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Abstract  

Tibet is usually missing from China’s emission accounts, especially from those of 

consumption-based emissions. In this study, we developed a multi-regional input-output 

(MRIO) table for 31 provinces in China and examined the production- and consumption-based 

characteristics of Tibet’s CO2 emissions in 2012. Results show that the consumption-based 

CO2 emissions in Tibet (18.8 Mt, similar to Guinea’s emissions in 2015) were three times as 

high as the production-based estimate (6.2 Mt). Tibet displays unique emission patterns with 

the highest ratio of consumption- to production-based emissions in China, which are more 

similar with the east developed provinces rather than its counterparts in west China. More than 

half of Tibet’s consumption-based emissions are supported by Qinghai, Hebei, Sichuan and 

others, enabled by the Qinghai-Tibet railway that connected Tibet to China’s national railway 

system. High carbon footprint but low life expectancy is found in Tibet, suggesting the 

emerging need of a more sustainable consumption pathway under the intensifying interregional 

connections by Belt and Road Initiative. 

Key Points: 

 Tibet displays unique emission patterns with China’s highest ratio of consumption- to 

production-based emissions. 

 Virtual flow of Tibet’s emissions is enabled by Qinghai-Tibet railway and should be 

enhanced under Belt and Road Initiative.  

 Tibet has high carbon footprint but low life expectancy, and a more sustainable pathway 

should be guided. 

 

Plain Language Summary 

Located in the most western part of China and the world’s highest plateau known as Qinghai-

Tibet Plateau, Tibet plays a unique role in the global ecosystem and climate. Nevertheless, we 

did not know much about the emissions from human activities in this region. Under China’ fast 

development of western provinces and Tibet’s engagement in the Belt and Road Initiative, 

knowledge of anthropogenic emissions and the dynamics of emissions, demands and economic 

sectors are crucial. This study quantified the emissions happening in Tibet as well as those 

caused by Tibet’s demand but outsourced to other regions. We found that the demands of Tibet 

and the resulting emissions are largely supported by other regions in China. Emissions virtually 

transport from west to east due to the frequent inter-provincial trade enabled by the Qinghai-

Tibet railway. It is also found that Tibet has the third highest carbon footprint (carbon emissions 

per capita) in China but low life expectancy.  It indicates that the current consumption of Tibet 

is neither climate-friendly nor good for human welfare. Attention should be drawn on a more 

sustainable consumption pathway of Tibet, especially under the context of intensifying regional 

interactions. 
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1 Introduction 

Located in the most western part of China, the Tibet Autonomous Region (hereafter referred 

to as Tibet) is the nation’s second largest province in terms of area. However, Tibet has long 

been a missing piece of China’s national and provincial emission accounts for various reasons. 

First, activity data are not regularly collected in this province. While Tibet has a consistent 

record of some fundamental data, such as population, land use and gross domestic product 

(GDP), its energy statistics system has not yet been established, hindering the estimation of 

both greenhouse gas and air pollutant emissions. Second, due to its remote location and the 

fragile environment of the Qinghai-Tibet plateau, the population in this region is sparse, and 

its industry is less developed. Consequently, Tibet accounts for only 0.14% and 0.24% of 

China’s GDP and population (data in 2015) (National Bureau of Statistics of China 2016), 

respectively. The omission of Tibet in China’s emission accounts is therefore considered 

acceptable compared to the inherent uncertainty of emission inventories (Guan et al. 2012; 

Weber, Guan, and Hubacek 2007; Zheng et al. 2018). 

 

However, the knowledge gap in Tibet’s emission accounts needs to be filled for Tibet’s future 

development and its significance as China’s important carbon sink and natural resources 

conserver. With its high forest coverage (14% of its total area), large proportion of primary 

forest, and low anthropogenic disturbance, Tibet has the highest forest stocks in China (The 

State Council Information Office of China 2015) and serves as an important carbon sink 

affecting the global carbon cycle (Sun et al. 2016). In addition, Tibet is located on the Qinghai-

Tibet plateau, the world’s highest geographical unit. This region plays a critical role in 

ecosystem and species conservation. Tibet’s unique ecological conditions and role as a global 

carbon sink are partly the result of lower human disturbance. The challenge of balancing human 

development and natural environment protection has become urgent in recent years. From 2005 

to 2015, Tibet had an annual GDP growth of more than 10%, even during the slow-down of 

China’s economy after 2011 (National Bureau of Statistics of China 2016). Studies on the 

pollution in Tibet are still sparse but have revealed some alarming signs of contaminants in the 

soil (F. Zhang et al. 2010), water (K. Zhang et al. 2016), air (Cao et al. 2009; Hindman and 

Upadhyay 2002) and biota (Pan et al. 2014) .  As one of the less economically developed 

provinces in China, Tibet is expected to experience fast development under the support of the 

central government and the influence of other provinces in the coming years. This rapid 

development has been especially true after Tibet was connected to the national railway network 

through the Qinghai-Tibet railway in 2007 and its involvement in China’s Belt and Road 

Initiative. Despite of its possibly small quantity in total emission load, knowledge of emission 

sources in this region is still indispensable for China’s Southwest development and the balance 

of economic development and nature conservation in Tibet. 

 

There are generally two approaches to understanding an area’s emissions. One is a production- 

or territory-based estimation, which calculates the emissions from local activities within the 

defined area (Shan et al. 2016). Another approach is consumption-based estimation, which 

measures the emissions related to the demand of a given province, including those emitted 

locally and outsourced to other regions (Mi et al. 2017; Meng et al. 2016, 2018; Zhao et al. 

2015). While production-based approach is widely used due to its simplicity and clarity, 

consumption-based estimation complements the production-based method by providing vital 

information concerning the demand behind the emissions and their interactions with those of 

other regions (Peters 2008; Peters and Hertwich 2008). For Tibet, its emission is poorly 

understood, especially from the consumption side. A few of existing studies touched the 

production-based emissions of mercury (Huang et al. 2017), volatile organic compounds 
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(VOCs) (Li et al. 2017) and CO2 (Shan et al. 2017). The sources within this climate-sensitive 

region and the demands driving the emission activities remain largely unknown. 

 

In this study, multi-regional input-output (MRIO) analysis was applied to develop a 

consumption-based CO2 emission account for Tibet based on the established production-based 

inventory. The sector-based contributions, demand-driven emissions and their interactions with 

those of other provinces in China through interprovincial trade were investigated. This study 

provides the first knowledge of Tibet’s emissions from the consumption side, which contributes 

to a more complete emission account of China and provides important implications for the 

sustainable development of Tibet. 

2 Methods and Data 

To study the consumption-based emissions of Tibet and the interactions of these emissions 

with those of other regions in China, an MRIO table for 31 regions (27 provinces and 4 cities, 

hereafter referred to as 31 provinces) is constructed. Then, input-output analysis is applied to 

estimate the consumption-based emissions based upon the production-based inventory. The 

data used in this study are generally derived from the Chinese official statistics (National 

Bureau of Statistics of China, 2013ab; Ministry of Transport of China, 2013; Tibet Bureau of 

Statistics, 2013) and previous studies on production-based CO2 emissions in Tibet (Shan et al. 

2017) and other provinces in China (Shan et al. 2016 ab, 2017). The detailed methods and data 

sources are described below. 

 

2.1 Multi-region Input-Output (MRIO) Table 

The MRIO table for 31 provinces is compiled based on the input-output tables (IOTs) for 31 

provinces, which are released by the National Statistics Bureau of China. (National Statistics 

Bureau of China, 2013) These IOTs include 42 economic sectors and five final demands, 

namely, rural household consumption, urban household consumption, government 

consumption, fixed capital formation and inventory change. Exports and imports are also 

reported and divided into international and domestic amounts. 

 

The above IOTs depict the sectoral inputs and outputs in monetary terms for a given region. 

However, their interactions with other regions are unknown. To simulate inter-regional flows, 

a gravity model is adopted. The standard gravity model expresses the inter-regional flow as a 

function of the total regional outflows, total regional inflows, transfer cost and distance, as 

shown in eq. (1). 
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where 
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is the trade flows of sector i from region r to s; 

0e is the constant proportionality 

factor; 
rO

ix
is the total outflows of sector i from region r to s; d is the distance between region r 

and s, which is approximated by the distances between capitals; 1  and 2  are weighting 

coefficients assigned to the masses of origin and destination, respectively; and 3  is the 

distance decay parameter. Taking the logarithm of both sides, eq. (1) can be expressed as 

follows: 

 

   0 1 2 3ln ln( ) ln( ) lnrs rO Os rs

i i iy x x d            (2) 



 

© 2019 American Geophysical Union. All rights reserved. 

Considering the dimensions of the matrix, eq. (3) is constructed. 

 

0 0 1 1 2 2 3 3        Y L X X X    (3) 

where Y is an N×1 matrix of the logarithm of the trade flows of product i between regions; L0 

is an N×1 matrix with all elements equal to 1; X1 and X2 are the logarithms of the total outflows 

from origin regions and total inflows to destination regions, respectively; and X3 is the 

logarithm of the distance between two regions. Eq. (3) is solved by multiple regression.  

 

Based upon the above standard gravity model, two ratios, namely, the impact coefficients and 

impact exponent, are introduced to reflect varying inter-regional competition and cooperation 

relationships for different sectors (Mi et al. 2017). Details on the calculations of these two ratios 

can be found in the Supporting Information. The modified trade flow is written as follows: 

 ' /
i

gh
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      (4) 

where 
'Y is the modified trade flow and Ŷ is the trade flow obtained from the standard gravity 

model. Due to data availability, 42 sectors in the IOTs are aggregated into 30 sectors before 

the gravity model is applied. The concordance of sectors can be found in Table S-1 in the 

Supporting Information. 

 

With the above adjusted gravity model, an initial trade flow matrix that describes the flows 

between every pair of economic sectors for 31 provinces in monetary terms is constructed. 

Such an initial trade flow matrix does not match the double sum constraints, i.e., the total output 

and input of a specific sector do not match. Therefore, an RAS approach was adopted to adjust 

the initial trade flow matrix to ensure agreement with the sum constraints (Jackson and Murray 

2004; Miller and Blair 2009). The error terms of the adjusted flow matrix were generally within 

5%. 

 

2.2 Input-output Analysis for Consumption-based Emissions 

The inter-regional and inter-sectoral flows in the MRIO table enable the estimation going from 

production-based emission to consumption-based emission. In consumption-based accounting, 

emissions are allocated to the consuming sectors, regions and final demands, instead of the 

sectors and regions that directly emit the emissions. Such an estimation is built on the 

framework of an MRIO table. For an economy with M regions (M=31 in this study) and N 

industries (N=30 in this study) in each region, 
rs

ijz
(r, s=1, 2, …, 31) represents the intermediate 

product sold from industry i in country r to industry j in country s, 
rs

iy
represents the finished 

goods sold from industry i in country r to final consumers in country s, and 
r

ix
represents the 

total output of industry i in country r.  
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A technical coefficient 
/rs rs s

ij ij ja z x
 is defined as the input from sector i in region r needed to 

produce one unit of output from sector j in region s. Eq. (5) can therefore be formulated as 

follows: 
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where X, A, and Y are the matrices of 
r

ix
, 

rs

ija
and 

rs

iy
, respectively.  

 

Then, a vector of direct emission intensity, h, is introduced to describe the sector-specific CO2 

emissions per unit of economic output as follows: 

 

'/ 'h E X         (7) 

where 'E  and 'X  are the vectors of production-based CO2 emissions and total output in 

monetary terms for 30 industries and 31 regions. 

 

The CO2 emissions associated with the final consumption in region r can be calculated as 

follows: 

1ˆ( ) r

rF h I A           (8) 

where ĥ is the diagonal matrix of h, I is the identity matrix, and 
r is the final demand vector 

of region r.  

 

Specifically, the interaction of emission flows between every pair of regions, i.e., the emissions 

transferred from region r to region s, can be calculated as follows: 
1ˆ ( )sr s rF h I A           (9) 

When r=s, 
rrF  represents the emissions related to the final consumption of products produced 

locally, and when r≠s, 
srF  denotes the emissions released in region s related to cross-regional 

final products that are consumed in region r.  
 

2.3 Data Sources 
 

The single-region IOTs for 31 provinces in China are from the National Statistics Bureau 

(National Bureau of Statistics of the People’s Republic of China 2012) for the year 2012. 

MRIO table is developed based on the well-established methods (Mi et al. 2017) (See 

Supporting Information). The production-based CO2 emission inventories for Tibet and other 

provinces in China developed by Shan et al. (2016ab, 2017) are adopted. These inventories 

are compiled with a consistent methodology and data sources using the energy consumption 

data from China’s Energy Statistical Yearbooks and the best available local emission 

coefficients (Liu et al. 2015; Mi et al. 2016). All the emission data can be freely downloaded 

from the China Emission Accounts and Datasets (CEADS) website (http://www.ceads.net/). 

The flows of cargo between Tibet and other regions in China are mainly derived from the 

China Railway Yearbook (The Ministry of Railway, China, 2013) and China Transport 

Statistical Yearbook (Ministry of Transport, China, 2013). Sectoral trade is approximated by 

the available data on Qinghai. The sectoral GDPs of China and the Tibet Statistical 

Yearbooks are also used in the analysis (Tibet Bureau of Statistics, 2013; National Bureau of 

Statistics of China, 2016). 

 

3 Results and Discussions 

3.1 Emissions of Two Boundaries 
 

http://www.ceads.net/
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While production-based accounting calculates emissions within a territory, consumption-

based estimations cross territorial boundaries and track the emissions embodied in the 

regional supply chain induced by the demands of the study area (Chen et al. 2013; Meng et 

al. 2016; Mi et al. 2016). In this study, we found that consumption-based emissions of Tibet 

were much greater than the production-based emissions and that emissions occurring in other 

regions accounted for a large proportion of Tibet’s consumption-based emissions. 

 

In 2012, the production-based emissions of Tibet were estimated to be 6.2 Mt of CO2, 

accounting for 0.07% of China’s total CO2 budget. From the consumption-based perspective, 

Tibet’s CO2 emissions increased three folds, reaching 18.8 Mt (0.2% of the national total), 

which is equal to the emissions of Guinea in 2015 (20.75 Mt) (EDGAR, 2017). 

Consequently, the consumption-based emission intensity of Tibet was much greater than the 

production-based intensity. The production-based emission intensity was 0.41 tCO2/104 RMB 

in 2012, ranking 23rd among the 31 provinces studied here. In contrast, the consumption-

based emission intensity was 1.56 tCO2/104 RMB in 2012, ranking 14th among the 31 

provinces. 

 

 

The pattern of Tibet’s consumption-based emissions was more similar with those of the more 

developed regions than those of its counterparts in western China. Figure 1 compares the 

production- and consumption-based emissions of Tibet, provinces in western China, 

developed regions in east China and Tibet’s neighbor, Nepal. The production- and 

consumption-based estimates share one common emission component: the emissions emitted 

locally to satisfy local demand. The differences between these estimates are thus caused by 

the gap between local emissions induced by the exported emissions (in dark green in the left-

hand side of Figure 1) and imported emissions (in dark yellow in the right-hand side of in 

Figure 1). In China, substantial CO2 emissions are driven by the demands of the more 

developed provinces along the east coast. In addition, the emissions related to the goods and 

services consumed in these regions are imported from less-developed provinces in central and 

western China (Mi et al. 2017). As a result, the consumption-based emissions of developed 

regions are generally much higher than their territory-based emissions. As an example, the 

territory-based emissions of Beijing were 79.4 Mt of CO2 in 2012, but its consumption-based 

emissions were 196.6 Mt, 2.5 times greater than the territory-based value. In sharp contrast, 

the territory-based emissions of the less-developed western provinces tended to exceed the 

consumption-based emissions. For example, the consumption-based emissions of Inner 

Mongolia and Ningxia were 334.9 and 87.2 Mt in 2012, respectively, each equal to 60% of 

the territory-based emissions. Indeed, approximately 66% and 54% of the emissions in Inner 

Mongolia and Ningxia, respectively, were emitted during the production of goods and 

services that were ultimately consumed in other regions.  

 

On contrast, the consumption-based emission of Tibet far exceeded its production-based 

account. Of the 18.8 Mt of consumption-based emissions in Tibet, 69% were exported to 

other regions rather than emitted locally. This pattern distinguishes Tibet from other western 

provinces in China that are generally emission importers supporting the consumption and 

exports in the richer eastern regions. In fact, the ratio of consumption- based to territory-

based emissions in Tibet (3.0) was the highest among the 31 provinces studied here, 

including greatly developed areas such as Beijing (2.5), Tianjin (1.5) and Guangdong (1.3). 

The neighbor of Tibet, Nepal, has very similar characteristics; the consumption-based 

emissions in Nepal were 2.8 times greater than the production-based emissions. These 

regions are both located near the Himalayas and have limited natural resources and fragile 
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environments that make mass industrial production difficult. Such low self-sufficiency results 

in high dependencies on other regions.  

 

3.2 Sector-based Contributions and Driven Demands 
 

The discrepancies between sectoral contributions from production- and consumption-based 

estimation were also substantial. As shown in Figure 2a, the production-based CO2 emissions 

in Tibet were mainly attributed to non-metal mineral products (29%), other services (19%), 

transport (15%) and electricity and heat production (12%). Other services accounted for the 

second largest level of production-based emissions. This result is due to the high share of 

tertiary industry in Tibet, which accounted for 54% of its GDP in 2012, ranking the third 

highest in China after Beijing (76%) and Shanghai (60%) (National Bureau of Statistics of the 

People’s Republic of China 2013).  

 

 

The local production activities and production activities in other regions in China (Figure 2b) 

collectively supported the consumption in Tibet (Figure 2c). From the consumption-based 

perspective, a large amount of emissions from non-metal mineral products, electricity and 

heat production, and metal smelting and processing were due to the demand for construction. 

Construction accounted for 57% of the consumption-based emissions followed by other 

services (14%) and transport (4%). Food processing, garments and fiber products, agriculture, 

the chemical industry, and electric equipment and machinery each contributed 2% to the total 

consumption-based emissions. Though the contribution of construction to consumption-based 

emissions is generally higher than its contribution to production-based emissions (Huo et al. 

2014; Mi et al. 2016; Ou et al. 2017), the share of emissions from construction in Tibet was 

still astonishingly high. 

 

The consumptions of different sectors are associated with different final demands (Figure 

2d), namely, rural consumption, urban consumption, government consumption, capital 

formation and inventory change. The consumptions of construction and electric equipment 

and machinery were predominantly driven by capital formation and inventory change. As a 

result, 74% of the consumption-based emissions were related to the demands of capital 

formation and inventory change. The second highest demand was government consumption, 

which accounted for 14% of the total consumption-based emissions. Approximately 84% and 

42% of the emissions from other services and transport were related to the government’s 

demand, respectively. Urban and rural consumption each accounted for 6% of the total 

emissions through the demands of food processing, garments and fiber products, and 

agriculture. Among these final demands, 74%, 44%, 56% and 72% of the demands of capital 

formation and inventory change, government consumption, urban consumption and rural 

consumption, respectively, were supported by production in other provinces, as shown in 

Figure 2e.  

 

3.3 Inflowing Provinces  
 

Tibet was interconnected with most provinces in China through interprovincial trade. Figure 

3 illustrates the CO2 emissions related to Tibet’s demands, i.e., embodied emissions in import 

to Tibet. In particular, flows of CO2 emissions were significant for the provinces adjacent to 

Tibet, e.g., Qinghai, Sichuan and Gansu. Qinghai, Tibet’s neighbor to the east, was the region 

with the largest support of Tibet’s demands and consumption-based emissions (20%, 3.8 Mt). 

Approximately 0.9 and 0.6 Mt CO2 emissions were embodied in the interprovincial trade 
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from Sichuan and Gansu to Tibet, respectively. Net emission flows from other regions to 

Tibet were also observed, especially from regions in the north, such as Hebei (1.9 Mt) and 

Inner Mongolia (0.8 Mt). Some minor flows also originated from the Yangtze River 

(Shanghai, Zhejiang and Jiangsu) and the Pearl River Delta (Guangdong), which are China’s 

most economically developed areas. These results make Tibet stand out from its western 

counterparts, which are usually net emission exporters supporting the developed coastal 

areas, i.e., CO2 emissions flowed from west to east (Mi et al. 2016). 

 

Some studies have noted that CO2 emission flows began to reverse in 2012 (Mi et al. 2017). 

Some provinces in southwest China (e.g., Sichuan, Chongqing, Guizhou and Guangxi) have 

shifted from being net emission exporters to net emission importers. However, the provinces 

in northwest China (including Xinjiang, Qinghai, Inner Mongolia, Gansu, Shaanxi and 

Ningxia) are still net emission exporters. The aftermath of the global financial crisis and 

China’s supply- and demand-side reforms might be the reasons leading to this change. Tibet 

borders provinces in both southwest and northwest China and is not included in previous 

studies. In this study, the consumption-based emission patterns of Tibet were more similar 

with those in southwest China. The consumption characteristics of Tibet in this study are 

additional evidence of the ongoing reversal in emission flows within China. 

 

Such frequent interaction between Tibet and other provinces in China has been enabled by 

the development of the Qinghai-Tibet railway in recent years. As shown in Fig. 3, the density 

of the national railway network becomes sparser from the east to west. After, 2006 Tibet was 

connected to the national railway network through the Qinghai-Tibet railway stretching from 

Lhasa in Tibet to Golmud in Qinghai. Prior to this time, only road and air transportation were 

available. Air transport was expensive and limited in volume. Road transport was unreliable 

due to the harsh geographical conditions and weather such as frequent mud and rock slides. 

More stable and cheaper transportation was available after the Qinghhai-Tibet Railway was 

put into use, which reduced the freight rate from 0.27 (road transport) to 0.12 RMB per ton 

(price in 2007 RMB). The volume of railway freight surged from 24.9 million tons in 2006 to 

40.2 million tons in 2012, and this transportation method is responsible for 75% of the goods 

transported to/from Tibet.  
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3.4 Inflowing Production Activities 

 

Tibet’s economy is mainly supported by agriculture, animal husbandry, forestry and services. 

Such an economic structure results in high dependences on a wide range of industrial 

products, especially those from heavy-industries such as cement, iron, steel, machinery and 

equipment. Specifically, non-metal mineral products, iron and steel, general and special 

equipment and machinery, metal products, chemical products, processed food, garments and 

fiber products, and paper products from other regions in China accounted for 71% of 

imported goods to Tibet. The supply of such products has inevitably led to more intense 

production activity in other provinces, especially in the regions that support Tibet the most, 

including Qinghai, Hebei, Inner Mongolia, Gansu and Sichuan. The production activities 

related to Tibet’s demands were generally in energy-intense sectors. As shown in Figure 4, 

the sectors associated with Tibet’s demands were the most diversified in Qinghai and 

included non-metal mineral products, electricity production, metal pressing and smelting, and 

the chemical industry. The emissions from these four sectors increased by 1.7, 1.0, 0.6 and 

0.5 Mt, respectively. The emissions outsourced to Hebei were mainly related to non-metal 

mineral products (0.5 Mt), electricity production (0.5 Mt) and metal pressing and smelting 

(0.5 Mt). For Inner Mongolia, Gansu and Sichuan, electricity production and non-metal 

mineral products were the dominant sectors. Electricity production made up an important 

proportion of outsourced production activities, but Tibet did not directly import electricity 

from other regions. Instead, it was induced by the increased electricity demand from other 

production activities such as equipment and machinery manufacturing, food processing, and 

other products when they were produced locally and exported to Tibet afterwards. 

 

The outsourced sectors described above are generally the critical supporting sectors in 

secondary industry, but these sectors are not flourishing in Tibet due to the limitations of the 

local environment and natural resources. Tibet is a traditionally agriculture-based 

autonomous region. After the economic development of the past decade, tertiary industry is 

now the leading economic driver in this region and accounted for 54% of its GDP in 2012 

(National Bureau of Statistics of the People’s Republic of China 2013). Industry, including 

non-mental mineral products, metal processing, chemical industry and others, accounted for 

only 8% of the annual GDP of Tibet. 

 

4 Conclusions and Policy Implications 

This study presents the first consumption-based estimation of Tibet’s emissions. Though 

Tibet’s emissions might be low compared to the total emissions of China (0.2% of the 

national total from the consumption perspective), such knowledge is indispensable in 

understanding the environmental issues in Tibet. Results also show that Tibet’s emission 

patterns are unique. Compared to its counterparts in western China, Tibet’s consumption-

based emission patterns are more similar with those of developed regions in east China with 

relatively high proportion of emissions supported by other regions. 

 

The ratio of consumption-based to production-based emissions of Tibet was the highest 

among the 31 Chinese provinces studied here. Nearly 70% of the consumption-based 

emissions of Tibet were emitted in other regions instead in Tibet itself. If these off-site 

emissions were to occur locally, Tibet’s local emissions would triple, increasing from 6.2 to 

18.8 Mt CO2 in a year. Considering the less advanced manufacturing technology in Tibet, 
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these emissions would climb to 22.3 Mt, 3.6 times greater than the current emissions. Such a 

relocation of emissions is not as relevant for greenhouse gases that are long-lived and have 

environmental impacts that are not sensitive to emission location, such as CO2. However, for 

short-lived air pollutants and air toxics, such as sulphur dioxide, nitrogen oxides, VOCs, and 

heavy metals, the emission location greatly determines the harm to ecosystems and human 

health (Q. Zhang et al. 2017; Jiang et al. 2015; Lin et al. 2014). Given that air pollutants and 

CO2 have large overlaps in their emissions sources from fossil fuel combustion (West et al. 

2013; Cifuentes et al. 2001; Schmale et al. 2014), the consumption-based characteristics 

observed in this study are also applicable to air pollutants. If off-site emissions occurred 

locally in Tibet, the fragile environment would experience catastrophic damage. Further 

study on how the consumption patterns and virtual transport of emissions affect the local and 

national environment should be carried out. 

 

As inter-regional interactions are expected to become more frequent under the development 

of western China, the design of a more sustainable consumption pathway for Tibet is crucial. 

The inter-regional interactions observed in this study are enabled by the transformation of the 

transportation system in the northwest China in recent years. The transportation infrastructure 

is expected to be steadily upgraded in the coming decade under China’s plan to develop the 

northwest and the Belt and Road Initiative. Previous studies have defined two criteria for 

regions within “Goldemberg’s Corner,” namely, per capita carbon emissions (consumption-

based perspective) of less than one tonne C per year and a life expectancy of over 70 years 

(Steinberger et al., 2012; Steinberger and Roberts 2010; Lamb et al., 2014). Regions within 

Goldemberg’s Corner represents a sustainable lifestyle with a good balance of environmental 

conservation and human welfare. Tibet exhibits the opposite trend with a high carbon 

footprint and a low life expectancy. The per capita carbon emissions in Tibet were 1.74 tonne 

C in 2012, and the average life expectancy was 67.8 years. The carbon footprint of Tibet 

ranked 3rd highest among the 31 Chinese provinces studied here after Tianjin and Shanghai. 

However, the life expectancies of Tianjin and Shanghai were 75.4 and 72.3 years, 

respectively (see Supporting Information Figure S-1). The geographical and meteorological 

constraints would be one reason for the lower life expectancy in Tibet. Thin oxygen, strong 

solar radiation and frequent extreme weather are prone to shorten life expectancy. 

Underdeveloped medical care and other economic factors are also contributing. From the 

perspective of consumption, the high carbon footprint suggests more can be done to benefit 

both human welfare and environmental concerns. The high proportion of red meat in Tibet’s 

dietary structure, for example, shortens human life expectancy and leads to high carbon and 

air pollutant emissions. Under the quickly developing transportation system, opportunities to 

change the consumption patterns are emerging with easier access of healthier and more 

environmentally friendly products. In addition, substantial consumption-based emissions are 

associated with construction, whose emission intensity is generally high. Tibet needs to 

diversify the local economy towards low carbon development in the long run. 
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Due to the limited data source, a quantitative estimation on Tibet’s consumption-based 

emission is unavailable. Nevertheless, it is expected that the uncertainty of Tibet’s 

consumption-based carbon account would be much higher than China’s national metrics. A 

recent study found that Chinese national data is one of the largest contributors to the 

uncertainty of global consumption-based carbon account with a coefficient of variation of 

9.07% (Rodrigues et al. 2018). Another consensus is that consumption-based emission is 

associated with higher uncertainty than the production-based metrics since more data 

transformation are involved (Sato 2014; Owen et al. 2014). According to the estimation by 

Shan et al. (2018), the uncertainties of China’s provincial CO2 emission were roughly (-15%, 

25%) at a 97.5% confidence interval. Given the poorer data quality of activity level data and 

emission factors, the uncertainty of Tibet’s consumption-based emission estimation would be 

higher than the above mentioned range. We urge more efforts to measure the uncertainty of 

consumption-based account to prioritize uncertainty reduction efforts. 

 

 

 

 

 

 

The above results and discussion show the significance of consumption-based accounting in 

understanding a region’s emission characteristics. Similar to production-based accounting, a 

regular update of consumption-based estimations, an extension to air pollutant emission 

account, and uncertainty analysis are recommended. Tibet is one of China’s important 

gateways to South Asia under the Belt and Road Initiative. The consumption characteristics 

in Tibet might change profoundly in the near future. The MRIO table developed in this study 

can also be applied to study the virtual inter-regional interactions of air pollutants, water and 

energy between Tibet and other regions in China.  
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Figure 1 Composition of production- and consumption-based CO2 emissions 
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Figure 2 Emission flows from production to consumption and final demands. (a) CO2 

emissions from local production activities in Tibet – 6.2 Mt (production-based emissions), 

which is not sufficient to support Tibet’s demands; (b) CO2 emissions from production 

activities in Tibet and other regions in China that support Tibet’s demands – 18.8 Mt; (c) 

Consumption-based sectoral CO2 emissions totaling 18.8 Mt; (d) CO2 emissions by final 

demand – 18.8 Mt; (e) CO2 emissions supported by production in other regions by final 

demand – 13.0 Mt.  
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Figure 3 CO2 emissions related to Tibet’s demands. Percentage represents the contribution of 

the inflowing province to the consumption-based emission of Tibet 
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Figure 4 Production activity inflows from (a) Qinghai, (b) Hebei, (c) Inner Mongolia and (d) 

Gansu due to the demands of Tibet. The number next to each sector’s name (e.g., 1.0 Mt) 

indicates the absolute CO2 emissions, and the percentage represents the sectoral contribution 

to CO2 emissions related to Tibet’s demand in a given region.  

 

 


