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Experimentally reduced insulin/IGF-1
signaling in adulthood extends lifespan
of parents and improves Darwinian fitness
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Classical theory maintains that ageing evolves via energy trade-offs between reproduction and survival leading to accumulation of

unrepaired cellular damage with age. In contrast, the emerging new theory postulates that ageing evolves because of deleterious

late-life hyper-function of reproduction-promoting genes leading to excessive biosynthesis in late-life. The hyper-function theory

uniquely predicts that optimizing nutrient-sensing molecular signaling in adulthood can simultaneously postpone ageing and

increase Darwinian fitness. Here, we show that reducing evolutionarily conserved insulin/IGF-1 nutrient-sensing signaling via

daf-2 RNA interference (RNAi) fulfils this prediction in Caenorhabditis elegans nematodes. Long-lived daf-2 RNAi parents showed

normal fecundity as self-fertilizing hermaphrodites and improved late-life reproduction when mated to males. Remarkably, the

offspring of daf-2 RNAi parents had higher Darwinian fitness across three different genotypes. Thus, reduced nutrient-sensing

signaling in adulthood improves both parental longevity and offspring fitness supporting the emerging view that suboptimal

gene expression in late-life lies at the heart of ageing.
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Impact Statement
Understanding mechanisms underpinning ageing is fun-

damental to improving quality of life in an increasingly

long-lived society. Recent breakthroughs have chal-

lenged the long-standing paradigm that the energy trade-

off between reproduction and somatic maintenance

causes organismal senescence via slow accumulation of

unrepaired cellular damage with age. The emerging new

∗These authors contributed equally to the study.

theory of ageing provides a conceptually novel frame-

work by proposing that ageing is a direct consequence

of physiological processes optimized for early-life func-

tion, such as growth and early-life reproduction, that are

running “too high” (i.e., at hyperfunction) in late adult-

hood. Contrary to the classic view based on damage

accumulation, the hyperfunction theory proposes that

suboptimal gene expression in late-life causes ageing

via excessive biosynthesis. Thus, the hyperfunction

theory uniquely predicts that longevity and Darwinian
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fitness can be simultaneously increased by reducing

unnecessarily high levels of nutrient-sensing signaling

in adulthood. Here, we show that reducing evolutionar-

ily conserved nutrient-sensing signaling pathway fulfils

this prediction in Caenorhabditis elegans nematodes.

We found that downregulation of the insulin/IGF-1 sig-

naling in adult C. elegans nematodes not only improves

longevity but, most intriguingly, increases fitness of the

resulting offspring in the next generation. We found

support for increase in offspring fitness across different

genetic backgrounds. Our findings contradict the theo-

retical conjecture that energy trade-offs between growth,

reproduction, and longevity is the universal cause of

senescence and provide strong experimental support

for the emerging hyperfunction theory of ageing.

Understanding mechanisms underpinning healthy ageing is

fundamental to improving quality of life in an increasingly long-

lived society. The long-standing paradigm postulates that energy

trade-offs between reproduction and somatic maintenance under-

lie organismal ageing (Kirkwood 1977; Kirkwood and Austad

2000; Kirkwood 2017). This theory is supported by a large num-

ber of studies in different taxa that reported a negative corre-

lation between reproduction and survival (reviewed in Hughes

and Reynolds 2005; Partridge et al. 2005; Edward and Chap-

man 2011; Flatt 2011; Nussey et al. 2013). However, the discov-

eries of environmental interventions that dramatically increase

healthy lifespan in model organisms without the cost of reduced

reproduction have challenged the current paradigm and suggested

that our understanding of the evolution of ageing is incomplete

(Dillin et al. 2002; Kenyon 2005; Antebi 2013; Gems and Par-

tridge 2013; Maklakov and Immler 2016; Flatt and Partridge

2018). Specifically, experimental downregulation of nutrient-

sensing insulin/IGF-like (IIS) signaling pathway that governs

biosynthesis in response to nutrient availability can achieve in-

creased longevity without a concomitant decrease in reproduction

in model organisms (Dillin et al. 2002; Kenyon 2010; Kenyon

2011).

Since cost-free lifespan extension contradicts the traditional

view of how ageing evolves, several studies investigated the fit-

ness consequences of reduced IIS signaling (Gems et al. 1998;

Walker et al. 2000; Jenkins et al. 2004; Savory et al. 2014;

Maklakov et al. 2017). Indeed, mutations that reduce nutrient-

sensing signaling during the whole life, as well as environmental

interventions aimed at mimicking the mutational effect, often have

detrimental pleiotropic effects on key life-history traits, such as

development, growth rate, body size, and early-life reproduction

resulting in reduced Darwinian fitness even if total reproduction

is unaffected (Gems et al. 1998; Briga and Verhulst 2015). The

first longevity mutant discovered in C. elegans, age-1, is a good

example because increased longevity, stress resistance, and late-

life reproduction come at a cost of reduced early-life reproduction

and total individual fitness (Maklakov et al. 2017). Moreover, a re-

cent literature survey suggests that all classic longevity-extending

mutations across taxa from worms to flies to mice detrimentally

affect life-history traits resulting in reduced fitness (Briga and

Verhulst 2015). Similarly, experimental evolution studies showed

that when longevity and fecundity are increased simultaneously

through selection, the organisms pay the price in slow develop-

ment and delayed sexual maturation, again resulting in reduced

fitness (Lind et al. 2017). These results support the theoretical

conjecture that genes with antagonistically pleiotropic effects be-

tween early-life and late-life fitness play an important role in the

evolution of ageing (Williams 1957). However, the mechanisms

of antagonistic pleiotropy (AP) remain elusive. The leading hy-

pothesis, the “disposable soma” theory of ageing (DS) suggests

that ageing results from competitive energy allocation between

somatic maintenance and reproduction (Kirkwood 1977; Kirk-

wood and Holliday 1979; Kirkwood and Austad 2000). Indeed,

increased reproductive performance in early-life correlates with

reduced survival and/or reduced performance in late-life in natural

populations (Gustafsson and Part 1990; Boonekamp et al. 2014;

Lemaitre et al. 2015) and in laboratory experiments (Rose 1984;

Charlesworth 1993; Partridge et al. 1999, but see Chen and Mak-

lakov 2012; Kimber and Chippindale 2013; Chen and Maklakov

2014; Curtsinger 2019).

However, this hypothesis suffered several setbacks in recent

years, with many empirical studies challenging the importance

of energy trade-offs in organismal senescence (reviewed in Flatt

2011; Kenyon 2011; Antebi 2013; Gems and Partridge 2013;

Maklakov and Immler 2016; Flatt and Partridge 2018). Instead,

several authors proposed that ageing can result from molecular

signalling networks being optimized for development, growth,

and early-life reproduction rather than for late-life reproduction

and longevity (Blagosklonny 2010; Kenyon 2010; Antebi 2013;

Gems and Partridge 2013; Ezcurra et al. 2018). For example,

the hyperfunction theory maintains that ageing is driven by ex-

cessive nutrient-sensing molecular signaling in adulthood, which

results in cellular hypertrophy leading to age-related pathologies

(Blagosklonny 2006, 2010; Ezcurra et al. 2018). These ideas can

be traced back to the original AP theory by George Williams, who

suggested that the same physiological processes that are beneficial

for fitness early in life can become detrimental for organismal fit-

ness with age because of the reduced strength of natural selection

on late-life function (Williams 1957).

Williams’s AP theory (Williams 1957) provides the pop-

ulation genetic framework for the evolution of ageing via two
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Figure 1. Theoretical framework. The relationship between pop-

ulation genetic theory of ageing (“antagonistic pleiotropy,”

Williams 1957) and physiological theories of ageing based on

either energy trade-offs (“disposable soma” (Kirkwood 1977) or

functional trade-offs (e.g., “hyperfunction” (Blagosklonny 2006)).

Note that Williams (1957) was the first to provide an abstract ex-

ample of a functional trade-off between early-life and late-life

allelic effects on organismal physiology. Recently, Blagosklonny

(2006, 2010) put forward a “hyperfunction” hypothesis that specif-

ically links suboptimal levels of nutrient-sensing signalling to ex-

cessive biosynthesis (hence, hyperfunction) leading to cellular and

organismal senescence.

different physiological routes: energy trade-offs (the “disposable

soma” theory of ageing) or functional trade-offs (e.g., “hyper-

function” theory of ageing) (Fig. 1). While both of these phys-

iological theories rely on the same underlying principle, they

make uniquely distinct predictions with respect to reproduction

costs of longevity. The “disposable soma” theory maintains that

organismal senescence is caused by slow accumulation of un-

repaired cellular damage with age because insufficient energy

resources are allocated to repair as organisms are maximizing

fitness rather than longevity (Kirkwood 1977, 2017). Therefore,

the “disposable soma” theory predicts that increased allocation of

resources to somatic maintenance will increase longevity at the

cost of reduced resources available to current growth and repro-

duction. On the contrary, the functional trade-off theory suggests

that longevity is compromised by suboptimal physiology in adult-

hood because, as discussed first by Williams (1957), selection is

not strong enough to fully optimize the age-specific expression of

an allele whose effects are strongly beneficial in early-life (e.g.,

during development) and slightly detrimental in late-life (e.g.,

during adulthood). Consequently, the functional trade-off theory

predicts that experimental optimization of physiology in adult-

hood can increase longevity without any cost to reproduction, or

even simultaneously increase longevity and reproduction.

Because the main cost of longevity appears to be associ-

ated with reduced early-life function, it seems plausible that age-

specific modification of gene expression can potentially circum-

vent this problem. In their landmark study, Dillin et al. (2002)

used age-specific RNA interference (RNAi) approach to knock

down daf-2 gene expression in C. elegans nematodes across the

life cycle of the worms. While early-life feeding with bacteria

expressing daf-2 double-stranded (ds) RNA resulted in reduced

early-life reproduction, there was no detrimental effect of daf-2

RNAi in adult worms, which enjoyed twofold lifespan exten-

sion without any cost to reproduction (Dillin et al. 2002). This

study provides the strongest support to date for the hypothesis

that ageing results from molecular nutrient-sensing signaling that

is optimized for early-life function but is suboptimal for late-life

function.

Nevertheless, while this study provided a powerful exam-

ple for the cost-free lifespan extension, it is possible that certain

fitness costs have been overlooked. One possibility is that fe-

cundity costs become apparent only in mated hermaphrodites.

In nature, C. elegans live in populations with small (�0.3%)

yet appreciable number of males living among self-fertilizing

hermaphrodites with sometimes high levels of outcrossing

(Sivasundar and Hey 2005), and mating, as well as mere pres-

ence of male-derived pheromones, has pronounced effects of the

life-history of hermaphrodites (Maures et al. 2013; Shi and Mur-

phy 2014; Aprison and Ruvinsky 2016). While it is certainly

interesting to consider how male-derived effects affect resource

allocation in hermaphrodites, it is unlikely that putative trade-

off that is only visible to selection in such rare circumstances

can shape the evolution of ageing in this species. Perhaps more

importantly, it is possible that the fitness of the offspring and,

therefore, Darwinian fitness of the parents are compromised. The

trade-off between offspring number and quality is well known

from a number of study systems (Stearns 1992), and is a potential

explanation for the apparent lack of fitness costs in the previous

studies (Maklakov and Immler 2016). Alternatively, longevity

and Darwinian fitness can be simultaneously increased by re-

ducing unnecessarily high levels of nutrient-sensing signaling in

adulthood. To distinguish between these possibilities, we need to

understand how reduction in nutrient-sensing signaling in adult-

hood affects longevity, offspring number, and offspring quality.

Here, we show that daf-2 RNAi in adult C. elegans results in

increased offspring fitness across three genetic backgrounds. We

discuss these findings in the light of the emerging new theories of

ageing and suggest that they support the hypothesis that functional

trade-offs between early-life fitness and late-life fitness shape the

evolution of ageing.

Materials and Methods
STRAINS

We used the Caenorhabditis elegans strains Bristol N2 wild-type

(Brenner, Genetics 1974), as well as the mutants ppw-1(pk2505)

and rrf-1(pk1417), obtained from Caenorhabditis Genetics Center

(CGC, Missouri, USA).

MAINTENANCE

Before each assay, worms were recovered from freezing and

synchronized by bleaching for two generations to remove any
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freezing effects. The nematode populations were maintained at

20°C and 60% relative humidity in an environmental test cham-

ber. For regular maintenance, the worms were kept on NGM agar

supplemented with the antibiotics streptomycin, kanamycin, and

nystatin (following Lionaki and Tavernarakis 2013), seeded with

the antibiotic-resistant E. coli strain OP50-1 (pUC4K).

OUTLINE OF THE STUDY

The study was run in three separate experiments. In the first ex-

periment, we investigated lifespan and reproduction of mated and

unmated N2 hermaphrodites reared from sexual maturity onwards

on daf-2 RNAi or empty vector (EV, control) plates. For logistic

reasons, this experiment was conducted in two blocks for mated

worms and one block for unmated worms. In the second experi-

ment, we investigated the lifespan and egg size of unmated N2,

rrf-1(pk1417), and ppw-1(pk2505) hermaphrodites on raised from

sexual maturity onwards on daf-2 RNAi or EV plates. In the third

experiment, we collected one egg from each parent at their second

day of adulthood (from daf-2 RNAi and EV treatments) and inves-

tigated the lifespan and reproduction of these offspring on control

plates. Because different experiments differed in setup time, daily

reproduction values (and calculations based upon these, such as

λind) are only meaningful for comparison between treatments

within each experiment.

RNAi

RNase-III deficient, IPTG-inducible HT115 Escherichia coli bac-

teria with empty plasmid vector (L4440) was used as control

(Timmons et al. 2001) and the same HT115 bacteria with daf-2

RNAi construct from the Vidal library was used as RNAi treat-

ment. RNAi treatment started from sexual maturity, and continued

until the death of the individual. During the experiments, worms

were maintained on 35 mm NGM agar plates (supplemented with

1 mM IPTG and 50 μg/mL ampicillin) seeded with 0.1 mL L4440

empty vector control or daf-2 bacteria grown in LB supplemented

with 50 μg/mL ampicillin for 16–20 hours and seeded (incubated)

on the NGM agar plates again for 24 hours (following Hinas et al.

2012).

LIFESPAN ASSAYS

Lifespan assays were set up for all treatment combinations

described above. In the lifespan assays, the individual age-

synchronized L4 worms were placed on separate 35 mm plates and

the plates were checked daily to record any instances of death. The

surviving worms were moved to new plates daily until their death.

Fertile worms, which showed odd developmental characteristics

and low offspring numbers (<36 offspring), were excluded from

the final analysis (three mated control worms and seven mated

daf-2 worms).

REPRODUCTION ASSAYS

Offspring production was scored in the reproduction assays us-

ing the same worms as those scored for lifespan, except for

the parental N2, ppw-1, and rrf-1 worms in the second exper-

iment, where only lifespan was recorded. Unmated individual

hermaphrodites were moved to new plates daily and scored for

offspring produced 2.5 days later. In the “mated” treatment, two

male C. elegans (from the initial sample population of N2 strain)

were placed on a plate with a single hermaphrodite for two hours

every day to allow time for mating. Offspring production was

scored 2.5 days later, as in the “unmated” treatment.

EGG SIZE ASSAYS

Egg size was measured in N2, ppw-1, and rrf-1 strains (unmated

hermpahrodites) growing on either daf-2 RNAi or empty vector

(EV) plates. Two days after maturation, worms were placed indi-

vidually on new plates and observed continually during five hours

for the presence of newly laid eggs, of which the first two eggs

were collected. Eggs were picked immediately after laying and

placed under a Leica M165C microscope set on 12× magnifica-

tion; photos were taken using a Lumenera Infinity 2–6C digital

microscope camera. Egg size was analyzed from photos using

ImageJ (https://imagej.nih.gov/ij/). Only eggs laid during gastru-

lation stage (the normal developmental stage at egg laying) were

included in the analyses.

STATISTICAL ANALYSES

Survival was analyzed for each experiment in Cox proportional

hazard models in R 3.3.3. Mated (EV: n = 72, daf-2 n = 68)

and unmated (n = 25 per treatment) individuals were analyzed

separately, as they were run in different blocks. Unmated indi-

viduals were analyzed using the coxph function in the package

survival, with daf-2 RNAi treatment as a fixed factor. For mated

individuals, we used the coxme package in order to fit block as a

random effect, in addition to the fixed effect of RNAi treatment.

In the second experiment (n = 25 per treatment), in addition to

RNAi treatment, we also fitted the fixed factor strain (N2, ppw-1,

rrf-1) and its interaction with treatment using the coxph function

in the survival package.

Reproduction was analyzed as total reproduction as well as

rate-sensitive individual fitness λind, which encompasses the tim-

ing and number of offspring (Brommer et al. 2002; Lind et al.

2016). λind is estimated by solving the Euler-Lotka equation for

each individual using the lambda function in the popbio package

and is analogous to the intrinsic rate of population growth (Stearns

1992). For all unmated worms (n = 25 per treatment), we esti-

mated the fixed effect of treatment (daf-2 RNAi or empty vector).

For offspring of the three mutants (n = 25 per treatment), we also

estimated the fixed effect or strain, using linear models. For the

mated worms (EV: n = 72, daf-2 n = 68), we also estimated the
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Figure 2. The effect of daf-2 RNAi on lifespan. Survival probability for (A) unmated or (B) mated N2 wild-type (purple), ppw-1 (black),

and rrf-1 (orange) mutants, treated with either daf-2 RNAi (solid lines, filled symbols) or control empty vector (broken lines, open

symbols) from adulthood onwards.

Table 1. The effect of daf-2 RNAi on reproduction.

Total reproduction Fitness (λind)

RNAi treatment Unmated Mated Unmated Mated

Control 311.0 ± 7.0 595.7 ± 24.3 4.66 ± 0.03 4.47 ± 0.05
daf-2 RNAi 317.4 ± 8.9 630.5 ± 22.2 4.63 ± 0.05 4.50 ± 0.05

Total reproduction and individual fitness (λind) for unmated and mated C. elegans N2 wild-type treated with either empty vector (Control) or daf-2 RNAi

from adulthood onwards. All values expressed as mean ± SE.

random effect of block, in addition to RNAi treatment. These mod-

els were implemented as mixed effect models using the lme4 pack-

age in R 3.3.3, and chi-square tests of fixed effects were performed

using the car package. Egg size was analyzed in a mixed effect

model in lme4, treating strain and RNAi treatment as crossed fixed

effects, and parent ID as well as block as random effects. We ob-

tained the following n: N2 on EV: 56, N2 on daf-2: 54, ppw-1 on

EV: 44, ppw-1 on daf-2: 42, rrf-1 on EV: 59, rrf-1 on daf-2: 42.

Results
First off, we confirmed that daf-2 RNAi significantly extended

the lifespan of unmated N2 wild-type hermaphrodite worms (cen-

soring matricide: z = –4.94, df = 1, P < 0.001, Fig. 2A; including

matricide as dead: z = –4.97, df = 1, P < 0.001), as expected

from previous studies (Dillin et al. 2002). In addition, for mated

N2, daf-2 RNAi extended lifespan when matricide was censored

(z = –2.42, df = 1, P = 0.016, Fig. 2B) but not if matricidal

worms were included as dead (z = 0.16, df = 1, P = 0.87)

because of an increase in matricide in the late reproducing mated

daf-2 RNAi N2.

We did not find any effect of daf-2 RNAi on total reproduction

(unmated: F = 0.32, df = 1, P = 0.58; mated: χ2 = 1.11, df = 1,

p = 0.29) or individual fitness λind (unmated: F = 0.30, df = 1,

P = 0.59; mated: χ2 = 0.43, df = 1, P = 0.51) for neither

unmated nor mated N2 (Table 1, Fig. 3). However, daf-2 RNAi

had a positive effect on late (day 5+) reproduction for mated

hermaphrodites (χ2 = 24.76, df = 1, P < 0.001, Fig. 3B).

In a second experiment, using unmated hermaphrodites only,

we investigated the effect of daf-2 RNAi on parent lifespan and

offspring lifespan and reproduction across three genetic back-

grounds (N2 wild-type and the mutants ppw-1 and rrf-1, that are

deficient for germline and somatic RNAi, respectively). Parental

treatment with daf-2 RNAi increased lifespan across all ge-

netic backgrounds, both when matricide was censored (treatment:

χ2 = 90.39, df = 1, P < 0.001; strain: χ2 = 21.8, df = 2, P <

0.001; treatment × strain: χ2 = 10.46, df = 2, P = 0.005, Fig. 2A)

and included as dead (treatment: χ2 = 85.25, df = 1, P < 0.001;

strain: χ2 = 20.45, df = 2, P < 0.001; treatment × strain: χ2 =
9.43, df = 2, P = 0.009). In accordance with previously published

research (Hibshman et al. 2016), parental daf-2 RNAi increased
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Figure 3. The effect of daf-2 RNAi on reproduction. Daily offspring number for (A) unmated or (B) mated N2 wild-type worms, treated

with either daf-2 RNAi (solid lines, filled symbols) or control empty vector (broken lines, open symbols) from adulthood onwards. Symbols

represent mean ± SE.

Figure 4. The effect of daf-2 RNAi on egg size. Egg size of un-

mated, parental worms. N2 wild-type (purple), ppw-1 (black), and

rrf-1 (orange) mutants, treated with either daf-2 RNAi (solid lines,

filled symbols) or control empty vector (broken lines, open sym-

bols) from adulthood onwards. Symbols represent mean ± SE.

egg size (treatment: χ2 = 5.11, df = 1, P = 0.024; strain: χ2 =
13.89, df = 2, P < 0.001; treatment × strain: χ2 = 2.68, df = 2,

P = 0.262, Fig. 4). However, we found that the effect was most

pronounced in N2 wild-type worms, and relatively weak in both

somatic and germline daf-2 knockdown (see Fig. 4), suggesting

that daf-2 knockdown in both somatic and reproductive tissues is

required to maximize the effect on egg size.

Parental daf-2 RNAi treatment did not, however, influence

the lifespan of their offspring, neither when matricidal worms

were censored (treatment: χ2 = 0.04, df = 1, P = 0.85; strain:

χ2 = 24.2, df = 2, P < 0.001; treatment × strain: χ2 = 0.61, df =
2, P = 0.74, Fig. 5A) nor when included as dead (treatment:

χ2 = 0.01, df = 1, P = 0.92; strain: χ2 = 21.8, df = 2, P < 0.001;

treatment × strain: χ2 = 0.48, df = 2, P = 0.79).

In contrast, parental daf-2 RNAi treatment significantly in-

creased offspring total reproduction (treatment: F = 15.9, df = 1,

P < 0.001; strain: F = 33.7, df = 2, P < 0.001; treatment × strain:

F = 0.09, df = 2, P = 0.91, Fig. 5B, C) and individual fitness

λind (treatment: F = 11.8, df = 1, P < 0.001; strain: F = 13.1,

df = 2, P < 0.001; treatment × strain: F = 0.18, df = 2, P = 0.84,

Fig. 5D) across all genetic backgrounds. Importantly, there was

no correspondence between the effect of parental daf-2 RNAi on

egg size (see above) and offspring total reproduction/individual

fitness, suggesting that factors beyond the amount of resources in

the egg contribute to increased fitness of offspring of daf-2 RNAi

parents.

Discussion
The “disposable soma” theory of ageing postulates that senes-

cence results from competitive energy allocation between key

life-history traits, such as growth, reproduction, and somatic

maintenance (Kirkwood 1977; 2017). This theory predicts that

genetic and environmental manipulations that increase energy
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Figure 5. The effect of parental daf-2 RNAi on offspring survival and reproduction. Offspring worms, unmated, on control (empty

vector) plates from parents exposed to daf-2 RNAi or control treatment. (A) Survival probability, (B) daily offspring number, (C) total

reproduction, and (D) individual fitness (λind) of offspring (on control plates) from parents either exposed to daf-2 RNAi (solid lines, filled

symbols) or control empty vector (broken lines, open symbols). The colors reflect N2 wild-type (purple), ppw-1 (black), and rrf-1 (orange)

mutants. Symbols represent mean ± SE.

allocation to growth and somatic maintenance will result in detri-

mental effects to reproduction. This is why the findings by Dillin

et al. (2002), which suggested that adult-only downregulation of

insulin/IGF-1 by daf-2 RNAi can substantially increase lifespan

without any detrimental effect to reproduction, were subsequently

scrutinized in an attempt to find the hidden costs of longevity

(Jenkins et al. 2004; Partridge et al. 2005). Nonetheless, both the

original findings (Dillin et al. 2002) and our results here, suggest

that adult-only daf-2 RNAi can more than double longevity with-

out any negative effect on reproduction. Moreover, when supplied

with sperm from males, daf-2 RNAi-treated parents have im-

proved fecundity in late-life. However, the key question that we

asked in this study was whether treatments that improve parental

performance have positive or negative effects on their offspring.

The trade-off between offspring number and offspring quality

is a well-known concept in life-history evolution (Stearns 1992)

but is rarely considered in biogerontological research (reviewed

in Maklakov and Immler 2016). Germline maintenance is costly

(Sniegowski et al. 2000; Agrawal and Wang 2008; Maklakov and

Immler 2016; Berger et al. 2017), and increased investment into

somatic maintenance can, in theory, result in increased mutation

rate and reduced fitness of progeny.
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Alternatively, it is possible that instead of energy trade-offs,

the evolution of senescence is governed by functional trade-offs.

Functional trade-offs can occur because the physiological require-

ments of a young organism can differ substantially from those of

a mature one (Williams 1957). In his classic 1957 article, George

Williams (Williams 1957) described a hypothetical example of a

mutation that positively affects bone calcification in a developing

young organism but increases calcification of the connective tis-

sues of arteries in a mature one with detrimental consequences.

More recently, it has been suggested that nutrient sensing IIS/TOR

molecular signalling pathways that govern growth and develop-

ment result in excessive biosynthesis in late-life leading to dif-

ferent pathologies and increased mortality (Blagosklonny 2006;

2010; Gems and Partridge 2013; Ezcurra et al. 2018). These prox-

imate explanations rest on the fundamental assumption that the

strength of natural selection declines with age because of environ-

mental mortality from a range of biotic and abiotic hazards (e.g.,

predation, pathogens, competition, starvation) (Williams 1957).

Because of such environmental mortality, optimizing develop-

ment, growth, and instantaneous reproduction may be more im-

portant for organismal fitness that optimizing future survival and

reproduction (Williams 1957; Hamilton 1966). Thus, progres-

sively weakening selection in adulthood may result in suboptimal

levels of IIS/TOR signaling leading to pathology and senescence

(Ezcurra et al. 2018). However, unlike the classic energy trade-off

theory, the functional trade-off hypothesis predicts that it should

be possible to modify adult physiology to improve both longevity

and fitness.

Here, we found that reduced insulin/IGF-1 signaling in adult

worms not only improved longevity, but also increased repro-

duction and Darwinian fitness of the resulting offspring in three

different genetic backgrounds. This result contradicts the hypoth-

esis that improved longevity and postponed ageing of daf-2 RNAi

parents comes at the cost of offspring fitness. Instead, our find-

ings are in line with the hypothesis that suboptimal levels of

nutrient-sensing signaling in adult life accelerate ageing, curtail

lifespan, and reduce individual fitness. This result was not caused

by direct inheritance of daf-2 RNAi, since we did not recover

the lifespan extension effect of daf-2 knockdown in these off-

spring. Because daf-2 is essential for successful development and

growth of a young worm (Dillin et al. 2002), these results suggest

that wild-type C. elegans nematodes trade-off improved preadult

performance for reduced offspring quality. Such trade-offs are at

heart of AP theory, but are usually interpreted as evidence for

energy-based trade-offs. Our results clearly demonstrate that this

is not the case, and that adulthood-only daf-2 RNAi increases

offspring fitness. In summary, our findings suggest that selec-

tion on expression of daf-2 in adulthood is not sufficiently strong

in nature. We predict that such effects may be very common,

and suggest that future studies should aim to quantify the fitness

consequences of experimental manipulation of age-specific gene

expression across a broad range of taxa. Such approach will allow

us to estimate the relative importance of energy trade-offs versus

functional trade-offs in the evolution of ageing across the tree of

life.

Because previous research found that both dietary restriction

and reduction in insulin-like signaling by daf-2 RNAi knockdown

increased embryo size in C. elegans nematodes (Hibshman et al.

2016), we replicated these results to test whether increased fitness

of adult progeny results from increased resource allocation to eggs

by daf-2 RNAi mothers. While daf-2 knockdown increased egg

size to a different degree in N2, ppw-1, and rrf-1 strains, there was

no correlation between the effect of parental daf-2 RNAi on egg

size and offspring reproductive performance. We provisionally

conclude that increased egg size under reduced maternal insulin-

like signaling can contribute to increased offspring fitness, but

it is likely not the sole source of variation in this trait. Recent

work has identified oocyte-specific IIS targets that are different

from soma-specific IIS targets suggesting that IIS signaling reg-

ulates reproduction and longevity through different mechanisms

(Templeman et al. 2018). In the future, it will be interesting to

test for individual fitness of offspring produced via genetic ma-

nipulation of oocyte-specific targets of IIS signaling pathway. In

recent years, there has been a vigorous debate regarding whether

mechanistic understanding of life-history trade-offs is necessary

to advance life-history theory (Flatt and Heyland 2011; Stearns

2011a, b). Here, we used the mechanistic approach to separate be-

tween two conceptually different evolutionary theories of ageing–

energy trade-offs and functional trade-offs–in an empirical study.

We argue that unification between the conceptual approach and

the mechanistic understanding may often prove fruitful in this

regard.
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