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Abstract 

This study investigated split-step timing when returning serves and whether this 

timing is related to neuromechanical capabilities in world-class tennis players. In 

Experiment 1, the split-step timing of four groups of world-class players (male and 

female ATP/WTA seniors, and ITF juniors) was measured on court when returning 

serves of the same level players. The four groups initiated the split-step at a similar 

time, starting around the time ball-racket contact in the serve stroke and landed when 

early ball-flight information was available. In Experiment 2, the neuromechanical 

capabilities (leg stiffness and vertical jump performance) of a group of world-class 

players and three groups of less-skilled tennis players were examined. The results 

showed an increase in leg stiffness with an increase in level of expertise. A cross-

experiment analysis in world-class male players (ATP/ITF, n = 10) revealed that the 

timing of initial foot movement was significantly correlated with the leg stiffness 

(r2=0.54), with later lateral step after the serve in the players who had higher 

stiffness. The findings support the hypothesis that world-class tennis players adapt 

perceptual-motor control on the basis of their neuromechanical capabilities and 

maximise the time before initiating their interceptive action to rely on more reliable 

information. 
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Relationship between Split-Step Timing and Leg Stiffness in World-Class 

Tennis Players when Returning Fast Serves 

The performance of dynamic interceptive actions is highly challenging because 

of the restrictive spatiotemporal constraints on performance. In sports situations such 

as the tennis serve-return, the available time for returning a serve hit at 200 km.h-1 is 

less than 600 ms (Abernethy & Wollstein, 1989). With such spatiotemporal pressure, 

that impose a highly challenging constraint on the returning tennis stroke, it is 

remarkable that expert players are still able to return the ball in a large number of 

situations (80% of serve-returns are in the court at Grand Slam level, see Gillet, Leroy, 

Thouvarecq, & Stein, 2009). 

A first proposition to explain this ability was based on the assumption that 

expert racket sports players possess superior reaction times to produce shorter response 

latencies. However, research using non-sport-specific reaction time measures (e.g., 

press a key as soon as possible in response to a stimulus) has not revealed consistent 

differences between experts and novices (e.g., in badminton and squash players: 

Abernethy, 1991; in tennis players: Rowe & McKenna, 2001). Research has also 

focused on athletes' anticipation ability. An extensive body of literature illustrates 

skilled performers' superiority over less-skilled athletes in perceptual judgment tests 

of anticipation skill (Williams & Ward, 2007). In tennis, expert players have been 

shown to make better predictions of serve direction than novice players based on 

advance kinematic information (i.e., pre-ball-flight: Farrow & Abernethy, 2003) and 

younger players based on situational probability information (i.e., patterns of opponent 

play: Farrow & Reid, 2012). This advantage in anticipatory skill is thought to provide 

expert tennis players with the opportunity to initiate an accurate movement response 

before an opponent’s stroke. 
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A recent attempt to quantify the prevalence of anticipation during professional 

tennis matches (involving current or former top 20 ATP players) revealed, however, 

that the observed frequency of anticipatory behaviour (defined as lateral motion of the 

racket, the hips, the shoulders or the feet before the opponent’s stroke) was relatively 

low, occurring between only 6% and 13% of all match situations (including passing 

shots, return and volley, see Triolet, Benguigui, Le Runigo, & Williams, 2013). 

Although prior research demonstrated that collegiate tennis players did not move 

before ball-racket contact when facing live groundstrokes (Shim, Carlton, Chow, & 

Chae, 2005), a striking finding in the study by Triolet et al. (2013) was the low level 

of anticipation (less than 10%) in elite players when returning first serves, which are 

known to create pressing spatiotemporal constraints. This finding was interpreted as 

possible evidence of a ‘conservative’ strategy used by players in which they wait for 

information emanating from early ball flight before initiating responses. Importantly, 

the results from Shim et al. (2005) and Triolet et al. (2013) both revealed no response 

errors (i.e., moving to the wrong side) when participants initiated their responses after 

the opponent contacted the ball. 

Shim et al. (2005) also revealed that the response latencies of skilled 

performers were significantly earlier when returning balls hit by a live opponent than 

when returning balls projected from a cloaked ball machine. Therefore, it seems 

possible that skilled performers use advance kinematic information not solely in order 

to anticipate the opponent’s action, but also to reduce the response delay and get a 

better synchronisation of responses to the opponent’s actions (Navia, Dicks, van der 

Kamp, & Ruiz, 2017). 

Few studies have examined the preparatory leg movements of tennis players 

referred to as the split-step. This action corresponds to a small bound, which is timed 
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relative to the opponent’s stroke, in order to initiate a movement toward the ball. From 

a biomechanical perspective, the split-step allows players to increase ground reaction 

forces and the restitution of mechanical energy by taking advantage of the pre-stretch 

applied to the lower limbs extensors for a more explosive displacement (Nieminen et 

al., 2014). The mechanical efficiency of this “bouncing” phase can be assessed by 

measuring Leg Stiffness. Leg Stiffness is used to characterise whole lower extremity 

function in stance during bouncing gait, like hopping or running, based on a simple 

spring-mass model, which considers the human body as a mass on a massless spring 

(Blickhan, 1989; McMahon & Cheng, 1990).  

The timing of the split-step in skilled senior tennis players (national and 

regional French level) when returning first serves was first examined in a technical 

report by Avilès, Benguigui, Beaudoin and Godart (2002). This study revealed that the 

timing of the split-step take-off and landing were similar between expertise levels, 

occurring 40ms before the stroke and 160ms after the stroke, respectively. In a more 

recent report, a post-stroke take-off (+34 ms) and landing (+151 ms) were reported in 

male and female juniors with a high national ranking in their respective categories 

(Avilès, Pérez, Sanz, & Navia, 2014). 

Other research on the split-step has been undertaken in laboratory conditions 

using a light direction signal preceded by three preparatory light blinks (Nieminen, 

Piirainen, Salmi, & Linnamo, 2014; Uzu, Shinya, & Oda, 2009). Uzu et al. (2009) 

reported that male collegiate tennis players land approximately 180 ms after the signal 

in order to produce a quick and reliable lateral step toward the target. With earlier 

landing times, participants were able to reduce the total time to reach the target but 

they also made more errors in response accuracy. Furthermore, Nieminen et al. (2014), 

revealed that when male tennis players with a competitive background utilised a 
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preparatory split-step action – in which they landed 208 ms after the direction signal 

– they required less time to reach the target (13.1% faster) than when they did not use 

a preparatory split-step. 

Only a small number of studies have investigated Leg Stiffness in tennis 

players. During jumping and hopping tests, Durand, Ripamonti, Beaune, and Rahmani 

(2010) assessed Leg Stiffness in thirteen male regional tennis players (mean age = 23.0 

years) and reported values of 34.8 kN.m-1 which were comparable to elite sprinters 

and significantly correlated to 20-m sprinting speed and counter-movement jump 

height. Maquirriain (2013) found a mean value of 18.8 kN.m-1 in ten players (nine men 

and one woman, mean age = 17.6 years) competing at national or international level 

in a hopping task. Girard and Millet (2009) calculated a Leg Stiffness of 19.9 kN.m-1 

during jumping and hopping tests in twelve young players (mean age = 13.6 years), 

and reported no correlation between tennis level (ranking) and Leg Stiffness. 

Altogether, results are rather scattered with studies reporting similar Leg Stiffness 

values between young players of different ages (Girard & Millet, 2009; Maquirriain, 

2013) and rare data (but obviously higher values) in senior players (Durand et al., 

2010; see also Girard, Lattier, Micallef, & Millet, 2006). In addition, it is unclear from 

prior literature whether Leg Stiffness influences tennis-specific performance in elite 

senior players, requiring further work to ascertain whether a greater Leg Stiffness 

would result in more efficient on-court actions, and thus supports better performance. 

To date, few studies have examined the timing of the split-step sequence when 

returning serves (Avilès et al., 2002, 2014) and although the neuromechanical 

parameters involved in the split-step have been studied in the laboratory (Nieminen et 

al., 2014; Uzu et al., 2009), no study has attempted to examine both aspects to provide 

a more complete understanding of this behaviour. This issue may be worth 
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investigating in tennis to confirm and extend research from Dicks, Davids and Button, 

(2010) in soccer, who reported that goalkeepers who were more agile with shorter 

movement times were found to wait later before initiating their actions and saved more 

penalty kicks in comparison with less agile goalkeepers. This Leg Stiffness adaptation 

hypothesis is that expert interceptive performance is not rendered by providing a 

maximum time period to execute the action (i.e., an earlier response) irrespective of 

action capabilities, but in contrast, by scaling the timing of responses relative to one’s 

own action capabilities in order to provide a maximum time period before initiating 

the response to use more reliable information (see also, Fajen, 2005). In this context, 

we conducted two experiments to investigate the split-step timing of world-class tennis 

players in a serve-return task (Experiment 1) and Leg Stiffness and vertical jump 

performance of world-class and less-skilled tennis players (Experiment 2). Further 

cross-experiment analysis was conducted on the relationship between split-step timing 

and the Leg Stiffness measures to determine whether world-class tennis players adapt 

perceptual-motor control to their neuromechanical capabilities. 

 

Experiment 1: Split-Step Timing in Serve-Return 

The objective of Experiment 1 was to examine the split-step timing of world-

class tennis players when facing fast serves. The serve-return task was used as it 

requires execution of the split-step with minimum timing error to satisfy the high 

spatiotemporal demands. Four groups of world-class tennis players were tested: male 

and female seniors and juniors. The innovative rationale for testing these groups was 

to provide a broader view of the timing of the split-step by examining possible 

differences between males and females and/or between juniors and seniors. In line 

with Shim et al. (2005) and Triolet et al. (2013), all groups of players were expected 
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to initiate the split-step and lateral displacement movements after the racket-ball 

contact to rely on more consistent information (i.e., early ball flight) and avoid errors 

in decision-making (Dicks et al., 2010). In addition, while no significant split-step 

timing difference was expected between juniors and seniors in line with a previous 

finding (Avilès et al., 2002), greater consistency in split-step timing was expected in 

senior players as a result of a better attunement to the opponent’s unfolding action. 

 

Method 

Participants 

Twenty-two male and female world-class tennis players participated 

voluntarily and gave written informed consent. The players were recruited from the 

French Tennis Federation elite training program and were assigned to four groups: (i) 

senior females, (ii) senior males, (iii) junior females and (iv) junior males. Senior 

groups consisted of seven men (mean age = 27.1 ± 4.9 years) and five women (mean 

age = 22.4 ± 3.9 years) with an average duration of intense practice of 14.9 ± 5.4 and 

10.4 ± 2.3 years, respectively. At the time of testing, senior players were all ranked in 

world top 500 ATP or WTA world rankings. Junior groups consisted of five men 

(mean age = 16.8 ± 0.7 years) and five women (mean age = 16.8 ± 0.8 years) with an 

average duration of intense practice of 7.6 ± 2.2 and 8.4 ± 2.2 years, respectively. 

Junior players were all in the top 100 ITF junior world rankings. All participants had 

normal or corrected-to-normal vision and were naïve with respect to the hypotheses 

under investigation. The experiment was approved by the local ethics committee 

Human Subject Review Board. 

Task and Procedure 
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The experiment took place on a hard court. The participants had to return a 

series of 20 first serves in the advantage court diagonal executed by a participant from 

the same group. Servers produced fast first serves (without spin) as they would do in 

competition. Serves were directed to two targets 0.80 m × 0.80 m delimitated in both 

corners (Left [ZSL] and Right [ZSR] Zones of Serve, see Figure 1). Ten serves were 

played down the centre of the court (ZSL) and 10 wide (ZSR) following a test script. 

In order to be used in the experiment, serves were required to land in the intended 

square in the service rectangle and satisfy speed requirements (between 140 and 170 

km.h-1 in females and between 160 and 190 km.h-1 in males) measured with a speed 

gun (Stalker ATS sports radar, USA). All servers received feedback about their stroke 

performance after each trial (speed and accuracy). The trials for which the serves did 

not meet speed and location requirements were excluded from the analyses. The serve-

returns that did not lead to a performance score of a minimum of three points (ball into 

the opposite half court) were also ruled out to avoid analysing ineffective returns. On 

this basis, 12.1 ± 2.6 serve-return sequences were analysed in seniors and 9.8 ± 2.4 in 

juniors (mean ± SD). The mean speed of the selected serves was 154.0 ± 6.8 (juniors) 

and 160.3 ± 7.4 (seniors) km.h-1 in females, and 169.1 ± 9.7 (juniors) and 176.6 ± 9.6 

(seniors) km.h-1 in males. Consistent with the speed requirements for serve selection, 

a 2 (Expertise) × 2 (Gender) ANOVA on serve-speed data only revealed a significant 

main effect of Gender. 

Participants were informed about the nature and response requirements of the 

task before undertaking a self-selected warm-up. They were told that they had to return 

serves as they would in a normal competition. No strict constraints were imposed on 

their initial positioning, except that they should be between zero and two metres from 

the baseline in order to avoid significant differences in the time available to return. 
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After each trial, players were given feedback about their return accuracy with a figure 

showing the number of points assigned to the court area they reached (Figure 1). 

Video Filming 

Video footage of serves and returns were filmed by two 100 Hz cameras 

(Basler A600, 640 x 480 pixels) controlled and synchronised by acquisition software 

(StreamPix, i2S). The camera filming the returner was located on the opposite side of 

the court at 2.50 m from the single side-line and 1.50 m from the baseline, while the 

camera filming the server was located on the opposite side of the court at 1.15 m from 

the centre mark and 4 m from the baseline (see Figure 1). Both cameras were at a 

height of 1.25 m to enable a close-up film of the player.  

Coding 

Using a video analysis software (Dartfish 5.5, Fribourg, Switzerland), we 

visually identified and coded several events of each serve-return sequence with the 

moment of server-racket impact with the ball corresponding to t = 0. This moment was 

identified as the first frame showing that the ball was hit by the server. Temporal 

variables are presented in the following section. Three different experimenters coded 

the sequence after having been informed about the procedure and the criteria for 

coding. In order to check coding reliability, the three observers independently coded 

the same 24 serve-return events. This procedure showed that 80% of events were 

identically coded by the three coders (i.e., same image reported) and differences for 

other events were two images or less (i.e., 20 ms). Disagreements between the coders 

were discussed to improve the consistency of the coding for the rest of the data. 

Dependent Variables 

Serve-return performance was assessed with reference to a point-scale grid. 

The opposite half court of the returner was divided into discrete zones and each shot 
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was scored using a point system that awarded higher values on deep returns (see Figure 

1). The percentage of successful returns (i.e., in the court) was also calculated for each 

player. 

Temporal variables. Three variables related to split-step timing were 

measured:  

Split-step take-off corresponded to the frame at which the last of the player’s 

feet in contact with the court had left the ground when initiating the split-step.  

Split-step landing corresponded to the frame at which the first of the player’s 

feet had touched the ground when completing the split-step.  

Split-step duration was defined as the time between the split-step take-off and 

landing.  

Two other variables related to the initiation of the lateral response to move 

toward the ball were calculated (see Triolet et al., 2013 for a similar method):  

Initial racket movement was defined as the first frame when a directional 

movement of the racket toward the ball was observable. 

Initial foot movement (or lateral step) was defined as the first frame when a 

directional movement of any of the player’s feet toward the ball was observable. 

The sampled values used to calculate each temporal variable were also 

employed to calculate their variability (i.e., standard deviation, SD). 

Statistical Analysis 

 Serve-return performance, temporal variables, and variability of the temporal 

variables were analysed using a 2 (Expertise: junior, senior) × 2 (Gender: females, 

males) factorial ANOVA. Descriptive statistics were reported using the mean and the 
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standard deviation (mean ± SD). All tests were completed with p set at .05. The family-

wise error rate for the 10 ANOVAs on temporal variables and their variability was 

controlled using the Holm-Bonferroni step-down procedure by ranking the p-values 

from smallest to largest and comparing them to a sequentially adjusted alpha (Holm, 

1979). To not only allow conservative conclusions about significant differences in the 

split-step timing, however, we considered the results that were significant by 

conventional standards but did not meet the Holm-Bonferroni adjusted alpha (alphaadj) 

as marginally significant. The assumption of homogeneity of variances was checked 

using a Levene test. Post-hoc analyses were conducted with Bonferroni-corrected 

pairwise comparisons. Partial eta-squared (ηp
2) was calculated for each significant 

effect to determine the proportion of explained variance. 

 

Results 

The serve-return performance was not related to Expertise or Gender. No 

interaction effect was observed. Participants averaged a serve-return performance of 

7.6 (±1.7) (junior females: 8.7 (±1.3); junior males: 6.7 (±2.8); senior females: 7.7 

(±1.1); senior males: 7.3 (±1.4). Regarding the percentage of returns in the court, data 

were transformed by means of angular transformation (arcsine transformation) prior 

to performing an ANOVA. No main effects of Expertise and Gender, nor an interaction 

effect was found. Participants averaged 50.0% (±18.3) of returns in the court. 

The five serve-return events were plotted against the time from stroke and the 

variability of time from stroke in Figures 2 and 3. Tables 1 and 2 display the ANOVA 

results. The ANOVAs for split-step take-off, split-step landing and their variability 

revealed no main effects of Expertise and Gender, nor an interaction effect. 
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Participants averaged a take-off time of 9 ms (± 36) and a landing time of 152 ms (±25) 

after server-racket ball contact. 

The ANOVA for split-step duration revealed no main effects of Expertise and 

Gender, nor an interaction effect. The standard deviation of this variable, however, 

revealed a main effect of Expertise (F1,18 = 5.85, p =.026, alphaadj =.006, ηp
2 = 0.25), 

with significantly lower variability in seniors (18 ms ±4) than in juniors (25 ms ±8), 

but the significance fell outside of the conservative Holm-Bonferroni limits. The 

ANOVAs for initial racket movement and its variability revealed no main effects of 

Expertise and Gender, nor an interaction effect. Participants averaged an initial racket 

movement of 187 ms (±22).  

A main effect of Expertise (F1,18 = 6.49, p =.020, alphaadj =.005, ηp
2 = 0.26) 

was found for initial foot movement, showing significantly shorter time in seniors (266 

ms ±43) than in juniors (311 ms ±33), but the significance fell outside of the 

conservative Holm-Bonferroni limits. No other main effect or interaction effect was 

observed. The ANOVA for initial foot movement variability only revealed a significant 

main effect of Gender (F1,18 = 5.15, p =.036, alphaadj =.006, ηp
2 = 0.22), showing 

significantly lower foot orientation variability in males (47 ms ±19) than females (64 

ms ±13), but the significance fell outside of the conservative Holm-Bonferroni limits. 

 

Discussion 

The results revealed no significant difference between the four groups for the 

proportion of returns in the court and for serve-return performance. This indicates that 

the experimental task was similar for all participants as they faced a server from their 

own training group, enabling comparisons of return behaviours that emerged under 

spatiotemporal conditions commensurate with each participant level. The proportion 
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of returns in the court of 50% was lower than the 80% reported by Gillet et al. (2009), 

but the latter corresponded to matches played on a slower court-surface (clay) and 

included first and second serves. The rather low serve-return performance scores in 

the present experiment is presumably due to the fact that the serves were fast and 

directed to the corners of the service box, since serving hard to these two locations is 

associated with higher percentage of wining points for the server in professional tennis 

(Mecheri, Rioult, Mantel, Kauffmann, & Benguigui, 2016). Having severe 

spatiotemporal constraints was our decision in order to study return behaviours in the 

most demanding situations while ensuring the task conditions were representative of 

the performance contexts to which our data are intended to be generalised (Dicks, 

Davids, & Button, 2009).  

Analysis revealed that the timings of split-step take-off and landing were 

similar across the four groups of participants. The absence of an expertise effect was 

in accordance with Avilès et al. (2002). The results thus reveal the well-integrated 

nature of the scaling of the timing of the split-step in players with considerable levels 

of practice. The mean values indicated a take-off around the ball stroke (+9 ms) and a 

landing clearly after it (+152 ms). These values are similar to those recorded by Avilès 

et al. (2014) in junior players with a take-off initiated +34 ms after impact and a 

landing at +151 ms.  

The split-step duration of 142 ms in the present study confirms the shortest 

split-step duration (117 ms) observed by Avilès et al. (2014), but this finding is in 

contrast with the 200 ms duration found in Avilès et al. (2002; take-off and landing at 

-40 and +160 ms, respectively). It is to be noted that the study of Aviles et al. (2002) 

was conducted with players of lower level of performance. If future research were to 

confirm shorter split-step durations for world-class players compared with national or 
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regional players, then this would add further evidence to suggestions that such 

behaviour reflects an adaptation of world-class players to cope with higher 

spatiotemporal constraints caused by the increase in service speeds in elite tennis 

(Cross & Pollard, 2009). A short jump duration might also reflect an improved 

synchronisation of the split-step with the server’s action. 

It is also noteworthy that senior players had a marginally-significant lower 

variability than juniors. An additional amount of practice may have resulted in more 

stable responses. This could be interpreted as a better attunement to the opponent’s 

action in order to avoid landing too early, when information specifying the direction 

of the serve is not available, or too late, which would result in insufficient time to reach 

the ball (Navia et al., 2017). In this regard, it is also interesting to note from Figure 2 

that split-step landing was the measure with the smallest variability in the present 

experiment. 

With respect to landing time, it is worth emphasising that our results contrast 

with the findings from laboratory studies, which reported later landing times when 

participants were required to produce a quick and reliable lateral step (180 ms in Uzu 

et al., 2009; 208 ms in Nieminen et al., 2014). It was previously demonstrated by using 

a ball projection machine in cricket and tennis that the absence of advanced 

information sources from an opponent’s actions leads to significant delays in 

movement initiation when compared with a live opponent (see Pinder, Renshaw, & 

Davids, 2009; Shim et al., 2005). In laboratory studies, if the use of a preparatory 

signal of successive blinks provides a certain predictability of the onset of the 

directional information, such discrete stimuli are not meaningful when compared with 

the information provided by an opponent’s action. The presence of advance 

information and the ability of players to use it (Farrow & Abernethy, 2003) likely led 
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to an earlier landing with a subsequent reliable lateral response (less than 5% of 

“wrong-foot” responses were observed) in our study. 

The results showed no significant difference in the time of initial racket 

movement across the four groups, with a mean value of 187 ms. Given that initial 

racket movement occurred earlier than initial foot movement in the serve-return time 

course, this moment corresponds to the first observable orientation of behaviour 

underpinning the serve-return stroke. The duration between the moment of serving and 

first racket orientation may be regarded as a decision time, which is perhaps of a short 

duration considering that a decision is required between at least two directional 

orientations (Carlton, 1992). If the initial foot movement occurred later than initial 

racket movement, it appeared that the senior players initiated foot movement towards 

the intended direction 45 ms earlier than juniors, enabling them to decrease the time 

at which they would reach the stroke zone. While the results evidenced a large effect 

size (Cohen, 1998), this finding should be interpreted with caution since the expertise 

effect on initial foot movement was only marginally significant.  

In sum, on the basis of initial racket movement results, which did not differ 

between groups, the senior players did not exploit information about future ball 

direction earlier than juniors. However, the marginally reduced variability in the split-

step duration of senior players suggests a better attunement of the timing of movement 

relative to the actions of the opponent. The time of initial foot movement was also 

marginally shorter in seniors allowing a better spatiotemporal coverage of the tennis 

court. This shorter delay in the initiation of the lateral step may be explained by better 

neuromechanical capabilities in players with higher expertise. Experiment 2 was 

designed to examine this issue.  

 



 17 

Experiment 2: Leg Stiffness and Expertise 

The analysis of split-step timing in Experiment 1 revealed that landing and 

initial response movements occurred after the opponent’s ball-racket contact during 

the serve stroke, highlighting the importance of exploiting information from an 

opponent’s action and ball-flight to return serves in world-class tennis players. As 

such, waiting as long as possible to exploit more reliable information can support 

adaptive interceptive behaviour in returning serves. It is therefore plausible that a 

highly dynamic, fast stretch-shortening cycle movement in world-class players could 

support their superior serve-return performance in allowing them to wait longer than 

less-skilled players by using their ability to move quickly after the split-step landing. 

To assess this possible link, the goal of Experiment 2 was to measure different dynamic 

lower extremity neuromuscular performance variables during squat, countermovement 

jumping and a hopping task across different levels of expertise in tennis. Although 

only limited evidence exists on the relation between Leg Stiffness and expertise in 

tennis players (see Girard & Millet, 2009, in young players), it was hypothesised that 

Leg Stiffness would best discriminate skill-level among the neuromuscular variables 

(power, jumping performance and leg stiffness), based on findings from other sports 

(Blickhan, 1989; McMahon & Cheng, 1990). Although Leg Stiffness is a relatively 

simple expression of neuromuscular performance as it does not measure directly the 

return of energy in a stretch shortening cycle, evidence has shown that this measure 

discriminates expert and novices in jumping and running (for a review, see Brughelli 

& Cronin, 2008). It was thus expected that the higher the level of tennis played, the 

higher the Leg Stiffness in order to increase mechanical efficiency of the split-step. 

 

Method 



 18 

Participants 

Thirty-seven male senior tennis players (5 of whom took part in Experiment 1) were 

recruited on a voluntary basis to participate in this experiment. Participants were 

classified into four groups according to their level of expertise (Table 3). The level of 

expertise was defined according to the French ranking classification, categorised as 

either world-class players (corresponding to the 50 first French players based on ATP 

rankings, n=6; 5 took part in Experiment 1 as ATP senior players; these five players 

were not randomly selected, since their participation depended on their coaches’ 

decision), highly-skilled players (corresponding to a rank between 1,000 to 3,000 in 

the French national ranking, n=10), skilled players (corresponding to a rank between 

3,000 to 20,000, n=10) and less-skilled players (corresponding to a rank between 

20,000 to 57,000, n=11). A minimum experience of three years in competitive tennis 

and a minimum training frequency of three times per week were required for 

recruitment in the skilled and less-skilled players. The experiment was approved by 

the local ethics committee Human Subject Review Board. 

Measurements, Task and Procedure 

 For anthropometric measurements, we followed the standardised techniques 

recommended by the International Society for the Advancement of Kinanthropometry 

(Marfell-Jones, Olds, Stewart, & Carter, 2006). Body height was measured using an 

anthropometer, with 0.1 cm accuracy. Body mass was measured using bio-electric 

impedance scales (Weinberger model DJ-156; Weinberger GmbH & Co, Germany), 

with 0.1% accuracy. 

Three jumping tasks were performed:  
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Hopping on the spot (5H). Participants were required to hop on the spot five times 

successively, as high as possible, while reducing the ground Contact Time, with hands 

on hips. 

Squat jump (SJ). After reaching and holding a semi-squat position (90° knee 

flexion), this measure required participants to jump as high as possible, with hands on 

hips. 

Countermovement jump (CMJ). Participants were required to jump as high as 

possible, with hands on hips, after squatting to a freely chosen knee angle. 

Participants were equipped with a 3D accelerometric system (“Myotest®”, Myotest 

S.A., Switzerland; size: 9.5 × 5.0 × 1.0 cm; mass: 60 g; sampling frequency: 500 Hz). 

The system was attached to an elastic belt and vertically fixed at hip level in the middle 

of the lower back during the hopping on the spot, squat jump and countermovement 

jump tasks. The accuracy of the Myotest device has previously been compared with 

force plate measures during the assessment of vertical jump height (e.g., Casartelli, 

Müller, & Maffiuletti, 2010; Choukou, Laffaye, & Taiar, 2013). Results indicated that 

the Myotest underestimated the ground contact time (i.e., the time elapsed between the 

lowest point of velocity following ground contact and its maximal value during the 

successive take-off, i.e., when force is equal to body weight (F = m × g)), resulting in 

a systematic overestimation of the Leg Stiffness (approximately +2 cm and +7.8 kN.m-

1). 

The hopping on the spot task was performed to assess Leg Stiffness. The 

participants were asked to hop on the spot five times (with both limbs) as high as 

possible while reducing ground Contact Time (Dalleau, Belli, Viale, Lacour, & 

Bourdin, 2004). Multiple trials were performed under researcher supervision in order 

to familiarise participants with the task and to optimise Leg Stiffness. Data were 
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recorded only if the bouncing technique was acquired. Leg Stiffness (kleg) 

corresponded to the ratio of maximal force (Fc, when vertical force is equal to zero) 

relative to the centre of mass displacement (∆CoM) during grounding (Dalleau et al., 

2004). Leg Stiffness was calculated as an absolute (in kN.m-1) and relative value, by 

normalising its absolute value to body mass (in kN.m-1.kg-1).  

CoMcleg Fk   (kN.m-1) 

The Leg Stiffness value was directly calculated by the device. We checked the 

linearity of the lower limb movements during the ground contact time and their 

correspondence with theoretical linear spring behaviour, in order to ensure that the 

linearity of the curve of the vertical force as a function of the vertical displacement of 

centre of mass was verified. An r²>.80 was chosen as a threshold to consider bouncing 

behaviour as a linear spring oscillation based on studies reporting of lower-limb 

spring-like behaviour (e.g., r2= .81 and .84 in females and males, respectively; see 

Laffaye, Choukou, Benguigui, & Padulo, 2016). All retained jumps met this criterion. 

Such criterion enabled us to have an accurate value of Leg Stiffness, although this did 

not permit the measurement of the efficiency of the stretch shortening cycle. In order 

to perform a countermovement jump, the participants were instructed to flex their 

knees freely and to jump once as high as possible. For the squat jump test, the 

participants were asked to bend and hold a semi-squat position (~90° knee flexion 

controlled by a 40 × 40 set square, maintained by the experimenter, as biofeedback), 

until an acoustic signal was given, and then to jump, once, as high as possible. Jump 

height was calculated by the accelerometric system as follows:   

8/)(10081.9 2

maxmin vv ttH
afterpeak


 

Statistical Analysis  
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 Five one-way ANOVAs followed by Fisher’s post-hoc test (or Kruskal-Wallis 

test followed by Dwass–Steel–Critchlow–Fligner pairwise comparisons in variables 

with homogeneity violations) were applied for the comparison of the four groups. The 

alpha level was set at .05. As in Experiment 1, the Holm–Bonferroni correction was 

applied. The assumption of homogeneity of variances was checked using a Levene 

test. Partial eta-squared (ηp
2) or eta-squared (for Kruskal-Wallis test, η2) was 

calculated for each significant effect to determine the proportion of explained variance.  

 

Results 

Leg Stiffness revealed significant differences between groups, in both absolute 

(ANOVA: F3,33 = 8.04, p <.001, alphaadj =.010, ηp
2 = 0.42) and relative values 

(Kruskal-Wallis: H3 = 11.15, p =.011, alphaadj =.013, η2 = 0.31). The other tests did 

not reveal any significant differences (see Table 4). Mean absolute Leg Stiffness ranged 

from 39.5 kN.m-1 (±12.9) for the less-skilled players to 63.3 kN.m-1 (±15.4) for the 

world-class players, and from 567.2 kN.m-1.kg-1 (±183.7) to 789.1 kN.m-1.kg-1 

(±223.9) when normalised. Pairwise comparisons revealed that world-class and 

highly-skilled players both had significantly higher Leg Stiffness than skilled and less-

skilled players. Regarding relative Leg Stiffness, world-class and highly-skilled 

players both had significantly higher scores than skilled players. 

 

Discussion 

The aim of Experiment 2 was to assess the contribution of several 

neuromuscular variables towards expertise levels in tennis. The recorded Leg Stiffness 

values for skilled (37.0 kN.m-1) and less-skilled (39.5 kN.m-1) groups were similar to 

those reported by Durand et al. (2010) with participants of a similar level of expertise. 
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World-class (63.3 kN.m-1) and highly-skilled (55.0 kN.m-1) players had higher values 

of Leg Stiffness than those calculated in younger players during hopping (18.8 kN.m-

1, Maquirriain, 2013) and hopping and jumping (19.9 kN.m-1, Girard & Millet, 2009), 

as well as lower level adults during hopping and jumping (34.8 kN.m-1, see Durand et 

al., 2010). As hypothesised, Leg Stiffness differentiated world-class and highly-skilled 

players that compete at national and international level from skilled and less-skilled 

players that compete at a comparatively lower level. 

The absence of significant differences between world-class and highly-skilled 

players in the current study could be due to high intra-group variability in these two 

groups. From these results and a previous study, we hypothesise that a Leg Stiffness 

threshold of 50 kN.m-1 in hop-like actions may be a threshold for fast, elite level 

racquet sports. This value is close to findings for elite badminton players (Phomsoupha 

& Laffaye, 2017), with Leg Stiffness values reported of 52.5 ± 5.4 kN.m-1 using the 

same methodology as the current study. The spatiotemporal demands are comparable 

between both badminton and tennis, with elite badminton shuttle speeds reaching 70 

m.s-1 following a smash (Phomsoupha & Laffaye, 2014) compared with 55 m.s-1 for 

elite tennis serves (Cross & Pollard, 2009). 

The increase in Leg Stiffness in the two highest levels of tennis players in this 

study may be due to the many maximal actions that occur during tennis such as fast 

sprints and jumps for serves and smashes and the numerous split-steps that precede all 

strokes. These actions require a reactive stretch-shortening cycle and consequently 

high visco-elastic properties of lower-limb muscles. Durand et al. (2010) reported that 

Leg Stiffness explained 58% of the variance with performance in countermovement 

jump in tennis players with a similar level of expertise to our skilled and less-skilled 

groups. The split-step allows players’ to behave like a linear spring by bouncing stiffly 
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in the direction of the ball. Indeed, in a laboratory-based study, Uzu et al. (2009) and 

Nieminen et al. (2014) showed that players executed faster movements in a split-step 

condition when compared with a no split-step condition. The split-step allows a 

reduced response time and muscular pre-activation, both of which are factors that 

support performance as they facilitate faster movements to intercept the ball. On this 

basis, one can expect that players who have the best neuro-muscular capacities can 

afford to wait longer before initiating their action, which in turn enables them to rely 

on more reliable information (Dicks et al., 2010). This was the goal of the additional 

analysis between the two sets of experimental data presented below. 

 

Cross-Experiment Analysis: Linking Split-Step Timing and Neuromechanical 

Factors 

Experiment 1 revealed that players with a higher level of expertise tended to 

initiate the lateral step after landing with less time from service impact than juniors, 

while Experiment 2 revealed an increase in Leg Stiffness with level of expertise. In this 

section, the relationship between the timing of the return sequence and 

neuromechanical indicators were investigated for a better understanding of the 

movement control mechanisms used by world-class players. In line with previous 

findings showing that faster goalkeepers tended to wait later before initiating 

movement in comparison with slower goalkeepers (Dicks et al., 2010), it was 

hypothesised that world-class tennis players will scale the timing of their split-step to 

their own neuromechanical capabilities (van Andel, Cole & Pepping, 2017).  

To test this hypothesis, we focused on a sample of ten word-class male players 

(i.e., the five ATP seniors that took part in both experiments, and the five ITF juniors 

that took part in Experiment 1, but were also tested following the same protocol 



 24 

adopted in Experiment 2). Correlation analyses were performed between performance 

in countermovement jump and squat jump as predictor variables (Contact Time, Leg 

Stiffness, Relative Leg Stiffness, CMJ Height and SJ Height) and split-step timing as 

the dependant variables (Split-step take-off, Split-step landing, Split-step duration, 

initial racket movement and initial foot movement). 

The results revealed a significant correlation between the value of the 

normalised Leg Stiffness and the time of initial foot movement (r² =.54, p <.05, Figure 

4). Although it should be noted that this significant relation is modest in size since 

small samples can produce inflated correlations (Yarkoni, 2009), and that the use of 

juniors and seniors violates random sampling assumptions, the result highlights that 

the players who had the higher Leg Stiffness appeared to initiate their displacement 

later than the players who had lower Leg Stiffness.  

 

General Discussion 

The present study investigated the split-step timing of world-class tennis 

players (Experiment 1), the neuromechanical parameters of world-class and less-

skilled tennis players (Experiment 2), and whether the split-step timing was related to 

the players’ neuromechanical capabilities (cross-experiment analysis). In Experiment 

1, results revealed that the split-step sequence appears to be a well-learned preparatory 

behaviour, due to consistent take-off (around the ball stroke) and landing (around 150 

ms) times across the four groups. As predicted, the mean landing time and the first 

orientation of the response (racket) occurred after initial ball flight. This coincided 

with the pick-up of reliable kinematic and ball-flight information about ball direction, 

leading to a small number of wrong-foot responses (less than 5%). Notably, the landing 

time necessary for quick and reliable actions was shorter than previous laboratory 
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estimates (180–208 ms) that were obtained in the absence of advance kinematic 

information (Nieminen et al., 2014; Uzu et al., 2009). This point emphasises that 

interceptive actions must be assessed in a representative task design, wherein athletes 

are allowed to function naturally to provide a full picture of skilled performance in 

perceptual-motor tasks (Dicks et al., 2009; Pinder, Davids, Renshaw, & Araújo, 2011). 

In the serve-return time course, while the moment of racket movement initiation was 

similar between the four groups, a marginally-significant effect of expertise revealed 

that senior players initiated the lateral step with shorter time than juniors, which raised 

the question whether such behaviour is due to better neuromechanical capabilities. 

Experiment 2 showed that the neuromechanical capabilities of male tennis 

players were related to their level of expertise. World-class and highly-skilled players 

both had significantly higher Leg Stiffness than skilled and less-skilled players, with 

the values of world-class and highly-skilled players comparable to those observed in 

other racket sports such as badminton, which necessitate high levels of efficiency 

during the stretch shortening cycle (Phomsoupha & Laffaye, 2017). Such lower-limb 

properties are likely a consequence of extensive tennis practice, which are developed 

through high-intensity running, jumping, and specific strength training (Laffaye et al., 

2016). This suggests that Leg Stiffness may be one of the key variables in tennis 

performance, as it likely contributes to shorter times for the initiation of displacements 

to intercept the ball. Future research should strive to confirm this finding with 

prospective data or measure other variables like strength that might explain the 

association between apparent Leg Stiffness and performance level in tennis.  

 The cross-experiment analysis revealed a significant relationship between Leg 

Stiffness and initial foot movement in world-class players, showing later initiation of 

lateral displacement in the players who had higher Leg Stiffness. Although the small 
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sample size limits the strength of evidence for this finding, it is in line with previous 

behavioural results in time-constrained interceptive tasks showing that skilled 

performers scale the timings of their response relative to their action capabilities 

(Dicks et al., 2010; see also van Andel et al., 2017). The results therefore support the 

view that world-class tennis players with higher lower-limb neuromuscular 

capabilities – and therefore, better ability to cover the court – initiated their 

displacement later to exploit more reliable sources of information arising from the final 

moments of the opponent’s serve and early ball-flight. Nonetheless, it would be 

necessary to follow up this analysis on a larger scale with a higher number of world-

class tennis players as an extension of this study, but also through a prospective study 

examining the suitability of the neuromuscular factors considered in the present study. 

 On a practical level, our findings shed new light on the potential importance of 

training Leg Stiffness in order to enhance serve-return performance (see Wilson, Dicks, 

Milligan, & Alder, 2019, for a recent study in soccer). Spending more time in training 

Leg Stiffness in young players’ programs would not only increase their court coverage, 

but may also provide them with the flexibility to use different information-movement 

couplings to rely on more reliable information when controlling their interceptive 

actions. This is hypothesised to provide more adaptability in players across their 

development (Savelsbergh & Wormhoudt, 2019). 

The findings of this study can also serve as a reference point for practitioners 

who seek to develop improvements in tennis serve returns. In the current study world-

class players were found to initiate the split-step slightly after the ball stroke and used 

a shorter subsequent split-step duration to synchronise with the opponent’s unfolding 

action. Subsequently, training aimed at improving both Leg Stiffness properties (see 

Wilson et al., 2019) as well as the scaling of the split-step timing relative to an 
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opponent’s serve may be meaningful, since such improvements would possibly help 

junior players to refine their synchronisation to the opponent’s serve and to cope with 

increasing serve velocities during their development. Training the timing of the split-

step sequence as well as its neuro-muscular efficiency should be also a new objective 

as it provides a potential to gain the milliseconds which make a difference in the 

production of efficient responses and shots in the high level competition. Future 

research geared towards these lines of enquiry would help to better understand the 

factors that underpin expert interceptive actions in elite sport. 
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Table 1. Main and interaction effects for the temporal variables. 112 

 113 

 114 

  Take-off  Landing  Duration  Racket Initiation  Foot Initiation 

Variables  F p ηp
2  F p ηp

2  F p ηp
2  F p ηp

2  F p ηp
2 

Expertise  0.92 0.35 0.05  0.01 0.92 0.00  0.98 0.33 0.05  0.14 0.71 0.01  6.49 <.05* 0.26 

Gender  0.00 1.00 0.00  0.60 0.45 0.03  0.32 0.58 0.02  1.15 0.30 0.06  0.85 0.37 0.05 

Expertise × Gender  0.83 0.38 0.04  0.11 0.75 0.01  0.58 0.46 0.03  2.42 0.14 0.12  0.94 0.34 0.05 

* denotes p-values that were lower than .05 but higher than Holm-Bonferroni adjusted alpha. 115 

 116 

  117 
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Table 2. Main and interaction effects for the standard deviation of the temporal variables. 118 

 119 

 120 

  SD Take-off  SD Landing  SD Duration  
SD Racket 

Initiation 
 SD Foot Initiation 

Variables  F p ηp
2  F p ηp

2  F p ηp
2  F p ηp

2  F p ηp
2 

Expertise  0.18 0.67 0.01  0.05 0.83 0.00  5.85 <.05* 0.25  0.04 0.84 0.00  0.03 0.88 0.00 

Gender  0.09 0.77 0.00  0.01 0.90 0.00  0.86 0.36 0.05  0.33 0.57 0.02  5.15 <.05* 0.22 

Expertise × Gender  3.94 0.06 0.18  0.78 0.39 0.04  2.06 0.17 0.10  0.45 0.51 0.02  1.40 0.25 0.07 

* denotes p-values that were lower than .05 but higher than Holm-Bonferroni adjusted alpha. 121 

  122 
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Table 3. Morphological characteristics of the four samples (mean ± SD). 123 

 124 

 125 

Group (n) Age (years) Body Height (m) Body Mass (kg) 

Less-skilled (11) 19.5 ± 1.8 1.80 ± 0.05 69.6 ± 8.2 

Skilled (10) 19.5 ± 1.6 1.76 ± 0.03 69.4 ± 9.5 

Highly-skilled (10) 20.7 ± 2.7 1.82 ± 0.06 73.6 ± 8.0 

World-class (6) 26.6 ± 4.2 1.86 ± 0.05 77.0 ± 7.2 

    126 

 127 

 128 

  129 
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Table 4. Physical tests results of the four groups. 130 

  131 

 132 

Group (n) Contact Time (ms) Leg Stiffness (kN.m-1) Relative Leg Stiffness (kN.m-1.kg-1) CMJ Height (cm) SJ Height (cm) 

Less-skilled (11) 154 ± 40 39.5 ± 12.9 567.2 ± 183.7 40.1 ± 6.2 33.7 ± 4.4 

Skilled (10) 147 ± 15 37.0 ± 7.6 532.7 ± 87.2 41.1 ± 4.1 36.4 ± 3.5 

Highly-skilled (10) 136 ± 22 55.0 ± 14.5 (3,4) 745.6 ± 164.2 (3) 38.3 ± 5.0 33.2 ± 4.4 

World-class (6) 124 ± 13 63.3 ± 15.4 (3,4) 789.1 ± 223.9 (3) 39.3 ± 2.6 32.4 ± 2.2 

ANOVA H(3)=7.30 F(3,33)=8.04 H(3)=11.15 H(3)=2.34 F(3,33)=1.77 

  

p value .06 <.05* <.05* .51 .17 

  

For each group all data (Mean ± SD): CMJ for countermovement jump; SJ for squat jump; * : significant difference between groups; 133 

1significantly different than world-class, 2significantly different than highly-skilled, 3significantly different than skilled and 4significantly different 134 

than less-skilled players at p < .05. 135 

 136 
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Figure 1 137 
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Figure 2 147 
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Figure 3 157 
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Figure 4 167 
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Figure Captions 176 
 177 
 178 
Figure 1. Organisation of the experimental tennis court. Ret: Starting position of the Returner; 179 

Serv: Starting position of the Server; CamR: Camera filming the returner; CamS: Camera 180 

filming the server; ZSL and ZSR: Left and Right Zones of Serve; ZR1–ZR6: Zones of Return 181 

(ZR6 = 20 points, ZR5 = 16 points, ZR4 = 12 points, ZR3 = 10 points, ZR2 = 8 points, ZR1 = 182 

6 points). Points were also distributed for a stroke out of the court (3 points), hitting the net (2 183 

points) or that did not reach the net (1 point). Zero points were awarded in the case of an ace 184 

(i.e., untouched serve). 185 

 186 

Figure 2. Time from stroke of the different serve-return events for male (filled symbols) and 187 

female (open symbols) players in juniors (triangles) and seniors (squares). Zero represents the 188 

moment of serving (SS is for split-step). The error bars represent the standard error of the mean. 189 

 190 

Figure 3. Variability of time from stroke of the different serve-return events for male (filled 191 

symbols) and female (open symbols) players in juniors (triangles) and seniors (squares). Zero 192 

represents the moment of serving (SS is for split-step). The error bars represent the standard 193 

error of the mean. 194 

 195 

Figure 4. Correlation between Normalised Leg Stiffness and initial foot movement in world-196 

class players (grey and black points are for juniors and seniors, respectively). 197 

 198 


