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ABSTRACT

The unsteady problem of a rigid body impact onto a floating plate is studied. Both
the plate and the water are at rest before impact. The plate motion is caused by the
impact force transmitted to the plate through an elastic layer with viscous damping on
the top of the plate. The hydrodynamic force is calculated by using the second-order
model of plate impact by Iafrati and Korobkin (2011). The present study is concerned
with the deceleration experienced by a rigid body during its collision with a floating
object. The problem is studied also by a fully-nonlinear computational-fluid-dynamics
method. The elastic layer is treated with a moving body-fitted grid, the impacting
body with an immersed boundary method, and a discrete-element method is used for
the contact-force model. The presence of the elastic layer between the impacting bod-
ies may lead to multiple bouncing of them, if the bodies are relatively light, before
their interaction is settled and they continue to penetrate together into the water. The
present study is motivated by ship slamming in icy waters, and by the effect of ice
conditions on conventional free-fall lifeboats.
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1. INTRODUCTION

The reduction in the extent of summer sea ice is the most high-profile indicator of Arctic cli-
mate change according to a recent Lloyd’s report (2012). The trend towards more ice-free areas of
the Arctic Ocean, and a longer ice-free period, is expected to continue. The opening of the Arctic
will reduce shipping costs and extend exploration and drilling seasons for offshore oil and gas. On
the other hand, the reduction in sea ice increases the distance over which waves gather strength,
their ’fetch’, making waves stronger and move frequent. The younger and thinner Arctic ice is
more prone to break-up by the water waves and ships (Lloyd’s report, 2012). We may conclude
that the climate changes reduce the extend of the ice cover in Arctic but increase both the amount
of broken floating ice and water wave amplitude. Navigation in Arctic Ocean without icebreakers
is becoming possible, but ice floes on the ship route in combination with large waves and large
amplitude motions of the ship, may cause problems with ice loads in addition to the slamming
loads. The Lloyd’s report (2012) points that “comprehensive and rigorous risk management is
essential for companies seeking to invest in the Arctic. Those companies that can manage their
own risks, using technologies and services most adapted to Arctic conditions, are most likely to
be commercially successful”. In the present study, we are concerned with the effect of a single ice
floe on slamming loads for sea-going ships and conventional free-fall lifeboats, see Lubbard et al.
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Figure 1: Two-dimensional slamming for open water (a), with ice floe (b), which is attaced to the body
surface later on (c), with an ice floe near the impact region (d), several floes under and near the body
surface (e) and floes on the body surface (f).

(2011) and Re et al. (2003).

1.1 Slamming loads with floating ice

The problem under consideration is different from the well studied problem of ship interaction
with floating ice without waves and large-amplitude ship motions (Lubbad at al., 2011). We shall
estimate the loads caused by a floating ice plate on a rigid body falling from above onto the water
surface. The ice plate is relatively short and modelled as rigid (Korobkin, 2000). The problem is
sketched in Figure 1 for two-dimensional slamming, where h′b(t) is the vertical velocity of a ship
section. We assume that slamming loads for open water (Figure 1a) are well predicted. If there is
an ice floe in the place of impact (Figure 1b), then two stages of the impact can be distinguished.
During the first stage, the ship section does not touch the water surface. It accelerates the ice
floe up to the velocity of the section. The acceleration of the ice plate is smooth if the impact
between the ice plate and the ship section is elastic. In such a case, the ice floe may bounce from
the impacting body after a short period of their interaction. Later they collide again but with
smaller relative speeds. These short periods of impacts and bouncing back may repeat several
times before the ice/body interaction settles down and the body continues to enter the water with
the ice plate attached to the body surface. During the second phase the body penetrates the water
with the attached ice plate which can move along the body surface changing slightly the impact
loads, if the ice plate is short (Figure 1c). However, the impact loads in the presence of ice can be
significantly different from the slamming loads in open water for ice plates of moderate size. In
this study, we do not account for elastic deflection of the ice floe and its possible breaking caused
by the impact.

The situation depicted in Figure 1d is more complicated. Here the body initially enters open
water and an ice floe is floating nearby the impact place. Later on the surface of the body
approaches the ice floe and comes in contact with it. It is important to note that the floe starts
to move before its contact with the entering body, and it is moving towards the body (Figure 1d).
Then the speed of the collision between the body and the ice floe is larger that the speed of the
body. In addition, the angle between the surface of the body and the ice plate at the impact instant
can be such that the plate may cut the body surface in a knife-like manner (Khabakhpasheva et
al., 2018). This may happen in the presence of another ice floe attached already to the body
surface (Figure 1e). The cases (c) and (d) can be combined leading to multiple ice plates in the
impact region (Figure 1f).

During the second phase (Figures 1c and 1f), the presence of the ice plates attached to the
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Figure 2: Impact on a floating elastic plate of large length.

wetted surface of the body and moving along this surface can be included in the solution of the
water impact problem (Figure 1a) by modifying the shape of the entering body, see Section 4. For
short ice plates their effect on the impact force during the second phase can be negligible in the
leading order. Then the main changes to the impact loads occur during the first phase (Figure
1b), when the ice floe is accelerated by the impacting body. In general, the body surface can
be partly wetted before the floe speed adjusts the speed of the body. For the ice floes of large
horizontal extent (Figure 2) elastic deflections of the ice plate are important but the body does
not touch water during the impact.

The first phase of impact onto a short floating plate can be divided into the initial stage,
when the plate displacements are small compared with the horizontal dimensions of the plate,
and the main stage, when the plate displacements are comparable with the plate dimensions but
smaller than the dimension of the impacting body. During the main stage the body surface is
wetted outside the region shadowed by the plate but the plate motions are still different from the
motions of the body. The main stage can be described by the Wagner model of water impact for
bodies with small deadrise angles, see Wagner (1932). The Wagner model should be modified to
account for the ice plate moving near the rigid surface of the body. During the initial stage, the
hydrodynamic loads act only on the floating plate, and the body deceleration is determined by
the model of the interaction between the body and the ice floe.

1.2 Impact on a floating body by Joukowski

A floating plate is accelerated by impact on it in short time. The speed of the plate and the
speed of the body after this short period of interaction can be obtained by using the concept of
the force impulse and a collision model. This problem was solved by Joukowski (1884) for the
vertical impact of two spheres, one of which is half-submerged in a spherical vessel, see Figure 3.
The notation in the figure is that from the paper by Joukowski. The flow caused by the impact is
potential. Let the speed of the floating sphere with mass m′ and radius r1 be u′ after the impact,
and the speed of the impacting sphere with mass m be v before the impact and u after the impact.
The hydrodynamic pressure in the vessel is given by the unsteady Bernoulli equation which can
be linearized for the impact stage of short duration. The velocity potential ϕ of the flow after the
impact is obtained in the spherical coordinates within the linearized hydrodynamic impact model.
The integrals of the hydrodynamic pressure, p = −ρϕt, over the wetted part of the floating sphere
and in time for the duration of the impact provide the impulse of hydrodynamic force as mau

′,
where ma = 1

3πρr
3
1(r32 + 2r31)/(r32 − r31) is the added mass of the floating sphere and ρ is the liquid

density.
Combining the equations of the sphere motions and eliminating the interaction force between

the spheres during the impact, Joukowski obtained that the change of the total momentum of
both spheres is equal to the impulse of the hydrodynamic force,

m(v − u)−m′u′ = mau
′.
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Figure 3: Impact of two spheres studied by Joukowski (1884).

There are two unknowns in this equation, u and u′. Only the mass, but not the size, of the
impacting sphere matters.

The second equation describes the physics of the impact. If the impact is inelastic, then the
bodies move at the same speed after their collision, u = u′, and the kinetic energy of the system is
not conserved. The energy can be lost due to heating of the bodies during the impact, the body
deformation, or their crushing. Then

v/u = 1 + (m′ +ma)/m. (1)

Therefore, the speed of the impacting body is reduced by an amount related to the ratio of the
mass of the floating sphere together with its added mass, m′+ma, and the mass of the impacting
body, m. If the impact is elastic, then the kinetic energy of the system is conserved,

1

2
mv2 =

1

2
mu2 +

1

2
m′u′2 +

1

2
mau

′2,

where the last term on the right is the kinetic energy of the flow generated by the impulsive motion
of the floating sphere, see Joukowski (1884). The conservation of the energy and the conservation
of the total momentum provide v + u = u′, which is the second required equation. The result for
elastic impact is

u = v
m− (m′ +ma)

m+ (m′ +ma)
, u′ = 2v

m

m+ (m′ +ma)
. (2)

For water of infinite depth, r2 → ∞, the added mass of the half-submerged sphere is ma =
1
3πρr

2
1. The obtained results (1), (2) and the described models are valid for any shapes of floating

and impacting bodies. We may conclude that the ratio of the body speeds before and after im-
pact on a floating body depends on the ratio of the body mass to the mass of the floating object
including its added mass. Note that the mass of an ice floe of small thickness is much smaller than
its added mass, with the ratio between them being of order of the ratio of the plate thickness to
its horizontal dimension. A massive body, such as a ship, experiences a small change of its vertical
velocity due to presence of ice floes in the impact region. The velocity reduction for a light body
can be significant. Inelastic impact with an ice floe, described by the equation (1), corresponds
to high impact velocities, when the ice is crushed in the impact place. Then the kinetic energy
of the impacting body is spent on the acceleration of the floating object and its crushing. For
low-speed impacts, the ice floe is accelerated without crushing and equations (2) could be used.
For a massive impacting body, (m′+ma)/m� 1, the equation of elastic impact (2) predicts that
the speed of the impacting body does not change significantly but the speed of the floating body
after the impact is twice the speed of the impacting body. This means that the floating body
moves at a higher speed than the impacting body, where u′ = u+ v as it follows from the energy
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conservation law. The floating body may separate from the impacting body at the end of the
first impact but then it slows down by the hydrodynamic force and the next collision between the
bodies occurs.

1.3 Hydrodynamic forces of water entry

The deceleration of the impacting body, as well as the second and the following collisions,
cannot be described by using the force impulse only. The time-dependent hydrodynamic loads
for moderate penetration depth are needed together with the buoyancy force. The hydrodynamic
forces can be calculated by the following formula,

Fh(t) = ρh′′pFw(hp) + ρ(h′p)
2Fv(hp), (3)

see Korobkin et al. (2014), for the water entry problems and by similar formulae for impact on
floating plates, see Iafrati et al. (2008) for a two-dimensional plate and Iafrati et al. (2011) for
a circular plate on the surface of water of infinite depth. Here hp(t) is the vertical displacement
of a floating body. The functions Fw(hp) and Fv(hp) can be obtained approximately for small
displacements or numerically for moderate displacements of the body. Iafrati et al. (2008, 2011)
obtained these functions by using the method of matched asymptotic expansions for plates of zero
draft. The approximate formulae are

ρFw(hp) = ma, (4)

where ma = 4
3ρR

3
p for a circular disc of radius Rp and ma = π

2ρL
2 for a two-dimensional plate of

length 2L, Fv(hp) = R2
pf(hp/Rp) for a circular disc and Fv(hp) = Lf(hp/L) for a two-dimensional

plate, where
f(x) = a1x

−1/3 + a2 log x+ a0. (5)

The coefficients in (5) are given in Table 1 of Iafrati et al. (2011) for the circular disc and the
flat plate. The forces predicted by the equations (3)-(5) were compared with the numerical forces
computed by a boundary element method, see Iafrati et al. (2008, 2011) for constant speed of
impact. It was shown that the formula (3) can be used for penetration depth up to 10% of
the plate radius. Similar formulae for hydrodynamic forces and moments acting on floating two-
dimensional plates, and circular and elliptic discs moving with more than one degree of freedom
can be derived using the method by Iafrati et al. (2008, 2011). This analysis has not been done
yet. The buoyancy force acting on a flat disc is given by the formula FA(t) = Sρghp, where g is
the gravitational acceleration, S is the disc area, S = πR2

p for the circular disc, and S = 2L for
the two-dimensional plate. Note that the gravity effect on the flow and the hydrodynamic force
(3) is not taken into account.

The magnitudes of the impact forces transmitted to the rigid body during each collision with
a floating ice floe, as well as the corresponding body decelerations, cannot be obtained by using
the force impulse formulae (1) or (2). A model of interaction between the colliding bodies is needed.

1.4 Interaction models of colliding bodies

For high-speed impact and a relatively small body, the ice can crush in the impact region
(Kurdyumov et al., 1976, Jordan et al., 1988). The kinetic energy of the impacting body is used
for the crushing until the speeds of the body and the ice floe become equal. It is written by
Kurdyumov et al. (1976): “Experiments on impact on ice have shown that the insertion of a
solid in ice occurs because of local shattering of the ice surface. Plastic strains did not succeed in
developing. The elastic strains were also insignificant. The shattered ice from the intermediate
layer (between the surface of the body and the main crystalline ice) is displaced to the free surface
during the insertion. A certain quantity of water is apparently also present in the shattered
material under pressure”. The flow in the intermediate layer was modelled as viscoelastic. In the
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experiments, the impacts were inelastic for impact speeds higher than 1.5 m/s (Kurdyumov et al.,
1976). Dependence of the inelastic impact conditions on the thickness of ice and the radius of the
solid spheres used in the experiments were not reported. We may assume that impacts on ice are
elastic for low impact speeds of light bodies with large radius of curvature in the impact region.
Elastic effects are expected to dominate for thin ice and bodies with small deadrise angles.

Forces between two elastic three-dimensional bodies pressed to each other by a given force P
were calculated by Hertz (1882). His theory assumes elliptic contact regions which are much
smaller than both the dimensions of the bodies and the relative radii of curvature of their surfaces
(Johnson, 1987). In the Hertz theory, each body is approximated by an elastic half-space loaded
over a small elliptical region of its plane surface. Correspondingly, the contact stresses localised
near the contact region are treated separately from the stresses in the main parts of the elastic
bodies. The Hertz theory is quasi-static. This implies, in particular, that the speed of the contact
area expansion is much smaller than the speeds of elastic waves in the solids. This is not valid
for early stage of the contact of bodies with small deadrise angles. For a rigid sphere of radius R
pressed by a force P to the elastic lower half-space z < 0, the position of the body in the contact
region can be approximated by z = r2/(2R) − h, where h is the indentation depth and r is the
radial coordinate. The Young’s modulus of the elastic half-space is E and the Poisson ratio is ν.
Then the Hertz theory provides (Johnson, 1987)

h =

(
3P (1− ν2)

4E

)2/3

R−1/3.

In the present study, this equation is used in the form

P =
4

3

E
√
R

1− ν2
h3/2, (6)

where E = 4.2 · 109 N/m2 is Young’s modulus of ice, ν = 0.3, R is the radius of the curvature
of a rigid axisymmetric body impacting a floating ice floe and P is the interaction (impact) force
between the body and the floe. The indentation depth of the body h is equal to the difference
between rigid-body displacements of the impacting body and the ice floe.

The rigid displacements of the body and the floe are described by Newton’s second law with
account for the hydrodynamic (3) and the buoyancy forces, and the interaction force (6). For a
rigid body of double curvature, the interaction force P is still proportional to h3/2 but the coeffi-
cient of proportionality now depends on both radii of the body curvature. The body shape near
the impact place is approximated by an elliptic paraboloid, in the general case. A corresponding
formula of the force, similar to (6), for the two-dimensional case does not exist. Such a formula
would be helpful for estimation of ice loads during ship slamming in icy water. Calculations
of two-dimensional interaction loads should account for the shape and size of the bodies. Such
calculations are difficult to perform in most practical problems (Johnson, 1987).

For a floating elastic plate, which models an ice floe, and an impacting body of large size,
as a ship section, the contact region size can be comparable to the plate thickness and even to
the plate horizontal dimensions. The ice floe is pressed by the rigid body from above and by the
hydrodynamic force from below. Separating the rigid displacement of the plate and its elastic
compression, we arrive at the approximation similar to the strip theory, where the ice plate is
compressed in the one-dimensional manner with the vertical stress σ being proportional to the
relative compression of the plate, σ = Eh/Hs with E being Young’s modulus of the ice, and h
the local indentation depth, and Hs is the elastic sheet thickness. This formula is valid inside
the contact region, where the horizontal stresses are small compared with the vertical one. Near
the periphery of the contact region, where the stress field is essentially three-dimensional, this
approximation is not valid. However, the stresses near the contact region periphery are small
and give negligibly small contribution to the total interaction force. The global deflection of
the floating plate may significantly modify the local indentation h and, as a result, the total

6



Figure 4: Impact on a floating plate with an elastic layer on the top of it before the interaction
(a) and during the interaction (b).

interaction force. In order to simplify the complex problem of impact onto a floating elastic plate,
we model the ice floe as a short rigid plate of constant thickness Hp, see Figure 4a, with an elastic
thin layer of thickness Hs on it. Therefore, the plate behaves as rigid in computations of the
hydrodynamic forces, and as elastic in calculations of the impact forces, see Figure 4b. The ice
floe is modelled as a Winkler elastic foundation rather than an elastic half-space as in the Hertz
theory. The elastic foundation of thickness Hs rests on a rigid movable base and is compressed
by a rigid body (Winkler, 1867). A Winkler foundation can be viewed as a set of linear springs
with rigidity E/Hs, or ks in general. The idea of the Winkler foundation is simple and flexible.
It makes it possible to account for the bending of the underlying base and complex motions of
both the plate and the impacting body with 6DoF in general. Fryba (1995) wrote “The Winkler
foundation was many times cursed and refused, but the scientists return to this simple law again
and again. I thing that it shares the same lot as the other simple theories like Bernoulli-Euler
beam, Palmgren-Miner rules etc.: their simplicity wins against more precise formulations”.

The interaction force for a Winkler foundation model and a two-dimensional parabolic shape,
z = x2/(2R)− h(t), is obtained as

P =
4

3
ks
√

2Rh3/2. (7)

This formula is similar to (6), which is for the axisymmetric case. For a rigid sphere of radius R
penetrating into the elastic layer with rigidity ks the interaction force reads

P = πksRh
2

(
1− 1

3

h

R

)
, (8)

where the term with h/R can be neglected for small indentations. It is seen that both the Hertz
theory and the model of the Winkler foundation yield non-linear interaction forces even for small
indentation depth.

1.5 Physical effects on hydroelastic interaction of bodies

The dissipation of energy during collision of bodies can be taken into account, for example,
by using the Kelvin model, σ = Eh/Hs + ηh′(t)/Hs, which provides the interaction force as
(1 + τ d/dt)P (t), where P (t) is given by (7) in two-dimensional and by (8) in three-dimensional
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cases. Here τ is the retardation time. As τ increases, a larger amount of the kinetic energy is
dissipated during a collision.

In the limiting case of a body with flat bottom impacting a floating plate with flat upper
surface, we arrive at the experimental (Ermanyuk et al., 2005) and theoretical (Korobkin et al.,
2004) studies of two circular plates, one of which is floating on a thin layer of liquid. It was
shown both theoretically and experimentally that the presence of compressed air between the two
colliding plates is the governing factor in this problem. However, the air layer cannot be modelled
as elastic layer. The damping effect of the air is due to its escape at a finite speed from the gap
between the plates. This effect can be used in the problem of lifeboat landing in icy waters by
making the bottom of the boat nearly flat.

Impact onto an elastic beam was studied by Timoshenko et al. (1955, §66). For a beam of
negligible mass, the beam response is approximately quasi-static. It was assumed that the kinetic
energy of the impacting body transferred completely to the potential energy of the deformed
beam. The impact was inelastic. It was shown that in these conditions the dynamic deflection of
the beam is more than twice larger than the static deflection for the same weight of the impacting
body. The elastic impact of a sphere onto a beam with non-negligible mass is a more complicated
process because the beam oscillations should be taken into account. The impact occurred at
the middle of the beam. The load magnitude was calculated by (5), where h(t) is the difference
between the displacement of the body and the displacement of the beam at the impact point. The
impact force P (t) and the beam deflection at the impact point were evaluated numerically. It was
shown that the body bounces several times from the beam. The impact force during the second
impact was higher than that during the first one. The beam deflection increased monotonically
at least to the end of the second impact.

Our present problem differs from that studied by Timoshenko et al. (1955) in several aspects:
(i) our plate is floating on the water surface, (ii) our plate is short with free-free edges, (iii) the
impacting body is large in our problem with the contact area being comparable with the size of the
plate. The force restoring the position of the plate after each impact is due to the hydrodynamic
force and the buoyancy force in our problem. The fluid-inertia force given by the first term in
(3) does not contribute to the restoring force. This part of the hydrodynamic force leads to the
added mass of the plate, see (4), increasing the effective mass of the plate, see also equation (1)
and (2) for the role played by the added mass of the floating plate. However, in our problem of
impact onto a short floating plate, we could also expect multiple impacts as in the problem of a
rigid body impact onto an elastic beam.

1.6 The aims of the present study

Through the analysis of the present problem, we should answer several questions. Does the
maximum deceleration of the vertically impacting body always occur during the first impact with
a floating body within the Hertz theory and the model of elastic layer? What is the effect of
the impact force damping on the body deceleration? How does the energy dissipation in the
collision model of section 1.5 relate to the ice crushing model by Kurdyumov and Kheisin (1976)?
How does the horizontal velocity of the body change its deceleration and its trajectory after the
body impacts onto a floating ice plate? What is the motion of the plate and its effect on the
hydrodynamic forces acting on the body penetrating deep into the water with the attached plate?
To answer the question about oblique impact of a body onto an ice floe, the study of the relevant
problem for shallow water without ice, see Khabakhpasheva et al. (2013) can be useful.

In the next section, central impacts onto a two-dimensional and a circular ice floe are studied
using the Winkler foundation model (7), (8) and the Hertz model (6) for the impact force with
viscous damping.
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2. CENTRAL IMPACT

Problems of impact are multi-scale problems. The collision time is usually much smaller than
the characteristic time of the body motions. The collision force depends on the indentation depth
h(t). It is reasonable to separate short-time equations of the collisions, which are the equations for
h(t), and the equations of the body motions. During the early stage of the impact onto a floating
short plate, time intervals between subsequent collisions are also short. All equations of the body
motions should be numerically integrated with a time step being small enough to describe the fine
details of the collision processes.

The vertical motion of an impacting body is described by the equation

mb
d2hb
dt2

= mbg − Fimp(t), (9)

where mb is the mass of the body, Fimp(t) is the impact force, and hb(t) is the displacement of
the body downwards starting from the time, t = 0, when the body touches the upper surface of
the floating plate at a single point. The impact force accounts for dissipation of energy during
collisions, Fimp(t) = (1 + τ d/dt)P (t), where the retardation time τ is a characteristic of the
colliding materials and P (t) is given by (7), (8) or (6) depending on the collision model and the
dimension of the problem. The impacting body is assumed symmetric with respect to the vertical
axis and impacts a floating plate at its centre. The impact force has only the vertical component.
Initially,

hb = 0, h′b(0) = V0, (10)

where V0 is the velocity of the impact.
The motion of the floating plate is governed by the impact force and the hydrodynamic force

(3)-(5) for small displacements of the plate hp(t):

(mp +ma)
d2hp
dt2

= Fimp(t)− ρ
(

dhp
dt

)2

Fv(hp)− FA(hp). (11)

Here mp is the mass of the plate, hp(t) is positive downwards, Fv(hp) is given by (5) for both
axisymmetric and two-dimensional cases, FA(hp) is the buoyancy force, FA(hp) = πR2

pρghp for a
circular plate of radius Rp and FA(hp) = 2Lρghp for a two-dimensional floating plate of length
2L. Equation (11) is solved with the following initial conditions

hp = 0, h′p(0) = 0. (12)

The indentation depth h(t) is defined by

h(t) = hb(t)− hp(t). (13)

Combining equation (9) and (11), we find the equation for the indentation depth and, therefore,
for the impact force,

d2h

dt2
+Dn

(
1 + τ

d

dt

)
hαn = g +

ρFv(hp)h
2
p,t + FA(hp)

mp +ma
, (14)

where n = 1 correspond to the Hertz model of elastic impact, n = 2 and n = 3 correspond to the
elastic foundation model for two-dimensional and axisymmetric cases respectively,

Dn =

(
1

mb
+

1

mp +ma

)
Kn,

K1 =
4

3

E
√
R

1− ν2
, K2 =

4

3
ks
√

2R, K3 = πksR,
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α1 =
3

2
, α2 =

3

2
, α3 = 2,

where R is the radius of the body curvature at the impact point, ks is the rigidity of the elastic
foundation. In the plate model with a rigid base, we have ks = E/Hs or ks = E/Hp if the
whole plate is made of ice. Note that the right-hand side of (14) depends on the elements of
the hydrodynamic force acting on the floating plate. This right-hand side is zero in the model of
impact by Joukowski (1884). Each term on the right-hand side of (14) increases the indentation
depth h(t) and, therefore, increases the impact force and the body deceleration, see equation (9).
The initial conditions for equation (14) are

h(0) = 0, h′(0) = V0. (15)

To estimate the maximum of the impact force during the first collision and the duration of
this collision, we neglect the right-hand side in (14) and set the retardation time to zero. The
resulting equation can be integrated once using the conditions (15),(

dh

dt

)2

+ 2Dn
hαn+1

αn + 1
≈ V 2

0 . (16)

The maximum of h(t) is achieved at t∗, when h′(t∗) = 0. Equation (16) at t = t∗ provides,

hmax =

[
αn + 1

2Dn
V 2
0

] 1
αn+1

, (17)

and the maximum of the impact force,

F
(max)
imp = Dnh

αn
max.

For n = 1 and n = 2 with α1,2 = 3/2 we obtain

F
(max)
imp =

(
5

4

)2/5

D3/5
n V

4/5
0 ,

and for n = 3 with α3 = 2,

F
(max)
imp =

(
3

2

)1/3

D2/3
n V

2/3
0 .

Equation (16) in the nondimensional variables h = hmaxu(τ), t = Tτ takes the form

u2τ = 1− uαn+1 u(0) = 0,

where T = hmax/V0. Note that T ∼ V
−1/5
0 for n = 1, 2 and T ∼ V

−1/3
0 for n = 3. The function

u(τ) is given by
u(τ)∫
0

du0√
1− uαn+1

0

= τ.

The time τ∗ from the start of the impact to the maximum of the indentation depth, when u(τ∗) = 1,
is

τ∗ =
√
πβ

Γ(β)

Γ(β + 1/2)
, β =

1

αn + 1
,

where Γ(β) is the Gamma function. Calculations yield τ∗ ≈ 1.47165 for n = 1 and n = 2, and
τ∗ ≈ 1.4023 for n = 3.
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Figure 5: Comparison of the theoretical and numerical results for the plate indentation h, dis-
placements hp and hb, speeds h′p and h′b and the accelerations h′′p and h′′b of the plate and the body,
respectively, as functions of time t.

3. NUMERICAL RESULTS

The numerical results are obtained by solving the incompressible Navier-Stokes Equations
using the finite-volume method. The numerical solver is developed based on the open-source CFD
(Computational-Fluid-Dynamics) library, OpenFOAM. The OpenFOAM solver interDyMFoam is
extended to use a direct-forcing immersed-boundary method to solve for the flow around moving
bodies through an unstructured discretization of the flow domain. More details of the solver can
be found in Ye at al. (2018).

For this study, the impacting body is represented by an immersed-boundary and the floating
plate is modeled by the body-fitted grid. The volume-of-fluid method is used to capture the
air-water interface. When contact between the two bodies occur, the collision force is modeled
using equation (7). The collision force and the force due to the fluid flow are supplied to a rigid-
body motion solver (Piro, 2013). The motion of the bodies are integrated using a second-order
symplectic scheme.

The two-dimensional numerical results are compared with the theoretical predictions of dis-
placements, speeds and accelerations of both the impacting body and the floating plate by equa-
tions (11) and (14). These equations are integrated numerically by the Euler method. The results
of the comparisons are shown in Figure 5 for the following conditions of the impact: the half length
of the floating plate L = 2 m, the plate thickness Hp = 0.2 m, the mass of the plate mp = 400 kg,
the rigidity of the elastic foundation ks = 8× 105 kg/(m2s2), the retardation time τ = 0.00025 s,
the mass of the impacting body mb = 1000 kg, the initial impact velocity V0 = 1 m/s, the water
density 1000 kg/m3. The impacting body is parabolic with the radius of curvature R = 5 m.

Agreement between the theoretical and numerical results is very good, especially during the
initial stage of the interaction when the plate penetration is smaller than 0.1 m. Several con-
sequent impacts are observed with similar maximum accelerations of the impacting body and
similar durations, which implies that the selected damping is negligible. Between the impacts the
only force acting on the body is the gravity force, and the plate moves under the actions of the
hydrodynamic and buoyancy forces. For greater retardation time every next impact is less violent.
Finally the body and the plate move together without separating each other. If the rigidity of
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the elastic layer, ks, increases, the time periods of interaction become shorter and deceleration of
the body increases significantly. The body deceleration also increases if the mass of the impacting
body decreases. It should be noticed, that in the condition of Figure 5, the maximum of the body
deceleration is about 5.5g.

4. WATER ENTRY WITH ATTACHED ICE FLOE

In this section, we assume that the two-dimensional parabolic contour y = x2/(2R) − hb(t)
of mass mb per unit length impacts the floating rigid plate, −L < x < L, y = 0, at its centre,
and then penetrates the water, y < 0, together with the plate. The body and the plate interact
through an elastic layer with rigidity ks. The radius R of the body is much larger than the plate
length. The early stage, when the body surface is not in contact with water is short. We assume
that the body surface is wetted in L < |x| < c(t), where c(0) = L and c′(t) > 0, see Figure 6. The
problem is solved within the Wagner theory, where the body together with the plate is described
by the equation y = yb(x, t), yb(x, t) = −hp(t), where |x| < L, and yb(x, t) = x2/(2R) − hb(t),
where |x| > L. Note that the shape of the fictitious body, y = yb(x, t), is not continuous at
x = ±L. Here hp(t) is the displacement of the plate, and h(t) = hb(t) − hp(t) is the indentation
depth of the elastic layer which is on the top of the plate.

The Wagner condition that the elevations of the water surface at the contact points x = ±c(t)
are equal to the vertical coordinates of the entering body, yb[c(t), t], at these points, leads to the
equation for the function c(t) (Korobkin, 1996),

π/2∫
0

yb[c(t) sin θ, t] dθ = 0.

Evaluating the integral for our compound body, we find

hb(t) = h(t)B1(σ) +B2(σ), σ = c(t)/L, (18)

B1(σ) =
2

π
arcsin

1

σ
, B2(σ) =

L2

4R

(
σ2 +

2

π

√
σ2 − 1− 2

π
σ2 arcsin

1

σ

)
.

The hydrodynamic force acting on the plate is obtained as

Fp(t) = ρL2 d

dt

[
h′b(t)Gb(σ)− h′(t)Gs(σ)

]
, (19)

and the force acting on the wetted part of the main body as

Fb(t) = ρL2 d

dt

[
h′b(t)

{π
2
σ2 −Gb(σ)

}
+ h′(t)

{
Gs(σ)−Gb(σ)

}]
, (20)

where

Gb(σ) = σ2 arcsin
1

σ
+
√
σ2 − 1, Gs(σ) = 2 log σ + 2

√
σ2 − 1 arcsin

1

σ
+ σ2 arcsin2 1

σ
.

The motions of the body and the plate are governed by the equations

mb
d2hb
dt2

= −Fimp(t)− Fb(t), (21)

mp
d2hp
dt2

= Fimp(t)− Fp(t), (22)

where Fimp(t) = 4
3ks
√

2Rh3/2, see equation (7), Fimp(t) > 0, where h > 0, and Fimp(t) = 0, where
h ≤ 0, the gravity forces are not included in the Wagner model of water impact. The initial
conditions for the differential equations (21) and (22) are

hb(0) = 0, h′b(0) = V0, hp(0) = 0, h′p(0) = 0. (23)
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Figure 6: Impact of a large body onto a floating plate with pile-up effect.

The sum of equations (21) and (22) does not contain Fimp(t) and can be integrated in time using
conditions (23) and equations (19) and (20):

h′b

[
mb + ρL2

(π
2
σ2 −Gb

)]
+ h′ρL2

[
Gs −Gb

]
+mph

′
p + ρL2h′bGb − ρL2h′Gs = V0mb. (24)

Here σ = σ(t), σ(0) = 1 and Gb(1) = π/2. Using hp(t) = hb(t) − h(t), equation (24) can be
written in terms of h′b, h

′ and σ,

h′bB3(σ)− h′B4(σ) = V0mb, (25)

B3(σ) = mb +mp +
π

2
ρL2σ2, B4(σ) = ρL2Gb(σ) +mp.

Equations (19) and (22) yield

d

dt

[
mp(h

′
b − h′) + h′bρL

2Gb − h′ρL2Gs

]
= Fimp(t). (26)

It is convenient to introduce new function q(t) by

q = h′bB4(σ) + h′B5(σ), B5(σ) = −mp − ρL2Gs(σ). (27)

Then the equation (26) takes the form

dq

dt
= Fimp(h), q(0) = V0

(
mp +

π

2
ρL2

)
. (28)

Equations (28), (27), (25) and (18) are to determine the unknown functions q(t), hb(t), h(t) and
σ(t). Equations (25) and (27) can be resolved with respect to h′b and h′,

dhb
dt

= Ub(σ, q),
dh

dt
= Us(σ, q), (29)

Ub =
mbV0B5(σ)− qB4(σ)

B3(σ)B5(σ) +B2
4(σ)

, Us =
−mbV0B4(σ) + qB3(σ)

B3(σ)B5(σ) +B2
4(σ)

.

Equation (18) is differentiated in time and resolved with respect to dσ/dt using (29),

dσ

dt
= Q(σ, q, h), σ(0) = 1, (30)

Q(σ, q, h) =
πσ
√
σ2 − 1

2

Ub(σ, q)−B1(σ)Us(σ, q)

B6(σ)− h
, B6(σ) =

L2

2R

[(π
2
− arcsin

1

σ

)
σ2
√
σ2 − 1 + σ2

]
.

The body deceleration, h′′b (t), is calculated by numerical differentiation of Ub(σ, t) in time, see
(29).

If the impact is inelastic, then h ≡ 0 and the equations (18) and (25) provide

hb = B2(σ), h′b = V0mb/B3(σ), σ = c(t)/L, (31)
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Figure 7: Non-dimensional penetration depth of the body (a) and the non-dimensional hydrody-
namic force (b) as functions of the scaled length, c/l, of the wetted part of the body surface.

which correspond to equation (1) at t = 0. In particular, the body velocity instantly drops from
V0 to h′b(0) given by (31) at the impact instant. Equations (31) can be reduced to a single equation
for σ(t) by differentiating the first equation and then using the second one. However, it is simpler
to use (30), where h = 0 and Us = 0 now. We find

dσ

dt
=
V0R

L2

mb

mb +ma + πρL2σ2/2
Qi(σ), Qi(σ) =

π
√
σ2 − 1/σ

(π2 − arcsin 1
σ )
√
σ2 − 1 + 1

. (32)

This equation can be simplified, if we introduce a new unknown function w(t) by c(t) =
√
L2 + w2.

Then equation (32) yields

dw

dt
=

V0Rmb

mb +ma + π
2ρL

2 + π
2ρw

2

π

w arctan(w/L) + L
, w(0) = 0. (33)

For c(t)� L, we have w ∼ c, w/L� 1 and equation (33) is approximated by

dc

dt
≈ V0R

mb

mb +ma + π
2ρw

2

2

c
=

2V0Rh
′
b(t)

c
. (34)

This is the equation for the motion of the contact points in the problem of entry without a floating
plate. The solution of (34) is

c(t) ≈ 2
√
Rhb(t), (35)

see Korobkin (1996). The solution (35), scaled with L, is compared to the exact relation (31) in
Figure 7a as a function of the non-dimensional penetration depth 4Rhb/L

2. It is seen that the
effect of the floating plate can be neglected for c(t) > 3L, which is for hb/L > 9L/(4R). The total
hydrodynamic force, Fp(t) + Fb(t), acting on the body scaled with the force calculated without
the ice plate, 2πρRh′b, is shown in Figure 7b. The impulsive force at the impact instant is not
shown here. After a short initial stage, the total force Fp + Fb is approximately zero and then
quickly approaches the force calculated without the ice plate.

5. CONCLUSION

Impact onto a single ice floe of small dimensions floating on the water surface has been stud-
ied by theoretical and computational means. The interaction between the impacting body and
the ice floe during the early stage consists of several impacts and bounces of the bodies. The
body deceleration can be very high during this stage. During the following main stage of the
interaction, the body penetrates the water together with the plate sliding along the body surface
and slightly changing the hydrodynamic loads. It was shown that the presence of the attached ice
floe is negligible when the size of the body wetted area is three times larger than the size of the floe.
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