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Background: This study examined a programme of pre-conditioning exercise with subsequent high intensity in-
terval training (HIIT) on blood pressure, echocardiography, cardiac strain mechanics and maximal metabolic
(MET) capacity in sedentary (SED) aging men compared with age matched masters athletes (LEX).
Methods: Using a STROBE compliant observational design, 39 agingmale participants (SED; n= 22, aged 62.7±
5.2 yrs) (LEX; n = 17, aged = 61.1 ± 5.4 yrs) were recruited to a study that necessitated three distinct assess-
ment phases; enrolment (Phase A), following pre-conditioning exercise in SED (Phase B), then following
6 weeks of HIIT performed once every five days by both groups before reassessment (Phase C). Hemodynamic,
echocardiographic and cardiac strain mechanics were obtained at rest and maximal cardiorespiratory and
chronotropic responses were obtained at each measurement phase.
Results: The training intervention improved systolic, mean arterial blood pressure, rate pressure product and
heart rate reserve (each P b 0.05) in SED and increased MET capacity in both SED and LEX (P b 0.01) which
was amplified by HIIT. Echocardiography and cardiac strain measures were unremarkable apart from trivial in-
crease to intra-ventricular septum diastole (IVSd) (P b 0.05) and decrease to left ventricular internal dimension
diastole (LVId) (P b 0.05) in LEX following HIIT.
Conclusions: A programme of preconditioning exercise with HIIT induces clinically relevant improvements in
blood pressure, rate pressure product and encourages recovery of heart rate reserve in SED, while improving
maximal MET capacity in both SED and LEX without inducing any pathological cardiovascular remodeling.
These data add to the emerging repute of HIIT as a safe and promising exercise prescription to improve cardio-
vascular function and metabolic capacity in sedentary aging.
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1. Introduction

Normal aging is accompanied by diffuse alterations to cardiovascular
structure and function that contrive to increase cardiovascular morbid-
ity and mortality during advancing years. Since the landmark Dallas
bed-rest study (Saltin et al., 1968), the pleiotropic effects of preserving
cardiorespiratory fitness (CRF) during advancing age have become
more widely appreciated such that achievable improvements in CRF
(~1 MET) can profoundly impact health and survival (Kaminsky et al.,
2013; Kodama et al., 2009) by improving CRF through effective physical
activity regimens. However, because epidemiological studies
hology, Faculty

access article under
consistently identify older adults as the least physically active demo-
graphic (Knowles et al., 2015) and because CRF is a greater prognostic
indicator of mortality than ‘physical activity’ (Lee et al., 2010), then al-
ternative strategies that improve CRF in older persons have become in-
creasingly important.

High-intensity interval training (HIIT), is characterized by brief, in-
termittent bursts of vigorous exercise, interspersed by periods of low in-
tensity recovery (Saltin et al., 1968). More recently, HIIT has meta-
analytical support as a viable method to improve cardiovascular health
by increasing cardiorespiratory fitness (CRF) in young healthy (Weston
et al., 2014) and cohorts with lifestyle-induced cardiometabolic disease
(Elliott et al., 2015; Weston et al., 2013). Of the few available data in
older cohorts, HIIT appears to offer promising results in patients with
coronary artery disease (Munk et al., 2009), following myocardial in-
farction (Moholdt et al., 2009) and hypertension (Molmen-Hansen et
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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al., 2012) but there is an absence of data in sedentary aging (Weston et
al., 2014). Of contrasting note, a recent experiment described the poten-
tial for to HIIT to promote pathological adaptations in the left ventricle
of hypertensive rats (Holloway et al., 2015), underlining the need for
further study of HIIT on cardiac structure, hemodynamic strain and
strain mechanics in sedentary aging.

Encouragingly, both the feasibility of HIIT and its prescription fol-
lowing an initial period of conditioning exercise have recently been
established in aging cohorts (Knowles et al., 2015; Sculthorpe et al.,
2017). However, because aging men can take longer to recover from
single strenuous HIIT session than their younger counterparts
(Herbert et al., 2015a), caution should be exercised when prescribing
the volume of HIIT training in aging cohorts. With these aspects in
mind, the present study set out to examine the effects of low frequency
HIIT (once every 5 days) on: i) resting cardiac structure and function ii)
blood pressure and rate pressure product, and iii) metabolic capacity
(MET's) in a cohort of sedentary but otherwise healthy aging men
(SED). These were compared with a positive control group of age-
matched lifelong exercising masters athletes (LEX). We hypothesized
that 6weeks (9 sessions) of low frequencyHIITwould (i) not alter cardiac
structure or strain mechanics (ii) would favourably affect indicators of
resting blood pressure and rate pressure product in SED compared with
LEX. We further hypothesized that HIIT would (iii) positively impact
maximal metabolic capacity (MET's) in SED compared with LEX.

2. Materials and methods

2.1. Participants

Following health screening, 44 aging male participants were en-
rolled to the study and allocated to one of two groups; (i) sedentary
men (SED, n = 25; aged 62.3 ± 4.6 yrs) who did not participate in
any formal exercise training and (ii) a positive control group of masters
athletes (LEX, n= 19; aged 61.3± 5.1 yrs). LEX included activemasters
national competitors in sports including triathlon, athletics, sprint
Table 1
Participant characteristics, confirmation of maximal effort and maximal cardiorespiratory mech
(Phase A); following conditioning exercise (Phase B) and following high intensity interval trai

SED group

Phase A Phase B Pha

Participant characteristics
Participant number (n) 25 22 22
Age (yrs) 62.7 ± 5.2
Height (cm) 175 ± 6.1
Body mass (kg) 89.9 ± 17.2⁎ 88.9 ± 16.6⁎,a 89.

Confirmation of maximal effort (max)
BLa−max (mmol·L−1) 9.8 ± 2.6 10.2 ± 2.3 9.1
RERmax 1.10 ± 0.07 1.09 ± 0.05 1.1
RPEmax 17.4 ± 1.4 17.4 ± 1.2 18.
HRmax 156 ± 9 159 ± 9 161

Maximal cardiorespiratory function
_VO2 max (L·min−1) 2.46 ± 0.43⁎⁎ 2.52 ± 0.36⁎⁎ 2.8
_VEmax (L·min−1) 87.1 ± 20.6⁎⁎ 92.8 ± 17.7⁎⁎ 108

MET capacity 7.9 ± 1.6⁎⁎ 8.5 ± 1.2⁎⁎ 9.4

VT% _VO2 max 72.9 ± 10.3⁎ 79.4 ± 8.8 81.

AT% Abs _VO2 max 82.6 ± 10.0 83.4 ± 7.7 79.

AT Abs _VO2 max (L·min−1) 1.97 ± 0.39⁎⁎ 2.1 ± 0.38⁎⁎ 2.2

O2 pulse _VO2 max (mL·beat−1) 15.4 ± 2.5⁎⁎ 15.9 ± 2.3⁎⁎ 18.

PO- _VO2 max (W) 201 ± 42⁎⁎ 201 ± 33⁎⁎ 222

_VO2 max: maximal aerobic capacity; BLa−1
max: maximum blood lactate; RER= respiratory exch

imumminute ventilation;MET:metabolic equivalent; VT% _VO2 max: ventilatory threshold as per

maximal capacity; O2 pulse: oxygen pulse at maximal capacity; PO- _VO2 max: peak power outpu
⁎ P b 0.05 versus LEX at same time-point.
⁎⁎ P b 0.01 versus LEX and same time-point.
a P b 0.01 versus Phase A in the same group.
b P b 0.01 versus Phase B in the same group.
cycling and racquet sports. Participant characteristics are outlined in
Table 1. Participants provided written informed consent in addition to
a physical activity readiness questionnaire (PAR-Q) prior to enrolment
to the study, which conformed with ethical guidelines of the 1975 Dec-
laration of Helsinki and approved by institutional research board. The
flow of participants through the study is outlined in Fig. 1.
2.2. Protocol and experimental procedures

The study employed a STROBE compliant observational design
where SED undertook six weeks of supervised conditioning exercise
(training block 1) as recently advised (Riebe et al., 2015), while LEX
maintained their normal exercise regimens. SED and LEX participants
kept a weekly log detailing exercise training, which were confirmed
using telemetric heart rate data (Polar, Kempele, Finland). To account
for the influence of preconditioning exercise, the study required 3 dis-
tinct measurement phases outlined in Fig. 2.

On each assessment phase, participants arrived in the laboratory fol-
lowing an overnight fast having abstained from caffeine and alcohol
consumption for 36 h, and avoided strenuous exercise for a minimum
of 5 days. Resting blood pressure was obtained using the auscultatory
method according to guidelines of American Heart Association
(Pickering et al., 2005), Resting heart rate was obtained following 10.
mins supine rest (Polar T31, Kempele, Finland). Rate-pressure product
(RPP)was calculated as the product of resting heart rate (bpm) and sys-
tolic arterial pressure (mmHg) divided by 100. Echocardiographicmea-
sures were obtained according to current recommendations
(Supplementary information 1) and left ventricular mass established
according to the Penn convention (Devereux and Reichek, 1977) Maxi-
mal aerobic capacity was determined using open circuit spirometry
using a Cortex II Metalyser 3B-R2 (Cortex, Biophysik, Leipzig, Germany)
conforming to procedures outlined in more detail elsewhere (Grace et
al., 2015; Knowles et al., 2015)and Metabolic Equivalents (MET's)
established by dividing relative _VO2 max by 3.5.
anics in lifelong sedentary (SED) and lifelong exercisers (LEX) on enrolment to the study
ning exercise (HIIT; Phase C). Data are presented as mean ± S.D.

LEX group

se C Phase A Phase B Phase C

19 17 17
61.1 ± 5.4
173 ± 5.5

0 ± 17.5⁎,a 79.5 ± 12.3 79.3 ± 12.3 80.1 ± 12.6

± 2.0 10.3 ± 2.3 10.7 ± 2.5 9.2 ± 2.4b

4 ± 0.08 1.13 ± 0.07 1.11 ± 0.06 1.15 ± 0.07
2 ± 1.1 18.2 ± 1.3 18.2 ± 1.2 18.6 ± 1.0
± 8.8 161 ± 14 165 ± 12 163 ± 12

2 ± 0.58⁎⁎,a,b 3.08 ± 0.45 3.2 ± 0.57 3.45 ± 0.47a,b

.1 ± 21.3⁎⁎,a,b 117.4 ± 19.3 116.2 ± 21.1 129.4 ± 18.3a,b

± 1.4⁎⁎,a,b 11.2 ± 1.7 11.6 ± 1.9 12.6 ± 1.8a,b

3 ± 9.8 79.6 ± 8.5 79.1 ± 9.6 77.6 ± 7.5

5 ± 8.9 84.6 ± 5.5 84.3 ± 8.6 82.6 ± 9.7

4 ± 0.49⁎⁎,a 2.61 ± 0.46 2.70 ± 0.55 2.84 ± 0.50a

0 ± 4.0⁎⁎,a 19.2 ± 2.7 21.0 ± 3.2 21.1 ± 2.3a

± 30⁎⁎,a,b 253 ± 37 254 ± 34 264 ± 41a,b

ange ratio; RPE= rating of perceived exertion; HRmax: maximum heart rate; _VEmax: max-

centage ofmaximal capacity; AT% Abs _VO2 max: anaerobic threshold as percentage absolute

t at maximal capacity.



Fig. 1. Flow of sedentary aging (SED) and lifelong exercising masters' athletes (LEX) through the study.
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2.3. Exercise training protocol

During training block 1, SED participants underwent 6 weeks of su-
pervised aerobic pre-conditioning exercise endorsed by ACSM guide-
lines for older adults (Chodzko-Zajko et al., 2009) where
telemetrically derived heart rate reserve (HRR) was used to inform
weekly progression in exercise load. During this time, LEX participants
continued and recorded their habitual exercise training regimens.
High intensity interval training (HIIT) during training block 2 consisted
of HIIT exercise performed once every 5 days (HIIT) for 6 weeks (9 ses-
sions in total) by both SED and LEX. Each session consisted of 6 × 30 s
sprints at 50% of peak power output (determined using the Herbert
6 s peak power test (Herbert et al., 2015b)), interspersed with intervals
of 3 min active recovery against a low (0–50W) resistance and self-se-
lected cadence. HIIT sessions were conducted in groups of 4–6 partici-
pants using Wattbike Pro cycle ergometers (Wattbike Ltd.,
Nottingham, UK). The HIIT sessions were the only exercise performed
by either cohort during this training block period which preceded
Phase C measurement.

2.4. Statistical analyses

Sample power was calculated using a single-tailed within-group
comparisons with α = 0.05 and β = 0.95, using _VO2 max as described
elsewhere (Grace et al., 2015) resulting in a required sample of n =
17. Data were analysed using SPSS version 20.0. Q-Q plots were
employed to confirm normal distribution of data. Training effects were
compared using a 2 × 3 (group × time) mixed design ANOVA with
pairwise comparisons of within and between group simple effects in-
cluding a Bonferroni correction. An alpha value of P ≤ 0.05 was used to
indicate statistical significance. Data are presented as mean ± standard
deviation (S.D).



Fig. 2. Study schematic showing 3measurement phases (Phases A; B; C) interspersed by 2 training blocks of 6 weeks duration; Training block 1: conditioning exercise for sedentary aging
(SED) participants and Training block 2: high intensity interval training (HIIT) undertaken by lifelong sedentary (SED) and lifelong exercisers (LEX).
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3. Results

From 44 enrolled participants, 39 completed the study and were
included in the final analysis. Withdrawals (n = 5) occurred during
training block 1 and included n = 3 from SED (1 × lower back
pain; 2 × dysrhythmia) and n = 2 from LEX (1 × dysrhythmia, 1
× personal reasons). There was complete adherence to training
block 2 (Fig. 1).

Maximal cardiorespiratory function during Phase A, B, C is docu-
mented in Table 1. Resting echocardiographic, hemodynamic and
cardiac strain mechanics are documented in Table 2; Fig. 3. The ef-
fects of the intervention on cardiovascular, echocardiographic and
cardiorespiratory measures are further dialogued in Supplementary
information 2.
Table 2
Cardiacmorphology (echocardiography), haemodynamic and cardiac strainmechanics obtained
(Phase A); following conditioning exercise (Phase B) and following high intensity interval trai

SED group

Phase A Phase B Phase C

Echocardiography
LVM (g) 223 ± 48 232 ± 44 241 ± 3
LVMI (g·m−2) 89 ± 16.9 91.2 ± 11.8 97.2 ± 1
IVSd (cm) 1.0 ± 0.15 1.0 ± 0.12 1.1 ± 0.0
LVIDd (cm) 5.14 ± 0.52 5.10 ± 0.30 5.16 ± 0
PWd (cm) 0.97 ± 0.13 1.01 ± 0.15 1.00 ± 0

Hemodynamics
SV (mL·beat−1) 67 ± 23 69 ± 19 70 ± 18
EF (%) 55.6 ± 8.6 53.6 ± 4.6 53.5 ± 7
CO (L·min−1) 4.3 ± 1.5 4.7 ± 1.7 4.4 ± 1.4
E wave (m/s) 0.68 ± 0.14 0.66 ± 0.13 0.68 ± 0
A wave (m/s) 0.63 ± 0.15 0.54 ± 0.13 0.55 ± 0
E:A 1.12 ± 0.26 1.26 ± 0.27 1.28 ± 0
E′ (cm/s) −6.2 ± 1.3 −6.2 ± 1.3 −6.1 ±
DBP (mm Hg) 87 ± 4.7⁎ 83 ± 7.8 82 ± 7.8
MAP (mm Hg) 104 ± 5.8⁎⁎ 101 ± 9.8 99 ± 7.8
PP (mm Hg) 53 ± 7.4 52 ± 11.7 49 ± 9.4
RHR (bpm) 65 ± 11.8 64 ± 10.6 60 ± 7.6

Cardiac strain/strain rate
PLS (%) −12.1 ± 2.78 −14.8 ± 2.1 −13.3 ±
SRS (%/s) −1.2 ± 0.32 −1.04 ± 0.28 −1.18 ±
SRE (%/s) 1.4 ± 0.48 1.3 ± 0.31 1.22 ± 0
SRA (%/s) 1.26 ± 0.36 1.27 ± 0.21 1.31 ± 0

LVM: left ventricularmass; LVMI: left ventricularmass index; IVSd: intra-ventricular septumdia
stroke volume; EF: ejection fraction; CO: cardiac output; DBP: diastolic blood pressure; MAP: m
tudinal strain, SRS: systolic strain rate, SRE: early diastolic strain rate, SRA: atrial systolic strain
⁎ P b 0.05 versus LEX at same time-point.
⁎⁎ P b 0.01 versus LEX and same time-point.
a P b 0.05 versus Phase A in the same group.
4. Discussion

The main findings of this study were that a programme of pre-con-
ditioning with HIIT promotes clinically relevant improvements in rest-
ing haemodynamic stress (SBP, MAP, RPP) in SED and improves
cardiovascular reserve (MET capacity) in both SED and LEX. without
prompting cardiac strain or pathological cardiovascular remodeling.
These data provide preliminary evidence for the prescription of the
combination of pre-conditioning exercise and HIIT as a method to im-
prove cardiovascular health in sedentary aging.

Significant improvements in BP (~−7.7/−4.6mmHg) andmean ar-
terial blood pressure (~−5.5mmHg) in the SED group are clinically rel-
evant as arterial blood pressure is one of the most readily modifiable
risk factors for cardiovascular disease (Lopez et al., 2006). It is notable
at rest in lifelong sedentary (SED) and lifelong exercisers (LEX) on enrolment to the study
ning exercise (HIIT; Phase C). Data are presented as mean ± S.D.

LEX group

Phase A Phase B Phase C

9 249 ± 41 254 ± 59 265 ± 70
3.0 96 ± 16.2 98 ± 19.6 101 ± 22.3
8 1.0 ± 0.10 1.1 ± 0.16 1.2 ± 0.14a

.53 5.27 ± 0.48 5.13 ± 0.64 5.07 ± 0.51a

.09 1.05 ± 0.13 1.06 ± 0.12 1.10 ± 0.15

77 ± 19 73 ± 21 75 ± 23
.1 60.9 ± 5.1 55.3 ± 4.4 56.2 ± 4.9

4.7 ± 1.2 4.8 ± 1.3 4.5 ± 1.4
.14 0.70 ± 0.11 0.68 ± 0.10 0.70 ± 0.97
.15⁎ 0.54 ± 0.07 0.52 ± 0.06 0.49 ± 0.09
.30⁎,a 1.31 ± 0.25 1.32 ± 0.26 1.46 ± 0.20
1.3 −7.4 ± 1.4 −6.5 ± 1.5 −6.4 ± 1.4

82 ± 6.6 80 ± 6.6 79 ± 10.0
a 98 ± 7.7 96 ± 8.1 95 ± 10.4

48 ± 7.9 47 ± 8.6 49 ± 8.8
⁎ 59 ± 9.7 57 ± 10.3 56 ± 4.4

3.9 −16.37 ± 5.2 −15.75 ± 4.6 −15.77 ± 2.9
0.28 −1.0 ± 0.27 −1.0 ± 0.19 −0.94 ± 0.16
.33 1.46 ± 0.31 1.47 ± 0.29 1.34 ± 0.29
.26 1.23 ± 0.26 1.19 ± 0.31 1.22 ± 0.34

stole; LVIDd: left ventricular internal dimensiondiastole; PWd: posteriorwall diastole; SV:
ean arterial blood pressure; PP: pulse pressure; RHR: resting heart rate; PLS: peak longi-
rate.



Fig. 3.A–C. A: Systolic blood pressure (mmHg)B: heart rate reserve (beats·min−1) C: rate
pressure product (RPP; mm Hg·beats·min−1) in lifelong sedentary (SED) and lifelong
exercisers (LEX) on enrolment to the study (Phase A); following conditioning exercise
(Phase B) and following high intensity interval training exercise (HIIT; Phase C). * = P b

0.05 versus LEX at same time-point; a = P b 0.01 Phase A versus Phase C in SED. Data
are presented as mean ± S.D.
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that themagnitude of improvement is comparable to the 8.2mmHgob-
served in a recent meta-analysis of 26 randomized controlled trial
groups of hypertensives undergoing endurance training, and greater
than pre-hypertensive (−2.1/−1.7 mm Hg) and normal BP (−0.75/
−1.1 mm Hg) subject groups reported in the same meta-analysis
(Cornelissen and Smart, 2013). Similarly, when considered alongside
the previous work of Molmen-Hansen and colleagues in their clinical
hypertensive model (2012), the present data provide encouraging sup-
port for HIIT to induce clinically meaningful improvements blood pres-
sure. This, alongside a concomitant improvement in RPP (−12%) and
MAP (~5%) provides further indirect evidence of improved cardiac effi-
ciency in the SED group.

One of the inexorable facts of advancing age is a gradual reduction in
cardiac output, due in large part, to a concomitant decline in maximum
heart rate in all aging demographics (Astrand et al., 1973; Heath et al.,
1981). Although there were no statistically significant changes in either
resting or max heart rate in SED, small but favourable margins of im-
provement in both, coalesced to induce a significant improvement in
HRR (~10%) following the HIIT exercise (Fig. 3). This novel finding indi-
cates some formof chronotropic plasticity that is augmented byHIIT ex-
ercise and is previously unreported. We propose that improved HRR is
unlikely to be an effect of intrinsic firing rate, but rather an improved
balance of sympathetic/parasympathetic drive resulting from the HIIT
epochs during the intervention. Coupled with an improved O2 pulse at
maximal exercise in both SED and LEX (~+9%; +11% respectively)
these data indicate an improved cardiometabolic efficiency at both
rest and peak exercise.
4.1. Cardiac structure and function

Echocardiographicmeasures in the present studywere largely unre-
markable. There were some trivial physiological changes to LEX that
were not evident in SED. For instance, a small increase in diastolic septal
thickness along with a concomitant reduction in chamber diameter
were evident in LEX only. This suggests an initiation of the cardiac re-
modeling process following HIIT, possibly related to the sudden reduc-
tion in training volume, where LEX group quite dramatically reduced
their normal volume of exercise induced cardiac preload. The un-
changed cardiac morphology within the SED group agrees with recent
work which also failed to detect LV structural changes following
8 weeks of HIIT in sedentary seniors (Hwang et al., 2016). However, in
contrast to our study, Hwang et al. (2016) reported increased LV ejec-
tion fraction at rest, the discrepancies between their results and those
of the present study are likely due to the different methods of HIIT
employed. Hwang et al. (2016) utilised 4 × 4min HIIT and 3 × 3min re-
covery intervals at 90 and 70%HRmax respectively, using an all-extrem-
ity ergometer, representing 16 min of HIIT work per session. The
present study used 6 × 30 s representing 3min of HIITwork per session.
Hwang et al. (2016) further present a significant, positive relationship
between changes in ejection fraction and _VO2peak suggesting that en-
hanced aerobic fitness during whole body exercise could be the result
of central, in addition to peripheral adaptations (Hwang et al., 2016).
In contrast, the improved maximal MET capacity presented herein are
attributable to peripheral adaptations as ultrasonically derived cardiac
structure was unaltered by a combination of conditioning exercise and
HIIT. Clearly, volume dependant adaptations following different
modes of HIIT exercise in older individuals requires further study.

With regards to newermethods of assessing LV systolic function, re-
ductions in longitudinal strain have been suggested as an early marker
of LVdysfunction (D'Ascenzi et al., 2016), especially in recreationally ac-
tive non-elite populations. However, in the present study there were no
changes in longitudinal strain, and no differences between groups. Cor-
respondingly, the present data disagree with a recent hypothesis that
HIIT may induce maladaptive responses in humans, as demonstrated
in rats with hypertensive heart failure (Holloway et al., 2015). Findings
of unchanged PLS, SRS, SRE and SRA observed in this study agree with
previous work employing either shorter (12 days) (Wright et al.,
2014) or longer (16-weeks,) (Scharf et al., 2015) of HIIT training. Simi-
larly, investigations using a young healthy cohort have also failed to
demonstrate changes in longitudinal strain or strain rates at rest follow-
ing HIIT (12 days - 6 sessions; (Esfandiari et al., 2014)). Thus, the pres-
ent study aligns ageing data with current consensus in young healthy
groups. Recently, a recent meta-analytical review of resistance and en-
durance trained sportsmen (Beaumont et al., 2016a). Observed that ex-
ercise training has a negligible effect on restingmeasurements of global
longitudinal strain. This could be due to the minimal change in longitu-
dinal strain even during submaximal exercise (Doucende et al., 2010)
and thus, a baseline adaptation may not be necessary. Conversely, LV
twist has shown progressive augmentation with increasing exercise in-
tensity, (Beaumont et al., 2016b; Doucende et al., 2010; Stohr et al.,
2011)whichmay indicate amore fundamental role of cardiac twistme-
chanics in supporting systolic function. Indeed, a baseline adaptation in
twist has recently been observed in elite endurance athletes (Beaumont
et al., 2016a). Since LV twist increases with advancing age (Takeuchi et
al., 2006) and since chronic endurance training is associated with re-
duced twist at rest (Maufrais et al., 2014) and augmented twist during
exercise (Lee et al., 2012) in older athletes compared to their untrained
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counterparts, the potential for low frequency HIIT to produce similar
functional adaptations in the aging population is an interesting pros-
pect. Nevertheless, when taken in context with the inexorable fact
that advancing age is themost powerful predictor of cardiovascular dis-
ease, the present findings provide encouraging support for the prescrip-
tion of HIIT (followingpreconditioning) in sedentary agingmen, despite
recent caution raised by Holloway et al. (2015) in their hypertensive rat
model.
4.2. Functional capacity

The observation that on enrolment LEX had ~44% higher _VO2 max

than SED is similar to recent comparisons in trained and untrained se-
niors (Iversen et al., 2011; Shibata and Levine, 2012), and corresponds
with the commonly reported observation that age related decrements
in aerobic capacity aremore pronounced amongst untrained individuals
(Seals et al., 2011). Furthermore, SED demonstrated improvements in
relative _VO2 max following both conditioning exercise and HIIT, which
supports the tenet that older individuals can positively influence recov-
ery of metabolic capacity with either aerobic or high intensity training
(Murias et al., 2010; Poulin et al., 1992). Extended discussion in Supple-
mentary information 3.

Comparison with previous work examining the effectiveness of HIIT
in older populations is confounded by the lack of similar studies using
apparently healthy sedentary aging participants. Indeed, it ismore com-
mon that comparably age matched studies involve participants with
existing pathologies. Such studies often demonstrate larger propor-
tional improvements in _VO2 max than is the case in the current study. An-
other recent meta-analysis examining HIIT in patients with existing
lifestyle induced cardiometabolic disease reported a mean increase in
aerobic capacity of 19.4% (Weston et al., 2013). The large effect is likely
due to lower aerobic capacity at study enrolment (Wisløff et al., 2007).
Direct comparison is further limited by the extensive vascular dysfunc-
tion in these populations, and compounded by confounding effects of
concomitant pharmacological intervention. Nevertheless, the results of
the present study contribute to the body of HIIT literature by demon-
strating that healthy sedentary older participants can safely undertake
high intensity training and enjoy clinically relevant improvements in
metabolic capacity consistent with improved mortality (Kaminsky and
others, 2013). Moreover, themagnitude of improvement in SED is com-
parable both with their younger counterparts and diseased older peers
and does not seem to be adversely affected by a comparably lower train-
ing frequency. Extended discussion in Supplementary information 4.

Despite contravening of the recommended exercise volume for
older participants endorsed by ACSM (Chodzko-Zajko et al., 2009) and
AHA (Nelson et al., 2007), theHIIT portion of this study offers new infor-
mation relating to the potential for HIIT to positively impact resting car-
diovascular stress in SED and improve cardiovascular reserve in both
SED and LEX. Although this observational study design precludes direct
comparison between HIIT and aerobic exercise, the data are supported
by the observation that LEX, despite routinely undertaking a high vol-
ume of exercise training, also enjoyed increases in MET capacity. Simi-
larly, the contribution of aerobic conditioning should be noted. In
contrast to the HIIT portion, aerobic preconditioning induced small
but significant improvements in body composition and is likely to
have contributed to overall improvements in resting cardiovascular he-
modynamics, and provided a platform for SED to complete a HIIT pro-
gramme. Consequently, we emphasise that HIIT is feasible in
sedentary aging cohorts, when it is preceded by a programme of cardio-
vascular conditioning.

The present study has some important limitations that should be
noted. One concerns the proximity of the conditioning programme
(training block 1) to the HIIT intervention (training block 2), which
makes it impossible to rule out the contribution of preconditioning ex-
ercise to the overall effect on SED following HIIT. However, this prudent
approach is endorsed by recent experimental work (Sculthorpe et al.,
2017) and consensus statement (Riebe et al., 2015) and further justified
in light of the complete adherence to the HIIT programme. Further, aer-
obic improvements in LEX in response to HIIT indicate that similar im-
provements in SED are as a consequence of the HIIT stimulus, rather
than a residual effect of the cardiovascular conditioning exercise.

5. Conclusions

In conclusion, a programme of pre-conditioning and HIIT promotes
clinically relevant improvements in resting haemodynamic stress
(SBP, MAP, RPP) in SED and that HIIT similarly accelerates the improve-
ment inMET capacity in both SED and LEXwithout compromisingmyo-
cardial structure or strain mechanics. Consequently, these data support
the prescription of HIIT with preconditioning as a method to improve
cardiovascular health in sedentary aging men.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.exger.2017.05.010.
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Abbreviations

SED sedentary aging men
LEX lifelong exercising mas1ters athletes
HIIT high intensity interval training

_VO2 max maximal aerobic capacity
_VEmax maximum minute ventilation
VT% _VO2 max

ventilatory threshold as percentage of maximal capacity
AT% Abs _VO2 max

anaerobic threshold as percentage absolute maximal capacity
O2 pulse oxygen pulse at maximal capacity.

PO- _VO2 max

peak power output at maximal capacity
LVM left ventricular mass.
LVMI left ventricular mass index
IVSd intra-ventricular septum diastole
LVIDd left ventricular internal dimension diastole
PWd posterior wall diastole
SV stroke volume
EF ejection fraction
CO cardiac output
SBP systolic blood pressure
DBP diastolic blood pressure
MAP mean arterial blood pressure
PP pulse pressure
RHR resting heart rate
HRR heart rate reserve
RPP rate pressure product
PLS peak longitudinal strain
SRS systolic strain rate
SRE early diastolic strain rate
SRA atrial systolic strain rate
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