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Differential susceptibility of Dectin-1 isoforms to
functional inactivation by neutrophil and
fungal proteases
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ABSTRACT: Patients with cystic fibrosis (CF) experience chronic or recurrent bacterial and fungal lung infections.
ManypatientswithCF cannot effectively clearAspergillus from their lungs.Thismay result in IgE sensitization and
the development of allergic bronchopulmonary aspergillosis, or invasive infections, such asAspergillus bronchitis.
Lung disease in patients with CF is associated with neutrophil-dominated inflammation and elevated levels of the
serine protease, neutrophil elastase (NE). Various C-type lectin-like receptors (CLRs), including Dectin-1 and
Dectin-2, are involved in the immune response toAspergillus. Here,we show thatpurifiedNE cleavesDectin-1 in an
isoform-specific manner. Bronchoalveolar lavage fluid from patients with CF, which contains high NE activity,
induces Dectin-1 cleavage. Similarly, filtrate from a protease-producing strain of Aspergillus fumigatus induces
isoform-specific cleavage of Dectin-1. Dectin-1 knockout (KO) cells and NE-treated cells demonstrated reduced
phagocytosis of zymosan, a fungal cellwall preparation. In addition,NE cleaves 2 otherCLRs,Dectin-2 andMincle,
and fungal-induced cytokine productionwas reduced inDectin-1KO cells, Dectin-2 KO cells, andNE-treated cells.
Thus,Dectin-1 andDectin-2 cleavagebyNEand/orA. fumigatus–derivedproteases results in anaberrant antifungal
immune response that likely contributes to disease pathology in patients with CF.—Griffiths, J. S., Thompson,
A., Stott, M., Benny, A., Lewis, N. A., Taylor, P. R., Forton, J., Herrick, S., Orr, S. J., McGreal, E. P. Differential
susceptibility of Dectin-1 isoforms to functional inactivation by neutrophil and fungal proteases. FASEB J.
32, 3385–3397 (2018). www.fasebj.org
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Aspergillus fumigatushas long been recognized as a serious
invasive pathogen in immunocompromised patients and
carries a high mortality rate. More recently, it has in-
creasingly been acknowledged as an important pathogen
in patients with preexisting airway disease who are

otherwise immunocompetent. Common diseases, in-
cluding asthma, chronic obstructive pulmonary disease,
and cystic fibrosis (CF), are frequently complicated by this
fungus (1). The spectrumof disease caused byA. fumigatus
in these patients includes invasive infection and allergic
hypersensitivity, both of which cause progressive lung
disease. Worldwide, the number of patients with un-
derlying airway disease who are affected by this fungus
exceeds 10 million (1). To elicit disease, the fungus must
first access and persist in the airway. The normally func-
tioning host is well adapted to prevent such persistence;
however, A. fumigatus is isolated in 10–57% of airway se-
cretions from patients with CF (2). A. fumigatus–specific
IgG has also been detected in 41% of patients with CF by
age 4 yr, increasing to 98% by age 10 yr. These seroposi-
tivity rates were significantly higher than either control or
asthmatic patients (3). Allergic bronchopulmonary asper-
gillosis (ABPA), a serious allergic entity that is character-
izedbyairwayobstructionand irreversible bronchiectasis,
affects 17.7% of the adult CF population, whereas Asper-
gillus bronchitis is present in 30% of patients (4). A central
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question, therefore, is why patients with underlying air-
way disease are susceptible to A. fumigatus.

In addition to the critical action of the mucocilliary es-
calator in clearing pathogens and other foreign particles
from the airway, the immune system takes amultifaceted
approach to the recognition and elimination of patho-
genic fungi. TLRs andC-type lectin-like receptors (CLRs)
expressed by myeloid cells are essential components of
these responses (5). Macrophages from mice that lack
functional TLR2, TLR4, or both receptors displayed
defective inflammatory responses to A. fumigatus (6). In
addition, a study that examined single nucleotide poly-
morphisms (SNPs) in TLR2, TLR3, TLR4, and TLR9
identified an association between a TLR4 haplotype and
an increased risk of developing invasive aspergillosis in a
cohortofpatientswhounderwenthematopoietic stemcell
transplantation (7). Immunocompetent mice that are de-
ficient in the CLR, Dectin-1, are exquisitely sensitive toA.
fumigatus airway infection,with an 80%mortality rate (8).
The b-glucan receptor, Dectin-1, binds specific morphol-
ogies of A. fumigatus, including swollen conidia, early
germlings, and hyphae, but not resting conidia (9, 10).
Dectin-1 is important for A. fumigatus–associated phago-
cytosis and cytokine production (8, 9), and a premature
stop codon polymorphism in Dectin-1 doubles the risk of
invasive fungal disease in immunocompromised patients
(11). Another CLR, Dectin-2, recognizes mannose-like
structures in fungal cell walls, including that of A. fumiga-
tus, andmediates important inflammatory responses upon
fungal challenge (12–15). Mincle also recognizes mannans
in fungal cell walls, and whereas Mincle expression is up-
regulated in response to A. fumigatus, A. fumigatus did not
activate Mincle-expressing cells (16, 17). SNPs in Dectin-1
and an additional CLR, dendritic cell-specific intercellular
adhesion molecule-3-grabbing non-integrin (DC-SIGN),
are associated with increased susceptibility to invasive as-
pergillosis. In addition, SNP–SNP interaction analysis
demonstrated increased susceptibility in patients with
SNPs in the genes that encodeC-Cmotif chemokine ligand
2 (CCL2), Dectin-1, C-C motif chemokine receptor 2
(CCR2), and Dectin-2 (18).

Whereas defects in these receptors markedly increase
susceptibility to fungal disease, little is known of their
functional status in patients with underlying airway dis-
ease. Given the important complicating influence of fun-
gal pathogens in CF, understanding the behavior of these
receptors in the CF airway is of critical importance. De-
clining lung function in patients with CF is associated
with a profound neutrophilia and the presence of high
levels of free neutrophil-derived serine protease activ-
ity (19). Such proteases as neutrophil elastase (NE),
cathepsin-G, and proteinase 3 have important antimi-
crobial functions, but are also capable of damaging host
tissues andmolecules of the immune system if not tightly
regulated by the serpin family of antiproteases. A pro-
tease:antiprotease imbalance is widely recognized as an
important pathologic mechanism in the CF airway (20).
Weandothers havepreviouslydemonstrated that several
armsof the immune system, includingC5aR, IL-6, soluble
IL-6R, surfactant protein-D, and TLRs (21–24), are subject
to profound functional inactivation in the CF airway. Of

note, Dectin-1 recognition of fungal ligands is trypsin
sensitive (25), which raises the possibility that this critical
fungal CLR may also be susceptible to inactivation by
neutrophil-derivedproteases indiseases suchasCF.Here,
we address this possibility and demonstrate that NE
cleaves Dectin-1 and other CLRs, Dectin-2, and Mincle,
which results in reduced antifungal responses.

MATERIALS AND METHODS

Mice

C57BL6/J,Dectin-1 knockout (KO) (26),Dectin-2KO(27),Mincle
KO (28), and BALB/c mice were maintained and handled
according to institutional and UK Home Office guidelines. This
study was performed in accordance with a project license ap-
proved by the Cardiff University Animal Welfare and Ethical
Review Body and the UKHomeOffice. The animal care and use
protocol adhered to theAnimals (Scientific Procedures)Act 1986.

Ethics and sample collection

Bronchoalveolar lavage (BAL) was collected from patients with
CF who attended the Children’s Hospital for Wales. BAL sam-
ples from 35 patients are included in this study, with a median
age at the time of sampling of 10.5 yr (interquartile range, 7–13.5
yr) and a gender distribution of 20:15 (female:male). Ethical ap-
proval for the collectionanduseofBALsamples in this studywas
obtained from the Wales Research Ethics Committee as part of
the CF-SpIT study (11/WA/0334). BAL samples were obtained
by the instillation and retrieval of normal saline at the right
middle lobeby flexible bronchoscopyunder general anesthetic as
part of routine clinical care. BAL sampling was performed in
accordancewith theEuropeanRespiratory Society TaskForce on
BAL in children (29). In brief, a flexible bronchoscopewasused to
instill 0.9% sterile saline at of volume of 1 ml/kg to a maximum
volume of 20 ml and immediately suctioned. Samples were
storedat 4°Cafter collectionandwereprocessed in the laboratory
within 1 h of collection. Samples were centrifuged at 500 g for
5 min at 4°C, and cell-free BAL fluid (BALF) was portioned into
aliquots and stored at 280°C. For cytospins, cell pellets were
resuspended in 10 mM EDTA/PBS and counted by using a he-
mocytometer.After cellular resuspension, 53 104 cellswere fixed
to each polysine slide by using a cytofuge at 500 g for 5 min. For
differential cell counts, cytospins were stained with hemacolor
(EMDMillipore, Billerica,MA,USA) according tomanufacturer’s
instructions and fixed in DPX mounting medium. Cell differen-
tiation was performed on at least 4 separate fields per cytospin
at320magnification, countingat least 300 events.Differential cell
counts in recovered BAL from the 35 patients were as follows
[median (interquartile range)]: total cell counts: 1.13 106 cells/ml
(0.76–2.56); polymorphonuclear cells: 0.83 3 106 cells/ml
(0.31–1.8); andmononuclear cells: 0.213 106 cells/ml (0.11–0.31).

Reagents

Elastase that was purified from primary human neutrophils was
purchased from Athens Research and Technology (Athens, GA,
USA). a-1 Antitrypsin (AAT) and PMSF were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Anti-hemagglutinin (HA)
was purchased from Miltenyi Biotec (Bergisch Gladbach, Ger-
many). Soluble recombinant human Dectin-1 was purchased
from R&D Systems (Minneapolis, MN, USA). Anti–Dectin-1
(humanandmouse)waspurchased fromBio-Rad (Hercules,CA,
USA). Anti-Ly6G, anti-CD11b, anti-F4/80, anti-CD19, and anti-
TNF were purchased from BioLegend (San Diego, CA, USA).
Anti-Mincle was purchased from Caltag MedBiosystems
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(Buckingham, United Kingdom). Anti–Dectin-2 mAb D2.11E4
has been previously described (30). Geneticin was purchased
from Thermo Fisher Scientific (Waltham, MA, USA).

Cell isolation and culture

NIH3T3 cell lines that expressed human or mouse Dectin-1
HA were a gift from Prof. Gordon Brown (University of
Aberdeen, Aberdeen, United Kingdom). Cells were main-
tained in DMEM that was supplemented with 10% fetal bo-
vine serum, 2 mM L-glutamine, and penicillin/streptomycin.
Geneticin (G418) was added at a concentration of 0.4–0.6 mg/
ml for selection. For passaging, cells were incubated with
trypsin for 4–5min at 37°C and detached by tapping the flask;
however, for experiments, cells were removed from flasks by
incubating with PBS that was supplemented with 10 mM
EDTA and 4 mg/ml lidocaine (Sigma-Aldrich) to avoid re-
ceptor cleavage by trypsin. Medium was added to cells in
trypsin or lidocaine and cells were centrifuged. Cells were
washed twice in PBS before use.

To culture bonemarrow–derivedmacrophages (BMDMs) (31),
bone marrow cells were flushed from femurs and tibiae of mice.
Bonemarrowcellswere resuspendedat 23105 cells/ml inDMEM
that was supplemented with 10% fetal bovine serum, 5% horse
serum,2mML-glutamine,penicillin/streptomycin,HEPES,and10
ng/ml M-CSF. Cells were plated at a density of 7 3 106 cells per
145-mm2 plate. Cells were cultured for 6–7 d, and 15 ml of fresh
medium and M-CSF was added on d 3. Medium was removed
fromBMDMond6–7andPBS thatwas supplementedwith8mg/
ml lidocainewas incubatedwithBMDMsfor4–5minat37°C.Cells
were detached upon tapping and medium was added to cells.
BMDMs were centrifuged and washed twice before use.

To recruit inflammatory cells, mice were injected intraperito-
neally with 0.5 ml 2% (w/v) Biogel P-100 polyacrylamide beads
(Bio-Rad) (32). Mice were sacrificed 16–18 h later, and inflam-
matory cellswere collectedbyperitoneal lavagewith5ml ice-cold
RPMI 1640 that was supplemented with 10% fetal bovine serum
and penicillin/streptomycin. Cells were passed through 40-mm
cell strainers (BD Biosciences, San Jose, CA, USA) to remove
Biogel beads. Cellswerewashed twicewith assaybuffer, PBS that
was supplemented with 0.1% bovine serum albumin (BSA) and
5 mM EDTA, before use. Using Biogel injection, 9.373 106 6
0.80 3 106 cells/mouse were elicited, and the cell population
consisted of 71.68 6 2.59% Ly6G+CD11b+ neutrophils and
15.48 6 3.57% Ly6G2CD11b+ inflammatory monocytes.

Aspergillus culture

A. fumigatus (CEA10 and Af293) strains were cultured on
Sabouraud dextrose agar and incubated at 37°C for 48–72 h.
Conidia were harvested with a PBS–Tween (0.05% Tween 20)
wash. A flask that contained 500ml Vogel’sminimalmedium
was inoculated with 13 106 conidia/ml and cultured for 48 h
at 37°C and 320 rpm. A. fumigatus cultures were then prefil-
tered through J cloth and sterile filtered through a 0.2-mm
filter. Resultant culture filtrate was dialyzed overnight
against repeated changes of distilled water and freeze dried
before being stored at 280°C. Freeze-dried aliquots were
reconstituted with sterile PBS, and total protein content was
determined by using a BCA protein assay (Thermo Fisher
Scientific). Total protease activity of culture filtrate was de-
termined by using Universal Protease Substrate (Casein,
resorufin labeled; Roche, Basel, Switzerland) according to
manufacturer’s instructions. Filtrates were resuspended at
2 mg/ml in PBS. For CEA10, this was equivalent to 19 U/ml
protease activity as measured by using the casein protease
assay.

Cleavage assays

For receptor cleavage experiments, cells were resuspended at
1–23 106 cells/ml in assay buffer (PBS, 5 mMEDTA, 0.1% BSA,
10 mMNaN3). Cells (50 ml; 5–103 104) were added to a 96-well
plate and incubated with 50 ml of purified proteases in assay
buffer orA. fumigatus filtrates at indicated concentrations for the
indicated timesat 37°C.Forexperiments thatusedCFBALF, cells
were exposed to 50 ml of cell-free BALF for 30 min at 37°C. NE
activity was neutralized either by using the indicated concen-
tration ofAATor by heat inactivation (HINE) at 95°C for 10min.
Cells were centrifuged, washed, and stained with anti-HA,
anti–Dectin-1, anti–Dectin-2, or anti-Mincle. Biogel elicited cells
were also stained with anti-Ly6G and anti-CD11b. Cells were
then analyzed by flow cytometry on a Beckman Coulter CyAn,
BD Canto, or FACScalibur flow cytometer (Beckman Coulter,
Brea, CA,USA).Datawere analyzed byusingFlowing or FlowJo
software (FlowJo, Ashland, OR, USA).

For experiments that examined the cleavage of soluble
recombinantDectin-1, 1mg/mlof the recombinantprotein inTris-
buffered saline (pH 7.4) was treated with the indicated concen-
tration of NE orA. fumigatus filtrate for 60min at 37°C. Reactions
were stopped with the addition of 10 mM PMSF. Samples were
subsequently prepared for SDS-PAGE under nonreducing con-
ditions on a 15% Tris-glycine gel. Proteins were transferred to a
nitrocellulose membrane, blocked with PBS-5% (w/v) milk, and
probed with goat anti-human Dectin-1 (R&D Systems), followed
by horseradish peroxidase conjugated donkey anti-goat IgG.
Blots were visualized by using ECL radiography.

NE activity assay

BALF was removed from280°C and thawed on ice. BALF was
diluted to ,1:2 using activity buffer (0.1 M Tris, 0.5 M NaCl,
0.05% v/v Triton X-100, pH 7.5), and additional dilutions were
made for samples with high activity. For standards, purified
human NE was diluted 2-fold serially from 80 to 1.25 nM. Ac-
tivity buffer was used as a negative control. BALF or standard
(50 ml) was added to a flat-bottomed 96-well plate in duplicate.
NE-specific chromogenic substrate (50 ml/well, 2mM), Suc-Ala-
Ala-Pro-Val-pNA in activity buffer, was added. Optical density
at 405nmwas readeveryminute for 20minonaDynexRevelation
MRX TC spectrophotometer (Dynex Technologies, Chantilly,
VA, USA). For each sample, the average change in optical
density over time was calculated. NE activity in BALF was
interpolated from a 7-point standard curve.

Zymosan recognition assay

Zymosan (Thermo Fisher Scientific) was labeled with FITC
(Sigma-Aldrich) as previously described (32). Labeled zymosan
was washed 4 times with PBS and resuspended at 50 mg/ml in
assaybuffer ready foruse.BMDMsorNIH3T3cells that expressed
humanDectin-1 isoformAorBwere resuspendedat 13106 cells/
ml in assay buffer. Cells (50 ml; 53 104) were added to a 96-well
plate. Cells were centrifuged and supernatants were removed.
Assay buffer, NE, or HINE (50ml) at the indicated concentrations
were added for 1 h before the addition of 50ml zymosan at 50mg/
ml for 15 min. Cells were centrifuged and washed. BMDMswere
stained with anti-F4/80, anti-CD11b, and anti–Dectin-1. NIH3T3
cells that expressed human Dectin-1 isoform A or B were stained
with anti–Dectin-1. Cells were analyzed by flow cytometry.

Intracellular cytokine flow cytometry assay

A. fumigatus isolate 13073 (American Type Culture Collection,
Manassas, VA, USA) swollen conidia (SC) were obtained by
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culturing 13 108A. fumigatus resting conidia in 1 ml RPMI 1640
and polymixin B (2 mg/ml) for 6 h at 37°C. SC were washed
3 timeswithPBSand labeledwith4.5mMcell trace far red (Thermo
Fisher Scientific) for 30 min at room temperature. SC were
washed 3 timeswithPBS. Biogel elicited cells (100ml; 43 105) in
RPMI 1640 thatwas supplementedwith 10% fetal bovine serum
and penicillin/streptomycin were added to a 96-well ultra-low
adherence plate and left to rest for 1 h at 37°C. Medium or A.
fumigatus SC (100 ml; 4 3 105) was added for 3 h at 37°C in the
presence of Brefeldin (BioLegend). Cells were stainedwith anti-
Ly6G, anti-CD11b, anti-CD19, anti-TNF, and a live-dead stain
(Thermo Fisher Scientific) and analyzed on a BD Canto flow
cytometer. The following gating strategywas used to determine
percentA. fumigatus+ inflammatorymonocytes producing TNF:
live cells, CD192, Ly6G2CD11b+, A. fumigatus+.

Zymosan-induced ELISA cytokine assay

Biogel-elicited cellswere resuspendedat 83106 cells/ml in assay
buffer. Cells (25 ml; 2 3 105) were plated in a 96-well ultra-low
adherence plate. Assay buffer, 4 mM NE, or HI NE (25 ml) was
added for 1 h. Zymosan (50ml; 50mg/ml)was added for 4 h. NE
and HI NE remained in the cultures during stimulation with
zymosan. Cell culture supernatants were recovered and assayed
for cytokine by ELISA (ThermoFisher Scientific) according to the
manufacturer’s protocol.

A. fumigatus–induced ELISA cytokine assay

Biogel-elicited cells were washed with MACS buffer, PBS that
was supplementedwith 0.5%BSAand2mMEDTA, and stained
with anti-Ly6G biotin (Miltenyi Biotec). Cells were incubated
with anti-biotin microbeads (Miltenyi Biotec), and inflammatory
monocytes (Ly6G2 cells) were enriched by MACS separation
according to manufacturer’s instructions. Cells were resus-
pended in assay buffer, and 2–43 105 cells were plated in a 96-
well ultra-lowadherenceplate in 25ml assaybuffer.Assaybuffer,
4 mM NE, or HI NE (25 ml) was added for 1 h. A. fumigatus SC
(0.6–1.2 3 106) in 50 ml Aim V medium was added for 4 h to
stimulate cells at a 3:1 A. fumigatus:cell ratio. NE and HI NE
remained in the cultures during stimulation with A. fumigatus.
Cell culture supernatants were recovered and assayed for cyto-
kine by ELISA according to manufacturer’s protocol.

Statistical methods

DatawereanalyzedonGraphPadPrism(GraphPadSoftware,La
Jolla, CA, USA). Data are presented as means 6 SD or SEM and
are representative of 3–4 independent experiments. One-way
ANOVA followed by Bonferroni’s posttest was used for statis-
tical analysis when multiple groups were analyzed. A Student’s
t test was used for statistical analysis when 2 groups were ana-
lyzed. A Spearman’s rank test was used to test correlations.
Statistical significance was set at P, 0.05, P, 0.01, or P, 0.001.

RESULTS

Dectin-1A is cleaved by NE

AsNE cleaves various cell surface receptors, such as TLR4
and C5aR (23, 24), and Dectin-1 activity was trypsin sen-
sitive (25),wepostulated thatNEmayalso cleaveDectin-1.
To investigate this possibility, we incubated NIH3T3 cell
lines that expressed2different isoformsofhumanDectin-1

(hDectin-1) with NE. Dectin-1 isoform A is the full-length
isoform, whereas isoform B lacks the stalk region (33). Of
interest, NE only cleaved full-length Dectin-1 (isoform A;
Fig. 1A), but not the short isoform (isoform B; Fig. 1B),
which suggests that theNEcleavage site iswithin the stalk
region. NE-mediated cleavage of Dectin-1 was inhibited
by the serine protease inhibitor, AAT (Fig. 1A). Similar to
other receptors, NE-mediated cleavage of hDectin-1 iso-
form A occurred in a time- and dose-dependent manner
(Fig. 1C, D). In addition to hDectin-1, NE also cleaved
murine Dectin-1 isoform A (Fig. 1E). Thus, NE cleaves
Dectin-1 isoform A, but not isoform B, which will likely
have functional consequences in the presence of fungal
pathogens.

CF BALF induces cleavage of Dectin-1

Increased neutrophil influx occurs in the lungs of patients
with CF. This results in cellular activation, apoptosis, and
necrosis, with a subsequent release of excess levels of NE
(23). To determine whether BALF from the lungs of pa-
tients with CF has the ability to cleave Dectin-1, we in-
cubated NIH3T3 cells that expressed hDectin-1 isoform A
with either NE or BALF from patients with CF. Both NE
and CF BALF substantially reduced cell surface Dectin-1
levels, an effect that was inhibited by the serine protease
inhibitor, AAT (Fig. 2A), thus demonstrating that CF
BALF-induced cleavage of Dectin-1 was dependent on a
serine protease. In addition to measuring the BALF-
induced loss of Dectin-1, NE activity and neutrophil
numbers in CF BALF samples were determined and ex-
amined for any relationshipwith the BALF-induced loss of
Dectin-1 in the in vitroNIH-3T3 assay. A strong correlation
was observed betweenNE activity and the loss of Dectin-1
(Fig. 2B), and between the number of neutrophils that are
present in CF BALF and the loss of Dectin-1 (Fig. 2C). Al-
though this does not rule out the possibility that other
neutrophil serine proteases are also involved, these data
indicate thatDectin-1 is cleavedbyNE,and there is a strong
association between Dectin-1 cleavage and neutrophil-
mediated secretion of NE in the lungs of patients with CF.

A. fumigatus–derived proteases cleave
Dectin-1

A. fumigatus has been isolated from the lungs of 10–57% of
patients with CF, with increasing isolation from older
patients and patientswithworsening respiratory function
(2).A. fumigatus secretes proteases, some of which display
serine protease activity that is similar to NE (34). To in-
vestigate whether A. fumigatus–secreted proteases have
the ability to cleaveDectin-1 in amanner similar toNE,we
investigated 2 strains of A. fumigatus: CEA10, a high pro-
teaseproducer, andAf293, a lowprotease producer. Fungi
were cultured inVogel’smediumand the resulting culture
filtrates were incubated with NIH3T3 cells that expressed
hDectin-1. Culture filtrate (100 mg/ml total protein) from
the high protease producer (A. fumigatus CEA10) induced
the cleavage of hDectin-1 isoformA (Fig. 3A), and thiswas
inhibited by the serine protease inhibitor, PMSF; however,
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as expected, an equivalent quantity of culture filtrate from
the low protease producer, A. fumigatus 293, did not in-
duce the cleavage of hDectin-1 isoformA (Fig. 3B).Neither
filtrate induced the cleavage of hDectin-1 isoform B (Fig.
3C, D). In addition to cleaving surface-bound Dectin-1,
both NE and A. fumigatus CEA10 filtrate cleaved soluble
Dectin-1, which resulted in a similar-sized fragment (Fig.
3E),whereasA. fumigatus 293 filtratedidnot cleave soluble
Dectin-1. These data indicate that, in addition to the NE-
mediated cleavage ofDectin-1 in the lungs of patientswith
CF, A. fumigatus–secreted protease(s) may also cleave

Dectin-1 in the lungsofpatientswithCFwhoarecolonized
with A. fumigatus.

NE cleaves Dectin-1 on myeloid cells

As we have shown that NE cleaves Dectin-1 on NIH3T3
cells thatoverexpressDectin-1,weundertook experiments
to determine whether this occurs on myeloid cells that
naturally express Dectin-1. Heinsbroek et al. (33) demon-
strated that macrophages from BALB/c mice expressed
similar levels of Dectin-1 isoform A and isoform B,

Figure 1. Dectin-1A is cleaved by NE. A–C) NIH-3T3 cells that express human HA-tagged Dectin-1 isoform A (A, C) or Dectin-1
isoform B (B) were exposed to 0.5 mM NE, in the presence or absence of AAT, for 30 min (A, B) or for the indicated times (C) at
37°C. Cells were stained with an anti-HA Ab and analyzed by flow cytometry. D) NIH-3T3 cells that express human HA-tagged
Dectin-1 isoform A were exposed to the indicated concentrations of NE for 30 min at 37°C. Cells were stained with an anti-HA Ab
and analyzed by flow cytometry. E) NIH-3T3 cells that express murine Dectin-1 isoform A were exposed to NE for 1 h at 37°C.
Cells were stained with an anti–Dectin-1 Ab and analyzed by flow cytometry. Data are representative of 3–4 independent
experiments. APC, allophycocyanin.
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whereas macrophages from C57BL/6 mice predomi-
nantly expressed isoform B; therefore, as only the Dectin-
1A isoform is cleaved byNE,we examinedNE-mediated
Dectin-1 cleavage on myeloid cells from BALB/c
mice. Consistent with our findings with NIH3T3 cells
that overexpressed Dectin-1, NE cleaved Dectin-1 on
BMDMs from BALB/c mice in a dose-dependent
manner, and this was inhibited by the serine protease

inhibitor, AAT (Fig. 4A). As neutrophils and in-
flammatory cells are recruited to the lungs of patients
with CF, we elicited neutrophils and inflammatory
monocytes/macrophages by injecting Biogel into the
peritoneal cavity. These 2 populations were clearly
identifiable as Ly6G+CD11b+ neutrophils and Ly6G2

CD11b+ inflammatory monocytes/macrophages in the
absence of NE treatment (Fig. 4B). After treatment with
NE for 1 h, the 2 populations could still be identified by
using these markers; however, Ly6G expression was
substantially reduced (Fig. 4B), which indicated NE-
mediated cleavage of Ly6G. NE also induced Dectin-1
cleavage in Biogel-elicited neutrophils (Fig. 4C) and
inflammatory monocytes/macrophages (Fig. 4D) in a
dose-dependent manner, and this was inhibited by
AAT; therefore, NE cleaves Dectin-1 from the surface of
various myeloid cell populations.

NE cleavage of Dectin-1 impairs
zymosan recognition

Dectin-1 is a phagocytic receptor for various fungal
pathogens (9). To determine whether NE-induced cleav-
age of Dectin-1 resulted in the reduced recognition of
b-glucan–containing substrates, we used the fungal cell
wall preparation, zymosan, which is rich in b-glucans.
In agreement with previous findings, we showed that
Dectin-1 KO BMDMs displayed significantly reduced
zymosan recognition (Fig. 5A, B). In addition, BMDMs
from BALB/c mice that were treated with NE demon-
strated reduced zymosan recognition in a dose-dependent
manner (Fig. 5C, D). HI NE did not substantially reduce
zymosan recognition (Fig. 5C,D). Similarly,NE treatment
of NIH3T3 cells that expressed hDectin-1 isoform A
resulted in reduced zymosan recognition in a dose-
dependent manner (Fig. 5E); however, NE treatment of
NIH3T3 cells that expressed hDectin-1 isoform B did not
affect zymosan recognition (Fig. 5F). This is consistent
with the inability of NE to cleave hDectin-1 isoform B
(Fig. 1B). Therefore, reduced Dectin-1 expression as a
result of NE-induced cleavage in the lungs of patients
with CFwould likely result in the reduced recognition of
fungal pathogens that are rich in b-glucans.

NE cleaves CLRs and reduces TNF production

As we have shown that Dectin-1 is cleaved by NE, we
conducted experiments to determine whether addi-
tional CLRs, such as Dectin-2 or Mincle, were also
cleaved by NE. To this end, Biogel-elicited cells were
treated with NE, and Dectin-2 and Mincle expression
levels were determined by flow cytometry. Similar to
our findings with Dectin-1, NE cleaved both Dectin-2
and Mincle on inflammatory monocytes/macrophages
(Fig. 6A, B) and neutrophils (data not shown). A.
fumigatus–induced TNF production was reduced in
inflammatory monocytes/macrophages from Dectin-1
KO andDectin-2 KOmice, but notMincle KOmice (Fig.
6C, D). In addition, zymosan-induced TNF production
from Biogel-elicited cells was reduced after incubation

Figure 2. CF BALF induces cleavage of Dectin-1. A) NIH-3T3 cells
that express human HA-tagged Dectin-1 isoform A were exposed
to 0.5 mM NE or 50 ml CF BALF, in the presence or absence of
AAT, for 30 min at 37°C. Cells were stained with anti-HA Ab and
analyzed by flow cytometry. Graph displays means 6 SD. Data are
the cumulative result of 7 independent experiments. B, C)
NIH3T3 cells that express human HA-tagged Dectin-1 isoform A
were exposed to CF BALF for 30 min at 37°C. Cells were stained
with an anti-HA Ab and analyzed by flow cytometry. NE activity in
CF BALF samples was measured (B). Correlation analysis between
NE activity and percentage loss of Dectin-1 was performed.
Neutrophil numbers in the CF BALF were counted and
correlation analysis between neutrophil numbers in CF BALF
samples and percentage loss of Dectin-1 was performed (C).
Graphs are the cumulative result of at least 7 independent
experiments (B, C). Each symbol represents data for CF BALF
from a single patient.
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with NE, whereas HI NE did not substantially reduce
TNF production (Fig. 6E). Similarly, A. fumigatus–
induced TNF production from an enriched population
of Biogel-elicited inflammatory monocytes was re-
duced after treatment with NE, whereas HI NE did not
reduce TNF production (Fig. 6F). As both Dectin-1 and

Dectin-2 contribute to fungal-induced TNF production,
and as both CLRs are cleaved by NE, NE-mediated
blockade of TNF production is likely a result, in part, of
the loss of Dectin-1 andDectin-2, although contributing
roles for other receptors, such as TLRs, cannot be ruled
out.

Figure 3. A. fumigatus–derived proteases cleave Dectin-1. A–D) NIH3T3 cells that express human HA-tagged Dectin-1 isoform A
(A, B) or isoform B (C, D) were exposed to A. fumigatus CEA10 supernatant (A, C) or Af293 supernatant (B, D)—in the presence
or absence of PMSF—for 30 min at 37°C. Cells were stained with anti-HA Ab and analyzed by flow cytometry. Plots are
representative of 3 independent experiments. E) Soluble Dectin-1 was exposed to NE or A. fumigatus filtrates from protease-
producing (CEA10) or non–protease-producing (Af293) fungal strains at the indicated concentrations for 60 min at 37°C.
Proteases were inhibited with PMSF, and Dectin-1 was separated by SDS-PAGE, blotted to nitrocellulose membrane, and probed
with anti–Dectin-1. Data are representative of 3 independent experiments.
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DISCUSSION

Here, for the first time, we have demonstrated that
Dectin-1 is cleaved by NE in an isoform-specific man-
ner, and we have shown that BALF from patients with
CF also induces Dectin-1 cleavage. The percentage loss
of Dectin-1 at the surface of cells in vitro correlates with
NE activity and neutrophil numbers in BALF. We also
determined that culture filtrate from a high protease-
producing strain ofA. fumigatus induces the cleavage of
Dectin-1 in an isoform-specific manner, similar to that
observed with NE treatment. In addition, Dectin-1 KO
BMDMs and NE-treated BMDMs demonstrated re-
duced recognition/phagocytosis of zymosan, a fungal
cell wall preparation. Finally, NE cleaves two other
CLR familymembers, Dectin-2 andMincle, and fungal-
induced TNF production was reduced in Dectin-1 KO
cells, Dectin-2 KO cells, and NE-treated cells; there-
fore, cleavage of Dectin-1 and Dectin-2 by NE and/or
A. fumigatus–derived proteases results in an aberrant
antifungal immune response. Taken together, these
data indicate that both host-derivedNEandAspergillus-
derived proteases have the capacity to cleave Dectin-1

and other CLRs in the lungs of patients with CF, po-
tentially inhibiting immune responses to Aspergillus,
thereby reducing the ability to clearAspergillus from the
airway.

CF affects;1 in 2500 live births in theUnitedKingdom.
Although it is a multiorgan disease, the majority of mor-
bidity andmortality is associatedwith progressive airway
disease as a result of recurrent and chronic infection. The
neutrophils that dominate the airway during disease ex-
acerbation, and the proteases they secrete, are primary
contributors to declining airway function in CF (20). In
addition to their damaging effects on the mucocilliary
system and other local tissue structures, neutrophil serine
proteases (NSPs) cleave and inactivate several important
components of the immune system, which compromises
effective immunity. For example, we demonstrated that
NE and other NSPs in BALF from patients with CF cleave
and inactivate C5aR (23). Of interest, another study dem-
onstrated that TLR4 is cleaved byNE; however, that study
showed that NE promotes cytokine productionmediated,
in part, by TLR4 (24). This is in contrast to our results with
Dectin-1; however, this may be a result of different ex-
perimental conditions. That previous study incubated

Figure 4. NE cleaves Dectin-1 on myeloid cells. A) BMDMs from BALB/c mice were exposed to NE, in the presence or absence of
AAT, for 1 h at 37°C. Cells were stained with anti–Dectin-1 and analyzed by flow cytometry. B–D) BALB/c mice were injected i.p.
with 0.5 ml Biogel, and inflammatory infiltrates were recovered 16 h later by peritoneal lavage. Cells were left unexposed or
exposed to NE in the presence or absence of AAT for 1 h at 37°C. Cells were stained with anti-Ly6G, anti-CD11b, and anti–Dectin-
1, and analyzed by flow cytometry. Dectin-1 levels were measured in the LyG+CD11b+ (neutrophil) population (C ) and
LyG2CD11b+ (inflammatory monocyte/macrophage) population (D). Data are representative of 3 independent experiments.
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cells with NE for 1 h, then removed NE before additional
culture for 4 h (24). In contrast, we incubated cellswithNE
for 1 h and added zymosan for an additional 4 h in the
presence of NE. This resulted in diminished cytokine
production in response to zymosan in the presence of NE,
which indicated an aberrant response to A. fumigatus in
settings in which high levels of NE are present for a pro-
longed time. Whereas CF lungs are frequently exposed to
high levels of NE and other NSPs, and they express high
levels of proinflammatory cytokines, there are likely

multiple factors that are involved in the induction of these
proinflammatory cytokines. On the basis of our data, we
hypothesize that exposure toA. fumigatus in patients with
CF who undergo an airway exacerbation may lead to
aberrant antifungal immune responses as a result of
protease-mediated deficiency of Dectin-1 and other anti-
fungal receptors. This may result in an inability to effec-
tively clearA. fumigatus from the lungs, andmay also lead
to sensitization to A. fumigatus and the development of
ABPA.

Figure 5. NE cleavage of Dectin-1 impairs zymosan recognition. A–D) Wild-type (WT) and Dectin-1 KO BMDMs (A, B) and NE-
treated BMDMs from BALB/c mice (C, D) were incubated with 2.5 mg FITC-labeled zymosan for 15 min. Cells were stained with
anti-F4/80, anti-CD11b, and anti–Dectin-1, and analyzed by flow cytometry. Data are representative of 3 independent
experiments. Zymosan recognition in Dectin-1 KO cells (B) and NE/HI NE-treated cells (D) is relative to WT cells (set at 100%;
B) or buffer control cells (set at 100%; D). E, F) NE-treated NIH3T3 cells that express hDectin-1 isoform A (E) or isoform B (F)
were incubated with 2.5 mg FITC-labeled zymosan for 15 min. Cells were stained with anti–Dectin-1 and analyzed by flow
cytometry. Data are representative of 3 independent experiments. Zymosan recognition in NE/HI NE-treated cells is relative to
buffer control cells (set at 100%). Graphs display means6 SEM. Representative data from 1 of the 3 independent experiments (A,
C). **P , 0.01, Student’s t test (B); **P , 0.01, ***P , 0.001, 1-way ANOVA with Bonferroni’s posttest (D, E).
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Figure 6. NE cleaves CLRs and reduces TNF production. A, B) BALB/c mice were injected with Biogel (0.5 ml, i.p.), and
inflammatory infiltrates were recovered 16 h later by peritoneal lavage. Cells were left unexposed or exposed to 1 mM NE or HI
NE for 1 h at 37°C. Cells were stained with anti-Ly6G, anti-CD11b, anti–Dectin-2, and anti-Mincle, and analyzed by flow cytometry.
Dectin-2 (A) and Mincle (B) levels were measured in the LyG2CD11b+ inflammatory monocyte/macrophage population. C, D)
Wild-type (WT), Dectin-1 KO, Dectin-2 KO, and Mincle KO mice were injected intraperitoneally with 0.5 ml Biogel, and
inflammatory infiltrates were recovered 16 h later by peritoneal lavage. Cells were stimulated with cell trace far red-labeled A.
fumigatus for 3 h in the presence of Brefeldin, and cells were stained with anti-Ly6G, anti-CD11b, anti-CD19, and anti-TNF, and
analyzed by flow cytometry. Percentages of TNF-producing inflammatory monocytes with bound/phagocytosed A. fumigatus were
measured. Representative data from 1 of 3 independent experiments is shown in panel C. Graph displays means 6 SEM (D).
Graph displays cumulative data from 3 independent experiments. *P , 0.05, **P , 0.01, 2-way ANOVA with Bonferroni’s
posttest. E) BALB/c mice were injected with Biogel (0.5 ml, i.p.), and inflammatory infiltrates were recovered 16 h later by
peritoneal lavage. Cells were left unexposed or exposed to 2 mM NE or HI NE for 1 h at 37°C, followed by stimulation with 25 mg/ml

(continued on next page)
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Whereas much of our data focus on the potential for
neutrophil-derived proteases to functionally inactivate
Dectin-1, we also present data that show that proteases
expressed by A. fumigatus itself have the potential to in-
activate this important fungal receptor. A wide range of
fungal species are known to express proteases, and these
are thought to play important roles in normal fungal
growth and propagation as well as facilitating tissue in-
vasion and catabolizing extracellular macromolecules as a
food source (35). Proteases that are secreted byA. fumigatus
are also recognized as important antigens that mediate al-
lergic immuneresponses.Whereas there is little evidence to
suggest that they act in adirectly immune-evasivemanner,
a previous report hasdemonstrated their capacity to cleave
the innate immunepattern recognition receptor, Pentraxin-
3 (34). Data presented in this study indicate that these
proteasesmay further benefit the pathogen via inactivation
of fundamental antifungal innate immune receptors. As
A. fumigatus secretion of proteases is strain dependent,
A. fumigatus protease-dependent Dectin-1 cleavage may
vary between patients, depending on which strain(s) of
A. fumigatus are present.Additional studies that focus on in
vivo models with protease-sufficient and -deficient fungal
strainswill be required to fully understand the importance
of this observation to fungal pathogenesis.

CLRs, Dectin-1, Dectin-2, andMincle are important for
antifungal responses to A. fumigatus and/or other fungal
spp. The immunologically inert surface RodA layer on
resting A. fumigatus conidia masks other immunologi-
cally active cell wall components, such as b-glucans
and mannans. Upon removal of this layer by swelling/
germination,host immunepathogen recognition receptors
recognize cell wall components and induce an immune
response (36). In agreement with this, Dectin-1 does not
bind A. fumigatus resting conidia, but binds to SC, early
germlings, and hyphae (9, 10). Dectin-1 is important for
phagocytosis of fungal pathogens, and we observed re-
duced zymosan recognition/binding by Dectin-1 KO
BMDMs and NE-treated BMDMs, with reduced Dectin-1
expression. A. fumigatus SC and early germlings induce a
robust cytokine response that is mediated, in part, by
Dectin-1 andTLR2 (8–10). In addition,Dectin-2 is partially
responsible for A. fumigatus SC and hyphae-induced re-
active oxygen species and/or cytokine production (14,
37). Similar to Dectin-1–induced responses, Dectin-2–
mediated responses are blocked by the presence of the
RodA layer on resting conidia (12). Whereas Mincle ex-
pression is up-regulated in response to A. fumigatus stim-
ulation (16), a role for Mincle during the response
to A. fumigatus has not been identified to date (17). In
agreement with these data, we observed that A. fumigatus
SC-induced TNF from Biogel-elicited inflammatory
monocytes/macrophages was partially dependent on

Dectin-1 and Dectin-2, but independent of Mincle. This
does not rule out the involvement of other receptors, such
asTLR2,whichhaspreviously been shown toplay a role in
A. fumigatus–induced cytokine production from macro-
phages (9, 10). NE-treated cells, with reduced Dectin-1,
Dectin-2, and Mincle expression, also displayed reduced
fungal-induced cytokine responses, which is in agreement
with the reduced cytokine responses that we observed in
Dectin-1 and Dectin-2 KO cells. Therefore, CLRs, Dectin-1,
and Dectin-2 are involved in the antifungal response to
A. fumigatus, and loss of these receptors as a result of
protease-induced cleavage results in an aberrant response.

In addition to pathogen recognition and cytokine pro-
duction by innate immune cells, TLRs and/or CLRs are
involved in inflammatory cell recruitment, fungal killing,
and the induction of T-cell responses. Werner et al. (8)
demonstrated that Dectin-1 KO mice displayed reduced
neutrophil recruitment comparedwithwild-typemice in a
pulmonary model of Aspergillus infection. Another study
demonstrated reduced inflammatory cell recruitment in
Dectin-1 KO mice during a corneal infection model with
Aspergillus, whereas cell recruitment was unimpaired in
TLR2 KO or TLR4 KO mice; however, fungal killing was
impaired in TLR4 KOmice (38).A. fumigatus induces both
Thelper (Th)1 andTh17 responses,whichdependonTLR/
MyD88 and Dectin-1 signaling, respectively. Dectin-1
signals reduce IL-12 and IFN-g production in innate cells,
which results in decreased T-bet expression in A.
fumigatus–specific CD4 T cells, thereby facilitating Th17
differentiation (39). Dectin-2 is important for the induction
of Th17 responses to Candida albicans (27, 40), and A.
fumigatus–inducedDectin-2 signaling promotes IL-1b and
IL-23 production (37), which suggests that it will also be
involved in the induction of A. fumigatus–associated Th17
responses. We could speculate that NE-induced cleavage
of these CLRs, and potentially TLR4, could reduce Th17
andTh1 responses, leading to increasedTh2 responses like
that observed in ABPA; however, additional study is re-
quired to determine if this is the case. The isoform-specific
susceptibility of Dectin-1 to such proteolysis is intriguing.
The functional relevance of the 2 main human isoforms of
Dectin-1 (A and B) remains unclear, although it is known
that they are differentially expressed by myeloid subsets
and at different sites, and recent evidence demonstrates
distinct inflammatory responses to the ligation of either
isoform (41). As isoform B seems to be resistant to pro-
teolysis, we speculate that this isoform may play a par-
ticularly important role in antifungal immunity during
periods of intense neutrophilic inflammation.

It may be difficult to establish whether the protease-
mediated reduction of Dectin-1 expression on airway cells
correlates with the incidence of APBA and/orA. fumigatus
colonization in thehumanpopulation. This is a result of the

zymosan for 4 h. TNF levels in the supernatants were measured by ELISA. Graph displays means 6 SEM. Graph displays
cumulative data from 3 independent experiments. **P , 0.01, 2-way ANOVA with Bonferroni’s posttest. F) BALB/c mice were
injected with Biogel (0.5 ml, i.p.), and inflammatory infiltrates were recovered 16 h later by peritoneal lavage. The inflammatory
monocyte population was enriched by Ly6G+ cell depletion. Cells were left unexposed or exposed to 2 mM NE or HI NE for 1 h at
37°C, followed by stimulation with A. fumigatus for 4 h. TNF levels in the supernatants were measured by ELISA. Graph displays
means 6 SEM. Graph displays cumulative data from 4 independent experiments. **P , 0.01, ***P , 0.001, paired 2-way ANOVA
with Bonferroni’s posttest.
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fact that patient BAL samples are collected intermittently
and may not coincide with the original sensitization or
colonization event. In addition, the patient cohort under
investigation in this study is relatively small and is derived
from a pediatric population in whom fungal pathology is
less prevalent than in older patients with CF (3).

Overall, our data suggest a novel role for neutrophil
and fungal-derived proteases in the modulation of host
immune responses to fungal pathogens. We have dem-
onstrated the functionally relevant and isoform-specific
inactivation of Dectin-1 and other fungal receptors by
these proteases in both man and mouse. Additional
studies are required to shed light on the pathologic im-
portanceof theseobservations invariousdiseases inwhich
excess protease activity is observed.
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14. Loures, F. V., Röhm, M., Lee, C. K., Santos, E., Wang, J. P., Specht,
C. A., Calich, V. L., Urban, C. F., and Levitz, S.M. (2015) Recognition
ofAspergillus fumigatushyphae by human plasmacytoid dendritic cells
ismediated by dectin-2 and results in formation of extracellular traps.
PLoS Pathog. 11, e1004643

15. Taylor, P. R., Roy, S., Leal, S. M., Jr., Sun, Y., Howell, S. J., Cobb,
B. A., Li, X., and Pearlman, E. (2014) Activation of neutrophils by
autocrine IL-17A-IL-17RC interactions during fungal infection is
regulated by IL-6, IL-23, RORgt and dectin-2. Nat. Immunol. 15,
143–151

16. Zhao,G.,Xu,Q.,Lin, J.,Chen,W.,Cui, T.,Hu,L., and Jiang,N. (2017)
The role of Mincle in innate immune to fungal keratitis. J. Infect. Dev.
Ctries. 11, 89–97

17. Yamasaki, S., Matsumoto, M., Takeuchi, O., Matsuzawa, T., Ishikawa,
E., Sakuma, M., Tateno, H., Uno, J., Hirabayashi, J., Mikami, Y.,
Takeda, K., Akira, S., and Saito, T. (2009) C-type lectin Mincle is an
activating receptor for pathogenic fungus,Malassezia. Proc. Natl. Acad.
Sci. USA 106, 1897–1902
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