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Abstract

We present an open-source solution for the operational control of drinking water
distribution networks which accounts for the inherent uncertainty in water
demand and electricity prices in the day-ahead market of a volatile deregulated
economy. As increasingly more energy markets adopt this trading scheme,
the operation of drinking water networks requires uncertainty-aware control
approaches that mitigate the effect of volatility and result in an economic and safe
operation of the network that meets the consumers’ need for uninterrupted water
supply. We propose the use of scenario-based stochastic model predictive control:
an advanced control methodology which comes at a considerable computation
cost which is overcome by harnessing the parallelization capabilities of graphics
processing units (GPUs) and using a massively parallelizable algorithm based
on the accelerated proximal gradient method.
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Hardware required: CUDA-compliant GPU (tested on NVIDIA Tesla 2075).

Software required: CUDA framework v6.0 or higher (including cuBLAS) and
rapidjson (http://rapidjson.org/).

Availability: Open-source software, licence: GNU LGPL v3.0. Available online
at https://github.com/GPUEngineering/RapidNet.

Program language: CUDA-C++/C++.

First release: 2017.

1. Introduction

1.1. State of the art

The explosive proliferation of interconnected sensing, computing and commu-
nication devices has marked the advent of the concept of cyber-physical systems

— ensembles of computational and physical components. In drinking water net-
works this trend has ushered in new control paradigms where the profusion of
data, produced by a network of sensors and stored in a database, is used to
prescribe informed control actions [1, 2, 3, 4]. Nevertheless, as these data, be
they water demand values or electricity prices, cannot be modeled perfectly, the
associated uncertainty is shifted to the decision making process.

The high uncertainty in the operation of drinking water networks, as a result
of the volatility of future demands as well as energy prices (in a deregulated energy
market) is likely to lead to a rather expensive operating mode with poor quality
of service (the network may not always be able to provide the necessary amount
of water to the consumers). In control engineering practice, this uncertainty is
often addressed in a worst-case fashion [5, 6] — if not neglected at all — leading
to conservative and suboptimal control policies. It is evident that it is necessary
to devise control methods which take into account the probabilistic nature of
the underlying uncertainty making use of the wealth of available historical data
aiming at a proactive and foresightful control scheme which leads to an improved
closed-loop performance. These requirements necessitate the use of stochastic
model predictive control : an advanced control methodology where at every time
instant we determine a sequence of control laws which minimizes the expected
value of a performance index taken with respect to the distribution of the
uncertainty [7]. Optimization-based approaches for the operational management
of water networks have been studied and are well established in engineering
practice [8].

Indeed, scenario-based stochastic model predictive control (SSMPC) has been
shown to lead to remarkable decrease in the operating cost and improvement in
the quality of service of drinking water networks [9]. In SSMPC, the uncertain
disturbances are treated as random variables on a discrete sample space without
assuming any parametric form for their distribution [10]. The scenario approach
was identified in a recent review as a powerful method for mitigating uncertainty
in environmental modeling related to water management [11]. Although this
approach offers a realistic control solution as it is entirely data-driven, this
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comes with considerable computational burden as the resulting optimization
problems are of particularly large scale [12, 13]. This has rendered the use of
SSMPC prohibitive and has hindered its applicability. Indeed, hitherto there
have been used only conventional model predictive control approaches [14, 15],
robust worst-case formulations [5, 16, 17] and stochastic formulations where
the underlying uncertainty is assumed to be normally identically independently
distributed [18, 19]. Note that it has been observed that demand prediction errors
are typically follow heavy-tail distributions which cannot be well approximated
by normal ones [20].

In this paper, we present a software for the fast and efficient solution of
such problems harnessing the immense computational capabilities of graphics
processing units (GPU) building up on our previous work [9, 21, 22].

There has been recently a lot of interest in the development of efficient
methods for stochastic optimal control problems such as stochastic gradient
methods [23], the alternating directions method of multipliers (ADMM) [24] and
various decomposition methods which can lead to parallelizable methods [25, 26]
(the most popular being the stochastic dual approximate dynamic program-
ming [27], the progressive hedging approach [28] and dynamic programming [29]).
There have been proposed parallelizable interior point algorithms for two-stage
stochastic optimal control problems such as [30, 31, 32, 33] and an ad hoc interior
point solver for multi-stage problems [34]. However, interior point algorithms
involve complex steps and are not suitable for an implementation on GPUs which
can make the most of the capabilities of the hardware. Additionally, interior
point methods cannot accommodate complex non-quadratic terms in the cost
function such as soft constraints (distance-to-set functions).

At large, not many software and libraries are available for stochastic optimal
control; one of the very few one may find on the web is JSPD, a generic Java
stochastic dynamic programming library. QUASAR is a commercial tool for
scenario-based stochastic optimization. One of the most popular tools in the
toolbox of the water networks engineer is PLIO [35], which implements MPC
algorithms. This work covers the yawning gap between engineering practice and
the latest developments in control and optimization theory for drinking water
networks. These results can also be applied for the control of other infrastructure
with similar structure such as power grids [36].

1.2. Contributions and Novelty

Despite the fact that SSMPC problems typically involve millions of decision
variables, the associated optimization problems possess a rich structure which
can be exploited to devise parallelizable ad hoc methods to solve the problem
more than an order of magnitude faster than commercial solvers running on
CPU.

The architecture of our implementation comprises three independent modules:
(i) the network module, (ii) the energy prices and water demands forecaster and
(iii) the control module. The network module provides a dynamical system model
which describes the flow of water across the network together with the storage
limits of the tanks and the constraints on pumping capacities. The network
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module defines a safety storage level for each tank — a level which ensures the
availability of water in case of high demand and the maintenance of a minimum
required pressure. The forecasters produce a scenario tree, that is, a tree of
likely future water demands and energy prices, upon which a contingency plan is
made by minimizing a cost function which quantifies the operating cost and the
quality of service. Such scenario trees are constructed from historical data of
energy prices and water demands. The control module computes flow set-points,
which are sent to the pumping stations and valves, by solving a scenario-based
stochastic model predictive control problem over a finite prediction horizon.

The proposed stochastic model predictive controller leads to measurable bene-
fits for the operation of the water network. It leads to a more economic operation
compared to methods which do not take into consideration the stochastic nature
of the energy prices and water demands. In this paper, we assess the perfor-
mance of the controlled network using three key performance indicators: (i) the
economic index, (ii) the safety index, which quantifies the extent of violation of
the safety storage level requirement and (iii) the computational complexity index
with which we assess the computational feasibility of the controller. Simulation
results are provided using data from the water network of Barcelona and the
energy market of Austria. The advantages of the adopted control methodology
are combined with the computational power of GPUs, which enables us to solve
problems of very large scale.

1.3. Software

Our implementation is available as an open-source and free software which
can be readily tailored to the needs of different water networks modifying the
parameters of its modules. The implementation is done entirely in CUDA-C++

and it can be configured either programmatically or using configuration files.
The adopted object-oriented programming model is amenable to extensions and
users may specify their own predictive models, scenario trees, cost functions,
dynamical models and constraints. Our results are accompanied by extensive
benchmarks and the software is verified with unit tests.

2. Modeling

2.1. Hydraulic modeling

The water network involves four types of elements: water tanks, active
elements (pumps and valves), mixing nodes and demand sectors. We focus on
flow-based water networks where all flows are manipulated variables based on
the modeling approaches presented in [37, 14, 38, 13, 5].

Water tanks which play a crucial role in demand management as they ensure
water supply, obviate the need for continuous pumping and allow water to be
pumped when the price of electricity is lower and provide water in cases of
unexpected peaks in demand. Tank dynamics are modelled by simple mass
balance equations: let V j(t) be the volume of tank j = 1, . . . , Nt at time t.
We denote all flows in the network by qi, i = 1, . . . , Nf . Let qi(t), i ∈ Ij be

4



  

(a) Water tank

  

(b) Mixing node

  

(c) Controlled
pump

  

(d) Controlled
valve

  

(e) Demand sector

Figure 1: Elements of the water network and the associated flows.

the controlled inflowing streams to tank j and qi(t), i ∈ Jj be the controlled
outflowing streams. Then, the mass balance equation becomes (see Fig. 1a)

dV j(t)

dt
=
∑
i∈Ij

qi(t)−
∑
i∈Jj

qi(t). (1)

The volume in each tank should never exceed a maximum limit V jmax and it
should always be above a hard lower limit V jmin, that is,

V jmin ≤ V
j(t) ≤ V jmax. (2)

In addition, for the sake of service reliability (availability of water when
demand rises unexpectedly) and safety, it is required that the level of water
remains above a certain level V jsafe. This is allowed to be violated occasionally,
when the demand happens to be too high.

Mixing nodes are intersections where flows of water are merged or separated.
The mass balance equations for mixing nodes give rise to algebraic constraints
of the form ∑

i∈Ks

qi(t) =
∑
i∈Cs

qi(t), (3)

where Ks and Cs are the sets of indices of the incoming and outgoing flows at
node s = 1, . . . , Ns as shown in Fig. 1b.

Pumps and valves are used to control the flow of water in the network
and transfer it across tanks and to the demand sectors. We treat these as
controlled systems — indeed, pumping stations and valves are equipped with local
controllers — to which we prescribe flow set-points. The local control systems
operate at a sampling rate of about 1 Hz, while the operational management
of the network updates its decisions at a much slower rate (e.g., hourly). It is
reasonable to assume that the local control system equilibrates fast enough to
neglect its dynamics in the context of operational control. That said, the flow
determined by each pump i ∈ P is equal to its prescribed set-point ui. As shown
in Fig. 1c, that is

qi(t) = ui(t), i ∈ P. (4)
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Similarly, as shown in Fig. 1d the flow through each valve is

qi(t) = ui(t), i ∈ V. (5)

All flows in the network are unidirectional, so we require that qi ≥ 0 for all
i = 1, . . . , Nf . Each pump i ∈ P has a maximum pumping capacity qimax, that is
we require that

0 ≤ qi(t) ≤ qimax, i ∈ P. (6)

Demand sectors are the exit nodes of the water from the network towards
the consumers as shown in Fig. 1e. At each demand sector i ∈ D, the mass
balance yields

qi(t) = di(t), i ∈ D. (7)

We treat di(t) as a random process and elaborate on that in Section 2.2.
We may now describe the system dynamics in terms of the state variable

x(t) = (V j(t))j=1,...,Nt , the input variable u(t) = (uj(t))j∈P∪V and the distur-
bance d(t) = (di(t))i∈D. Let nu = |P ∪ V| be the dimension of u(t), that is, the
total number of pumps and valves. Let nd = |D| be the total number of demand
nodes. By discretizing the dynamical equation (1) using the exact discretization
method [39, Sec. 4.2.1] and taking into account the algebraic constraints stated
above, we may write the system dynamics in the following form of a discrete-time
linear time-invariant system

xk+1 = Axk +Buk +Gddk, (8a)

0 = Euk + Eddk, (8b)

where A ∈ IRNt×Nt , B ∈ IRNt×nu , Gd ∈ IRNt×nd , E ∈ IRNs×nu and Ed ∈
IRNs×nd .

The constraints on xk and uk can be concisely written as

xmin ≤xk ≤ xmax, (9a)

umin ≤uk ≤ umax, (9b)

with xmin, xmax ∈ IRNt and umin, umax ∈ IRnu and ≤ is meant in the element-
wise sense. These constraints encompass (2) and (6).

2.2. Demands and Electricity Prices

Water demand has been the main source of uncertainty for the operation of
drinking water networks and a lot of attention has been paid on the development
of models for its prediction. Prediction methodologies span from simple linear
models [40] to neural networks [41, 42] and support vector machines [43, 44],
nonlinear multiple linear regression [45], Holt-Winters-type models [46], as well
as more complex neuro-fuzzy models [47, 48]. Increased predictive ability can
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be obtained using exogenous information such as weather forecasts [49] and
calendar data [5].

In the context of a deregulated wholesale energy market, prices on the day-
ahead market are volatile and are often decided on the basis of an auction
(bid-based market) among energy companies instead of bilateral agreements with
an energy provider. In such cases, energy prices may change on a daily or hourly
basis [50]. It is then necessary to be able to predict the day-ahead evolution of
the prices using past data; several time series analysis methodologies have been
developed for that purpose — see [51] and references therein.

In our approach the prediction procedure is decoupled from the control which
allows the use of any forecasting methodology without having to modify the
controller parameters or implementation. An independent forecaster provides
estimates of future demands and electricity prices along with an estimation of
their uncertainty which is discussed in the next section. At time k, the predicted
demands for the future time k + j are estimated by a model which computes
d̂k+j|k. Likewise, we denote the predicted electricity prices by α̂k+j|k. Let dk+j

and αk+j denote the actual, but unknown at time k, values of the water demands
and prices. Then [

dk+j

αk+j

]
=

[
d̂k+j|k
α̂k+j|k

]
+ εj|k, (10)

where εj|k is a random variable which corresponds to the j-step-ahead prediction
error at time k. At time k, a forecaster provides finite-horizon estimates of the
upcoming water demands and electricity prices

d̂k = (d̂k+1|k, α̂k+1|k, . . . , d̂k+Hp|k, α̂k+Hp|k), (11)

where Hp is a prediction horizon. This information will then be provided to the
controller as we shall discuss in Section 3.

2.3. Uncertainty

It is common in stochastic control-oriented modeling to assume that the
errors εj|k are independently distributed [18, 19]. This assumption however
neglects the covariance across the times stages — indeed, if at the future time
j = 1 the model has a large prediction error we would rather expect that the
prediction error at time j = 2 is likely to be large too. This motivates the use of
scenario trees: discrete representations of the random processes (εj|k)j which
capture such multistage covariances [52].

To date, stochastic modeling for drinking water networks in presence of
price uncertainty has received little attention — to the best of the authors’
knowledge, [53] is the only relevant reference — and the scenario tree approach
has not been used previously.

A scenario tree is a structure such as the one illustrated in Fig. 2. The
scenario tree is organised into time instants j = 0, . . . ,Hp called stages and
a number of nodes at each stage denoted by εij|k — these are treated as the
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Figure 2: Scenario tree of the random process (εj|k)j . At time j = 0, the prediction error is
ε0|k = 0; this defines the root node of the tree. The children nodes ch(2, 1) of node (2, 1) are
highlighted in the figure.

possible values of εj|k. At time j = 0, the prediction error is always equal to 0
assuming that we observe the current water demands and electricity prices. The
corresponding unique node is called the root node of the tree. The nodes of the
tree at the last stage are known as leaf nodes. The number of nodes at stage j is
denoted by µj . All nodes are identified by a pair α = (j, i), where j = 0, . . . ,Hp

is the stage index and i is the index of the node in that stage. Each non-leaf
node defines a (nonempty) set of children ch(j, i) which are those nodes in next
j + 1 which are linked to (j, i). Conversely, each not except for the root node
defines a unique ancestor denoted by anc(j, i). The probability of visiting a node
(j, i) starting from the root node and following the tree structure is denoted by
pij .

Note that the joint demand-price modeling of the uncertainty allows us to
cast possible demand-price correlations as in cases of uncertain volume-based
pricing.

Using the scenario tree structure, equation (10) yields[
dik+j

αik+j

]
=

[
d̂k+j|k
α̂k+j|k

]
+ εij|k, (12)

where j = 0, . . . ,Hp and i = 1, . . . , µj . Here we see that the tree structure of εij|k
induces a corresponding tree structure upon the water demands and electricity
prices, namely dik+j and αik+j . These are the contingent future water demand

and electricity price values associated with the prediction error εij|k.

Similarly, equation (8b) gives

Euik+j|k + Edd
i
k+j|k = 0, (13)
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where (uik+j|k)j,i become the decision variables of the stochastic optimal control
problem we shall present in the following section. The discrete-time system
dynamics (8a) becomes

xlk+j+1|k = Axik+j|k +Bulk+j|k +Gdd
l
k+j|k, (14)

where (j + 1, l) ∈ ch(j, i).
Scenario trees can be constructed from observed sequences of prediction

errors which can be easily obtained in practice using methodologies such as [54]
or the popular scenario reduction method [55]. There exist several other scenario
generation algorithms such as clustering-based algorithms [56, 57] and simulation
and optimization-based approaches [58, 59]. It is not necessary, however, to
update the scenario tree for εj|k at every time instant k — it should be updated
occasionally to detect changes in the predictive ability of the forecaster or
whenever the predictive model is updated.

3. Scenario-based stochastic optimal control

3.1. Control Objectives

The cost for the operation of the water network is quantified in terms of
three individual costs which have been proposed in the literature [5, 60, 16, 61]:
the economic cost which is related to the treatment cost and electricity required
for pumping, the smooth operating cost which penalizes the abrupt operation of
pumps and valves and the safety storage cost which penalizes the use of water
from the reserves (i.e., allowing the level in the tanks to drop below the safety
level).

The economic cost quantifies the production and distribution cost and it is
computed by

`w(uk, k) = Wα(α0 + αk)′uk, (15)

where α′0uk is the water production cost (treatment and acquisition fees), α′kuk
is the uncertain pumping cost and Wα is a positive scaling factor.

The smooth operation cost is defined as

`∆(∆uk) = ∆u′kWu∆uk, (16)

where ∆uk = uk − uk−1 and Wu ∈ IRnu×nu is a symmetric positive definite
weight matrix.

The total stage cost at a time instant k is the summation of the above costs
and is given by

`(uk, uk−1, k) = `w(uk, k) + `∆(∆uk).

The safety storage cost penalizes the drop of water level in the tanks below
a given safety level xs. An elevation above this safety level ensures that there
will be enough water in unforeseen cases of unexpectedly high demand and also
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Figure 3: The concept of scenario-based stochastic optimal control: at every time instant
k, we make an optimal contingency plan by minimizing the expectation of a cost function V
which encodes the operation cost along a finite prediction horizon.

maintains a minimum pressure for the flow of water in the network. This is
given by

`S(xk) = Ws‖max{0, xs − xk}‖, (17)

where Ws is a positive scaling factor.
The state constraints (9a) should be satisfied at all times without however

jeopardizing the feasibility of the optimal control problem we have to solve at
every time instant. For that, we introduce an additional cost which penalizes
the violation of the state constraints as follows

`x(xk) = Wx

(
‖max{0, xmin − xk}‖

+ ‖max{0, xk − xmax}‖
)
, (18)

where Wx is a positive weight factor.
The scaling factors Wα, Wu, Ws and Wx are the tuning knobs of stochastic

MPC as we shall discuss in the following section.

3.2. Stochastic optimal control: problem formulation

In scenario-based stochastic MPC, at every time instant k we solve a stochastic
optimal control problem which consists in determining an optimal contingency
plan for the future course of actions in a causal fashion, that is, our future
decisions uk+j|k are only allowed to depend on information that will be available
to the controller at time k + j [62]. This was tacitly stated in equation (14).
This concept is illustrated in Fig. 3.

We formulate the following scenario-based stochastic MPC problem with a
prediction horizon Hp and decision variables x = {uk+j|k, xk+j+1|k}j=0,...,Hp−1

where we minimize the expected total cost along the prediction horizon

minimise
x

IE [V (x, p, q, k)] + Vs(x), (19a)
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subject to the following constraints

xk|k = p, uk−1|k = q, (19b)

xlk+j+1|k = Axik+j|k +Bulk+j|k +Gdd
l
k+j|k, (19c)

Euik+j|k + Edd
i
k+j|k(εj) = 0, (19d)

umin ≤ uk+j|k ≤ uimax. (19e)

In (19a), IE is the expectation operator, V is the cost function given by

V (x, p, q, k) =

Hp−1∑
j=0

`(uk+j|k, uk+j−1|k, k+j), (20)

and Vs is the total state constraint violation penalty defined as

Vs(x) =

Hp∑
j=0

µj−1∑
i=1

`x(xik+j|k) + `S(xik+j|k). (21)

Note that we have a time-varying cost as the electricity prices change with time.

4. Numerical Algorithm

4.1. Problem reformulation

Most modern numerical optimization algorithms such as the (accelerated)
proximal gradient algorithm, the alternating directions method of multipliers
(ADMM) [63], the Pock-Chambolle method [64], Tseng’s forward-backward-
forward algorithm [65] and many another require that the optimization problem
be first written in a form

P : minimise
x∈IRn

f(x) + g(Hx), (22)

where f : IRn → IR := IR ∪ {+∞} and g : IRm → IR are convex, lower semi-
continuous extended-real-valued functions and H : IRn → IRm is a linear operator.
Functions f and g are allowed to return the value +∞ to encode constraints; for
example, the constraint x ∈ C is encoded by the indicator function of the set C
which is

δ(x | C) =

{
0, if x ∈ C
+∞, otherwise

(23)

The key question is how to split the optimization problem in (19) so that
the resulting formulation is amenable to a fast numerical solution with massive
parallelization. For reasons that will be elucidated in Section 4.3 we choose
f to be the smooth part of the cost (which corresponds to the linear function
`w and the quadratic function `∆) plus the indicator of the input-disturbance
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coupling given in (8b) plus the indicator of the system dynamics in (8a), that is
f : IRn → IR is defined as

f(x) = δ(uij |Φ1(dij)) + δ(xij+1, u
i
j , x

anc(j+1,i)
j |Φ2(dij))

+

Hp−1∑
j=0

µj∑
i=1

pij(`
w(uij) + `∆(∆uij)), (24)

where ∆uij = uij − u
anc(j,i)
j−1 and Φ1(d) is the affine subspace of IRnu

Φ1(d) = {u : Eu+ Edd = 0}, (25)

and Φ2(d) is the affine subspace of IR2nx+nu defined by the system dynamics

Φ2(d) = {(z, x, u) : z = Ax+Bu+Gdd}. (26)

Function g is naturally chosen to be the indicator of the set of input constraints
plus the total constraint violation penalty function Vs. Note, however, that
the same variable xik+j|k participates in both functions `x and `S . As we shall
explain in Section 4.3, this complicates any computations thereon. For that
reason we introduce a linear operator H : x 7→ y :=H(x) which maps xik+j|k to

(xik+j|k, x
i
k+j|k) and uik+j|k to itself, that is

yik+j|k = (xik+j|k, x
i
k+j|k, u

i
k+j|k), (27a)

for j = 0, . . . ,Hp − 1 and

yik+Hp|k = (xik+Hp|k, x
i
k+Hp|k). (27b)

Then, we define the function g : IRm → IR

g(y) =
∑

j=0,...,Hp
i=1,...,µj−1

`x(y
i,(1)
k+j|k) + `S(y

i,(2)
k+j|k)

+
∑

j=0,...,Hp−1
i=1,...,µj−1

δ(y
i,(3)
k+j|k | U), (28)

where U := {u ∈ IRnu | umin ≤ u ≤ umax}.
The scenario-based optimization problem (19) is now in the form (22) with

f and g given by (24) and (28) respectively and H given by (27).

4.2. Convex conjugates and proximal operators

Before we can proceed with the statement of the numerical algorithm for the
solution of problem (22) we need to introduce a few mathematical notions. A
function f : IRn → IR is called proper if it is not everywhere equal to +∞. It is
called lower semi-continuous if for every x ∈ IRn, lim infz→x f(z) = f(x). The
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domain of f is the set dom f := {x ∈ IRn | f(x) < ∞}. It is called κ-strongly
convex, for some κ > 0, if the function f(x)− κ/2‖x‖2 is convex.

For a proper, convex, lower semi-continuous function f , we define its convex
conjugate to be the convex function f∗ : IRn → IR defined as [66, Ch. 11]

f∗(y) = sup
x∈IRn

y′x− f(x). (29)

An important property is that if f is κ-strongly convex, then f∗ is differ-
entiable with 1/κ-Lipschitz gradient [66, Prop. 12.60] and the gradient of f∗

is

∇f∗(y) = argmax
x∈IRn

y′x− f(x). (30)

By means of the convex conjugate we may derive the Fenchel dual optimiza-
tion problem of (22) which is [67, Sec. 15.3]

D : minimise
y∈IRm

f∗(−H ′y) + g∗(y). (31)

Fenchel duality offers a more powerful framework as compared to the classical
Lagrangian duality approach as it allows us to dualise functions (by means of
their convex conjugates) rather than merely constraints.

Under certain conditions on f and g (see Section 4.3), the two problems are
equivalent: their optimal values are equal and given a dual-optimal point y?

which is a minimizer of (31), the optimal solution of P is x? = ∇f∗(−H ′y?).
This is referred to as strong duality. The reason why we formulate the dual
optimization problem D is because it possesses a favorable structure which can
be exploited in the development of fast and parallelizable numerical algorithms
(See Section 4.3).

Lastly, for a proper, lower semi-continuous, extended-real valued function
g : IRm → IR we define its proximal operator with parameter γ > 0 to be a
function proxγg : IRm → IRm defined as

proxγg(v) := argmin
x∈IRm

g(x) + 1/2γ‖x− v‖2. (32)

Proximal mappings act as generalized projections. For example, the proximal
mapping of the indicator function δ( · |C) — cf. (23) — of a nonempty, closed,
convex set is the projection onto that set, i.e., proxγδ(·|D)(v) = proj(v|C).

The proximal operators of many convex functions (such as Euclidean norm,
norm-1, quadratic and linear functions, distance-to-set functions) are easy to
compute and typically consist in element-wise operations which can be fully
parallelized on a GPU. We shall refer to such functions as prox-friendly [68].

So long as proxγg is easy to compute, so is proxγg∗ and it can be obtained
from the Moreau decomposition formula which is

proxγg(v) + γ proxγ−1g∗(v/γ) = v. (33)
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4.3. Accelerated proximal algorithm on the dual optimization problem
The function f(x)+g(Hx), with f and g defined by (24) and (28) respectively,

is proper, convex and piecewise linear-quadratic on its domain, so, following [66,
Thm. 11.42] there is strong duality. As discussed above, since f is strongly convex,
f∗ is differentiable with Lipschitz gradient. Function g is written in the form of
a separable sum — a sum of prox-friendly functions of different arguments [63].
Function g is indeed prox-friendly. Let (proxγg(v))j,i,(s) denote the part of the

vector proxγg(v) ∈ IRm, indexed by j, i and s, which corresponds to y
i,(s)
k+j|k, for

s = 1, 2, 3. Then, (proxγg(v))j,i,(1) and (proxγg(v))j,i,(2) are computed by virtue
of the formula

proxγ dist(·|C)(v)

=

{
v + projC(v)−v

dist(v|C) , if dist(v|C) > γ

projC(v), otherwise
(34)

where dist(· | C) is the distance-to-set function and the fact that `x(x) =
Wx dist(x | [xmin, xmax]) and `S(x) = Ws dist(x | [xs,+∞)). The proximal
operator (proxγg(v))j,i,(3) is simply the projection on U .

Note that although g is prox-friendly, g composed with the linear operator
H — as it is in (22) — is not. This is the main reason why we resort to the dual
problem (31).

Given the properties of functions f∗, being differentiable with Lipschitz
gradient, and g∗, being prox-friendly, we may use Nesterov’s accelerated proximal
gradient method on the dual problem which produces the sequence

wν = yν + βν(yν − yν−1), (35a)

yν = proxγg∗(wν + γH∇f∗(−H ′wν)), (35b)

with y0 = 0, y−1 = 0, β0 = 0. In (35a) we perform an extrapolation step
for some βν > 0 and we perform a dual gradient projection update on the
extrapolated vector wν . The extrapolation parameters β−ν are parametrized as
βν = θν(θ−1

ν−1−1) with θ0 = θ−1 = 1. Any choice of θν so that 1−θν+1 ≤ θ2ν+1/θ2ν .
A simple choice is

θν =
2

ν + 2
, (36)

for ν ≥ 1. Here we choose θν+1 = 1/2(
√
θ4
ν + 4θ2

ν − θ2
ν) which satisfies the above

requirement with equality.
This algorithm fits into Tseng’s Alternating Minimization framework [69, 70].

It has been found to be suitable for embedded applications as it is relatively
simple to implement and it has good convergence properties (the dual variable
yν converges with rate O(1/ν2) and an averaged primal iterate converges at
O(1/ν2) as well) [71]. It involves only matrix-vector operations (additions and
multiplications) and it is numerically stable. In the following section we discuss
how the involved operations can be massively parallelized in a lock-step fashion
(performing the exact same operation on different memory positions) and how
the algorithm can be implemented on a GPU.
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4.4. Implementation

Because of the definition of f in (24), the computation of the gradient of
f∗ as defined in problem (30) boils down to the solution of a scenario-based
optimal control problem where the only constraints are the ones defined by
the system dynamics. This problem can be solved by dynamic programming
leading to a Riccati-type recursion from stage k = Hp to stage k = 0. At each
stage operations across all nodes can be fully parallelized. In particular, such a
parallelization — assuming that full parallelization is supported by the hardware

— equalizes the complexity of the scenario-based Riccati recursion to that of
a deterministic one. A detailed exposition of the details of this procedure is
available in [22, 9].

All operations involved in the computation of proxγg are element-wise opera-
tions and can be fully parallelized on a GPU; therefore, the computational cost
for applying proxγg — or, what is the same — proxγ−1g∗ via (33) is negligible.

5. Functionality

In this section we present RapidNet, a CUDA-C++ implementation of the
accelerated proximal gradient method for the solution of scenario-based stochastic
optimal control problems, particularly tailored to the needs of a drinking water
network.

5.1. Software structure

The entities involved in RapidNet and the relationships among each other are
illustrated in Fig. 4 which correspond to classes in the CUDA-C++ implementation
of RapidNet (see also Table 1).

The DwnNetwork class stores data related to the network topology, physical
constraints and network dynamics matrices in equations (8a) and (8b). The user
can create instances of DwnNetwork simply by passing a JSON file, network.json,
with the network information.

The ScenarioTree class models the scenario tree structure that represents
the uncertainty associated with the volatile energy prices and water demands.
This class describes the structure of the scenario tree by assigning a unique
index to each node and storing the indexes of the children of each non-leaf node,
the ancestor of all nodes except for the root node and the values dik+j|k and

αik+j|k at each node (j, i). An instance of ScenarioTree can be generated using
a JSON file, scenarioTree.json.

An SmpcController executes the accelerated proximal gradient algorithm
to solve a stochastic optimal control problem at every time instant and compute
the control actions to be applied to the water network. Certain functionality
is delegated to Engine — a collection of utility methods — which precomputes
certain quantities which are associated with the Riccati-type recursion (details
can be found in [9]) for the computation of the dual gradient and manages the
associated memory on GPU.
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Figure 4: Entity-Relationship (ER) diagram of the entities in RapidNet which reflects the
underlying class structure.
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Table 1: Description of the major class and the associated JSON files in RapidNet.

Class name Description JSON file
SmpcController Runs the accelerated dual proximal gra-

dient algorithm can computes a control
action to be applied to the water net-
work. Computations are carried out on
GPU and the output (flow set-points)
can be stored in a JSON file.

controlOutput.json

DwnNetwork Encapsulates all information related to
the topology, dynamics and constraints
of the water network.

network.json

ScenarioTree Scenario-tree representation of the un-
certainty in electricity prices and water
demands.

scenarioTree.json

Forecaster An abstract forecaster which predicts
the upcoming electricity prices and
water demands using some predictive
model (implemented by subclassing
Forecaster) or reads the forecasts from
a JSON file (so that the user can use
forecasts from third-party software).

forecaster.json

Engine Provides essential functionality to
SmpcController and manages the
GPU-side memory.

SmpcConfiguration Contains configuration parameters that
are relevant for SmpcController (tun-
ing parameters, solver tolerance, maxi-
mum number of iterations).

controllerconfig.json

The Engine is, in turn, linked with to a DwnNetwork entity which provides
all necessary technical specifications for the network (topology, dynamics, con-
straints) and a ScenarioTree entity which encodes the probabilistic information
associated with the prediction errors. Note that the end-user does not have to
create instances of Engine or directly interact with it.

A Forecaster provides to the controller estimates of the upcoming water
demands and electricity prices. This is an abstract class which can be subclassed
with particular model implementations (e.g., ARIMA, SVM, or any other), or the
user can provide custom forecasts using any third-party software which exports
its forecasts in a JSON file.

SmpcController requires certain configuration parameters which is provided
by the entity SmpcConfiguration. There, the user specifies the desired tolerance,
maximum number of iterations and can override other solver-specific properties.

Overall, the flow of information in RapidNet is shown in Fig. 5. The end-user
initializes an SmpcController object by providing the network topology, the
controller configuration and a scenario tree. During real-time operation, the
controller receives the network state xk (which can be provided in a JSON file)
and, using a demand/price forecaster, computes a control action which is applied
to the system.

In Table 2 we list the main methods of RapidNet. Additional getter methods
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Figure 5: Flow of information in RapidNet.

are available in each class for more advanced use-case scenarios.

5.2. GPU Implementation

GPUs were first developed for video applications and, due to the high demand
in high-performance graphics, rapidly evolved to powerful hardware featuring
hundreds of computation cores. Nowadays, GPUs are used for more than video
processing and they are becoming popular for computational purposes including,
but not limited to, environmental modeling [72, 73, 74]. By design they are well-
suited for data-parallel lockstep applications where the same type of operation
is applied to different memory positions. Instructions are sent to the GPU
(from the CPU) in the form of compute kernels. GPUs offer unprecedented
parallelization capabilities provided that the program can be parallelized in a
lockstep fashion (the same operation is executed on different memory positions).

CUDA is a parallel computing framework and application programming
interface for NVIDIA GPUs used for general-purpose computing. Part of the
CUDA framework is cuBLAS, a parallel counterpart of the popular linear algebra
library BLAS.

In RapidNet, at every time instant k, the method controlAction in SmpcController

returns the control action that is to be applied to the water network (pump
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Table 2: Key methods in RapidNet.

Class Method Description
SmpcController controlAction Computes control action using the acceler-

ated proximal gradient algorithm to solve
the scenario-based stochastic optimal con-
trol problem.

Forecaster predictDemand Returns water demand forecasts.
predictPrice Returns energy price forecasts.

Engine factorStep Precomputes certain quantities that facili-
tate and accelerate the computation of the
dual gradient in the algorithm.

and valve set points). All computations involved in this method are either
summations or matrix-vector multiplications which can be parallelized across
the nodes of a stage. These multiplications are implemented using the function
cublasSgemmBatched of cuBLAS and vector additions are performed using the
cublasSaxpy of cuBLAS. Apart from the standard cuBLAS methods, we have
defined custom kernels for the summation over the set of nodes and to evaluate
projections with respect to the box constraints and the proximal operator of the
distance function from the set (that is, to compute the proximal operator of g
as discussed in Section 4.3.

5.3. Software verification

The validation of the software is done through unit testing. A unit represents
the smallest functional part of the software and unit testing involves verification
of its functionality through predefined inputs and expected outputs. It assists
in the debugging and maintenance of the code and facilitates the integration
of the various units reliably. In lack of a standardized testing framework for
CUDA applications, we developed our in-house testing framework. Moreover,
using cudaMemCheck we have thoroughly tested for GPU-side memory leaks.

6. RapidNet in action: Simulation results

In this section, we present the application of RapidNet for the management
of the drinking water network of the city of Barcelona, whose schematic diagram
is shown in Fig. 6, using the demand data provided in [75, 9]. The network
counts a total of 63 tanks, 114 controlled flows (by means of 75 pumps and 39
valves), 88 demand sectors and 17 mixing nodes.

6.1. Forecasting of water demands

Upcoming water demands are predicted using a radial-basis-function support
vector machines (SVM) model from the literature with good predictive ability [5].
The model predicts the water demand using past demand data together with
calendar data (day of the week). Validation information is provided in [5]. In
Fig. 7 we show an instance of a prediction using this SVM model.
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Figure 6: Schematic diagram of the drinking water network of Barcelona. Overall, this
distribution network involves 63 tanks, 114 controlled flows and, in particular, 75 pumps and
39 valves, 88 demand sectors and 17 mixing nodes.
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Figure 7: Water demands predicted with a radial-basis-function SVM model. The current
time instant is positioned at 0.
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6.2. Forecasting of energy prices

Among other European countries such as Denmark and Sweden, Austria
implements a deregulated energy market which induces a volatile stream of
electricity prices. Time series of energy prices in Austria have become public by
EXAA (Energy Exchange Austria; a central European energy exchange) and are
available online at http://www.exaa.at/de/marktdaten/historische-daten
(Accessed on April 23, 2019). In lack of electricity price data from Spain or
relevant data from the water network of Barcelona, we used price data from
Austria as an indicative dataset.

Out of 8784 hourly price data which are available for the year 2016, we
excluded the last 2000 data points to be used for testing and using the rest
of the data we built an ARIMA(24, 1, 4) model. ARIMA models have been
previously used for the short-term prediction of electricity prices in the day-
ahead market [51]. Using a Monte-Carlo method, a set of 104 independent
scenarios were generated and, subsequently, these were reduced into a scenario
tree using the method described in [55]. An instance of a prediction using the
trained ARIMA model along with the associated scenario tree is shown in Fig. 8.

The residuals of the model where found to be uncorrelated at the confidence
level of 99.9%. Indeed, the residuals pass the Ljung-Box Q-test of uncorrelat-
edness with p-value equal to 1.0000. The model was selected using the Akaike
information criterion (AIC) with value 1.523.

It is natural to expect that the upcoming energy prices can be only predicted
up to moderate accuracy as they do not follow a regular pattern and are
influenced by many market-related parameters. Despite our limited predictive
capacity, we shall show in Section 6.3 that by taking into account this volatility
using stochastic model predictive control we do mitigate the effect of the price
uncertainty leading to a more economic operation of the water network.

6.3. Closed-loop simulations

In this section we present closed-loop simulation results on the water network
where the sampling time is equal to 1 hr and the prediction horizon of the SSMPC
was fixed to Hp = 24. The weight parameters used to tune the SSMPC are
Wα = 106, Wu = 1.3 · 107 · I, Ws = 105 and Wx = 108. Note that all units used
in this section are SI units (flows in m3

/s and volumes in m3).
The system was simulated for a period of Hs = 168 time instants, which

corresponds to one week of operation. In order to assess the performance of the
closed-loop operation, we use three KPIs, in particular: (i) the economic index
which is defined as

KPIE = 1/Hs

Hs∑
k=1

(α0 + αk)′uk, (37)

which provides an estimation of the average hourly cost of operation of the water
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Figure 8: Past data of energy prices (blue line) together with the nominal 24-hour-ahead
forecast produced by the ARIMA model (green line) and the actual upcoming price data
(orange line). A set of 250 scenarios in also shown with thin gray lines. The current time
instant is positioned at 0.

network, (ii) the safety index, which is defined as

KPIS =

Hs∑
k=1

‖max{xs − xk, 0}‖1, (38)

which quantifies the total weekly violation of the safety constraint (the “soft”
requirement that xk ≥ xs), and, last, (iii) the complexity index which is the
worst-case time required to solve the SSMPC optimization problem up to the
specified accuracy, which is defined as

KPIτ = max
k=1,...,Hs

τk, (39)

where τk is the computation time required by the solver for solving the SSMPC
problem at time instant k. The maximum runtime is of higher importance that
the average runtime in applications to verify that a decision can be made within
the available time period. All three indices are defined so that low values are
preferred.

In order to justify the need for and underline the importance of taking into
account the uncertainty associated with electricity prices, we performed two
sets of simulations where in one case we disregarded that volatility (the SSMPC
used only the nominal predictions of the electricity prices). We may observe
in Fig. 9 that the hourly operation of the network becomes more expensive by
approximately +5%, therefore, the proposed stochastic control approach can
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CPUs, 12GB RAM running 64-bit Ubuntu 16.04) and RapidNet running on an NVIDIA Tesla
C2075 GPU.

lead to significant economic savings for the network operator. For example,
for the case of 631 scenarios, the operation cost when the price uncertainty is
disregarded is e 4947/hour, whereas with the proposed approach which takes into
account the price uncertainty it drops to e 4748/hour — a saving of e 199/hour,
that is, a cost reduction of 4%.

We may also see that as more scenarios are considered in the SSMPC
formulation, the average cost of operation plummets at around 194 scenarios,
where, however, the safety index is still high. In order to obtain a safer operation
we need to pay the “cost of safe operation”: Indeed, at 631 scenarios, the
operation of the network is more expensive compared to the case of 194 scenarios,
but KPIS is at a minimum. This reflects a trade-off between the economic and
safe operation of the network.

At 631 scenarios, the SSMPC optimization problem involves as many as
2, 306, 133 primal variables and 3, 126, 960 dual variables. RapidNet solves it with
KPIτ = 82.7 s as compared to KPIτ = 719 s for the popular commercial solver
Gurobi v7.0 at the same level of accuracy (tolerance 5 ·10−2). The solvers cplex
and mosek were also tested, but Gurobi outperformed them consistently. As we
may see in Fig. 10, RapidNet exhibits a lower complexity index by approximately
an order of magnitude.

7. Conclusions and Future Work

We presented the integrated software solution RapidNet for the control of
drinking water networks which accounts for uncertainty both in predicted water
demand and in predicted electricity prices in the day-ahead energy market.
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RapidNet is a highly inter-operable software as it can be interfaced using
JSON files which follow a standard API which is detailed in the software documen-
tation. It can be combined with any forecaster as the controller does not need to
know the mechanism with which the forecasts are produced. RapidNet features a
parser implemented in MATLAB which allows the conversion of EPANET .inp

files to JSON files. It is an open-source and free software which is distributed
under the terms of the GNU LGPL v3.0 licence and can be downloaded at
https://github.com/GPUEngineering/RapidNet.

In this paper we have shown via simulations that when a water network is
operated in the context of a volatile energy market, considerable savings can
be obtained by using a predictor of the upcoming energy prices and taking
into account the associated price-related uncertainty in the formulation of the
scenario tree. Alongside, we advocate that RapidNet can transform SSMPC
from a powerful (but too complex) theoretical development to control engineering
practice and enabling the solution of very large SSMPC scale problems and their
seamless integration into the control system of the water network.

This work focuses on flow-based water distribution networks such as the
network of the city of Barcelona. Pressure-based networks lead to optimization
problems with nonconvex constraints. These can be approximated by solving
a constraints satisfaction problem (CSP) as discussed in [60]. The problem
can be then transformed into a convex SSMPC problem which can be solved
by RapidNet. The operator splitting concept has been proven to apply to
sums of nonconvex functions which allows the solution of nonconvex optimal
control problems with input constraints [76]. This allows the application of
recent developments in nonconvex optimization such as PANOC [77] for the
solution of nonlinear MPC problems.

Future developments in RapidNet will involve the implementation of new
faster parallelizable algorithms which make use of quasi-Newton directions
based on our recent theoretical work [78] and the exploitation of multiple-GPU
architectures. We shall introduce a library of available water network entities
from the literature as well as reported water demand and energy price models
for different water networks and energy markets.
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