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Abstract. We investigate a new multivariate data imputation approach for dealing with variety of 
types of missingness. The proposed approach relies on the aggregation of the most suitable methods 
from a multitude of imputation techniques, adjusted to each feature of the dataset. We report results 
from comparison with two single imputation techniques (Random Guessing and Median Imputation) 
and four state-of-the-art multivariate methods (K-Nearest Neighbour Imputation, Bagged Tree 
Imputation, Missing Imputation Chained Equations, and Bayesian Principal Component Analysis 
Imputation) on several datasets from the public domain, demonstrating favorable performance for our 
model. The proposed method, namely Feature Guided Data Imputation is compared with the other 
tested methods in three different experimental settings: Missing Completely at Random, Missing at 
Random and Missing Not at Random with 25% missing data in the test set over five-fold cross 
validation. Furthermore, the proposed model has straightforward implementation and can easily 
incorporate other imputation techniques. 

Keywords: Missing data; Multivariate data imputation; Multitude of imputation models; Data 
mining 

1. INTRODUCTION 
 Dealing with missing data is an important step in dataset pre-processing since most 

statistical analysis techniques, data reduction tools, and machine learning methods require 
complete datasets. There are many techniques that can be used to deal with the missingness, 
but the common approach during imputation is to make the most of the available data through 
minimizing the loss of statistical power and the bias inevitably brought by the missing data 
inferred values. The mechanisms of missingness are usually categorized into three groups 
[1]: MCAR (Missing Completely at Random); MAR (Missing At Random); and MNAR 
(Missing Not At Random). In the first case, the missingness is generally due to external 
factors, not correlated to the other variables in the dataset, while in the last two, the cause is 
related to the other variables; therefore, the risk of bringing bias due to the imputation should 
be carefully considered.  

The approaches of dealing with missingness can be also divided into three categories [1]: 
deletion; univariate imputation; and multivariate imputation. In the first category fall the list-
wise deletion (the patterns with missing values are simply removed), attribute deletion (the 
features with missing values are excluded) and pairwise deletion (where, in presence of 
missing values, the pattern is not dropped, and its other values are still used during the 
analysis). The methods from the second category do not consider the correlation between the 
missing value and the other variables in the dataset, and impute the data using only 
information of the same attribute. Good examples of this group are: the Random Guessing, 
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where the values are substituted randomly, sampling from the other values of the same 
attribute; and the Mean (Median) Imputation, where the values are replaced with the mean 
(median) of the considered attribute. The last category includes methods that consider the 
correlation of the different attributes. Four different algorithms of this family are usually 
considered [1]: Multiple Imputation Chained Equations (MICE); Bagged Tree Imputation 
(BTI); K-Nearest Neighbour Imputation (KNNI) and Bayesian Principal Component 
Analysis Imputation (bPCA).  

These methods have been widely investigated and compared in the past years, showing 
discordant results [2] [3].  Most approaches of dealing with missingness would select a single 
method that outperforms the others based on a given performance metrics. However, while 
a given approach might have a good performance across the whole dataset, it does not mean 
that its performance will be superior at the level of each individual feature. In the proposed 
approach, instead of selecting a single method which outperforms the others on the whole 
dataset, a column-wise selection is used to choose the best imputation method for each 
individual attribute.  

The proposed method, namely Feature Guided Data Imputation (FGDI) is extensively 
tested and validated on thirteen publicly available datasets. Its performance is assessed and 
compared with other techniques using Wilcoxon Signed-rank test for statistical significance 
[4].  

The remainder of the paper is organized as follows. Section 2 describes the considered 
imputation methods, while Section 3 proposes the FGDI method. Section 4 discusses the 
empirical study carried out. The results of this investigation are discussed in Section 5 and 
in Section 6 conclusion given. 

2. IMPUTATION TECHNIQUES 
Baselines - The most common techniques used as baselines for comparison and analysis 

of data imputation are Random Guessing, Mean Imputation and Median Imputation [5]. The 
Random Guessing is a very simple benchmark to estimate the performance of a prediction 
method. It takes as input the missing data with random value drawn from the known values 
of the same feature. The Mean (Median) Imputation replaces every missing value with the 
mean (median) of the attribute.  However, these techniques fall into the single imputation 
category (the correlation between the variables is ignored), which is the reason for being 
rejected by the scientific community [6], hence, they are only used here to perform initial 
fast sanity check of the proposed approach. 

Bagged Tree Imputation - The BTI with gradient boosting [7] is a machine learning 
technique for solving regression problems, which produces a robust prediction model using 
a vote (ensemble) among weak ones. The method follows few basic steps for each feature 
with missing data: (1) train several tree models using the other features; (2) for each tree, 
impute the data using a regression function; (3) use a vote among the trees to select the data 
that will be imputed in the original dataset. Bagging predictors are used for generating 
multiple versions of a predictor to get an aggregated one. The aggregation uses the average 
over the predictor versions when predicting a numerical outcome, and employs a plurality 



vote when predicting a class. Bagging proved to be more efficient in the presence of label 
noise when compared to boosting and randomization [8]; it is also robust to outliers and can 
impute the data very accurately using surrogate splits [9]. Another important feature of the 
tree model is its flexibility: different models can be trained with the random forests and the 
prediction deferred to a system vote among them.  In this work, we employ gradient boosting 
technique for the regression values, which uses an ensemble of weak decision trees. 

K-Nearest Neighbors Imputation – In the KNNI the missing values are usually imputed 
applying the mean of the K most similar patterns found by minimizing the Euclidean 
Distance between a pattern with missing values and the complete subset [10]. The KNNI 
approach comprises three steps: (1) take only the rows of the dataset without missing data 
and use this subset as a prototype dataset to select the nearest neighbours; (2) choose a 
distance metric and compute the nearest neighbours between each pattern with missing data 
and the complete subset; (3) impute the data, using the mean or the mode of the chosen 
neighbours. An important parameter to select is the number of neighbours K. There are 
discordant opinions in the literature, some suggesting a low value of 1 or 2 for small datasets 
[11]. [12] advise a value of 10 for large datasets, and in [10] is argued that the method is 
insensitive to the choice of the number of neighbours. In all simulations carried out in this 
work, we used a value of K = 10. The K-Nearest Neighbours has some advantages: the 
method can predict both, categorical variables (the most frequent value among the KNN) 
and continuous variables (the average among the KNN); and when using this imputation, 
there is no need to build a model (as in the Bagged Tree Imputation). 

Missing Imputation Chained Equations - MICE [13] is a method from the multiple 
imputation family. In the MICE process, a series of regression models are run modeling each 
variable with missing data as dependent variable relying on all the other variables in the 
dataset. This guarantees that each variable is modeled independently to its distribution [13]. 
The MICE method is divided into four stages: (1) a simple imputation (Mean) is performed 
for every missing value in the dataset to be used as placeholders; (2) the placeholders for one 
variable are set back to miss; (3) the missing variable is used as the dependent variable in a 
regression model and regressed using the other variables. The procedure is followed for 
every variable with missing entries and repeated many times until the convergence is 
reached. Practical guide on how to select the number of imputations is given in [14], 
however, sometimes due to the size of the dataset, it is not feasible to run the procedure many 
times. Therefore, 10 iterations are usually considered enough for the convergence of the 
algorithm [15], which number is also adopted in this investigation. 

Bayesian Principal Component Analysis Imputation - the bPCA imputation [16] is an 
evolution of the Single Value Decomposition Imputation [10] (since the SVD is a PCA 
applied to normalized datasets with a 0 row-mean) with the additional Bayesian estimation, 
using a known prior distribution. An advantage of this approach is that no hyper-parameters 
tuning is needed, and the number of components is self-determined by the algorithm at the 
expense of a higher computational time. The bPCA can be summarized as: (1) apply 
Principal Component Regression on the initial dataset; (2) perform a Bayesian Estimation; 
(3) use an EM algorithm until convergence to a specified tolerance. 



3. THE PROPOSED METHOD 
All methods described in the previous section have been widely applied for solving 

missing data problems [2]. However, while a given approach may produce low estimation 
error for the whole dataset at hand, this does not mean that the method outputs the best result 
(smaller error) for every individual feature (usually, for some of the features other methods 
may give better estimates).  

The investigated here Feature Guided Data Imputation (FGDI) is an imputation 
approach which aggregates models in a feature-wise fashion (choosing the best model for 
each feature (column) of the dataset, while allowing it at the same time to be inferior for the 
rest of the features). In other words, when training the model, the best imputation method for 
each feature of the dataset is selected among the considered techniques. At the imputation 
phase, each selected method is sequentially used to impute the features for which its 
performance was the best during the training stage. 

 During the learning phase, the algorithm is trained on artificially introduced missing data 
(e.g., 25% of MCAR, MAR or MNAR) for each feature. A combination of the best 
performed methods (based on a given error metrics, e.g., RMSE, MAE) is used to impute 
the missing values in the original dataset. To cope with the random nature of the algorithm 
and to ensure more robust choice, this process is iterated a given number of times, and the 
technique that produced the lowest median overall error for each feature is then chosen. For 
example, let's assume a set of m imputation methods (M1, ..., Mm ∈ S) and dataset (X) 
composed of v variables (features) and n samples, where k of them (0 < k < n) contain at 
least one missing value. Once the n-k complete samples are separated (X' subset), a 
percentage of missingness is added to each variable of X' (e.g., 25%).  The missing data in 
X' are separately imputed using all methods of S, and the estimation error (e.g., RMSE) is 
calculated for each feature (variable). This process is repeated I times (e.g., I = 5), and for 
every variable in X', the imputation algorithm scoring the lowest median error is selected and 
included in a set E, (E⊆ S).The selected techniques are then used to estimate the missing 
values of the whole set X. In particular, ∀Mi ∈ E, i = 1,.., j, (where j ≤ m), the dataset X is 
entirely imputed, and only the imputed values for the features where Mi scored the lowest 
error are saved, discarding the others. Since X is imputed independently using each 
technique, the order of imputation is irrelevant, enabling the process to be parallelized. 

4. EMPIRICAL STUDY 
In previous works [3] [17], extensive review and experimentation was done in an effort 

to identify correlation between imputation methods performance and the type of datasets 
with missingness, which concluded with discordant results (confirming the ‘No free lunch 
theorem’). These findings led to the current investigation, based on the aggregation of 
different models.  

The proposed method (FGDI) is compared with known univariate baselines and 
multivariate state-of-the-art imputation methods (i.e., KNN, BTI, MICE and bPCA) to assess 
its performance on the missing data imputation task. The experiments are executed for all 



the three missing data mechanisms: MCAR, MAR and MNAR. Lastly, a run time analysis 
is carried to observe the computational cost needed during the training and imputation 
phases. The results are reported in Section 5. 

Thirteen publicly available datasets from KEEL repositories [18] are used in this work, 
namely Contraceptive, Yeast, Red wine, Car, Titanic, Abalone, White Wine, Page Block, 
Ring, Two Norm, Pen Based, Nursery, and Magic04. The selection of these datasets was 
driven by the intent to cover different application domains and data characteristics. They 
differ in the number of instances (from several hundreds to several thousands), the number 
of features (from 3 to 20), and in the range and type of the features (real, integer and 
categorical). The used datasets do not have missing values by default, guaranteeing total 
control over the experiments and the assessment and evaluation of the results.  

From the variety of metrics employed for comparing and evaluating data imputation and 
prediction models found in the literature, Mean Squared Error (MSE) and Mean Absolute 
Error (MAE) are the most widely used [16] [19]. MSE measures the difference between 
predicted and actual values while MAE their absolute difference. The Mean Absolute Error 
(MAE) is argued to be more accurate and informative than the RMSE [20], successively 
refuted by [21], where it is stated that the two measures picture different aspects of the error 
and therefore they should both be used to assess the results. As suggested in [20] and [21], 
RMSE and MAE are implemented to compare the estimated missing values and the original 
ones, reflecting the average performance of the imputation method. Furthermore, the RMSE 
is employed as error function for the training phase of the FGDI. The Standard Accuracy 
(SA) and Variance Relative Error (RE*) are assumed to be good baseline estimation 
measures [22]. SA and RE* are used to compare the proposed model with the univariate 
baseline imputation techniques (discussed earlier). In particular, SA which compares the 
prediction against the mean of a random sampling of the training response values SA=1 - 
RMSE(predicted, actual) / RMSE(randGuess, actual) and the RE*=σ2(predicted - actual) / 
σ2(actual)  which gives score of 1 for a model predicting values with 0 variance. It is 
considered an appropriate baseline error measure since any model producing RE* greater 
than 1 would be assumed weak, independently of the dataset [22].  

 To validate the proposed method, a k-fold cross validation is applied, splitting the dataset 
into independent training and test sets. The test set is generated using a uniform sampling 
without repetitions, and the rest of the data is left as a training set. Since the Shapiro Test 
showed that many of our patterns came from non-normally distributed populations, the 
statistical Wilcoxon Signed Rank Test was used to prove which method is giving better 
performance [4]. Furthermore, the used test does not make any assumptions about the 
underlying distribution of the data. In order to check the statistical significance of the 
difference in model performance, we test the following NULL hypothesis: “Given a pair of 
models (Mi, Mj) with 𝑖𝑖, 𝑗𝑗 ∈ {1, . . ,𝑛𝑛}, 𝑖𝑖 ≠ 𝑗𝑗, the RMSEs (MAEs) obtained by model Mi are 
significantly smaller than the errors produced by model Mj”, using confidence level α=0.05. 

When simulating Missing Completely at Random (MCAR) mechanism, for each feature 
value in the dataset, a number is drawn from a uniform distribution in the (0, 1) interval. If 
this number is smaller than assumed missing data threshold (e.g., 0.25), the feature value is 
set as missing in the original dataset. For the Missing at Random (MAR) mechanism, a 



variance-covariance matrix is built for the considered dataset. For each variable, the 
probability of missingness is governed by the most correlated feature in the matrix (i.e., the 
bigger the value of the correlated feature, the higher the probability of introducing 
missingness). To generate the Missing Not at Random (MNAR) mechanism, we draw values 
(used as thresholds) from a uniform distribution in (0, 1) interval, and sort them in decreasing 
order. We do the same for the variable values and pair them with the sorted random numbers. 
For each threshold, we draw a new random number in the (0, 1) interval and if it is smaller 
than the threshold, we erase the feature value (this way the pairs with higher random numbers 
are more likely to be set as missing). 

5. RESULTS AND DISCUSSION 
Three different experiments are carried out: MCAR, MAR, and MNAR mechanisms with 

25% of missing data and 5-fold cross validation (80% training and 20% testing). To calibrate 
the model during the training phase, 25% of missing data is added to each attribute of the 
training set, subsequently imputed using the five imputation techniques and the accuracy is 
evaluated using both MAE and RMSE. This process is run 5 times and for each attribute, the 
imputation model achieving the lowest median error (preferred to the mean due to robustness 
to outliers) is selected. Lastly, the selected techniques are used to impute the data on the 
independent test set and the results are compared to all the other methods.  

The first set of experiments is performed imputing the missing data under the MCAR 
mechanism. As the MCAR occurs when the missingness is unrelated to anything in the study, 
the missingness is simulated using a Bernoulli random variable removing values with 25% 
chance of success. The SA values given in Table 1 show superior results for the imputation 
carried out with our model. It outperformed the baseline methods Random Guessing 
(SARandom is always 0) and the Median Imputation (SAFGDI > SAMedian). The Mean Imputation 
was omitted in favor of the Median Imputation, since the latter is considered less biased to 
outliers. Furthermore, Table 2 presents the RE* results over five different imputation 
methods and again, as it can be seen from the values, our FGDI method outperformed the 
Median Imputation, with REFGDI < 1 in almost all case studies. It can be also seen from the 
table that the REMICE > 1, which means high variance in the imputed values, problem already 
discussed in [23]. The REKNNI, instead, shows high variance (from 0.19 to 1.24) depending 
on the considered dataset and feature. In the Yeast dataset, two variables (Erl and Pox) are 
removed during the RE* calculation since the variance in the denominator is 0. To finally 
assure that the proposed method is outperforming the baselines, a Wilcoxon test for statistical 
significance is run, testing the NULL hypothesis “The RMSEs provided by FGDI are 
significantly smaller than the errors produced by the models Random Guessing and Median 
Imputation”. The results proved FGDI being better than both with p-value < 0.05 over all 13 
datasets. The Standard Accuracy analysis (Table 1) shows that the FGDI method not only 
outperforms the baselines, but it is also comparable, and even better than the state-of-the-art 
algorithms. As it can be seen from the table, the SAFGDI is higher than the SA of the other 
methods in 41 out of the 52 cases, comparable in 9 out of the 52 cases, and worse in only 2 
cases. To validate the significance of the difference, the Wilcoxon test is run justifying the 
NULL hypothesis “The RMSEs provided by FGDI are significantly smaller than the errors 
achieved by the state-of-the-art methods”. 
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Table 2: RE* metric of FGDI and four state-of-the-art imputation methods for the 13 datasets. Each entry 
represents the number of times that given algorithm scored RE* < 1 (good estimator) on a total of 138 used 

features. The median imputation is not reported since it always scores RE* = 1 
Dataset       
(# features) 

FGDI KNNI BTI MICE bPCA 

Contraceptive (9) 9 3 9 1 8 
Yeast (6) 5 1 6 0 4 
Red Wine (11) 10 6 11 4 9 
Car (6) 6 0 5 0 0 
Titanic (3) 3 1 3 0 3 
Abalone (8) 8 7 8 7 8 
White Wine (11) 10 7 10 1 8 
Page Block (10) 10 10 10 4 9 
Ring (20) 16 0 20 0 14 
Two Norm (20) 20 0 20 0 20 
Pen Based (16) 15 16 16 14 16 
Nursery (8) 8 0 2 0 0 
Magic04 (10) 9 8 9 5 9 
Total (138) 129 59 129 36 108 

 

As evidenced in Table 3 (first three columns): the imputation improvement achieved by 
FGDI is statistically significant (p-value < 0.05) in 40 out of the 52 cases (77%); comparable 
in 9 cases; and worse in 3 cases only. As suggested in [20], the same NULL hypothesis was 
tested using the MAE metric. The FGDI resulted significantly better in 37 cases (71%), 
comparable in 12 and worse in only 3 cases. The second-best imputation method (bPCA) for 
RMSE was significantly better in 31 out of the 52 cases (60%); comparable in 9; and worse 
in 12 cases, which shows an improvement for FGDI of 17% over the best single method. For 
the MAE hypothesis, bPCA results were significantly better in 24 out of the 52 cases (46%); 
comparable in 14; and worse in 14 cases, showing inferior imputation accuracy in 25% of 
the cases, compared with the FGDI. Furthermore, Table 3 shows the robustness of FGDI 
when estimating the missing values - lower variance than KNNI, MICE, bPCA, and 
comparable RE* values with BTI (Table 2). 
Table 3: RMSE (MAE) significance test for 5-fold cross validation with 25% MCAR, MAR, and MNAR. Each 

row shows how many times model Mi is better (win), comparable (tie), or worse (loss) than the other models 
with the Wilcoxon Signed Rank Test 

 MCAR MAR MNAR 
 win tie loss win tie loss win tie loss 

FGDI 40 
(37) 

9 
(12) 

3 
(3) 

41  
(47) 

10 
(5) 

1 
(0) 

47 
(48) 

5 
(4) 

0 
(0) 

bPCA 31 
(24) 

9 
(14) 

12 
(14) 

36  
(31) 

8 
(6) 

8 
(15) 

34 
(31) 

7 
(7) 

11 
(14) 

BTI 26 
(19) 

12 
(15) 

14 
(18) 

28  
(22) 

6  
(11) 

18  
(19) 

23 
(22) 

6 
(8) 

23 
(22) 

KNNI 15 
(19) 

3 
(11) 

34 
(22) 

11  
(13) 

2 
(6) 

39  
(33) 

14 
(13) 

3 
(6) 

35 
(33) 

MICE 3 
(4) 

5 
(8) 

44 
(40) 

1 
(1) 

2 
(5) 

49  
(46) 

1 
(1) 

1 
(5) 

50 
(46) 



 The following experiments are considered when the missingness is caused by MAR and 
MNAR mechanisms. 

The Standard Accuracy values given in Table 1 for the MAR experiment show slightly 
superior performance of FGDI when compared with the other imputation techniques. The 
proposed model outperforms the baseline Random Guessing (SAFGDI > 0) in all reported 
cases and the Median Imputation (SAFGDI > SAMedian) in 8 out of 13 datasets. Furthermore, it 
also shows better accuracy in all 13 cases when compared to KNNI and MICE, and superior 
than BTI and bPCA results in 11 and 10 cases respectively. It is also worth to notice that the 
imputation under MAR condition is generally harder task (compared to MCAR), since the 
missingness is not uniformly distributed across the dataset and depends on the other variables 
as well (as discussed in Section 4). As for all previous experiments, the Wilcoxon test is 
adopted to evaluate the significance in difference for RMSE and MAE metrics. Results in 
Table 3 (4th to 6th column) show significant imputation improvement of the FGDI for 41 out 
of the 52 cases (79%); comparable in 10; and worse in only 1 case, when using RMSE. On 
the other hand, for the MAE metric, the FGDI resulted better in 47 cases (90%); comparable 
in 5; and never worse. The second-best imputation method (BTI) for RMSE and MAE is 
significantly better in 36 and 31 out of the 52 cases (69% and 60%); comparable in 8 and 6 
cases; and worse in 8 and 15 cases, showing inferior to the FGDI performance in 10% and 
30% of the cases respectively.  

The same analysis performed under the MNAR condition also suggests that the use of a 
single imputation method for the whole dataset is not the best option. Again, the SA values 
(Table 1) are generally lower when compared to the MCAR mechanism as the missingness 
is caused by the considered variable itself (as explained in Section 4), increasing the 
likelihood of introducing bias when imputing the values. In the MNAR case, Table 1 also 
shows superior results for our method in 10 out of 13 datasets. The reported SAFGDI is better 
than SAKNNI and SAMICE for all considered datasets, while being never worse than SABTI and 
SAbPCA. When compared to the baselines, the FGDI is always superior to the Random Guess 
(SAFGDI > 0), better than the Median Imputation in 7 out of 13 cases, and worse only in 1 of 
the cases. The Wilcoxon analysis Table 3 (columns 7 to 9) shows the FGDI being better than 
the second best method (BTI) in 25% and 33% of the cases for RMSE and MAE respectively. 
Comparing the proposed method with the other imputation techniques, the FGDI is better 
than bPCA, KNNI and MICE in 46%, 64% and 89% of the cases for the RMSE and 50%, 
67% and 90% for the MAE metrics. Despite being generally not recommended [6], the 
Median Imputation showed comparable and even better results than the bPCA, BTI, KNNI, 
and MICE in both MAR and MNAR settings. At first sight, this result is contradictory to the 
MCAR experiment (Table 1). This could be explained by the fact that the multivariate model 
can benefit from the uniformly distributed missingness across the dataset (like in the MCAR 
mechanism), while for the MAR and MNAR (where the missingness depends on a single 
variable), the use of a univariate model (baselines) could be reducing the noise in the 
prediction (because of not considering uncorrelated features).  However, as it can be seen 
from the carried experiments, the use of combination of baselines and state-of-the-art 
techniques (as in our approach) can improve the accuracy in almost all proposed scenarios 
with a very low risk of worsening the imputation.  



Last point to note is that while the FGDI is superior in all setups, the bPCA and BTI are 
competing for the second position in the three scenarios (bPCA for MCAR; and BTI for 
MAR and MNAR). All the experiments presented in this work have been done on a 16-core 
machine with 32gb RAM and 64Gb SSD of storage. Figure 1 shows the training time for the 
four state-of-the-art techniques (KNNI, BTI, MICE, and bPCA) and the proposed FGDI 
method over the 13 datasets, given in seconds. Due to the FGDI parallelization (each 
imputation algorithm can be run independently from the others), its training execution time 
is never significantly higher than the time needed for any other single technique. FGDI 
training time (blue bar in Figure 1) is always comparable with the slowest technique, plus an 
overhead due to the different scheduled threads. Furthermore, the proposed method shows a 
consistent time execution overhead with datasets of different volume and features size. This 
behavior can be observed from the percentage change between the FGDI and the slowest 
compared model. he percentage change results are smaller for bigger datasets (7.69, 6.15, 
14.37, 11.76, 5.84, 10.74 and 4.76 for White Wine, Page Block, Ring, Two Norm, Pen Based, 
Nursery and Magic04 respectively) and larger for the small ones (22.5, 20, 43.90, 59.09, 
56.25, 46.34 for Contraceptive, Yeast, Red Wine, Car, Titanic and Abalone respectively).  

This finding supports the recommendation of using the FGDI regardless the size of the 
dataset (as long as the imputation is feasible for the single models employed in the FGDI). 
For the prediction run-time (applied on the test set), FGDI showed to be comparable with the 
slowest method selected during the training phase. 

6. CONCLUSION 
The investigated FGDI method initially extracts the complete subset (without missing 

values), and selects through a learning process the most suitable imputation method for each 
feature. The FGDI imputation performance is evaluated with four widely used metrics for 
such tasks (SA, RE*, RMSE, and MAE). The results are statistically assessed using the 
Shapiro Test to check the distribution normality, and the non-parametric Wilcoxon Signed 
Rank Test, for statistical significance, using confidence level α=0.05.  

Under the MCAR mechanism, the Standard Accuracy analysis demonstrates that the 
proposed model is always more accurate than the baselines and produces better estimation 
than the state-of-the-art methods in 41 out of 52 cases. The Wilcoxon shows improvements 
of 17% and 25% for the FGDI over the second best performing algorithm (bPCA) over the 

Figure 1: Training time in seconds (y-axis) of the five considered imputation methods over the 13 datasets 
(x-axis). The Median Imputation is omitted having always a training time less than 1 second 

 



two metrics. In addition, FGDI and BTI impute values with higher stability (RE* < 1) for 
129 out of 138 tested features, followed by bPCA with 108 out of 138. 

Although the prediction under MAR and MNAR mechanisms is generally less accurate 
than the one under MCAR, the FGDI still shows better performance when compared with 
the baselines and the state-of-the-art techniques. In particular, in the MAR case, the FGDI is 
more accurate than the second best model (BTI) in 10% and 30% of the cases for RMSE and 
MAE respectively.  Under the MNAR mechanism the proposed model is again better than 
BTI in 25% and 33% respectively. 

Finally, the performed imputation run time analysis proves the approach feasibility 
regarding the needed training and testing time. The reported results strongly support the 
efficiency of the proposed method when implementing multivariate imputation as a way of 
dealing with missingness. Another advantage is that the FGDI can be easily parallelized, 
having straightforward implementation allowing other imputation methods to be easily 
incorporated. 
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