
Please cite this article as:
G. Landini, A. Galton, D. Randell and S. Fouad. Novel
applications of discrete mereotopology to mathematical
morphology, Signal Processing: Image Communication (2019),
https://doi.org/10.1016/j.image.2019.04.018
Received date : 4 December 2018
Revised date : 26 March 2019
Accepted date : 22 April 2019

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BCU Open Access

https://core.ac.uk/display/196595988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Novel applications of Discrete Mereotopology to

Mathematical Morphology

Gabriel Landinia, Antony Galtonb, David Randella, Shereen Fouada,c

aSchool of Dentistry, University of Birmingham, UK
bDepartment of Computer Science, University of Exeter, UK

cSchool of Computing, Engineering and the Built Environment, Birmingham City
University, UK

Abstract

This paper shows how the Discrete Mereotopology notions of adjacency and
neighbourhood between regions can be exploited through Mathematical Mor-
phology to accept or reject changes resulting from traditional morphological
operations such as closing and opening. This leads to a set of six morpho-
logical operations (here referred to generically as minimal opening and min-
imal closing) where minimal changes fulfil specific spatial constraints. We
also present an algorithm to compute the RCC5D and RCC8D relation sets
across multiple regions resulting in a performance improvement of over three
orders of magnitude over our previously published algorithm for Discrete
Mereotopology.

Keywords: mathematical morphology, discrete mereotopology, image
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1. Introduction

This paper centres on the processing of spatial relationships between dis-
crete regions using Mathematical Morphology (MM). There has been a long-
standing interest in formal definitions of adjacency and containment between
image regions as those types of relations can form a basis for model building
in image contents retrieval and analysis. This has applications to problems
where the description of hierarchical structure is important, for instance, in
biological imaging numerous problems revolve around the characterisation of
relations of diverse nature, for instance molecules in organelles, organelles in
cells, cells in tissue compartments and tissues in organs. The subject has
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been approached from a variety of points of view, including digital polygon
geometry [1], digital topology [2, 3], hierarchical modelling [4] and connected
filtering operators [5, 6, 7].

Bloch [8, 9, 10, 11] has provided an extensive body of work on spatial re-
lations in computer vision and identified ways to symbolically and program-
matically harness and represent the inherent imprecision arising from image
formation, post-processing, perception and the semantics related to certain
spatial relationships sought. In [11] Bloch shows that MM can function as
unifying framework for spatial knowledge representation and provides con-
nections to formal logics, in particular raising the possibility of implementing
Region Connection Calculus (RCC) [12] operators (as well as providing a MM
definition for the RCC’s tangential proper part (TPP) relation). In [9], it is
proposed to construct modal logics using MM and the notion of adjunction
[13] to define modal operators that can be utilised for symbolic representa-
tion and interpretation of spatial relationships. In [14] the notion of fuzzy
adjacency between image objects was investigated and formally defined so
the concept of adjacency can extended (e.g. using fuzzy MM formulations) to
accommodate degrees of adjacency by means of admissible transformations
that lead to strict adjacency and thus allow consistent representations and
the management of imprecision mentioned earlier.

Research has also focused on applying MM and spatial reasoning to dis-
crete spaces with the purpose of applying spatial reasoning to digital images.
In this context, Galton [2, 3] introduced the notion of Discrete Mereotopol-
ogy (DM) where he develops various mereotopological concepts for discrete
spaces. Our work in [15, 16] shows that a subset of DM functions (closure
and interior) map directly to the MM dilation and erosion operators [17]
respectively, commonly used in image processing. In [2] that mapping was
exploited to implement the full spatial relation set given by the RCC5D and
RCC8D logics [12] in terms of MM. Briefly, the relation sets RCC5D and
RCC8D encode five and eight set of relations respectively that capture var-
ious notions of parthood, overlap and contact. After mechanically verifying
DM theorems adopted in the imaging algorithms (using the theorem prover
SPASS [18]) we implemented the RCC5/8D relation sets and exploited sev-
eral DM theorems as short-cuts in imaging algorithms to compute operations
on pairs of regions. DM can therefore be used to perform certain types of
segmentation and model-testing analyses based on MM procedures. Those
analyses have applications in histological imaging, where segmented histolog-
ical components regions of interest (those corresponding to, e.g., nuclei and
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cell bodies) represent valid theoretical models of histological reality that are
related in specific ways in terms of their spatial relations [15, 16]. This log-
ical, model-based approach to image interpretation provides a clean formal
semantic framework in which to interpret image segmentation results and,
furthermore, guarantees that the imaging algorithms encoding theorems in
DM are provably sound. It also enables development of algorithms that ex-
plicitly encode and ‘reason’ about spatial relations and local structure (e.g.,
cell and tissue organisation) as well as facilitating the encoding of other struc-
tural data of interest, such as the spatial localisation of molecular markers
in cells and tissues.

Next we report new applications of DM that enrich MM operations. The
paper is organised as follows. First, we visit the definitions of adjacency, con-
nection and region neighbourhood in DM and their MM counterparts. Next
we present a new, more efficient version of the RCC5D and RCC8D algo-
rithm that that outlined in a previous publication [16]. Finally, we discuss a
novel application of DM that extends MM with a the notions of morpholog-
ical minimal closing and minimal opening, where DM is used to restrict the
changes of the traditional MM closing and opening operations so the original
region shape is minimally modified, while still achieving a desirable result.
The paper concludes with a discussion.

2. Methods

The convention adopted here is that images consist of 2D square pixel
arrays with 8-adjacency, meaning every non-boundary pixel of the array is
surrounded by 8 neighbours forming a 3 × 3 pixel matrix. Image regions
are sets of pixels locally-connected under 8-neighbour adjacency, representing
objects of interest in the image. We assume that these regions exist in binary
images but can include multiple planes or slices representing the same spatial
reality, so that regions can share the same image space without being merged.

2.1. Adjacency

The adjacency relation between pixels is captured by a reflexive and sym-
metric relation A(x, y), meaning that pixel x is adjacent to or equal to pixel
y. A(x, y) is satisfied if d(x, y) ≤

√
2, where d : Z2 × Z2 → R is the two-

dimensional Euclidean distance function defined on pixel coordinates in Z2.
In DM terms [15], the adjacency relation between regions X and Y is referred
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to as external contact and is denoted EC(X, Y ). It is built from two other
relations, namely contact :1

C(X, Y ) ≡def ∃x, y [x ∈ X & y ∈ Y & A(x, y)], (1)

and overlap:

O(X, Y ) ≡def X ∩ Y 6= ∅, (2)

that is, the intersection between overlapping regions X and Y is non-null.
External contact is then defined as:

EC(X, Y ) ≡def C(X, Y ) & ¬O(X, Y ). (3)

In [14] Bloch et al. showed that the adjacency relation (or external contact
in DM [15]) reworked in MM is equivalent to:

EC(X, Y ) ≡ (X ∩ Y = ∅) & (X ⊕B) ∩ Y 6= ∅, (4)

where ⊕ represents a morphological dilation operation with a 3 × 3 square
structuring element or kernel B [17] (assumed to be centered at the orign
of space to guarantee the extensivity of the dilation). Thus region X has
external contact with region Y if the two regions do not intersect and the
dilation of X leads to a non-empty intersection with Y .

2.2. Disconnection and region neighbourhood

In DM, a pair of regions X and Y are said to be disconnected if they are
not in contact, i.e., ¬C(X, Y ); this is denoted DC(X, Y ). This relation can
also be defined in terms of the mereotopological discrete closure operation
(clD), instead of connection, as follows:

DC(X, Y ) ≡ clD(X) ∩ Y = ∅. (5)

Here the function clD(X) is defined as the union of the set of pixels whose im-
mediate neighbourhoods overlap X, where the immediate neighbourhood of
a pixel x, N(x), contains just those pixels which are adjacent to x, including
pixel x itself:

1The symbols ∃, &, ∈, ∩, ¬ and ≡ are read “there exists”, “and”, “is a member of”,
“intersection”, “not”, and “if and only if”, respectively; ∅ denotes the empty set.
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clD(X) =def {x | O(N(x), X)}. (6)

In the case of our assumed 8-connected square grid, clD(X) is equivalent to
the dilation of X using a structuring element B, which in our model consists
of an arbitrary pixel and its immediate neighbourhood, so

clD(X) = X ⊕B. (7)

Therefore definition (5) translates into MM as:

DC(X, Y ) ≡ (X ⊕B) ∩ Y = ∅. (8)

We also define a special type of neighbourhood relation between pairs
of regions that is not part of the RCC5/8D sets but is particularly useful
when considering binary regions residing in the same image: region Y is a
neighbour of X and separated from it by one pixel. We name this relation
NC (for neighbourhood connection)2 and define it as:

NC(X, Y ) ≡def EC(clD(X), Y ), (9)

which in MM terms corresponds to

NC(X, Y ) ≡ EC((X ⊕B), Y ). (10)

These formulae allow implementation of the extended MM functions that
follow in Section 4. Figure 1 shows examples of the RCC8D relation set and
the special cases of NC and PO∗.

2.3. Region Connection Calculus via Mathematical Morphology

In [15] we introduced equivalences between DM and MM allowing DM to
be implemented and understood in terms of MM procedures. Those equiv-
alences make it convenient to develop DM using standard image processing
applications supporting basic MM operations (erosion, dilation, reconstruc-
tion). In [16], an DM algorithm implementation was presented which made
use of the overlap of binary regions in images. That algorithm computes
the spatial relations between two regions (self-connected or not) residing in
different images. For many applications, however, it is required to find the

2In DM, the relation NC is symmetric, i.e., NC(X,Y )→ NC(Y,X).
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Figure 1: The five and eight spatial relations that hold between regions in the RCC5D and
RCC8D sets in the discrete domain. The blue regions represent region X and the yellow
regions Y , the intersection X ∩ Y being shown in brown. The names in RCC5D stand for
disjoint (DR), partial overlap (PO), equal (EQ), proper part (PP) and proper part inverted
(PPi). The RCC8D set makes additional distinctions: disconnection (DC), external con-
nection (EC), partial overlap (PO), tangential proper part (TPP), non-tangential proper
part (NTPP). TPPi and NTPPi are the inverse relations, e.g., TPPi(X,Y ) means the same
as TPP(Y,X). The extensions considered here are NC for ‘neighbourhood connection’ (a
case of a DC relation where the regions are one dilation away from adjacency) and PO* (a
case of EC occurring on ‘crossing objects’ that do not share any overlapping pixels), which
while possible in the discrete domain, is counter-intuitive with real-world objects.

relations held between multiple regions3 contained in pairs of images (e.g., bi-
ological objects across different confocal microscopy imaging planes, or stain
channels). In such cases, the computation can be decomposed into a se-
quence of analyses between pairs of self-connected regions: first extract two
given regions into new empty images (maintaining their relative positions),
next compute the relation held between them using the said algorithm, and
repeat this for all remaining region pairs. That implementation exploits the
‘start pixels’ of regions (the first pixel in a given region encountered in raster
scan order) and uses morphological reconstruction [19] to extract each region
separately and apply the RCC test to the extracted pair. Such an approach,
however, quickly becomes computationally expensive; when dealing with ei-

3While a non-null region in DM is simply the union of an arbitrary set of pixels, the
algorithmic manipulation of regions being assumed here is typically restricted to connected
components, or simple regions.
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ther large images (for which morphological reconstruction is slow) or images
featuring many regions (the number of tests is given by the product of the
number of regions across the images, complexity O(nm)). Some shortcuts
have been identified, for instance in RCC5D, the disjoint relation DR can be
assumed by default for all region pairs and other spatial relations only com-
puted in cases of overlap, avoiding a considerable number of tests. Similarly,
EQ can be identified in those regions pairs whose minimum pixel value is 3 in
the sum of image X (labelled as 0 and 1) and image Y (labelled as 0 and 2).
However, the distribution of DM relations varies with the image content and
therefore such shortcuts do not necessarily lead to noticeable execution time
improvements. The next section presents a more efficient algorithm which
avoids the decomposition of the computation into an exhaustive sequence
of region pairs. The procedure shows a considerable advantage in execution
time compared to our previous algorithm 2 and it enables DM analysis to be
more efficient and therefore applicable to high-throughput workflows.

3. Fast RCC5/8 Algorithm

We assume n binary regions in image X and m binary regions in image
Y . The aim is to identify the spatial relations of the regions in X with the
regions in Y . Those relations can be stored in an n×m matrix, here called
the ‘RCC table’ (stored as an image) where the x and y coordinates are
indices pointing to the xth and yth regions in X and Y respectively.

3.1. Computing RCC5D

First, two images are generated using connected component-labelling, one
where all regions in X have unique labels (according to their raster scan or-
der) and the other similarly with the labels of the regions in Y . We call
these images Xlabelled and Ylabelled respectively. Two additional images are
computed, one where pixels belonging to regions in X are labelled as 1 (or
foreground) and 0 otherwise (background) and the other where pixels belong-
ing to regions in Y are labelled as 2 (foreground) and 0 otherwise. These two
images are summed to produce a third image XY , where pixels now have
values of 1 (the pixel is in X but not Y ), 2 (it is in Y but not X), 3 (a region
of X overlaps a region of Y at that location) or 0 (image background). A
further binary image O is computed as the intersection (overlap) of X and
Y . These overlaps arise in the case of RCC5D relations PO, EQ, PP and
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PPi. Inspection of the values of the pixels of the overlaps in O (by redirect-
ing to Xlabelled and Ylabelled) reveals which two regions form a given overlap.
We store the label values of the regions of O in arrays ovX[ ] and ovY[ ].
The regions in images X and Y involved in overlapping relations are also
inspected by redirection to image XY , and their minimum pixel values are
stored in arrays minX[ ] and minY[ ]. These arrays store information on
whether a given region contains non-overlapping pixel values of 1 or 2 (which
occur in PPi and PO cases) or whether all the pixels in a region are over-
lapping (value 3, which occurs in PP and EQ cases). Adding minX and minY

provides enough information to compute four of the five RCC5D relations
(i.e., all those that involve region overlaps)

Relation minX minY minX+minY

PO(x, y) 1 2 3
EQ(x, y) 3 3 6
PP(x, y) 3 2 5
PPi(x, y) 1 3 4

Table 1: Minimum values of pixel composition of overlapping regions X and Y . Region
labels are: background=0, X=1, Y =2, X ∩ Y =3. The columns minX and minY indicate
the minimum value in regions X and Y respectively when a given relation holds.

From this scheme, it can be worked out that the relation R between
regions XovX[i] and YovY[i] in images X and Y (given by the overlap region Oi)
is:

R[i] = out[minX[ovX[i]] + minY[ovY[i]]], (11)

where out[ ] is a look-up table holding labels for relations PO = 3, EQ = 6,
PP = 5 and PPi = 4 (see Table 1, rightmost column). Since the only remain-
ing RCC5D relation, DR, does not involve an overlap, DR can conveniently
be assumed by default for all possible region pairs and during the analysis
the values in the RCC table are only updated for those regions involved in
overlapping relations using the procedure described. The procedure is shown
in pseudocode in Algorithm 1.

3.2. From RCC5D to RCC8D

RCC8D introduces the notion of contact between regions, covering both
overlap and adjacency [1] and resulting in eight spatial relations which pro-
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Algorithm 1 Pseudocode for RCC5D computation across multiple regions
in images X and Y .

1. Default all relations between regions in X and Y to DR.

2. Compute labelled images Xlabelled and Ylabelled where each region has a
unique label.

3. Compute image XY , coded as 1 → pixel of a region in X but not Y ,
2 → pixel of a region in Y but not X, 3 → pixel of a region in both X
and Y .

4. Compute binary image O, coded as 0→ background, 1→ X ∩ Y .

5. Create arrays ovX[ ] and ovY[ ] holding the information of which
regions in X and Y form overlaps in O, by inspecting region labels in
Xlabelled and Ylabelled.

6. Create arrays minX[ ] and minY[ ] by inspecting for each region in O
the minimum pixel value for that region in image XY .

7. For each region in O, minX + minY gives the RCC5D relation: 3 →
PO, 4 → PPi, 5 → PP, 6 → EQ.
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vide a more fine-grained spatial description than RCC5D. The RCC5D re-
lation DR is split into the RCC8D relations EC (external connection) and
DC (disconnection), the RCC5D relation PP is split into TPP and NTPP
(tangential and non-tangential proper part respectively), the former occur-
ring when the proper part abuts the background regions, the latter when it
does not; the same thing happens, mutatis mutandis, with the inverse rela-
tions. The RCC5D results obtained by the method described earlier can be
reprocessed to capture the RCC8D relations of the same set of regions by
performing single forward image scans testing for adjacency patterns (rather
than processing region-pairs one at a time). The computation of RCC8D
could be seen as a decomposition of the problem into a set of sub-problems
(first compute RCC5D, then re-process the image without having to consider
all region pairs, while exploiting the previously obtained results), similar to
the type of problem reduction sought in dynamic programming [20]. We
search for the presence/absence of certain patterns of adjacent pixels occu-
pancy which, in conjunction with the known RCC5D relations, are indicative
of specific RCC8D relations. The cases PO and EQ are the same in RCC5D
and RCC8D. Of the remaining cases, suppose that we know the RCC5D re-
lation between regions X and Y is DR. Then the RCC8D relation can only
be either DC or EC. For it to be EC there must be at least one instance where
a pixel of X is adjacent to a pixel of Y . The relation is DC is assumed by
default and then we scan the image looking for the adjacency pattern; if it is
found, EC is returned, if the pattern is not found, then the default DC holds
good.

The following notation is used to describe the two-pixel patterns. Con-
sider a pixel p and let n be one of its immediate neighbours. Set p(X)
to be 1 or 0 according as p does or does not belong to region X; and
likewise with p(Y ), n(X), and n(Y ). Then the two-pixel pattern exhib-
ited by the pair p, n with respect to X and Y is denoted by the quadruple
(p(X), p(Y ), n(X), n(Y )).

From the above, we can say that a DR relation between X and Y will
be DC unless one of the quadruple patterns (0,1,1,0) or (1,0,0,1) is exhibited
for some p, n pair in the image, in which case the relation is EC. Similarly,
a case of PP(X, Y ) will be NTPP(X, Y ) unless patterns (0,0,1,1) or (1,1,0,0)
occur, in which case it will be TPP(X, Y ); and likewise with PPi, NTPPi,
and TPPi. To perform these tests, the image is scanned using the ‘forward
mask’ of pixel p, shown in Figure 2.

At each p we determine the two-pixel patterns formed by p with each
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Figure 2: The forward mask of pixel p. The pixel patterns for occupancy of regions in
image X and Y are tested between the central pixel p in the neighbours n in the ‘forward
mask’ (shaded pixels). The pixels in the ‘backward mask’ do not need to be tested because
the patterns have already been visited during the raster scan.

of the shaded elements of the mask in turn. As the scan progresses, an
accumulator records whether these patterns have arisen, and the relabelling
of the region relations is done after the scan is finished. The form of the
mask is dictated by the fact that the image is scanned top-to-bottom and
left-to-right (no need to look at the pattern for, e.g., p = (x, y), n = (x, y−1),
since this will already have been detected when (x, y − 1) played the role of
p, with the pattern p = (x, y − 1), n = (x, y)).

3.3. Extended relations NC and PO∗
The NC relation (definition 9) describes two regions separated by a one-

pixel gap (Figure 1). This occurs when a region is detected as DC and
the pixel patterns over the next-nearest neighbours (the external shell of a
5×5 neighbourhood) show that pixels p (in the neighbourhood centre) and
n (in the shell) are occupied by pixels of regions of X and Y , or Y and X,
respectively. The PO* relation arises when two 8-connected regions ‘cross’
each other in corner-connected regions, without overlapping or sharing any
pixels (Figure 1). Such a pattern can commonly arise in the square lattice
and it is interpreted as EC in RCC8D. In practical applications, however such
results can be unintuitive (e.g. a linear object crosses another without ever
“passing through” it) and it might be useful to identify these occurrences.
This is done by inspecting 2×2 n and p pixel patterns for exclusive corner-
connected pixel pairs in relations that have been identified as EC.
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3.4. Complexity analysis and performance
The old algorithm in [16] uses morphological binary reconstruction to

extract every pair of regions before calculating the relational model held
between them. It has been shown in [21] that morphological reconstruction
is a computationally expensive, highly non-linear procedure. Its complexity
depends on the number of component/pixels to be reconstructed. Even for
the efficient/best-compromise algorithms [22] it is recognised that a mean
case complexity analysis would be extremely difficult to compute because
of the variety of input images that may be used. In addition to utilizing
reconstruction, the computational complexity of the core of the old algorithm
(in the worst case scenario) is quadratic, O(nm) (when m ≈ n) because the
relations are computed between all possible region pairs (n and m) one at a
time, or subquadratic when m6=n. While some shortcuts were identified (e.g.
to avoid computing relations between those regions that are further away
than two dilations, guaranteed to be DC), an important bottleneck remains
with the binary reconstruction steps necessary to extract the region pairs.

The new Algorithm 1, first, avoids extracting individual pairs of regions
into new images to compute the relations, thus avoiding morphological re-
construction altogether. Secondly, it computes the RCC5D relation from a
sequence of steps that reduce the complexity from quadratic to linear yield-
ing to an average case complexity of (O(n+m)). In particular, steps 1, 3 and
4 in Algorithm 1 have a constant-time algorithm of order 1 (O(1)). Step 2
(image labelling) requires a maximum time complexity of O(n+m). Steps
5, 6 and 7 process the overlapping subregions that occur across the two im-
ages. It should be noted that relations PP, PPi and EQ are one to one, and
result in one overlapping segment per region pair. A worst case scenario
where all the relations held are any of the above (therefore n=m) would lead
to a scaling of these steps to O(n) which is still less than O(n+m). The
PO relation, however, is a special case in the sense that a region can have
more than one overlapping subregion (with one or multiple other regions).
For instance large and convoluted regions could potentially lead to a scaling
higher than O(n). While is not possible to foresee what regions configura-
tions may be found in segmented images, it is nevertheless possible to clarify
the impact of this unknown, experimentally. In a series of performance tests
on random binary images (detailed below) we found that on average, the
number of overlapping subregions across 500 tests (average 7152, maximum
19431 regions) was smaller than the number of regions n+m (average 11168,
maximum 38934). The running time of the proposed algorithm would there-
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fore, on average, increase linearly with the total number of regions O(n+m),
with some exceptional configurations where it could be higher depending of
the number and nature of the PO relations. As examined experimentally,
situations where this is above the quadratic complexity of the old algorithm
appear to be unlikely. The successive forward passes on the labelled images
to compute the RCC8D relation set, as well as the extended relations NC
and PO∗, are of the order O(1) and therefore do not increase the algorithm
complexity.

Figure 3 shows the difference in performance, in seconds, of the previ-
ously published [16] and the new algorithms on 512×512 pixels, random
binary images with varying probabilities, p, of foreground pixels. The tests
were performed on the ImageJ platform, version 1.51 [23] under the Linux
operating system on an Intel Xeon CPU (E31225) at 3.1GHz. The plot shows
the average of 5 runs at each p in steps of 0.01. The average difference over
all p was an improvement of 491 times faster than the previous algorithm,
while largest difference was found at p = 0.42 where the new algorithm was
1684 times faster than the old one. The execution times appear to be depen-
dent not only on the number of regions per image but also on the proportion
of the different types of relations that occur at various p (not shown). A
slight advantage was noticed for the old algorithm implementation on im-
ages with the highest p, (where only very few regions exist, the images being
mostly occupied by one large region), but this difference, in practical terms,
becomes negligible as the execution times in those cases are all at a fraction
of a second.

4. New morphological filters: Minimal closing and opening

In addition to the applications of DM in histological imaging [15, 16,
24], the fast algorithm enables new MM operators with reasonable speed
performance to be designed, exploiting the relations between image regions
and the changes they undergo after other morphological operations.

In MM, the operation closing φ with a kernel B is defined as the dilation
of a region, followed by an erosion [17]:

φB(X) =def (X ⊕B)	B. (12)

Closing is an extensive transformation, where voids in regions, and de-
tails that cannot contain the translations of kernel B, are filled. Note that
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Figure 3: Differences between the average execution times of the old and new RCC8D
algorithms. The tests were done, on random binary 512×512 pixel images with varying
foreground pixel probabilities. Each point is the average of 5 runs and the vertical bars
indicate one standard deviation from the mean.

mereotopological closure, which refers to a topological operator defined on
a discrete space, does not correspond to closing but to dilation in MM, de-
spite the similarity in their names. When closing binary regions, voids are
filled with the foreground value. While the rest of this section only deals
with closings, there is a dual MM operation with respect to the set comple-
ment, namely opening, an anti-extensive transform, which instead of filling,
removes those object pixels that cannot be fully covered by the translations
of kernel B.

Closing is commonly used to ‘fill in’ gaps between nearby regions desired
to be joined, to fill small holes in regions and to reduce the complexity of
region boundaries (‘shorelines’ from now on). These actions are, however,
not independent; gaps, holes and shoreline irregularities are processed con-
currently as the operation does not differentiate between them. In certain
circumstances, however, it might be desirable to achieve only one of those
results, e.g., joining nearby regions while avoiding major modifications of the
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shoreline details that do not yield a connection to another region. Using
DM this can be modelled as follows. In MM, the set of pixels added to the
original region by the closing operator is known as the black top-hat):

BTH(X) = φB(X)−X. (13)

The black top-hat often consists of a set of disconnected components,
the elements of which we call black top-hat segments. In DM this is defined
immediately following, where BTHseg(Y,X) is read as ‘Y is a connected com-
ponent of the black top-hat of X’ and BTHsegs(X) is the set of black top-hat
segments of X. The relation CC(Y,X) which we use here, read as ‘Y is a
connected component of X’, is also defined in DM—see [15], p 572:

BTHseg(Y,X) ≡def CC(Y,BTH(X)), (14)

BTHsegs(Y,X) =def {Y | CC(Y,BTH(X))}. (15)

The set-builder notation used to define function BTHsegs(X) in definition 15
returns a set of regions, namely the Y s. In DM, however, where a region
rather than a set of regions is required as the output of a function4, the set
union operator is added, i.e.,

BTHsegs(X) =
⋃
{Y | CC(Y,BTH(X))}, (16)

and the same principle applies for equations 19, 20 and 25. The relation
between Y and X, given BTHseg(Y,X), is always EC, that is to say they
are adjacent (externally connected) regions—remembering here that the seg-
ments are the result of an extensive transformation. In addition, the segments
could also be adjacent to other regions in their neighbourhood; if the distance
ε separating pairs of regions is no more than half the width of kernel B, the
black top-hat segments create ‘bridges’ between originally disconnected (i.e.,
DC) regions. When considering region X and all other regions Y in the seg-
mented image, two black top-hat segment types can arise. First we have
what we call shorelines where BTHshoreline(Y,X) is read as ‘Y is a connected
shoreline component of the black top-hat of X’. In this case the black top-hat
segment Y adjoins exactly one connected component of X:

4Remembering that in DM, a region can comprise several disjoint, region-parts as well
as being a simple region.
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BTHshoreline(Y,X) ≡def

CC(Y,BTH(X)) & ∃Z[∀U [CC(U,X) & EC(U, Y )]↔ U = Z], (17)

i.e., Y is a connected shoreline component of the black top-hat of X if and
only if Y is a connected component of the black top-hat of X, and there
exists exactly one connected component of X that is EC to Y .

The second case is where we have a black top-hat segment that forms a
bridge between two regions. BTHbridge(Y,X) is read as “Y is a black top-hat
bridge of X”:

BTHbridge(Y,X) ≡def CC(Y,BTH(X)) &

∃Z,U [CC(Z,X) & CC(U,X) & Z 6= U & EC(Z, Y ) & EC(U, Y )], (18)

which is similar to definition (17) except there are now at least two connected
components of X externally connected to the black top-hat segment Y of X,
not one.

The spatial relations that hold between the black top-hat segments and
the original regions provides a means for identifying those which act as
bridges (between DC region pairs) and those which do not (and consequently
only modify a region shoreline). From this it follows that the black top-hat
segments adjacent to only one region are shoreline modifiers (including hole
filling, when the holes can be filled by the kernel), and those adjacent to more
than one region are bridges. Retaining one or another type, (e.g., by means
of binary reconstruction [19]), gives rise to two types of conditional minimal
closing, shoreline smoothing without region merging:

φshoreline
B (X) = {Y | BTHshoreline(Y,X)}, (19)

and region merging without boundary smoothing:

φbridge
B (X) = {Y | BTHbridge(Y,X)}. (20)

Note that in RCC8D, the notion of shoreline or boundary of a region does
not differentiate between the ‘outside’ boundary and the boundary with an
internal hole. The DM treatment of region holes is dealt with later in this
paper.
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With regards to implementation, the different black top-hat variants are
sorted by an exhaustive analysis of the relations between all original regions
versus all black top-hat segments generated after an MM closing (i.e., X ⊕
B) 	 B)). Those results, arranged in an m × n matrix or table indexed
by regions and black top-hat segments in scan order (here named the RCC
table), provide a convenient way to search for those special relations. The
DM relation between a given region and a black top-hat segment can be one
of two, out of the eight possible outcomes of the RCC8D region set: either
DC or EC. To identify ‘bridge’ black top-hat segments, we use indexing of
the original regions and black top-hat segments in the x and y axis of the
RCC table respectively: the number of EC instances in a row indicates the
number of different regions a given black top-hat segment is adjacent to.
Black top-hat segments with total EC counts per row equal to 1 are therefore
shoreline modifiers (i.e., they are adjacent to only one region), while those
instances with counts exceeding 1 are guaranteed to be bridges. As will be
seen comparing Figures 4f and 4g, black top-hat shoreline segments include
those completely surrounded by a region; we call these segments lakes. In DM
this can be defined as follows, where BTHlake(Y,X) is read as ‘Y is a black
top-hat lake of X’; the definition uses the DM definition of a hole defined
later:

BTHlake(Y,X) ≡def BTHseg(Y,X) & Hole(Y,X). (21)

The crucial distinction between a shoreline and lake black top-hat segment
of a given region is that a lake also satisfies what it is to be a hole in that
region which again is encoded in another RCC table indexing regions and
holes. Examples of binary region merging with minimal shoreline smoothing
and shoreline smoothing without region merging are given in Figure 4.

While black top-hat segments have the same connectivity as the orig-
inal regions (e.g., 8-connected) the minimal closing can be minimised fur-
ther by considering only the adjacency relations of their 4-connected sub-
components. The rationale for this is that retaining a given black top-hat
segment is similar to adding some background pixels to the foreground. Since
the 8-connected foreground convention implies a 4-connected background, it
is possible to restrict minimal closing to the 4-connected sub-components of
a given black top-hat segment that satisfies the bridge or shoreline properties
described earlier and not including the whole black top-hat region. Figure
5 shows the effect of retaining such 4-connected components in cases of pro-
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Figure 4: Closing and minimal closing of binary images with a disc of radius 3. The
original greyscale image of lymphocytes stained with silver nitrate for detection of nucleolar
organising regions (dark spots)(a) was segmented with the minimum error thresholding
algorithm [25] (b). In (c) the traditional closing (with the added pixels in grey that make
the ‘black top-hat’ (d). Panel (e) shows in magenta the black top-hat segments that have
an adjacency relation with more than one region in (b), acting as bridges. We call this
operation ‘minimal closing bridges’. Panel (f) shows those black top-hat segments that
have adjacency to only one other region in (b) (minimal closing shorelines), while in (g)
are shown the lakes which are black top-hat segments that have no connection to the rest
of the background’s subset that intersects the image boundaries. Panel (h) shows the
traditional opening (with added pixels in grey that make the ‘white top-hat’ (i). Panels
(j-l) shown the minimal opening of bridges, shorelines and islands respectively.

cessing regions with null interior.
Finally, the dual operation of the closing is opening, Υ:

ΥB(X) =def (X 	B)⊕B, (22)

and the corresponding top-hat transformation for the opening is called white
top-hat :

WTH(X) =def X −ΥB(X), (23)

which identifies the segments that were removed from the original after the
opening operation. As before and mirroring definitions for the black top-hat
we define a white top-hat segment Y of region X, and the set of white top-hat
segments of X:
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Figure 5: Closing versus minimal closing. (a) A digitised version of a 4th order von Koch
curve with discontinuities, resulting in 30 fragments. The target is to merge all pieces
into a single region. (b) The classical result using morphological closing with a circular
kernel of radius 4 (the smallest kernel that closes all gaps). Note the loss of detail in
the result. (c) A minimal closing where the gaps between any two fragments were filled
independently with the smallest kernel sizes possible until a single region was obtained.
(d) The detail of the minimal closing (black is the original set, magenta (dark grey in
B/W version) represents the black top-hat segments. (e) and (f) show the same example,
but this time retaining only the 4-connected subregions of each black top-hat segment
(BTHsegs in the text) that acts as a mereotopological bridge between fragments. Note
that this closing modifies the original even less than in (c). (g) shows in green (bright
grey) the part sub-regions of the black top-hat segments that were not necessary to retain
to achieve the minimal closing, i.e., the difference between (d) and (f).

WTHseg(Y,X) ≡def CC(Y,WTH(X)), (24)

WTHsegs(X) = {Y | CC(Y,WTH(X))}. (25)

It is therefore possible to implement minimal opening operations as the
dual of minimal closing. Note that while opening is an anti-extensive trans-
formation, the white top-hat segments are in relation EC to the regions in the
opened image, that is: WTHseg(Y,X) → EC(Y,ΥB(X)). The two new dual
minimal opening operations are open shorelines and open bridges, depend-
ing on which type of white top-hat segments are retained or removed. It is
also possible to define an additional minimal opening operation that removes
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those white top-hat segments that are DC to all other regions in the opened
image. We call this procedure opening islands, and its dual, closing lakes. In-
terestingly, these opening islands and closing lakes are equivalent to opening
and closing by reconstruction, respectively [26]. This sequence of morpho-
logical operations combining MM with the explicit relations of DM shows
the potential for defining a variety of fine-grained morphological operators
that target a particular goal. It also highlights the importance of securing
computationally efficient ways to compute and store relations between pairs
of regions when processing segmented images such as those assumed in the
RCC table, where these relations are explicitly used in these new operators.
An example of the advantage of these new operators is shown in Figure 5.
Here connecting fragments in a discontinued curve can be restricted to places
where the closing leads to fragment connections, without interference at lo-
cations where the connection is not necessary. By so doing we preserve the
original as much as possible with a less dramatic loss of global detail than
traditional closing.

Similarly to minimal binary opening and closing, the procedures above
can directly be applied to process greyscale images via threshold decompo-
sition (although the threshold decomposition it is usually an inefficient pro-
cedure). Figure 6 shows examples of the greyscale versions of the minimal
closing and opening respectively.

5. Discussion

Bloch [11, 9] originally suggested that RCC relations can be defined in
MM, and specifically provides the translation forthe TPP (X, Y ) relation [11],
which is equivalent to ours in [15]. It should be noted that while MM is not
specific about discrete or continuous space, that is not an exact translation
of the RCC8 TPP relation on discrete space, because RCC presupposes an
infinitely divisible one. Instead, for the case of discrete space, the connections
drawn are with the RCC8D relation set of discrete mereotopology.

The implementation of RCC5D, RCC8D and additional DM relations as
MM procedures opens a range of new opportunities to extend some oper-
ations beyond their original design by means of exploiting spatial relations
held between regions. This is specially useful when designing analytical pro-
cedures that can benefit from mechanically reasoning about image contents.

The approach presented here allows the results of closing and openings
to be made conditional on certain types of modifications which might not
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Figure 6: Greyscale minimal closing and opening. The examples were computed using
a 3 × 3 kernel on a greyscale image of text. Note (second row) how minimal closing
bridges connect nearby regions without modifying the shorelines or filling lakes and how
the closing of lakes does not affect the shoreline features. The open bridges procedure
leads to fragmentation of regions in the original without affecting other shoreline features
(compared to open shorelines), while the opening of islands removes the white top-hat
segments with no adjacency relations to any other patterns at a given grey level.

be straightforward to achieve otherwise or might require more complex ap-
proaches such as multiscale operators and directional information [27]. While
conditional filtering is not new, traditional conditional morphological opera-
tors apply their constraints in a given local sub-image (given by the kernel).
To replicate this type of filtering region-wise is challenging because classical
methods require additional processing to account for relations between re-
gions and conditions on these to be met, whereas in DM it is built into its
very foundations.

The bridges, boundaries, island and lakes regions in relation to opening
and closing (i.e. the white top-hat and black top-hat segments) have similar-
ities to what Soille and Vogt call ‘binary patterns’ [28] for which they iden-
tified formulae for their computation (and include some additional patterns:
core, perforations, branches and loops). For minimal closing and opening,
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however DM has the advantage of being able to relate, via the RCC table,
which original regions are adjacent to those segments and therefore open the
possibility to control algorithmically whether segments are included or re-
moved from particular configurations of regions. That would would require
further computation in the approach presented in [28].

There has been interest in other types of conditional operations, for ex-
ample homotopic sequential filtering to preserve the topology of an image
[29, 30] or multiscale top-hat transforms to improve image contrast [31]. Here
we described how processing can be applied to changes of regions or across
regions. A number of new uses for DM via MM has been recently identified
in applications that require dealing with models where image regions fulfil
specific spatial relation between their parts [16, 24, 32]. Such models com-
monly arise in histological imagery, where detected regions represent regions
with special biological meanings (such as cells, nuclei, tissues, organs) that
not only can be distinctly detected, but also exist in specific spatial relations
and hierarchies. Such relations need to be fulfilled if the extraction of bio-
logically relevant information from images is to be related to a given context
in terms of ontological levels of organisation [33]. On a different kind of ap-
plication, Cointepas [34] proposed the use of MM combined with adjacency
relations to construct homotopically deformable cellular models and resolve
complex problems, such as 3D cerebral cortex segmentation, where topology
preservation is essential to yield not only accurate but anatomically plausible
results.

The procedures presented here stem from our work in histological imag-
ing using digital images of 2D tissue sections, and as as such are based on
a 2D Cartesian grid representation. It would be desirable to further develop
these concepts and algorithms in n-dimensions so they can be applied to
e.g. temporal, volumetric and higher dimensional data sets. Furthermore,
alternative schemes such as simplicial complexes (used to represent multidi-
mensional data) [35], graphs [36] and hypergraphs [37, 38] (for non-lattice
implementations of MM) might be advantageous for such generalisation to
higher dimensions.
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[14] I. Bloch, H. Mâıtre, and M. Anvari. Fuzzy adjacency between image
objects. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 5 (1997) 615-653.

[15] D. A. Randell, G. Landini, and A. Galton. A, Discrete mereotopology
for spatial reasoning in automated histological image analysis, IEEE
Transactions on Pattern Analysis and Machine Intelligence 35 (2013)
568-581.

[16] G. Landini, D. A. Randell, and A. Galton, Discrete mereotopology in
histological imaging, in: E. Claridge, A.D. Palmer, W.T.E. Pitkeathly
(Eds.), Proceedings of the 17th Conference on Medical Image Under-
standing and Analysis, 2013, 101-106.

[17] J. Serra, Image Analysis and Mathematical Morphology, vol. 1, Aca-
demic Press, 1982.

[18] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P.
Wischnewski, SPASS Version 3.5, Proceedings of the 22nd International
Conference on Automated Deduction, 2009, 140-145.

[19] L. Vincent, Morphological grayscale reconstruction in image analysis:
Applications and efficient algorithms, IEEE Transactions on Image Pro-
cessing, 2 (1993) 176-201.

[20] P. F. Felzenszwabl, and R. Zabih. Dynamic Programming and Graph
Algorithms in Computer Vision. IEEE Transaction on Pattern Analysis
and Machine Intelligence 33 (2011) 721-740.

25



[21] P. Balázs. Complexity results for reconstructing binary images with dis-
joint components from horizontal and vertical projections, Discrete Ap-
plied Mathematics 161 (2013) 2224-2235.

[22] L. Vincent. Morphological grayscale reconstruction in image analysis:
Efficient algorithms and applications. Technical Report 91–16, Harvard
Robotics Laboratory, 1991.

[23] W. S. Rasband, ImageJ, U. S. National Institutes of Health, Bethesda,
Maryland, USA, https://imagej.nih.gov/ij/, 1997-2018 (accessed 23
April 2018).

[24] D. A. Randell, A. Galton, S. Fouad, H. Mehanna, and G. Landini.
Mereotopological correction of segmentation errors in histological imag-
ing. Journal of Imaging 3 (2017) 63.

[25] J. Kittler, and J. Illingworth. Minimum error thresholding, Pattern
Recognition 19 (1986) 41-47.

[26] P. Soille. Morphological Image Analysis: Principles and applications,
second edition, Springer, 2004, ch. 6.

[27] M. A. Oliveira, and N. J. Leite. A multiscale directional operator and
morphological tools for reconnecting broken ridges in fingerprint images,
Pattern Recognition 41 (2008) 367-377.

[28] P. Soille, and P. Vogt. Morphological segmentation of binary patterns,
Pattern Recognition Letters 30 (2009) 456-459.

[29] M. Couprie, and G. Bertrand. Topology preserving alternating sequen-
tial filter for smoothing 2D and 3D objects. Journal of Electronic Imag-
ing, Society of Photo-optical Instrumentation Engineers 13 (2004) 720-
730.

[30] R. Mahmoudi, and M. Akil. Enhanced computation method of topolog-
ical smoothing on shared memory parallel machines. EURASIP Journal
on Image and Video Processing (2011) 16.

[31] J. C. M. Román, H. L. Ayala, and J. L. V. Noguera. Top-hat transform
for enhancement of aerial thermal images, 30th SIBGRAPI Conference
on Graphics, Patterns and Images (SIBGRAPI), Niteroi, 2017, 277-284.

26



[32] H. Strange, Z. Chen, E.R.E. Denton, and R. Zwiggelaar. Modelling
mammographic microcalcification clusters using persistent mereotopol-
ogy. Pattern Recognition Letters 47 (2014) 157-163.

[33] A. Galton, G. Landini, D. Randell, and S. Fouad. Ontological levels
in histological imaging, in: R. Ferrario, W. Kuhn W (Eds.) Formal
Ontology in Information Systems, 2016, 271-284.

[34] Y. Cointepas. Modélisation homotopique et segmentation 3D du cor-
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