forward/backward ε-shifts and discrete derivatives in xi-direction are denoted Ti, Tī and
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4i,4ī, respectively: 4i = Ti−1
ε , 4ī =

1−Tī
ε . We also use multi-index notation for multiple

shifts/derivatives: Tij = TiTj , 4ij̄ = 4i4j̄ etc.
Our first main result (Theorem 1 of Section 3) provides a classification of integrable discrete

conservative equations of the form

41f +42g +43h = 0, (3)

where f, g, h are functions of 41u,42u,43u only. Equations of this type appear as 4-forms of
various discrete equations of the KP, Toda and Sine–Gordon type, see Appendix for examples
and references. The corresponding dispersionless limits are scalar conservation laws of the form

∂1f(u1, u2, u3) + ∂2g(u1, u2, u3) + ∂3h(u1, u2, u3) = 0.

Our approach to the classification of discrete integrable equations is based on the requirement
that all hydrodynamic reductions of the corresponding dispersionless limit are inherited by the
discrete (dispersive) equation. This method has been successfully applied recently to various
classes of differential/difference equations in 3D, see [16, 17, 19, 21]. A brief summary of the
method is included in Section 2.

The classification is performed modulo elementary transformations u→ αu+αix
i, as well as

permutations of the independent variables xi, which preserve the class of discrete conservation
laws (3).

We show that any integrable equation of the form (3) arises as a conservation law of a certain
discrete integrable equation of octahedron type,

F (T1u, T2u, T3u, T12u, T13u, T23u) = 0,

see [3] for their classification. More precisely, there exist seven cases of integrable octahedron-
type equations (note that our equivalence group is different from the group of admissible trans-
formations utilized in [3]), each of them possessing exactly three first-order linearly independent
conservation laws of form (3). Let I, J,K denote their left-hand sides. They give rise to a
three-parameter family of integrable equations of form (3),

αI + βJ + γK = 0,

where α, β, γ are arbitrary constants (see Theorem 1 for a complete list and explicit formulae);
we prove that all integrable discrete conservative equations of form (3) can be obtained by this
construction. Thus, there exist seven three-parameter families of integrable conservation laws
(3). One of these cases is associated with the octahedron equation

(T241u)(T342u)(T143u) = (T243u)(T341u)(T142u),

known as the Schwarzian KP equation in its standard form. It possesses three conservation laws

I = 42 ln
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note that their linear combination I + J +K = 0 coincides with (2).
Our second result (Theorem 3 of Section 4) is the classification of discrete integrable quasi-

linear equations of the form
3∑

i,j=1

fij 4iju = 0,

where fij are functions of 41u,42u,43u only. These equations can be viewed as discretizations
of second-order quasilinear PDEs

3∑
i,j=1

fij uij = 0

studied in [9]. In contrast to the result of Theorem 1, there exists a unique integrable example
within this class, namely lattice KP equation (1).

We also classify differential–difference degenerations of the above equations with one/two
discrete variables (Sections 3.1, 3.2 and 4.1, 4.2). Some of the examples from Section 3.1 are
apparently new.

In Section 5, we present the results of numerical simulations for the gauge-invariant form of
the Hirota equation, exhibiting the formation of a dispersive shock wave.

In the Appendix we bring together 4-forms of various discrete KP/Toda type equations.
Our approach to the classification of discrete integrable equations in 3D can be viewed

as an alternative to the conventional multi-dimensional consistency approach [5, 37], that has
recently been extended to 3D equations [3]. Both methods have their advantages and limitations.
Thus, the method of multi-dimensional consistency has so far been restricted to the class of 3D
equations satisfying the additional octahedron property. On the other hand, our approach
requires the existence of a nondegenerate dispersionless limit. It is not surprising, however, that
both methods (even when applied to seemingly different classes of equations) lead to similar
classification results: this reflects the universality of 3D Hirota-type equations.

2 Preliminaries: The Method of Dispersive Deformations

This method applies to 3D dispersive equations possessing a nondegenerate dispersionless limit,
and is based on the requirement that all hydrodynamic reductions of the dispersionless limit are
‘inherited’ by the dispersive (in particular, difference) equation, at least to some finite order in
the deformation parameter ε, see [16, 17, 19, 21] for examples and applications. It turns out
that all known integrable differential/difference equations in 3D pass this test. Our experience
suggests that in most cases it is sufficient to perform calculations up to the order ε2, the necessary
conditions for integrability obtained at this stage usually prove to be sufficient, and imply the
existence of conventional Lax pairs, etc. Let us illustrate our approach by classifying integrable
discrete wave-type equations,

4tt̄ u−4xx̄ f(u)−4yȳ g(u) = 0, (4)

where f and g are functions to be determined. Using expansions of the form

4tt̄ =
(eε∂t − 1)(1− e−ε∂t)

ε2
= ∂2

t +
ε2

12
∂4
t + . . . ,
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we can represent (4) as an infinite series in ε,

utt − f(u)xx − g(u)yy +
ε2

12
[utttt − f(u)xxxx − g(u)yyyy] + · · · = 0.

The corresponding dispersionless limit ε→ 0 results in the quasilinear wave-type equation

utt − f(u)xx − g(u)yy = 0. (5)

This equation possesses exact solutions of the form u = R(x, y, t) where R solves a pair of
Hopf-type equations,

Rt = λ(R)Rx, Ry = µ(R)Rx,

with the characteristic speeds λ, µ satisfying the dispersion relation λ2 = f ′ + g′µ2. Solutions
of this type are known as one-phase hydrodynamic reductions, or planar simple waves. Let us
require that all such reductions can be deformed into formal solutions of the original equation
(4) as follows:

Ry = µ(R)Rx + ε(. . . ) + ε2(. . . ) + . . . ,

Rt = λ(R)Rx + ε(. . . ) + ε2(. . . ) + . . . ,
(6)

here dots at εk denote terms which are polynomial in the x-derivatives of R of the order k + 1.
The relation u = R(x, y, t) remains undeformed, this can always be assumed modulo the Miura
group. We emphasise that such deformations are required to exist for any function µ(R). A
direct calculation demonstrates that all terms of the order ε vanish identically, while at the order
ε2 we get the following constraints for f and g:

f ′′ + g′′ = 0, g′′(1 + f ′)− g′f ′′ = 0, f ′′2(1 + 2f ′)− f ′(f ′ + 1)f ′′′ = 0.

Without any loss of generality one can set f(u) = u− ln(eu + 1), g(u) = ln(eu + 1), resulting in
the difference equation

4tt̄ u−4xx̄ [u− ln(eu + 1)]−4yȳ [ln(eu + 1)] = 0, (7)

which is yet another equivalent form of the Hirota equation, known as the ‘gauge-invariant
form’ [43], or the ‘Y-system’, see Appendix (we refer to [28] for a review of its applications). Its
dispersionless limit,

utt − [u− ln(eu + 1)]xx − [ln(eu + 1)]yy = 0, (8)

appeared recently in the classification of integrable equations possessing the ‘central quadric
ansatz’ [14]. Note that the necessary conditions for integrability obtained at the order ε2 prove
to be sufficient, that is, integrability ‘to the order ε2’ implies the integrability in conventional
sense. This appears to be a general phenomenon, at least for all classification results of this
paper. In the case (7), expansions (6) take the explicit form

Ry = µ(R) Rx + ε2(a1Rxxx + a2RxxRx + a3R
3
x) +O(ε4),

Rt = λ(R) Rx + ε2(b1Rxxx + b2RxxRx + b3R
3
x) +O(ε4),

where

a1 =
1

12

(
µ2 − 1

)
µ′,

b1 =

(
µ2 − 1

)
eR
(
µ2 + 2µµ′eR + 2µµ′ − 1

)
24 (eR + 1)2 λ

,
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etc. The remaining coefficients ai, bi have a far more complicated structure, however, all of them
are rational expressions in µ and its derivatives. Note that higher powers of λ can be eliminated
via the dispersion relation λ2 = 1

eR+1
+ eR

eR+1
µ2.

We emphasize that our approach to the integrability in 3D is essentially intrinsic: it applies
directly to a given equation, and does not require its embedding into a compatible hierarchy
living in a higher dimensional space.

2.1 Nondegeneracy conditions

We have already mentioned that the method of dispersive deformations applies to 3D equations
with a nondegenerate dispersionless limit. In general, this means that:

(1) the principal symbol of the dispersionless equation defines an irreducible algebraic curve
and

(2) the dispersionless equation is not linearly degenerate.

To be more specific, let us restrict to quasilinear PDEs of the form

3∑
i,j=1

fij(uk)uij = 0,

that arise as dispersionless limits for most of the examples discussed in this paper; here the
coefficients fij depend on first-order derivatives uk only. In this case the first nondegeneracy
condition is equivalent to det fij 6= 0 (it is required for the applicability of the method of
hydrodynamic reductions [15]). To define the second nondegeneracy condition let us introduce
the concept of linearly degenerate equations. These are characterised by the identity

∂(kfij) = ϕ(kfij),

where ∂k = ∂uk , ϕ = (ϕ1, ϕ2, ϕ3) is a covector, and brackets denote complete symmetrization in
i, j, k ∈ {1, 2, 3}. Explicitly, this gives 10 relations

∂1f11 = ϕ1f11, ∂2f22 = ϕ2f22, ∂3f33 = ϕ3f33,

∂2f11 + 2∂1f12 = ϕ2f11 + 2ϕ1f12, ∂1f22 + 2∂2f12 = ϕ1f22 + 2ϕ2f12,

∂3f11 + 2∂1f13 = ϕ3f11 + 2ϕ1f13, ∂1f33 + 2∂3f13 = ϕ1f33 + 2ϕ3f13,

∂2f33 + 2∂3f23 = ϕ2f33 + 2ϕ3f23, ∂3f22 + 2∂2f23 = ϕ3f22 + 2ϕ2f23,

∂1f23 + ∂2f13 + ∂3f12 = ϕ1f23 + ϕ2f13 + ϕ3f12.

On elimination of ϕ’s, these conditions give rise to seven first-order differential constraints for
fij alone. Linearly degenerate PDEs are quite exceptional from the point of view of solvability
of the Cauchy problem: for these PDEs the gradient catastrophe, typical for genuinely nonlinear
equations, does not occur, which implies global existence results for an open set of initial data.
The reason for this is that linear degeneracy is closely related to the null conditions of Klainerman
known in the theory of second-order quasilinear PDEs; we refer to [18] for further discussion
and references.
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It turns out that the method of dispersive deformations does not work for linearly degen-
erate PDEs: the conditions of linear degeneracy appear as denominators in the computation
of dispersive corrections (to be precise, the denominator is a polynomial whose coefficients are
conditions of linear degeneracy; it vanishes identically if and only if the equation is linearly
degenerate). This phenomenon has a ‘philosophical’ explanation: dispersive terms are needed
to prevent breakdown of smooth initial data; on the other hand, for linearly degenerate PDEs
breakdown does not occur, in some sense linearly degenerate PDEs should be considered as
‘dispersive’, even without higher-order terms.

We point out that both nondegeneracy conditions are satisfied (possibly, after a change of
variables) for all known examples of integrable PDEs in 3D.

3 Discrete Conservation Laws in 3D

In this section we classify integrable equations of form (3),

41f +42g +43h = 0,

where f, g, h are functions of 41u,42u,43u only. The corresponding dispersionless limit,

3∑
i,j=1

fij(uk)uij = 0,

is assumed to be nondegenerate. The classification is performed modulo transformations of the
form u→ αu+ αix

i, as well as relabelling of the independent variables xi.

Theorem 1 Integrable discrete conservation laws are naturally grouped into seven three-parameter
families,

αI + βJ + γK = 0,

where α, β, γ are arbitrary constants, while I, J,K denote left hand sides of three linearly inde-
pendent discrete conservation laws of the seven octahedron-type equations listed below. In each
case we give explicit forms of I, J,K, as well as the underlying octahedron equation.

Case 1.

Conservation Laws Octahedron equation

I = 41e
42u +43

(
e42u−41u − e42u

)
= 0 T2τ−T12τ

T23τ
= T1τ

(
1

T13τ
− 1

T3τ

)
J = 41e

−43u +42

(
e41u−43u − e−43u

)
= 0 (setting τ = eu/ε)

K = 42

(
43u− ln(1− e41u)

)
+43

(
ln(1− e41u)−41u

)
= 0

Case 2.

Conservation Laws Octahedron equation

I = 42 ln41u+43 ln
(

1− 42u
41u

)
= 0 T12uT13u+ T2uT23u+ T1uT3u

J = 41 ln42u+43 ln
(
41u
42u
− 1
)

= 0 = T12uT23u+T1uT13u+T2uT3u

K = 41

(
(42u)2

2 −42u43u
)

+42

(
41u43u− (41u)2

2

)
= 0
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Case 3. Generalised lattice Toda (depending on a parameter α)

Conservation Laws Octahedron equation

subcase α 6= 0

I = 41(e42u−43u+αe−43u)−42(e41u−43u+αe−43u) = 0 T23τ
T3τ

+ T12τ
T2τ

+ αT12τT23τ
T2τT3τ

J = 42 ln
(
e41u + α

)
+43

(
ln e41u−e42u

e41u+α
−42u

)
= 0 = T12τ

T1τ
+ T13τ

T3τ
+ αT12τT13τ

T1τT3τ

K = 41 ln
(
e42u + α

)
+43

(
ln e41u−e42u

e42u+α
−41u

)
= 0 (setting τ = e−u/ε)

subcase α = 0 lattice Toda equation

I = 41e
42u−43u −42e

41u−43u = 0 (T1 − T3)T2τ
τ = (T2 − T3)T1τ

τ

J = 4241u+43(ln(1− e42u−41u)−42u) = 0 (setting τ = e−u/ε)
K = 41e

−42u −42e
−41u +43(e−41u − e−42u) = 0

Case 4. Lattice KP

Conservation Laws Octahedron equation

I = 41((43u)2 − (42u)2) +42((41u)2 (T1u− T2u)T12u+ (T3u− T1u)T13u
− (43u)2) +43((42u)2 − (41u)2) = 0 + (T2u− T3u)T23u = 0

J = 41 ln(43u−42u)−42 ln(41u−43u) = 0
K = 42 ln(41u−43u)−43 ln(42u−41u) = 0

Case 5. Lattice mKP

Conservation Laws Octahedron equation

I = 41(e42u−e43u)+42(e43u−e41u)+43(e41u−e42u) = 0 T13τ−T12τ
T1τ

+ T12τ−T23τ
T2τ

J = 41 ln
(
e43u − e42u

)
−42 ln

(
e43u − e41u

)
= 0 + T23τ−T13τ

T3τ
= 0

K = 42 ln
(
e43u − e41u

)
−43 ln

(
e42u − e41u

)
= 0 (setting τ = eu/ε)

Case 6. Schwarzian KP

Conservation Laws Octahedron equation

I = 42 ln
(

1− 43u
41u

)
−43 ln

(
42u
41u
− 1
)

= 0 (T241u)(T342u)(T143u)

J = 43 ln
(

1− 41u
42u

)
−41 ln

(
43u
42u
− 1
)

= 0 = (T243u)(T341u)(T142u)

K = 41 ln
(

1− 42u
43u

)
−42 ln

(
41u
43u
− 1
)

= 0
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Case 7. Lattice spin

Conservation Laws Octahedron equation

Hyperbolic version lattice-spin equation

I = 41 ln sinh43u
sinh42u

+42 ln sinh41u
sinh43u

+43 ln sinh42u
sinh41u

= 0
(
T12τ
T2τ
− 1
)(

T13τ
T1τ
− 1
)(

T23τ
T3τ
− 1
)

J = 41 ln sinh(42u−43u)
sinh42u

−43 ln sinh(41u−42u)
sinh42u

= 0 =
(
T12τ
T1τ
− 1
)(

T13τ
T3τ
− 1
)(

T23τ
T2τ
− 1
)

K = 42 ln sinh(43u−41u)
sinh41u

−43 ln sinh(41u−42u)
sinh41u

= 0 (setting τ = e2u/ε)

Trigonometric version Sine-Gordon equation

I = 41 ln sin43u
sin42u

+42 ln sin41u
sin43u

+43 ln sin42u
sin41u

= 0 (T2 sin41u)(T3 sin42u)(T1 sin43u)

J = 41 ln sin(42u−43u)
sin42u

−43 ln sin(41u−42u)
sin42u

= 0 = (T2 sin43u)(T3 sin41u)(T1 sin42u)

K = 42 ln sin(43u−41u)
sin41u

−43 ln sin(41u−42u)
sin41u

= 0

�

Remark. Although the cases 1, 2 do not bear any special name, the corresponding equations
can be obtained as degenerations from 3-7. Furthermore, they are contained in the classification
of [3]. �

Proof of Theorem 1. The dispersionless limit of (3) is a quasilinear conservation law

∂1f + ∂2g + ∂3h = 0, (9)

where f, g, h are functions of the variables a = u1, b = u2, c = u3. Requiring that all one-phase
reductions of dispersionless equation (9) are inherited by discrete equation (3) we obtain a set
of differential constraints for f, g, h, that are the necessary conditions for integrability. Thus, at
the order ε we get

fa = gb = hc = 0, fb + ga + fc + ha + gc + hb = 0. (10)

The first set of these relations implies that the dispersionless limit is equivalent to the second-
order PDE

Fu12 +Gu13 +Hu23 = 0, (11)

where F = fb + ga, G = fc + ha, H = gc + hb. Note that, by virtue of (10), the coefficients
F,G,H satisfy the additional constraint F +G+H = 0. It follows from [9] that, up to a nonzero
factor, any integrable equation of this type is equivalent to

[p(u1)− q(u2)]u12 + [r(u3)− p(u1)]u13 + [q(u2)− r(u3)]u23 = 0, (12)

where the functions p(a), q(b), r(c) satisfy the integrability conditions

p′′ = p′
(
p′−q′
p−q + p′−r′

p−r −
q′−r′
q−r

)
,

q′′ = q′
(
q′−p′
q−p + q′−r′

q−r −
p′−r′
p−r

)
,

r′′ = r′
(
r′−p′
r−p + r′−q′

r−q −
p′−q′
p−q

)
.

(13)
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Our further strategy can be summarized as follows

Step 1. First, we solve equations (13). Modulo unessential translations and rescalings this
leads to seven quasilinear integrable equations of the form (12), see the details below.

Step 2. Next, for all of the seven equations found at step 1, we calculate first-order con-
servation laws. It was demonstrated in [9] that any integrable second-order quasilinear PDE
possesses exactly four conservation laws of the form (9).

Step 3. Taking linear combinations of the four conservation laws in each of the above seven
cases, and replacing partial derivatives u1, u2, u3 by discrete derivatives 41u,42u,43u, we ob-
tain discrete equations (3) which, at this stage, are the candidates for integrability.

Step 4. Applying the ε2-integrability test, we obtain constraints for the coefficients of linear
combinations. It turns out that only linear combinations of three (out of four) conservation laws
pass the integrability test. In what follows, we present conservation laws in such a way that the
first three are the ones that pass the integrability test, while the fourth one does not. Each triplet
of conservation laws corresponds to one and the same discrete integrable equation of octahedron
type. In other words, there are overall seven discrete integrable equations of octahedron type,
each of them possesses three conservation laws, and linear combinations thereof give all integrable
examples of form (3).

Let us proceed to the solution of system (13). There are three essentially different cases
to consider, depending on how many functions among p, q, r are constant (the case when all of
them are constant corresponds to linear equations). Some of these cases have additional subcases.
These correspond to the seven cases of Theorem 1, in the same order as they appear below (note
that the labeling below is different, dictated by the logic of the classification procedure).

Case 1: q and r are distinct constants. Without any loss of generality one can set q = 1, r = −1.
In this case the equations for q and r will be satisfied identically, while the equation for p takes the
form p′′ = 2pp′2/(p2−1). Modulo unessential scaling parameters this gives p = (1+eu1)/(1−eu1),
resulting in the PDE

eu1u12 − u13 + (1− eu1)u23 = 0.

This equation possesses four conservation laws

∂1e
u2 + ∂3

(
eu2−u1 − eu2

)
= 0,

∂1e
−u3 + ∂2

(
eu1−u3 − e−u3

)
= 0,

∂2 (u3 − ln(1− eu1)) + ∂3 (ln(1− eu1)− u1) = 0,

∂1

(u2u3

2

)
− ∂2

(u1u3

2
− u1 ln(1− eu1)− Li2(eu1)

)
+ ∂3

(
u2

1

2
− u1u2

2
− u1 ln(1− eu1)− Li2(eu1)

)
= 0,

where Li2 is the dilogarithm function, Li2(z) = −
∫ ln(1−z)

z dz. Applying steps 3 and 4, one
can show that discrete versions of the first three conservation laws correspond to the discrete
equation

e(T1u−T13u)/ε + e(T12u−T23u)/ε = e(T1u−T3u)/ε + e(T2u−T23u)/ε.
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Setting τ = eu/ε it can be rewritten as

T2τ − T12τ

T23τ
= T1τ

(
1

T13τ
− 1

T3τ

)
.

Case 2: r is constant. Without any loss of generality one can set r = 0. In this case the above
system of ODEs for p and q takes the form

p′′

p′ = p′−q′
p−q + p′

p −
q′

q ,
q′′

q′ = p′−q′
p−q + q′

q −
p′

p .

Subtraction of these equations and the separation of variables leads, modulo unessential rescal-
ings, to the two different subcases.

Subcase 2a: p = 1/u1, q = 1/u2. The corresponding PDE is

(u2 − u1)u12 − u2u13 + u1u23 = 0.

It possesses four conservation laws

∂2 lnu1 + ∂3 ln

(
1− u2

u1

)
= 0,

∂1 lnu2 + ∂3 ln

(
u1

u2
− 1

)
= 0,

∂1

(
u2

2 − 2u2u3

)
+ ∂2

(
2u1u3 − u2

1

)
= 0,

∂1

(
−2u3

2

9
+ u2

2u3 − u2u
2
3

)
+ ∂2

(
2u3

1

9
− u2

1u3 + u1u
2
3

)
+ ∂3

(
u2

1u2 − u1u
2
2

3

)
= 0.

Applying steps 3 and 4, one can show that discrete versions of the first three conservation laws
correspond to the discrete equation

T12uT13u+ T2uT23u+ T1uT3u = T12uT23u+ T1uT13u+ T2uT3u.

Subcase 2b: p = 1/(eu1 + α), q = 1/(eu2 + α), α = const. The corresponding PDE is

(eu2 − eu1)u12 − (eu2 + α)u13 + (eu1 + α)u23 = 0.

If α 6= 0 it possesses the following four conservation laws:

∂1(eu2−u3 + αe−u3)− ∂2(eu1−u3 + αe−u3) = 0,

∂2 ln (eu1 + α) + ∂3

(
ln
eu1 − eu2

eu1 + α
− u2

)
= 0,

∂1 ln (eu2 + α) + ∂3

(
ln
eu1 − eu2

eu2 + α
− u1

)
= 0,

∂1

(
−u2u3 + 2u2 ln

(
eu2 + α

α

)
+ 2Li2

(
−e

u2

α

))
+ ∂2

(
u1u3 − 2u1 ln

(
eu1 + α

α

)
− 2Li2

(
−e

u1

α

))
+ ∂3

(
u2

2 − u1u2 + 2 (u2 − u1) ln
(
1− eu1−u2

)
+ 2u1 ln

(
eu1 + α

α

)
− 2u2 ln

(
eu2 + α

α

)
+ 2Li2

(
−e

u1

α

)
− 2Li2

(
−e

u2

α

)
− 2Li2

(
eu1−u2

))
= 0,

10



while when α = 0 the conservation laws take the form:

∂1e
u2−u3 − ∂2e

u1−u3 = 0,

∂2u1 + ∂3(ln(1− eu2−u1)− u2) = 0,

∂1e
−u2 − ∂2e

−u1 + ∂3(e−u1 − e−u2) = 0,

∂1(u2
2 − u2u3) + ∂2(u1u3 − u2

1) + ∂3

(
u2

1 − u1u2 + 2 (u2 − u1) ln
(
1− eu1−u2

)
− 2Li2

(
eu1−u2

))
= 0.

Applying steps 3 and 4 to the subcase α 6= 0, one can show that discrete versions of the first
three conservation laws correspond to the discrete equation

e(T3u−T23u)/ε + e(T2u−T12u)/ε + αe(T2u+T3u−T12u−T23u)/ε

= e(T3u−T13u)/ε + e(T1u−T12u)/ε + αe(T1u+T3u−T12u−T13u.

Setting τ = e−u/ε, this equation can be rewritten as

T23τ

T3τ
+
T12τ

T2τ
+ α

T12τT23τ

T2τT3τ
=
T12τ

T1τ
+
T13τ

T3τ
+ α

T12τT13τ

T1τT3τ
.

The special case α = 0 leads to the lattice Toda equation,

(T1 − T3)
T2τ

τ
= (T2 − T3)

T1τ

τ
,

see Appendix.

Case 3: none of p, q, r are constant. In this case we can separate the variables in (13) as follows.
Dividing equations (13) by p′, q′, r′, respectively, and adding the first two of them we obtain

p′′/p′ + q′′/q′ = 2(p′ − q′)/(p− q).

Multiplying both sides by p−q and applying the operator ∂a∂b we obtain (p′′/p′)′ = 2αp′, (q′′/q′)′ =
2αq′, α = const. Thus, p′′/p′ = 2αp+β1, q

′′/q′ = 2αq+β2. Substituting these expressions back
into the above relation we obtain that p′ and q′ must be (the same) quadratic polynomials in p
and q, respectively. Ultimately,

p′ = αp2 + βp+ γ, q′ = αq2 + βq + γ, r′ = αr2 + βr + γ.

Modulo unessential translations and rescalings, this leads to the four subcases.

Subcase 3a: p = u1, q = u2, r = u3. The corresponding PDE is

(u2 − u1)u12 + (u1 − u3)u13 + (u3 − u2)u23 = 0.

It possesses four conservation laws

∂1(u2
3 − u2

2) + ∂2(u2
1 − u2

3) + ∂3(u2
2 − u2

1) = 0,

α1∂1 ln(u3 − u2) + α2∂2 ln(u1 − u3) + α3∂3 ln(u2 − u1) = 0,

∂1

(
u3

3 − u3
2

3
+
u2u

2
3 − u2

2u3

2

)
+ ∂2

(
u3

1 − u3
3

3
+
u3u

2
1 − u2

3u1

2

)
+ ∂3

(
u3

2 − u3
1

3
+
u1u

2
2 − u2

1u2

2

)
= 0,

11



where α1, α2, α3 are constants satisfying α1 + α2 + α3 = 0.
Applying steps 3 and 4, one can show that discrete versions of the first three conservation laws
correspond to the discrete equation

(T1u− T2u)T12u+ (T3u− T1u)T13u+ (T2u− T3u)T23u = 0,

which is known as the lattice KP equation (see Appendix).

Subcase 3b: p = eu1 , q = eu2 , r = eu3 . The corresponding PDE is

(eu1 − eu2)u12 + (eu3 − eu1)u13 + (eu2 − eu3)u23 = 0.

It possesses four conservation laws

∂1(eu2 − eu3) + ∂2(eu3 − eu1) + ∂3(eu1 − eu2) = 0,

∂1 ln (eu3 − eu2)− ∂2 ln (eu3 − eu1) = 0,

∂2 ln (eu3 − eu1)− ∂3 ln (eu2 − eu1) = 0,

∂1

(
u2u3 − u2

3 + 2 (u2 − u3 − 1) ln
(
1− eu2−u3

)
+ 2Li2

(
eu2−u3

))
+ ∂2

(
u2

3 − u1u3 + 2 (u3 − u1 + 1) ln
(
1− eu1−u3

)
− 2Li2

(
eu1−u3

))
+

+ ∂3

(
u1u2 − u2

2 − 2 (u1 − u2) + 2 (u1 − u2) ln
(
1− eu1−u2

)
+ 2Li2

(
eu1−u2

))
= 0.

Again, applying steps 3 and 4, one can show that discrete versions of the first three conservation
laws correspond to the discrete equation

e−
T1u
ε (e

T13u
ε − e

T12u
ε ) + e−

T2u
ε (e

T12u
ε − e

T23u
ε ) + e−

T3u
ε (e

T23u
ε − e

T13u
ε ) = 0.

Setting τ = eu/ε, this takes the form

T13τ − T12τ

T1τ
+
T12τ − T23τ

T2τ
+
T23τ − T13τ

T3τ
= 0,

which is known as the lattice mKP equation (see Appendix).

Subcase 3c: p = 1/u1, q = 1/u2, r = 1/u3. The corresponding PDE is

u3(u2 − u1)u12 + u2(u1 − u3)u13 + u1(u3 − u2)u23 = 0.

It possesses four conservation laws

∂2 ln

(
1− u3

u1

)
− ∂3 ln

(
u2

u1
− 1

)
= 0,

∂3 ln

(
1− u1

u2

)
− ∂1 ln

(
u3

u2
− 1

)
= 0,

∂1 ln

(
1− u2

u3

)
− ∂2 ln

(
u1

u3
− 1

)
= 0,

∂1

(
u2

2u3 − u2u
2
3

)
+ ∂2

(
u2

3u1 − u3u
2
1

)
+ ∂3

(
u2

1u2 − u1u
2
2

)
= 0.

Applying steps 3 and 4, one can show that discrete versions of the first three conservation laws
correspond to the discrete equation

(T241u)(T342u)(T143u) = (T243u)(T341u)(T142u),

12



known as the Schwarzian KP equation (see Appendix).

Subcase 3d: p = cothu1, q = cothu2, r = cothu3 (one can also take the trigonometric version
coth→ cot). The corresponding PDE is

(cothu2 − cothu1)u12 + (cothu1 − cothu3)u13 + (cothu3 − cothu2)u23 = 0.

It possesses four conservation laws

∂1 ln
sinhu3

sinhu2
+ ∂2 ln

sinhu1

sinhu3
+ ∂3 ln

sinhu2

sinhu1
= 0,

∂1 ln
sinh(u2 − u3)

sinhu2
− ∂3 ln

sinh(u1 − u2)

sinhu2
= 0,

∂2 ln
sinh(u3 − u1)

sinhu1
− ∂3 ln

sinh(u1 − u2)

sinhu1
= 0,

∂1

(
−2u2

3 + 2u2u3 − 2u2 ln
sinh(u2 − u3)

sinhu2
+ (2u3 − 1) ln

sinh(u2 − u3)

sinhu3

+Li2(e2u2)− Li2(e2u3)− Li2(e2(u2−u3))
)

+ ∂2

(
2u2

3 − 2u1u3 + (2u1 − 1) ln
sinh(u3 − u1)

sinhu1
+ (1− 2u3) ln

sinh(u3 − u1)

sinhu3

−Li2(e2u1) + Li2(e2u3) + Li2(e2(u1−u3))
)

+ ∂3

(
−2u2

2 + 2u1u2 + 2u2 ln
sinh(u1 − u2)

sinhu2
+ (1− 2u1) ln

sinh(u1 − u2)

sinhu1

+Li2(e2u1)− Li2(e2u2)− Li2(e2(u1−u2))
)

= 0.

Applying steps 3 and 4, one can show that discrete versions of the first three conservation laws
correspond to the discrete equation

(e2(T12u−T2u)/ε − 1)(e2(T13u−T1u)/ε − 1)(e2(T23u−T3u)/ε − 1)

= (e2(T12u−T1u)/ε − 1)(e2(T13u−T3u)/ε − 1)(e2(T23u−T2u)/ε − 1).

Setting τ = e2u/ε, it can be rewritten as(
T12τ

T2τ
− 1

)(
T13τ

T1τ
− 1

)(
T23τ

T3τ
− 1

)
=

(
T12τ

T1τ
− 1

)(
T13τ

T3τ
− 1

)(
T23τ

T2τ
− 1

)
,

which is known as the lattice spin equation (see Appendix). In the trigonometric case, one can
show that discrete versions of the conservation laws

∂1 ln
sinu3

sinu2
+ ∂2 ln

sinu1

sinu3
+ ∂3 ln

sinu2

sinu1
= 0,

∂1 ln
sin(u2 − u3)

sinu2
− ∂3 ln

sin(u1 − u2)

sinu2
= 0,

∂2 ln
sin(u3 − u1)

sinu1
− ∂3 ln

sin(u1 − u2)

sinu1
= 0,

13



correspond to the discrete Sine-Gordon equation,

(T2 sin41u)(T3 sin42u)(T1 sin43u) = (T2 sin43u)(T3 sin41u)(T1 sin42u).

This finishes the proof of Theorem 1.

Remark. It was observed in [31] that the Lagrangians L(u, u1, u2;α1, α2) of 2D discrete inte-
grable equations of the ABS type [2] satisfy the closure relations

41L(u, u2, u3;α2, α3) +42L(u, u3, u1;α3, α1) +43L(u, u1, u2;α1, α2) = 0, (14)

which can be interpreted as 3D discrete conservation laws. For instance, the Q1 case corresponds
to the Lagrangian

L(u, u1, u2;α1, α2) = α2 ln

(
1− 41u

42u

)
− α1 ln

(
42u

41u
− 1

)
.

Remarkably, the corresponding closure relation (14), viewed as a single 3D equation, turns out
to be integrable (subcase 6 of Theorem 1). Note that the constraint α1 = α2 = α3 reduces (14)
to the Schwarzian KP equation,

41

(
ln
43u

42u

)
+42

(
ln
41u

43u

)
+43

(
ln
42u

41u

)
= 0.

On the contrary, closure relations corresponding to the Lagrangians containing the dilogarithm
Li2 fail the ε2 integrability test. We refer to [4] for further connections between ABS equations
and 3D integrable equations of octahedron type. �

3.1 Two discrete and one continuous variables.

In this Section, we classify conservative equations of the form

41f +42g + ∂3h = 0, (15)

where f, g, h are functions of 41u,42u, u3. Again, nondegeneracy of the dispersionless limit is
assumed. Our classification result is as follows.

Theorem 2 Integrable equations of the form (15) are grouped into seven three-parameter fam-
ilies,

αI + βJ + γK = 0,

where α, β, γ are arbitrary constants, while I, J,K denote left-hand sides of three linearly inde-
pendent semidiscrete conservation laws of the seven differential–difference equations listed below.
In each case, we give explicit forms of I, J,K, as well as the underlying differential-difference
equation.

Case 1.

Conservation Laws Differential–difference equation

I = 41e
42u − ∂3e

42u−41u = 0

J = 41u3 +42

(
e41u − u3

)
= 0 T12v

T2v
+ T1v3

T1v
= T1v

v + T2v3
T2v

K = 41u
2
3 +42

(
2e41uu3 − e241u − u2

3

)
− ∂3

(
2e41u

)
= 0 (setting v = eu/ε, ∂3 → 1

ε∂3)
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Case 2.

Conservation Laws Differential–difference equation

I = 41(e42u − u3) + ∂3 ln
(
e41u − e42u

)
= 0

J = 42(e41u − u3) + ∂3 ln
(
e41u − e42u

)
= 0 T12v = T1vT2v

v + T2vT1v3−T1vT2v3
T2v−T1v

K = 41(e242u − 2e42uu3 + u2
3) +42(2e41uu3 (setting v = eu/ε, ∂3 → 1

ε∂3)
− e241u − u2

3) + ∂3(2e42u − 2e41u) = 0

Case 3.

Conservation Laws Differential–difference equation

I = 41(e42uu3)− ∂3e
42u = 0

J = 42(e−41uu3) + ∂3e
−41u = 0 vT12v

T1v
= T1vT2v3

T1v3
(setting v = eu/ε)

K = 41(42u+ lnu3)−42 lnu3 = 0

Case 4.

Conservation Laws Differential–difference equation

I = 42

(
u3
41u

)
− ∂3 ln(41u) = 0

J = 41 lnu3 +42 ln
(
41u
u3

)
= 0 (T12u−T2u)T1u3 = (T1u−u)T2u3

K = 41(2u342u) + ∂3

(
(41u)2 − 241u42u

)
= 0

Case 5.

Conservation Laws Differential–difference equation

I = 41(e42uu3) + ∂3(e42u−41u − e42u) = 0 v(T12v−T2v)T1v3 = T1v(T1v−v)T2v3

J = 41 lnu3 +42 ln
(

1−e41u

u3

)
= 0 (setting v = eu/ε)

K = 42

(
u3

1−e41u

)
+ ∂3

(
ln(1− e41u)−41u

)
= 0

Case 6.

Conservation Laws Differential–difference equation

I = 41 ln
(
42u
u3

)
+42 ln

(
u3
41u

)
= 0 (T241u)(42u)T1u3

J = 41

(
u3
42u

)
+ ∂3 ln

(
1− 41u

42u

)
= 0 = (T142u)(41u)T2u3

K = 42

(
u3
41u

)
+ ∂3 ln

(
1− 42u

41u

)
= 0
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Case 7.

Conservation Laws Differential–difference equation

I = 41 ln
(

sinh42u
u3

)
−42 ln

(
sinh41u

u3

)
= 0 (T2 sinh41u)(sinh42u)T1u3

J = 41 (u3 coth42u) +42 ln
(

sinh(41u−42u)
sinh42u

)
= 0 = (T1 sinh42u)(sinh41u)T2u3

K = 42 (u3 coth41u) + ∂3 ln
(

sinh(41u−42u)
sinh41u

)
= 0

�
Remark. See the proof below for Lax pairs of the above differential-difference equations.

�

Proof of Theorem 2. The proof is parallel to that of Theorem 1. The dispersionless limit of
(15) is again a quasilinear conservation law of form (9),

∂1f + ∂2g + ∂3h = 0,

where f, g, h are functions of the variables a = u1, b = u2, c = u3. Requiring that all one-phase
reductions of the dispersionless equation are inherited by the differential–difference equation
(15), we obtain a set of differential constraints for f, g, h that are the necessary conditions for
integrability. Thus, at the order ε we get

fa = gb = hc = 0, fc + ha + gc + hb = 0, (16)

note the difference with Theorem 1. The first set of these relations implies that the quasilinear
conservation law is equivalent to the second-order equation

Fu12 +Gu13 +Hu23 = 0,

where F = fb + ga, G = fc + ha, H = gc + hb. Note that, by virtue of (16), the coefficients
F,G,H satisfy the additional constraint G + H = 0. It follows from [9] that, up to a nonzero
factor, any integrable equation of this type is equivalent to

[p(u1)− q(u2)]u12 + r(u3)u13 − r(u3)u23 = 0, (17)

where the functions p(a), q(b), r(c) satisfy the integrability conditions

p′′ = p′
(
p′−q′
p−q + (p− q) r′

r2

)
,

q′′ = q′
(
p′−q′
p−q − (p− q) r′

r2

)
,

r′′ = 2 r
′2

r .

(18)

Our further strategy is the same as in Theorem 1, namely
Step 1. First, we solve equations (18). Modulo unessential translations and rescalings this

leads to seven quasilinear integrable equations of the form (17).
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Step 2. For all of the seven equations found at step 1, we calculate first-order conservation
laws (there will be four of them in each case).

Step 3. Taking linear combinations of the four conservation laws, and replacing u1, u2 by
41u,42u (keeping u3 as it is), we obtain differential–difference equations (15) which are the
candidates for integrability.

Step 4. Applying the ε2-integrability test, we find that only linear combinations of three
conservation laws (out of four) pass the integrability test. Below we list conservation laws in
such a way that the first three are the ones that pass the integrability test, while the fourth
one does not. Moreover, each triplet of conservation laws corresponds to one and the same
differential–difference equation.

Let us begin with the solution of system (18). The analysis leads to seven essentially different
cases, which correspond to cases 1–7 of Theorem 2 in the same order as they appear below. First
of all, the equation for r implies that there are two essentially different cases: r = 1 and r = 1/c.

Case 1: r = 1. Then equations (18) simplify to

p′′ = p′
p′ − q′

p− q
, q′′ = q′

p′ − q′

p− q
.

There are two subcases depending on how many functions among p, q are constant.

Subcase 1a: q is constant (the case p=const is similar). Without any loss of generality one can
set q = 0. Modulo unessential translations and rescalings this leads to p = ea, resulting in the
PDE

eu1u12 + u13 − u23 = 0.

This equation possesses four conservation laws

∂1e
u2 − ∂3e

u2−u1 = 0,

∂1u3 + ∂2 (eu1 − u3) = 0,

∂1u
2
3 + ∂2

(
2u3e

u1 − e2u1 − u2
3

)
− ∂3 (2eu1) = 0,

∂1 (u2u3) + ∂2 (2u1e
u1 − 2eu1 − u1u3) + ∂3

(
u2

1 − u1u2

)
= 0.

Applying steps 3 and 4, we can show that semidiscrete versions of the first three conservation
laws correspond to the differential–difference equation

e(T12u−T2u)/ε − e(T1u−u)/ε + T1u3 − T2u3 = 0, (19)

which possesses the Lax pair

T2ψ = e(T1u−T2u)/ε (T1ψ + ψ), εψ3 = −e(T1u−u)/ε (T1ψ + ψ).

Setting v = eu/ε and ∂3 → 1
ε∂3, we can rewrite (19) in the form

T12v

T2v
+
T1v3

T1v
=
T1v

v
+
T2v3

T2v
.
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Subcase 1b: both p and q are non-constant. Modulo unessential translations and rescalings, the
elementary separation of variables gives p = ea, q = eb. The corresponding PDE is

(eu1 − eu2)u12 + u13 − u23 = 0.

It possesses four conservation laws

∂1(eu2 − u3) + ∂3 ln (eu1 − eu2) = 0,

∂2(eu1 − u3) + ∂3 ln (eu1 − eu2) = 0,

∂1(e2u2 − 2eu2u3 + u2
3) + ∂2(2eu1u3 − e2u1 − u2

3) + ∂3(2eu2 − 2eu1) = 0,

∂1 (−2eu2u2 + u2u3 + 2eu2) + ∂2 (2eu1u1 − u1u3 − 2eu1)

+ ∂3

(
u1u2 − u2

2 + 2 (u1 − u2) ln
(
1− eu1−u2

)
+ 2Li2

(
eu1−u2

))
= 0.

Applying steps 3 and 4, we can show that semidiscrete versions of the first three conservation
laws correspond to the differential–difference equation

e(T12u−T2u)/ε − e(T12u−T1u)/ε + e(T2u−u)/ε − e(T1u−u)/ε + T1u3 − T2u3 = 0. (20)

Equation (20) possesses the Lax pair

T2ψ = e(T1u−T2u)/ε T1ψ + (1− e(T1u−T2u)/ε)ψ, εψ3 = e(T1u−u)/ε(T1ψ − ψ).

Note that this case has been recorded before. Setting v = eu/ε and ∂3 → 1
ε∂3, we obtain the

equation

T12v =
T1vT2v

v
+
T2vT1v3 − T1vT2v3

T2v − T1v
,

which has appeared in the context of discrete evolutions of plane curves [1].

Case 2: r = 1/c. In this case the equations for p and q simplify to

p′′ = p′
(
p′ − q′

p− q
− (p− q)

)
, q′′ = q′

(
p′ − q′

p− q
+ (p− q)

)
.

There are several subcases depending on how many functions among p, q are constant.

Subcase 2a: both p and q are constant. The corresponding PDE is

u12 +
1

u3
(u13 − u23) = 0.

It possesses four conservation laws

∂1(eu2u3)− ∂3e
u2 = 0,

∂2(e−u1u3) + ∂3e
−u1 = 0,

∂1(u2 + lnu3)− ∂2 lnu3 = 0,

∂1 (u2u3 + 2u3) + ∂2 (u1u3 − 2u3)− ∂3 (u1u2) = 0.

Applying steps 3 and 4, we can show that semidiscrete versions of the first three conservation
laws correspond to the differential–difference equation

T2u3

T1u3
= e(T12u−T1u−T2u+u)/ε. (21)
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This equation possesses the Lax pair

T1ψ = −e(T1u−u)/ε (T2ψ − ψ), εψ3 = −u3(T2ψ − ψ).

Setting v = eu/ε, we can rewrite (21) as

vT12v

T1v
=
T1vT2v3

T1v3
.

Subcase 2b: q is constant (the case p=const is similar). Without any loss of generality one can
set q = 0. The equation for p takes the form p′′ = p′2/p− pp′, which integrates to p′/p+ p = α.
There are further subcases depending on the value of the integration constant α.

Subcase 2b(i): α = 0. Then one can take p = 1/a, which results in the PDE

1

u1
u12 +

1

u3
(u13 − u23) = 0.

It possesses four conservation laws

∂2(u3/u1)− ∂3 lnu1 = 0,

∂1 lnu3 + ∂2 ln (u1/u3) = 0,

∂1(2u2u3) + ∂3

(
u2

1 − 2u1u2

)
= 0,

∂1

(
u2

2u3

)
− ∂2

(
u2

1u3

3

)
+ ∂3

(
u2

1u2 − u2
2u1 −

2u3
1

9

)
= 0.

Applying steps 3 and 4, we can show that semidiscrete versions of the first three conservation
laws correspond to the differential–difference equation

(T12u− T2u)T1u3 = (T1u− u)T2u3. (22)

This equation possesses the Lax pair

T1ψ = −(T1u− u)

ε
T2ψ + ψ, εψ3 = −u3T2ψ.

Subcase 2b(ii): α 6= 0 (without any loss of generality one can set α = 1). Then one has
p = ea/(ea − 1), which corresponds to the PDE

eu1

eu1 − 1
u12 +

1

u3
(u13 − u23) = 0.

It possesses four conservation laws

∂1(u3e
u2) + ∂3(eu2−u1 − eu2) = 0,

∂1 lnu3 + ∂2 ln

(
1− eu1

u3

)
= 0,

∂2

(
u3

1− eu1

)
+ ∂3 (ln(1− eu1)− u1) = 0,
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∂1

(u2u3

2
+ u3

)
+ ∂2

(
u1u3 (eu1 + 1)

2 (eu1 − 1)
− u3

)
+ ∂3

(
u2

1 − u1u2

2
− u1 ln (1− eu1)− Li2 (eu1)

)
= 0.

Applying steps 3 and 4, we can show that semidiscrete versions of the first three conservation
laws correspond to the differential–difference equation

(1− e(T12u−T2u)/ε)T1u3 = (1− e(T1u−u)/ε)T2u3, (23)

which possesses the Lax pair

T1ψ = (1− e(T1u−u)/ε)T2ψ − e(T1u−u)/εψ, εψ3 = u3T2ψ + u3ψ.

Setting v = eu/ε, we can rewrite equation (23) in the form

v(T12v − T2v)T1v3 = T1v(T1v − v)T2v3.

Subcase 2c: both p and q are non-constant. Subtracting the ODEs for p and q from each other
and separating the variables gives p′ = α−p2, q′ = α−q2. There are further subcases depending
on the value of the integration constant α.

Subcase 2c(i): α = 0. Then one can take p = 1/a, q = 1/b, which results in the PDE(
1

u1
− 1

u2

)
u12 +

1

u3
(u13 − u23) = 0.

It possesses four conservation laws

∂1 ln

(
u2

u3

)
+ ∂2 ln

(
u3

u1

)
= 0,

∂1

(
u3

u2

)
+ ∂3 ln

(
1− u1

u2

)
= 0,

∂2

(
u3

u1

)
+ ∂3 ln

(
1− u2

u1

)
= 0,

∂1

(
u2

2u3

)
− ∂2

(
u2

1u3

)
+ ∂3

(
u2

1u2 − u2
2u1

)
= 0.

Applying steps 3 and 4, we can show that semidiscrete versions of the first three conservation
laws correspond to the differential–difference equation

(T241u)(42u)T1u3 = (T142u)(41u)T2u3, (24)

which appeared in [7]. Equation (24) possesses the Lax pair

T1ψ =
41u

42u
T2ψ +

(
1− 41u

42u

)
ψ, εψ3 =

u3

42u
(T2ψ − ψ).

Subcase 2c(ii): α 6= 0 (we will consider the hyperbolic case α = 1; the trigonometric case α = −1
is similar). Then one can take p = coth a, q = coth b, which results in the PDE

(cothu1 − cothu2)u12 +
1

u3
(u13 − u23) = 0.
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It possesses four conservation laws

∂1 ln

(
sinhu2

u3

)
− ∂2 ln

(
sinhu1

u3

)
= 0,

∂1 (u3 cothu2) + ∂2 ln

(
sinh(u1 − u2)

sinhu2

)
= 0,

∂2 (u3 cothu1) + ∂3 ln

(
sinh(u1 − u2)

sinhu1

)
= 0,

∂1 (4u3(1− cothu2 − u2 cothu2)) + ∂2(4u1u3 cothu1)

+ ∂3

(
4u1 − 2u2

2 − 12u2 + 2(u1 − u2 − 2) ln
(
1− e2u1−2u2

)
+ 2(u1 − u2) ln

(
1− e2u2−2u1

)
+ 4(u2 + 1) ln

(
1− e2u2

)
− 2u1 ln

(
(1− e−2u1)(1− e2u1)

)
+ Li2

(
e−2u1

)
− Li2

(
e2u1

)
+ Li2

(
e2u1−2u2

)
+ 2Li2

(
e2u2

)
− Li2

(
e2u2−2u1

))
= 0.

Applying steps 3 and 4, we can show that semidiscrete versions of the first three conservation
laws correspond to the differential–difference equation

(T2 sinh41u)(sinh42u)T1u3 = (T1 sinh42u)(sinh41u)T2u3, (25)

which possesses the following Lax pair:

T2ψ =
e242u − 1

e241u − 1
T1ψ +

e241u − e242u

e241u − 1
ψ, εψ3 =

2u3

e241u − 1
(T1ψ − ψ).

This finishes the proof of Theorem 2.

3.2 One discrete and two continuous variables.

One can show that there exist no nondegenerate integrable equations of the form

41f + ∂2g + ∂3h = 0,

where f, g, h are functions of 41u, u2, u3.

4 Discrete Second-order Quasilinear Equations in 3D

Here, we present the result of classification of integrable equations of the form

3∑
i,j=1

fij(4u)4iju = 0,

where fij are functions of 41u,42u,43u only. These equations can be viewed as discretizations
of second-order quasilinear PDEs

3∑
i,j=1

fij(uk)uij = 0,

whose integrability was investigated in [9].
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Theorem 3 There exists a unique nondegenerate discrete second-order quasilinear equation in
3D, known as the lattice KP equation

(41u−42u)412u+ (43u−41u)413u+ (42u−43u)423u = 0.

�
In different contexts and equivalent forms, it has appeared in [10, 34, 36]. The proof is

similar to that of Theorem 1, and will be omitted.

4.1 Two discrete and one continuous variables

The classification of semidiscrete integrable equations of the form

f11411u+ f12412u+ f22422u+ f1341u3 + f2342u3 + f33u33 = 0,

where the coefficients fij are functions of (41u,42u, u3), gives the following result.

Theorem 4 There exists a unique nondegenerate second-order equations of the above type,
known as the semidiscrete Toda lattice,

(41u−42u)412u−41u3 +42u3 = 0.

�

It has appeared before in [1, 30]. Again, we skip the details of calculations.

4.2 One discrete and two continuous variables

One can show that there exist no nondegenerate semidiscrete integrable equations of the form

f11411u+ f1241u2 + f22u22 + f1341u3 + f23u23 + f33u33 = 0,

where the coefficients fij are functions of (41u, u2, u3).

5 Numerics

In this section, we compare numerical solutions for discrete equation (7),

4tt̄ u−4xx̄ [u− ln(eu + 1)]−4yȳ [ln(eu + 1)] = 0,

and its dispersionless limit (8),

utt − [u− ln(eu + 1)]xx − [ln(eu + 1)]yy = 0,

obtained using Mathematica. We choose the following Cauchy data:

Discrete equation (7): u(x, y, 0) = 3e−(x2+y2), u(x, y,−ε) = 3e−(x2+y2).
Dispersionless equation (8): u(x, y, 0) = 3e−(x2+y2), ut(x, y, 0) = 0.
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In Figure 1, we plot the numerical solution of dispersionless equation (8) for t = 0, 4, 8. As
equation (8) does not satisfy the null conditions of Klainerman [23], according to the general
theory this solution is expected to break down in finite time.

Fig. 1. Numerical solution of dispersionless equation (8) for t = 0, 4, 8, showing the onset of breaking.

On the contrary, solutions to the dispersive regularization (7) (which can be viewed as a difference
scheme) do not break down. Indeed, (7) can be rewritten in the form

u(t+ ε) = −u(t− ε) + (Tx + Tx̄)(u− ln(eu + 1)) + (Ty + Tȳ) ln(eu + 1), (26)

which allows the computation of u(t+ε) once u(t) and u(t−ε) are known. Figures 2–4 illustrate
the solution for different values of ε at t = 0, 4, 8. As ε becomes smaller one can see the formation
of a dispersive shock wave in Figure 5.

Fig. 2. Solution of discrete equation (7) for ε = 2 and t = 0, 4, 8.

Fig. 3. Solution of discrete equation (7) for ε = 1 and t = 0, 4, 8.
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Fig. 4. Solution of discrete equation (7) for ε = 1/8 and t = 0, 4, 8. As ε → 0, solutions of the discrete
equation tend to solutions of the dispersionless limit until the breakdown occurs. At the breaking point,
one can see the formation of a dispersive shock wave.

Fig. 5. Formation of a dispersive shock wave in the solution of discrete equation (7) for ε = 1
8 (left) and

ε = 1
16 (right), at t = 8.

We would like to emphasize that there are very few results on dispersive shock waves in
2 + 1 dimensions (see [24, 25] for a detailed numerical investigation of this phenomenon for the
KP and DS equations). This is primarily due to the computational complexity of problems
involving rapid oscillations. On the contrary, in the discrete example discussed in this section,
one does not require dedicated numerical methods to observe the formation of a dispersive shock
wave: this is achieved by simply iterating an explicit recurrence relation (26). We hope that
this example will be useful for the general theory of dispersive shock waves in higher dimensions
(yet to be developed).
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Appendix. 4-Forms of Hirota-Type Difference Equations

Below we list 4-forms of various 3D discrete integrable equations that have been discussed in
the literature. The advantage of 4-representation is that the corresponding dispersionless limits
become more clearly seen. Although these equations have appeared under different names, most
of them are related via various gauge/Miura/Bäcklund type transformations. We have verified
that all equations listed below inherit hydrodynamic reductions of their dispersionless limits, at
least to the order ε2.

Hirota equation [20]:
αT1τT1̄τ + βT2τT2̄τ + γT3τT3̄τ = 0.

Dividing by τ2 and setting τ = eu/ε
2
, we can rewrite it in the form

αe411̄u + βe422̄u + γe433̄u = 0.

Its dispersionless limit is
αeu11 + βeu22 + γeu33 = 0.

Hirota-Miwa equation [33]:

αT1τT23τ + βT2τT13τ + γT3τT12τ = 0.

Dividing by T1τT2τT3τ/τ and setting τ = eu/ε
2
, we can rewrite it in the form

αe423u + βe413u + γe412u = 0.

Its dispersionless limit is
αeu23 + βeu13 + γeu12 = 0.

Gauge-invariant Hirota equation, or Y-system [28, 43]:

T2vT2̄v

T1vT1̄v
=

(1 + T3v)(1 + T3̄v)

(1 + T1v)(1 + T1̄v)
.

Taking log of both sides we obtain

(422̄ −411̄) ln v = (433̄ −411̄) ln(v + 1).

Setting v = eu, we get

422̄ u = 411̄ [u− ln(eu + 1)] +433̄ [ln(eu + 1)] = 0,

its dispersionless limit is

u22 = [u− ln(eu + 1)]11 + [ln(eu + 1)]33.

Lattice KP equation [10, 34, 36]:

(T1u− T2u)T12u+ (T3u− T1u)T13u+ (T2u− T3u)T23u = 0.
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In equivalent form,

(41u−42u)412u+ (43u−41u)413u+ (42u−43u)423u = 0.

Its dispersionless limit is

(u1 − u2)u12 + (u3 − u1)u13 + (u2 − u3)u23 = 0.

Schwarzian KP equation [6, 7, 13, 26, 36]:

(T241u)(T342u)(T143u) = (T243u)(T341u)(T142u).

Taking log of both sides we obtain

41

(
ln
43u

42u

)
+42

(
ln
41u

43u

)
+43

(
ln
42u

41u

)
= 0.

Its dispersionless limit is

u3(u2 − u1)u12 + u2(u1 − u3)u13 + u1(u3 − u2)u23 = 0.

Lattice spin equation [35]:(
T12τ

T2τ
− 1

)(
T13τ

T1τ
− 1

)(
T23τ

T3τ
− 1

)
=

(
T12τ

T1τ
− 1

)(
T13τ

T3τ
− 1

)(
T23τ

T2τ
− 1

)
.

On multiplication by T1τT2τT3τ it reduces to the Schwarzian KP equation. An alternative
representation can be obtained by taking log of both sides and setting τ = eu/ε. This gives

41 ln
e43u − 1

e42u − 1
+42 ln

e41u − 1

e43u − 1
+43 ln

e42u − 1

e41u − 1
= 0.

Its dispersionless limit is

eu2 − eu1

(eu1 − 1)(eu2 − 1)
u12 +

eu1 − eu3

(eu1 − 1)(eu3 − 1)
u13 +

eu3 − eu2

(eu2 − 1)(eu3 − 1)
u23 = 0.

Sine–Gordon equation [26]:

(T2 sin41u)(T3 sin42u)(T1 sin43u) = (T2 sin43u)(T3 sin41u)(T1 sin42u).

Taking log of both sides we obtain

41

(
ln

sin43u

sin42u

)
+42

(
ln

sin41u

sin43u

)
+43

(
ln

sin42u

sin41u

)
= 0.

Its dispersionless limit is

(cotu2 − cotu1)u12 + (cotu1 − cotu3)u13 + (cotu3 − cotu2)u23 = 0.

This example is nothing but trigonometric version of the lattice spin equation.
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Lattice mKP equation [35]:

T13τ − T12τ

T1τ
+
T12τ − T23τ

T2τ
+
T23τ − T13τ

T3τ
= 0.

Setting τ = eu/ε, we obtain

41(e43u − e42u) +42(e41u − e43u) +43(e42u − e41u) = 0,

its dispersionless limit is

(eu1 − eu2)u12 + (eu3 − eu1)u13 + (eu2 − eu3)u23 = 0.

Toda equation [29, 43]:
αT1τT2τ + βτT12τ + γT13̄τT23τ = 0.

Dividing by T1τT2τ and setting τ = eu/ε
2

we get

α+ βe412u + γe423u−413̄u+433̄u = 0,

its dispersionless limit is
α+ βeu12 + γeu23−u13+u33 = 0.

Lattice Toda equation [35]:

(T1 − T3)
T2τ

τ
= (T2 − T3)

T1τ

τ
.

Setting τ = eu/ε, we get

41(e42u)−42(e41u) +43(e41u − e42u) = 0,

its dispersionless limit is
(eu2 − eu1)u12 + eu1u13 − eu2u23 = 0.

Lattice mToda equation [35]:(
T13τ

T1τ
− 1

)(
T23τ

T3τ
− 1

)
=

(
T12τ

T1τ
− 1

)(
T23τ

T2τ
− 1

)
.

Taking log of both sides and setting τ = eu/ε, we get

41 ln
e43u − 1

e42u − 1
−42 ln(e43u − 1) +43 ln(e42u − 1) = 0.

Its dispersionless limit is

− eu2

eu2 − 1
u12 +

eu3

eu3 − 1
u13 +

eu3 − eu2

(eu2 − 1)(eu3 − 1)
u23 = 0.

Toda equation for rotation coefficients [11]:

(T2 − 1)
T1τ

τ
= T1

T2τ

T3̄τ
− T23τ

τ
.
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This equation appeared in the theory of Laplace transformations of discrete quadrilateral nets.
Setting τ = eu/ε, we obtain

42(e41u) = (41 −43)e42u+43̄u.

Its dispersionless limit is

eu1u12 = eu2+u3(u12 + u13 − u23 − u33).

One more version of the Toda equation [6]:

T1̄3τ + αT2τ = T1̄τT3τ

(
1

τ
+ α

1

T1̄2̄3τ

)
.

Setting τ = e−u/ε, we obtain

43e
41̄u = α(ε41̄2̄ −41̄ −42̄)e43u−42u.

Its dispersionless limit is

eu1u13 + αeu3−u2(u13 + u23 − u12 − u22) = 0.

Schwarzian Toda equation [6, 7]:

(T143u)(T2(41 +42̄)u)(T342̄u) = (43u)(T3(41 +42̄)u)(T142u).

Taking log of both sides we obtain

41 ln43u+ (42 −43) ln(41 +42̄)u+43 ln42̄u−41 ln42u+
1

ε
ln

(
1− ε422̄u

42u

)
= 0.

Its dispersionless limit is

u2

u1u3
(u1 + u2 − u3)u13 − u12 − u22 + u23 = 0.

BKP equation in Miwa form [33, 38]:

αT1τT23τ + βT2τT13τ + γT3τT12τ + δτT123τ = 0.

This equation can be interpreted as the permutability theorem of Moutard transformations [38].
Dividing by T1τT2τT3τ/τ and setting τ = eu/ε

2
, we get

αe423u + βe413u + γe412u + δ eε4123u+423u+413u+412u = 0.

Its dispersionless limit is

αeu23 + βeu13 + γeu12 + δeu23+u13+u12 = 0.
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BKP equation in Hirota form [33]:

αT1τT1̄τ + βT2τT2̄τ + γT3τT3̄τ + δT123τT1̄2̄3̄τ = 0.

Dividing by τ2 and setting τ = eu/ε
2
, we get

αe411̄u + βe422̄u + γe433̄u + δeε(4123u−41̄2̄3̄u)+S = 0,

where

S = (411̄u+422̄u+433̄u) + (412u+41̄2̄u) + (413u+41̄3̄u) + (423u+42̄3̄u).

Its dispersionless limit is

αeu11 + βeu22 + γeu33 + δeu11+u22+u33+2u12+2u13+2u23 = 0.

Schwarzian BKP equation [27, 39, 41]:

(T1u− T2u)(T123u− T3u)

(T2u− T3u)(T123u− T1u)
=

(T13u− T23u)(T12u− u)

(T12u− T13u)(T23u− u)
.

Taking log of both sides we get

43 ln
ε412u+41u+42u

41u−42u
= 41 ln

ε423u+42u+43u

43u−42u
.

Its dispersionless limit is [8]:

u3(u2
2 − u2

1)u12 + u2(u2
1 − u2

3)u13 + u1(u2
3 − u2

2)u23 = 0.

It was shown in [41] that the Schwarzian BKP equation is the only nonlinearizable affine linear
discrete equation consistent around a 4D cube.

BKP version of the sine-Gordon equation [27, 39]:

sin(T1u− T2u) sin(T123u− T3u)

sin(T2u− T2u) sin(T123u− T1u)
=

sin(T13u− T23u) sin(T12u− u)

sin(T12u− T13u) sin(T23u− u)
.

Taking log of both sides we get

43 ln
sin(ε412u+41u+42u)

sin(41u−42u)
= 41 ln

sin(ε423u+42u+43u)

sin(43u−42u)
.

Its dispersionless limit is

sin 2u3(sin2 u2 − sin2 u1)u12 + sin 2u2(sin2 u1 − sin2 u3)u13 + sin 2u1(sin2 u3 − sin2 u2)u23 = 0.

CKP equation [40]:

(τT123τ − T1τT23τ − T2τT13τ − T3τT12τ)2

= 4(T1τT2τT13τT23τ + T2τT3τT12τT13τ + T1τT3τT12τT23τ − T1τT2τT3τT123τ − τT12τT13τT23τ).
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Multiplying by [τ/(T1τT2τT3τ)]2 and setting τ = eu/ε
2
, we obtain

(eε4123u+423u+413u+412u − e423u − e413u − e412u)2

= 4(e413u+423u + e412u+413u + e412u+423u − eε4123u+423u+413u+412u − e423u+413u+412u).

Its dispersionless limit is

(eu23+u13+u12 − eu23 − eu13 − eu12)2 = 4(eu13+u23 + eu12+u13 + eu12+u23 − 2eu23+u13+u12).

It is remarkable that this dispersionless equation decouples into the product of four dispersionless
BKP-type equations: setting u = 2v, we obtain

(ev23+v13+v12 + ev23 + ev13 + ev12)(ev23+v13+v12 − ev23 − ev13 + ev12)

× (ev23+v13+v12 − ev23 + ev13 − ev12)(ev23+v13+v12 + ev23 − ev13 − ev12) = 0.

One can show that hydrodynamic reductions of each BKP-branch of the dispersionless equation
are inherited by the full CKP equation. Multidimensional consistency of the CKP equation,
interpreted as the Cayley hyperdeterminant, was established in [12, 42]. An alternative form of
the CKP equation was proposed earlier in [22].
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