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Abstract 

In order to fight against the climate change, China has set a series of emission 

reduction policies for super-emitting sectors. The cement industry is the major source 

of process-related emissions, and more attention should be paid to this industry. This 

study calculates the process-related, direct fossil fuel- and indirect electricity-related 

emissions from China’s cement industry. The study finds that China’s cement-related 

emissions peaked in 2014. The emissions are, for the first time, divided into seven 

parts based on the cement used in different new-building types. The provincial 

emission analysis finds that developed provinces outsourced their cement capacities 

to less-developed regions. This study then employs index decomposition analysis to 

explore the drivers of changes in China’s cement-related emissions. The results show 

that economic growth was the primary driver of emission growth, while emission 

intensity and efficiency were two offsetting factors. The changes in the construction 

industry’s structure and improvement in efficiency were the two major drivers that 

contributed to the decreased emissions since 2014.  
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1 Introduction 

Being the largest CO2 emitter and energy consumer (Guan et al. 2009), China is taking 

increasing responsibility for global climate actions. To reduce greenhouse gas (GHG) 

emissions in more effective and efficient ways, China has set a series of relevant 

strategies and specific policies targeting super-emitting sectors (NDRC 2016c), 

including power generation (NDRC 2017), coal mining (NDRC 2016b), and the iron and 

steel industry (MIIT 2016). Cement is one of the largest key sources of process-related 

emissions in China and worldwide. According to China’s official GHG emission 

inventories from National Communications on Climate Change (as shown in Figure S1), 

process-related GHG emissions from the cement lime industry reached 157.78 million 

tons (Mt) (or 57% of the total process-related emissions) in 1994 (NDRC 2004), 411.57 

Mt (or 72%) in 2005 (NDRC 2013), and 834.03 Mt (or 70%) in 2012 (NDRC 2016a). With 

such a large amount and rapid growth of GHG emissions, the cement industry has 

become a key sector in GHG emissions mitigation. Indeed, several policies have been 

proposed to reduce the energy consumption and emission intensity of the cement 

industry in China. In the latest 13th five-year plan for the cement industry, the 

government aims to achieve a 30% reduction of the air pollutant emissions of the 

cement industry in 2020 compared to the 2015 level (China Cement Association, CCA, 

(2017). The energy consumption per ton of clinker production should be kept under 

105 kilograms (kg) coal equivalent in 2020, while those of 2015 amounted to 112 kg. 

With the efforts of the government, the process-related CO2 emissions from China’s 

cement industry peaked in 2014 (Shan et al. 2018a), maintaining the same trend as 

China’s total emissions (Guan et al. 2018). 

Accurately accounts of the cement-related emissions and understanding the driving 

forces of the changes in emissions is of considerable value, especially has practical 

significance for further emission reduction policymaking. Oda et al. (2018) developed 

a global high-spatial-resolution gridded CO2 emissions data inventory including 

cement production as a part of nonpoint emission sources. Şanal (2018) evaluated the 

CO2 emissions of different types’ cement and discussed emission reduction capacities 

of cement replacement in concrete production. Andrew (2018) presented a new 

analysis of global process emissions from cement production, which were 30 % lower 

than those reported by the Global Carbon Project (Le Quéré et al. 2015). Apart from 

the carbon source function, Xi et al. (2016) found that carbonation of cement 

materials has offset 43% of CO2 emissions from cement production from 1930 to 2013. 

Previous studies have employed the Index Decomposition Analysis (IDA) - logarithmic 

mean Divisia index (LMDI) model to analyze the variations of carbon emissions. 

Branger and Quirion (2015) investigated the changes of CO2 emissions in the European 

cement industry from 1990 to 2012 and found that most of the emission change 

(activity, clinker trade, thermal and electrical energy efficiency, and electricity 

decarbonization) could be attributed to the activity effect. When it comes to China, 
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Xu et al. (2012) got a similar result. They found that the activity effect (calcining 

process and electricity consumption) was the main driver of cement-related emissions 

increase while clinker share, structural shift, and kiln efficiency were main negative 

drivers. Wang et al. (2013) identified the main drivers that influence China’s cement-

related greenhouse gas emissions. Boqiang Lin (2016) found that the labor 

productivity was the major driving force to increase the cement-related CO2 emissions 

from 1991 to 2010. 

Despite that nearly all previous studies in emission accounts and analysis involved the 

cement process in the emission inventories, the emissions are usually calculated with 

the cement production (Shan et al. 2016b; Liu et al. 2015; Shan et al. 2018b). As the 

process-related CO2 emissions are majorly produced alongside the clinker production, 

such a cement production-based calculation method is not accurate enough. It may 

overlook the regional diversity in the cement manufacturing technique and cement-

clinker ratio. Therefore, some recent studies calculated the emissions with clinker’s 

production (Cai et al. 2016). 

Considering the regional diversity in China’s cement manufacturing, this study first 

investigates the emissions from China and its regions’ cement industry. This study 

examines the process-related CO2 emissions (calculated based on the clinker 

productions), direct emissions from fossil fuel combustion, and indirect emissions 

induced by purchased electricity in the cement industry. The cement-related CO2 

emissions are divided into seven parts according to the cement demands of different 

new-building types for the first time. This study also describes the regional diversity in 

cement production and the cement production capacity shifts among the provinces. 

This study then employs the LMDI method to break down the changes in China’s 

cement-related CO2 emissions into four drivers, including the construction industry’s 

structure, emission intensity, efficiency, and economic growth. To the best of our 

knowledge, our study is the first to examine the factor of “construction industry’s 

structure”, which is measured by the cement used for different new-building types, in 

the analysis of the drivers of China’s cement-related emissions. We particularly 

compared the changes in drivers before and after these emissions peaked in 2014. 

Our study provides robust and transparent data support for further environmental 

evaluations and emission reduction/sustainable production policy making for the 

cement industry in China. 

2 Methods and data sources 

2.1 Cement production process and related emissions 

Cement is normally produced in three steps, as shown in Figure 1 (Worrell et al. 2001). 

First, the limestone (primarily CaCO3) is crushed and ground into raw meal. Then, the 
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raw meal is calcined in kilns to clinker. Finally, the clinker is ground together with 

additives (fly ash, pozzolana, gypsum, anhydrite, etc.) to form cement. 

 

Figure 1 Cement production process and emission calculation 

The crusher and grinder are physical reactions that do not emit any CO2 during the 

process. In contrast, calcination is a chemical reaction, during which the process-

related CO2 may be emitted. The process-related emissions are the CO2 emitted as a 

result of chemical reactions in the production process rather than the energy 

combusted by industry (Shan et al. 2016a). During the calcination of raw meal, the 

limestone is heated to lime (CaO) and CO2; see Equation 1. The CO2 emissions are 

process-related emissions during the cement production process. 

CaCO3 ≜ 𝐶𝑎𝑂 + 𝐶𝑂2 ↑ Equation 1 

Although the crushing and grinding processes do not emit process-related emissions, 

they consume abundant energy for power, such as coal and electricity. The CO2 

emitted during coal combustion and electricity generation is counted as direct 

emissions and indirect emissions, respectively (Liu 2016b). The indirect emissions are 

normally produced in power plants rather than the cement plants. 

Overall, this study considers the process-related CO2 emissions, direct CO2 emissions 

from coal combustion, and indirect CO2 emissions induced by electricity consumption 

in China’s cement industry. We adopt the mass balance method recommended by the 

Intergovernmental Panel on Climate Change to account for the emissions (IPCC 2006). 

2.2 Emission calculation 

2.2.1 Process-related CO2 emissions 

The process-related CO2 emissions during cement production can be estimated as the 

cement or clinker production timed by the related emission factors. As discussed 

above, most of the previous studies use the cement production to calculate the 

cement process-related emissions. These cement production-based emission 

accounts may overlook the regional diversity in the cement manufacturing process 

and cement-clinker ratio. Therefore, the present study calculates the process-related 

emissions based on clinker production to achieve more accurate emission accounts of 

the cement industry; see Equation 2 (IPCC 2006). 
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𝐶𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 𝐴𝐷𝑐𝑙𝑖𝑛𝑘𝑒𝑟 × 𝐸𝐹𝑐𝑙𝑖𝑛𝑘𝑒𝑟 Equation 2 

In the above equation, 𝐴𝐷𝑐𝑙𝑖𝑛𝑘𝑒𝑟  refers to the clinker production, while 𝐸𝐹𝑐𝑙𝑖𝑛𝑘𝑒𝑟  is 

the emission factor for clinker production, i.e., the CO2 emitted during per unit 

production of clinker. 

The emission factor for cement is collected from Liu et al. (2015), which is 0.4964 tons 

CO2 per ton of clinker production. 

2.2.2 Direct CO2 emissions from coal combustion (coal-related CO2 emissions) 

The direct coal-related CO2 emissions are estimated using Equation 3 (IPCC 2006). 

𝐶𝐸𝑐𝑜𝑎𝑙 = 𝐴𝐷𝑐𝑜𝑎𝑙 × 𝐸𝐹𝑐𝑜𝑎𝑙 = 𝐴𝐷𝑐𝑜𝑎𝑙 × 𝑁𝐶𝑉 × 𝐶𝐶 × 𝑂 Equation 3 

In the above equation, 𝐶𝐸𝑐𝑜𝑎𝑙 is the direct coal-related CO2 emissions in the cement 

production, 𝐴𝐷𝑐𝑜𝑎𝑙  (activity data) refers to the coal consumption, and 𝐸𝐹𝑐𝑜𝑎𝑙  is the 

emission factor of coal, which is made up of three components: 𝑁𝐶𝑉  (net caloric 

value), 𝐶𝐶  (carbon content), and 𝑂  (oxygenation efficiency). The parameters are 

collected from our previous study on China’s coal quality based on an extensive 

investigation of 4243 coal mines (Liu et al. 2015). The 𝑁𝐶𝑉 of coal is 20.60 PJ/mt, the 

𝐶𝐶 is 26.32 tC/TJ (Shan et al. 2018a), and the 𝑂 is 92%. The overall emission factor of 

coal (𝐸𝐹𝑐𝑜𝑎𝑙) is 0.499 ton CO2 emissions per ton of coal consumption. 

2.2.3 Indirect CO2 emissions from electricity consumption (electricity-related CO2 

emissions) 

The indirect CO2 emissions induced by purchased electricity consumption are 

calculated using Equation 2 (IPCC 2006). 

𝐶𝐸𝑒𝑙𝑒 = 𝐴𝐷𝑒𝑙𝑒 × 𝐸𝐹𝑒𝑙𝑒 Equation 4 

In the equation, 𝐶𝐸𝑒𝑙𝑒  is the electricity-related CO2 emissions in the cement 

production and 𝐴𝐷𝑒𝑙𝑒 (activity data) refers to the electricity consumption, while 𝐸𝐹𝑒𝑙𝑒 

refers to the emission factor. This study uses the regional average electricity emission 

factors (NDRC 2011) for each province (see Table 1). 

Table 1 Emission factors of electricity (NDRC 2011) 

Regional grid Provinces 𝐸𝐹𝑒𝑙𝑒(kg/kwh) 

North Beijing, Tianjin, Hebei, Shanxi, Shandong, Inner 
Mongolia West 

1.246 

Northeast Liaoning, Jilin, Heilongjiang, Inner Mongolia East 1.096 

East Shanghai, Jiangsu, Zhejiang, Anhui, Fujian 0.928 

Central China Henan, Hubei, Hunan, Jiangxi, Sichuan, Chongqing 0.801 

Northwest Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang 0.977 

South Guangdong, Guangxi, Yunnan, Guizhou 0.714 

Hainan Hainan 0.917 
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2.2.4 CO2 emissions induced by domestic construction and exports 

Cement is mainly used in the construction industry to build new-buildings. Therefore, 

the cement-related CO2 emissions are closely associated with the new investment in 

the construction industry. In order to better analyze the CO2 emissions, we split the 

total cement-related emissions into seven parts according to the cement demands of 

different domestic new-building types and export. 

We firstly exclude the export-related emissions from the total amount. The export-

related emissions are calculated based on the cement clinker export amount, which is 

collected from the CCA (2005-2014). The remaining CO2 emissions are associated with 

domestic new-building’s construction, which can be categorized into six types: 

residential, manufacturing, infrastructural, commercial, science-education-culture-

health, and other buildings. We collect each new-building types’ construction outputs 

from CCA (2005-2014) and calculate the respectively proportion of each type. We then 

divide the domestic emissions into six parts according to the proportion of each new-

building type. 

2.3 Index decomposition analysis (IDA) 

Understanding the drivers leading to the cement-related CO2 emission peak has 

practical importance for further emission reduction policymaking. Techniques 

available for conducting such analyses include structural decomposition analysis (SDA) 

(Rose and S. Casler 1996) and index decomposition analysis (IDA) (Ang 2004; Liu et al. 

2012b), both of which have been extensively applied to quantify the socioeconomic 

driving factors of a dependent variations, such as energy consumption or CO2 

emissions (Dhakal 2009; Mi et al. 2017; Baležentis et al. 2011; Guan et al. 2018). SDAs 

enable us to capture both direct and indirect effects along the entire supply chain on 

the basis of input-output tables (Meng et al. 2018). This study focuses on the emissions 

from 1996-2016 and uses IDA because of two reasons. First, all the cement-related 

CO2 emissions are from the sector of non-metallic products, only a small part of 

sectors in China’s economy is involved in the supply chain. Second, the time-series 

input-output tables in China are not available. Thus, we use IDA to decompose the 

cement-related CO2 emissions. 

A variety of methods for IDA have been developed, most of which are versions of the 

Laspeyres index or Divisia index methods. Ang (2004) proposed a log mean Divisia 

index (LMDI) method based on the Divisia index. The LMDI method is the most 

preferred method, as it passes a number of basic tests for a good index number. The 

decomposition is perfect, which means that there is no residual term that other 

methods might produce. The LMDI method can also deal with zero values better than 

other methods (Ang and Liu 2007a; Ang and Liu 2007b). The LMDI method has the 

advantages of “path independence, consistency in aggregation and easily interpreted 

results”(Liu et al. 2012a; Meng et al. 2016). By using the LMDI method, previous 
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studies have explored the drivers of regional emission growth (Guan et al. 2018; Liu 

2016a; Zhang et al. 2016; Chong et al. 2012; Wang et al. 2014; Liu et al. 2007). This 

study, therefore, employs LMID to quantify the drivers of CO2 emissions’ changes in 

China’s cement industry. Detailed methods are presented in the Supporting 

Information. 

Four driving factors are defined in Equation 5 to explain the total changes in the 

cement-related CO2 emissions: the construction industry’s structure, emission 

intensity, efficiency, and fixed capital formation. The changes in each factor help 

quantify the change in CO2 emissions from the cement’s different usages, 

environmental effects, technological advancement, and economic growth aspects. 

CE =∑ 𝐶𝐸𝑖
𝑖

=∑
𝐶𝐸𝑖
𝐶𝐸𝑖

×
𝐶𝐸

𝑃
×
𝑃

𝐹
× 𝐹 = SIEF Equation 5 

In the above equation, 𝐶𝐸  is the total cement-related CO2 emissions. 𝐶𝐸𝑖  are 

emissions induced by different new-building types, which reflects the construction 

industry’s structure in China. We merge the seven types defined in the section 2.2.4 

to three for a clear and concise decomposition analysis: residential and commercial 

buildings; infrastructural buildings, manufacturing buildings, science-education-

culture-health buildings, exports and others. The building types merged together have 

similar characters. 𝑃  is the cement production, and 𝐹  represents the fixed capital 

formation in respective years. 

The four different factors are: 

1) S𝑖 = 𝐶𝐸𝑖 𝐶𝐸⁄  (proportion of CO2 emissions, in %) measures the share of CO2 
emitted from cement usage 𝑖 , representing the construction industry’s 
structural effect; 

2) I = CE/P (emission intensity, in ton/ton) measures the CO2 emissions per unit 
of cement production, representing the environmental impacts in the cement 
production;  

3) E = P/F  (input efficiency, in ton/Chinese yuan) measures the cement 
production per unit of fixed capital formation, representing the technological 
advancements in the cement production; 

4) F (fixed capital formation, in Chinese yuan) stands for the economic growth. 

2.4 Data sources 

2.4.1 Cement and clinker production 

National Bureau of Statistics NBS (2018) provides the national and provincial cement 

production from 1996 to 2016. The CCA (2005-2014) publishes the cement production 

of the country from 1996 to 2013, clinker productions for the country from 2002 to 

2013, and the cement/clinker for the provinces from 2005 to 2012. We compare the 

national and provincial aggregated cement production of NBS and CCA. We find that 

the difference between the two sources is within ±1% (as shown in Table S1). This 
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demonstrates that the quality of China's cement statistics is relatively high. In order 

to achieve more accurate CO2 emission accounts for China’s cement industry, we 

integrate both NBS and CCA’s data and obtain the cement and clinker production data. 

At the national level: 

1) The cement production from 1996 to 2013 are collected from CCA, and the 

data from 2014 to 2016 are collected from NBS. The clinker production from 

2002 to 2013 are collected from CCA. 

2) We then calculate China’s clinker-to-cement ratios from 2002 to 2013. The 

clinker-to-cement ratio is calculated as the clinker production divided by the 

cement production. 

3) China’s clinker-to-cement ratios from 2014 to 2016 are estimated based on a 

linear regression of historical ratios and the years (2002 to 2013); the ratios 

from 1996 to 2001 are assumed to be the same as those in 2002. 

4) The clinker production from 1996 to 2001 and 2014 to 2016 are estimated as 

the product of clinker-to-cement ratios and corresponding cement production 

volume. 

At the provincial level: 

1) The provincial cement and clinker production from 2005 to 2012 are collected 

from CCA, and their cement production from 1996 to 2004 and 2013 to 2016 

are collected from NBS. 

2) The clinker-to-cement ratios of every province from 2005 to 2012 are 

calculated based on the provinces’ cement and clinker production volume. 

3) The clinker-to-cement ratios of every province from 2002 to 2004 and 2013 

are estimated with the country’s overall ratios and the provinces’ ratios. We 

assume the provinces have the same change rates in clinker-to-cement ratio 

as those at national level. For example, the 2004 provincial ratios are estimated 

as 𝑃𝑟𝑜𝑣𝑖𝑛𝑐𝑒_𝑅𝑎𝑡𝑖𝑜2004 =
𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙_𝑅𝑎𝑡𝑖𝑜2004

𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙_𝑅𝑎𝑡𝑖𝑜2005
× 𝑃𝑟𝑜𝑣𝑖𝑛𝑐𝑒_𝑅𝑎𝑡𝑖𝑜2005 . Similarly, 

the 2013 provincial ratios are estimated based on 2012 provincial ratios and 

2012 to 2013 national ratios. 

4) The clinker-to-cement ratios of every province from 1996 to 2001 and 2014 to 

2016 are considered the same as those in 2002 and 2013, assuming the ratios 

remain unchanged. 

5) The clinker production of every province from 1996 to 2004 and 2013 to 2016 

are estimated as the product of clinker-to-cement ratios and corresponding 

cement production volume. 
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The cement and clinker productions, and the clinker-to-cement ratios of China (for 

both the nation and provinces) are presented in Table S2, Table S3, and Table S4, 

respectively. 

2.4.2 Coal and electricity consumptions 

The CCA (2005-2014) published the total energy consumption and coal consumption 

of each province from 2005 to 2012. We estimate the provinces’ energy consumption 

for the remaining years assuming that the energy intensities (per unit of cement 

production energy consumption) remain the same. The electricity consumption is 

estimated as the total energy consumption minus the coal consumption, as coal and 

electricity are the primary energies used in China’s cement industry (CCA 2005-2014). 

The coal and electricity consumption in China and each province’s cement industry are 

presented in Table S5 and Table S6, respectively. 

2.4.3 Other indexes used in IDA 

The fixed capital formations of China are collected from the official database of NBS 

(2018) and are consistent with the latest published statistical yearbooks in China. We 

convert all the economic data to the 2002 constant price to eliminate the effects of 

price fluctuation. The cement and clinker exports are collected from CCA (2005-2014). 

The construction output of each new-building type are also collected from CCA (2005-

2014). The indexes are listed in Table S7. 

All the data and results can be download freely from the “China Emission Accounts 

and Datasets (CEADs)” at http://www.ceads.net for re-use. 

3 Results and discussion 

3.1 Emissions from China’s cement industry 

Figure 2 presents the overall CO2 emissions from China’s cement industry. The total 

cement-related CO2 emissions in 2016 reached 1,019 Mt, accounting for 11.06% of 

China’s total CO2 emissions (9,217 Mt in 2016) (Shan et al. 2018a). The total cement-

related CO2 emissions in China peaked in 2014, at 1,093 Mt.  

http://www.ceads.net/
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Figure 2 CO2 emissions from China’s cement industry 

Before their peak in 2014, the cement-related emissions can be divided into three 

phases based on different growth characteristics. 1) Stable growth (1996 to 2002): The 

cement-related CO2 emissions increased stably from 264 to 389 Mt during the period, 

with an average growth ratio of 6.6% per year. 2) Rapid growth (2002 to 2011): 

Stimulated by joining the WTO in 2002, China’s cement production rapidly increased 

beginning in 2002. The cement-related CO2 emissions surged as well. The average 

emission growth ratio reached 10.9% per year. The emission growth temporarily 

stagnated in 2008 due to the global financial crisis and the depressed cement market 

demand. 3) Slow growth (2011 to 2014): Beginning in 2012, the growth of cement-

related emissions slowed (3.4% per year averagely) due to economic cooling. 

The growth of cement-related CO2 emissions was coupled with the trends of China’s 

GDP growth (NBS 2018). This correlation can be explained by the relationships among 

the emissions, production/demand, and economic inputs in the cement industry: 1) 

the CO2 emissions are calculated based on the clinker/cement production; 2) the 

cement is a building material that is not easy to preserve, and the plants normally 

produce cement based on the market demand or purchasing orders; and 3) cement 

demand is closely associated with the number of new-buildings, which is primarily 

stimulated by the country’s fixed capital formation. In this way, it could be inferred 

that the cement-related CO2 emissions were highly driven by the country’s economic 

gains. 

After the three increasing phases, China’s cement-related emissions peaked in 2014. 

In 2015, the overall cement-related emissions appeared to decline for the first time. 

The emissions decreased by 76 Mt (or 7.5%) in one year. This decline was mainly 
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caused by a decrease in cement production. The total cement production decreased 

from 2,492 Mt in 2014 to 2,359 in 2015. 

By investigating the detailed emission mix, we find that the process-related CO2 

emissions were the primary source of cement-related emissions in China, accounting 

for 63.1% in 2016. The coal- and electricity-related emissions accounted for the 

remaining 12.3% and 21.6%, respectively. The shares of emissions caused by different 

sources have changed slightly over the past 20 years. The process-related emissions 

decreased from 67.0% in 1996 to 63.1% in 2016 (with an average value of 66.1%), 

while the emissions induced by purchased electricity consumption increased from 

20.2% in 1996 to 24.4% in 2016 (with an average value of 21.6%). The coal-related 

emissions remained stable at approximately 12.3% over the 20-year study period. As 

we use the same emission factor for emission accounts over years, the unchanged 

emission mix implies that the energy intensity (energy consumption per units of 

cement production) has not changed greatly, i.e., the energy efficiency and utilization 

technology in China’s cement production remained at the same level during the past 

20 years. 

 

Figure 3 Cement-related CO2 emissions by new-building types 
Note: SECHG is short for science-education-culture-health-government.  

Figure 3 presents the CO2 emissions induced by the cement consumption in each new-

building type in selected study years. The results show that the emissions induced by 

cement produced for different new-building types remain stable over time, implying 

a relatively stable structure in China’s construction industry. Residential buildings are 

the major contributors to the cement-related emissions, accounting for approximately 

40%, followed by infrastructure (approximately 25%) and the manufacturing plants 

(approximately 10%). Science-education-culture-health-government (SECHG) and 

commercial buildings emitted approximately 7% and 4% of total emissions, 

respectively. The emissions induced by the cement export accounted for only 1% of 

the total emissions due to the small export volume. Cement is expensive for long-

distance transport due to its short shelf life and high density. It is much more cost-

effective to self-produce cement. China exports less than 10 Mt of cement and clinker 
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to Africa and the USA/EU every year, a very small proportion of the 2,410 Mt cement 

and 1,295 Mt clinker produced. 

This study also calculates the emission intensity of cement production. The emission 

intensity is defined as CO2 emissions per unit of cement production. We find that the 

emission intensity of the cement production slightly decreased during the past two 

decades from 0.54 (in 1996) to 0.42 ton CO2 per ton of cement production (in 2016). 

The process-related, direct coal-related, and indirect electricity-related CO2 emissions 

of cement industries at both the national and individual province levels are presented 

in Table S8, Table S9, and Table S10, respectively. The total cement-related CO2 

emissions are summarized in Table S11. 

3.2 Regional differences in cement production 

Despite the overall cement-related emissions having peaked in China, considering the 

regional differences in China, not all provinces have peaked their cement-related 

emissions yet. Certain provinces are still in the rapidly increasing stage. We classify the 

31 provinces (excluding Taiwan, Hong Kong, and Macao due to a lack of data) into four 

groups at different peak stages, as shown in Figure 4. 

 

Figure 4 Provincial CO2 emissions from the cement industry 
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Note: the number following the province name presents the emission intensity of the province 
in 2016. The early-peaked, mid-peaked, late-peaked, and fast-growing provinces are shown in 
green, blue, red, and yellow, respectively.  

The early-peaked group includes the four most developed provinces in China: Beijing, 

Shanghai, Tianjin, and Zhejiang. These four provinces peaked their cement-related 

emissions around 2006. The early-peaked provinces have the lowest emission 

intensity (0.35 ton CO2 per ton cement production) among the four province groups. 

The mid-peaked group includes 11 provinces, most of them located in northern and 

northeast China. These provinces peaked their cement-related emissions around 2012. 

The average emission intensity of these 11 mid-peaked provinces is 0.43 ton CO2 per 

ton cement production. Another 10 provinces belong to the late-peaked group, which 

peaked their cement-related emissions around 2014. The fast-growing provinces are 

still continuously increasing their cement-related emissions. Yunnan, Guangxi, Hainan, 

Guizhou, Chongqing, and Tibet belong to this group. The fast-growing group, therefore, 

has the highest average emission intensity of 0.47 ton CO2 per ton cement production. 

3.3 Production capacity shifts among provinces 

The provinces’ different technical levels could affect their emission peak stages and 

emission intensities. The early-peaked provinces have advanced technologies, which 

consume less energy during the cement production. However, the discrepancies can 

be largely explained by the clinker trade among provinces, which can be shown from 

the clinker-to-cement ratios of the provinces. 

 

Figure 5 Clinker-to-cement ratio changes in provinces 

We present the provinces’ clinker-to-cement ratios in Figure 5. The overall national 

ratio decreased uniformly from 72.4% in 2002 to 53.7% in 2016 with an average value 
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of 65.0%. A higher ratio indicates a larger clinker production and a smaller cement 

production, whereas a smaller ratio indicates a smaller clinker production but a larger 

cement production. 

Figure 5-a shows that the early-peaked provinces’ clinker-to-cement ratios decreased 

markedly since 2006, especially Shanghai, Tianjin, and Zhejiang. The decline of the 

clinker-to-cement ratios implies that these provinces reduced their clinker production 

and imported clinker from other provinces to produce cement. As most of the CO2 is 

emitted during the clinker production process (Worrell et al. 2001), a clinker-

outsourcing policy effectively reduced the provinces' overall CO2 emissions. Taking 

Shanghai as an example, its clinker-to-cement ratio decreased considerably from 33.9% 

(in 2005) to 16.6% (in 2006) and further to 8.5% (in 2010). Shanghai massively reduced 

its clinker production two times, in 2006 and 2010. Its clinker production reduced by 

1.7 Mt (or 46.9%) and 0.8 Mt (or 57.5%), respectively, in the two years. However, the 

cement production of Shanghai remained stable at the same time (10.5 Mt in 2005, 

11.3 Mt in 2006, and 6.7 Mt in 2010), which illustrates that Shanghai reduced its 

clinker production and imported the clinker from other regions. As a result, the 

emission intensity of Shanghai is the lowest among all the provinces, with 0.09 ton 

CO2 per ton cement production. 

Similarly, Figure 5-b shows that most of the mid-peaked provinces’ clinker-to-cement 

ratios decreased from 2007 to 2010, such as Heilongjiang and Jilin. As for the late-

peaked provinces (shown in Figure 5-c), there is no remarkable sudden drop in the 

clinker-to-cement ratio. Despite the ratio of Anhui decreasing continuously since 2003, 

this decrease is mainly caused by the increase in Anhui’s cement production rather 

than the decrease in its clinker production. Anhui’s clinker production kept increasing 

until 2014, which caused Anhui’s cement-related emissions to peak at 9,145 Mt in 

2014. Anhui is the largest clinker production base in China. In 2016, the clinker 

production of Anhui was 121 Mt, accounting for 9.3% of the national production. 

However, Anhui’s cement production accounted for only 5.6% (or 136 Mt) of the 

national total production, illustrating that Anhui exports large amounts of clinker to 

other regions. The average clinker-to-cement ratio of Anhui was as high as 134.5% 

over the past 20 years, which is more than twice the national average level of 61.7%. 

Figure 5-d presents the clinker-to-cement ratios of the six fast-growing provinces. We 

find that most of the provinces had a relatively stable ratio during the past 20 years. 

It is worth noting that the clinker-to-cement ratio of Tibet increased suddenly from 

75.7% (in 2008) to 91.0% (in 2009), mainly due to the increase of Tibet’s clinker 

production. Tibet enlarged its cement production capacity since 2000 and formed the 

integrated company “Huaxin Cement (Tibet)” in 2009 (Liu 2017; Shan et al. 2017). 

To summarize, certain developed provinces have closed or outsourced their clinker 

production to other less-developed regions in the past ten years. Such outsourcing 
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may be effective in reducing the developed provinces’ emissions in the short term, 

but it may not be beneficial to the country’s overall emissions reduction (Shan et al.). 

The developed provinces usually have more advanced technologies than those in less-

developed regions, i.e., low emission intensities. Moving the production capacities 

from regions with advanced technologies to less-developed regions will, therefore, 

increase the country’s overall emissions. Thus, greater attention should be paid to 

these key cement production provinces, such as Tibet, which will continue developing 

its cement production in the future (Tibet autonomous region government 2011), and 

Anhui, which is the largest cement production base in China. 

3.4 Changes in the drivers of the cement-related CO2 emissions in China 

Figure 2 shows that the total cement-related CO2 emissions started to grow rapidly 

since 2002 after China joining the WTO and then peaked in 2014. Understanding the 

changes in the drivers of the cement-related CO2 emissions since 2002, especially 

before and after the peak point (2014) has great policy implications for emissions 

control in the cement industry. By employing the LMDI method, this study 

decomposes the changes in China’ cement-related CO2 emissions from 2002 to 2016 

into four factors: the construction industry’s structure, emission intensity, efficiency, 

and economic growth. The first factor, “construction industry’s structure”, is 

measured by three indicators: the emission proportion induced by cement produced 

for new residential buildings, for new infrastructural buildings, and for a new 

proportion of export and others. The results are shown in Table S7 and Figure 6. 
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Figure 6 Driving forces of the changes in cement-related CO2 emissions 
Note: the residential buildings in the figure include both residential and commercial buildings; 
the infrastructural buildings in the figure include infrastructural, manufacturing, and SECHG 
buildings. 

The results show that economic growth (fixed capital formation) was the major source 

of the cement-related emissions growth for a long time, especially during the period 

2008 to 2010. The factor contributed 26.4% of the emissions growth during the period 

if other factors had remained constant. This growth was mainly stimulated by the 

“Economic Stimulus Plans” in China. The Chinese government invested four trillion 

Chinese yuan (approximately 586 billion US dollars) in response to the global financial 

crisis in 2007. The money was used to expand domestic demand. Local governments 

in China built several manufacturing plants and infrastructure at the time, such as 

power plants, cement plants, undergrounds, and high-speed railways. After 2010, the 

contribution of economic growth decreased slightly to 21.3% (2010 to 2012), 17.0% 

(2012 to 2014), and 11.2% (2014 to 2016) due to the gradually weakened stimulation 

of the “Economic Stimulus Plans”, but economic growth was still the primary power 

of the cement-related emission increase. 

Emission intensity and efficiency were two major factors offsetting the growth of 

cement-related CO2 emissions. Efficiency offset 14.5% of the emission growth from 

2014 to 2016. The efficiency decreased by 14.3% (from 1.19 to 1.02 tons cement 
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production per 10 thousand yuan fixed capital formation). This change implies a 

technical improvement in cement production, as the plants produced more cement 

with less economic inputs. As for the intensity factor, the emission intensity of cement 

production decreased slightly during the past two decades from 0.54 (in 1996) to 0.42 

ton CO2 per ton cement production (in 2016), as discussed above. As a result, the 

emission intensity consistently offset 3.5% to 4.5% of the emissions’ growth since 

2008. 

The changes in the construction industry’s structure had significant influences on the 

related emissions changes since 2010. The proportion of newly constructed residential 

buildings first increased the cement-related emissions by 6.9% and 2.6% during the 

periods 2010 to 2012 and 2012 to 2014; then, it offset the emission growth by 0.4% 

during 2014 to 2016. This pattern may be affected by the changes in housing prices. 

According to the China Real Estate Index System (CREIS), China’s housing prices 

increased by 19.0% from 2010 to 2014, then decreased by 1.1% in 2015 (China Index 

Academy 2018). The CREIS housing prices were calculated as the median housing price 

of 100+ Chinese cities. Considering the delayed action in the construction industry, 

the construction plan is normally made based on the previous year’s housing price. 

Therefore, the negative contribution of the proportion of newly invested residential 

buildings in cement-related emissions may be influenced by the housing price 

decreasing in 2015. 

In contrast, the proportion of newly invested infrastructural buildings has acted as a 

negative contributor to the cement-related emissions since 2010. This factor offset 

the emissions by 4.7% and 1.8% from 2010 to 2012 and 2012 to 2014, respectively. 

Stimulated by the “Economic Stimulus Plans”, China has faced the problem of 

overcapacity since 2010 (Yang and Yu 2011; Yongding 2009). The country then 

reduced its investments in infrastructure construction. 

Cement exports had little influence on the emission changes, except for the period 

2010 to 2012. The decrease in cement exports in 2012 was mainly caused by the 

shrinking of the USA/EU markets, which were affected by the global final crisis (Hefei 

Cement Research & Design Institute 2012). 

Comparing the contributions of each factor between 2012 to 2014 and 2014 to 2016, 

this study finds that the improvement in efficiency and the reduction in residential 

building construction were the two major reasons causing the cement-related CO2 

emissions’ decrease since 2014. 

4 Conclusions and policy implications 

The cement industry is the primary source of process-related CO2 emissions in China 

and worldwide. This industry contributed 11% of the total emissions in China. As the 

cement industry is regarded as one of the key energy-intensive manufacturing sectors, 
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greater attention should be paid to its sustainable production and emission control. 

Understanding the emission characteristics of China’s cement industry and the drivers 

of the emission changes is an essential foundation for related policy making.  

Our study first calculates the CO2 emissions from the cement industries in China. The 

emissions include process-related emissions, direct emissions from fossil fuel 

combustion, and indirect emissions from purchased electricity. This study then 

calculates the cement-related emissions of 31 provinces in China and cluster the 

provinces into four groups based on different peak stages. Finally, the study calculates 

the drivers of the changes in cement-related CO2 emissions with the LMDI 

decomposition analysis. 

The emission accounts of China’s cement industry finds that: 1) the total cement-

related CO2 emissions in China peaked in 2014 at 1,093 Mt; 2) the emissions growth 

was coupled with the trend in China’s GDP growth, which implied that the emissions 

were highly driven by the country’s economic gains; 3) the process-related emissions 

were the primary source of the cement-related emissions in China, accounting for 63.1% 

in 2016, and the emission mix of the process-related, direct, and indirect emissions 

has changed slightly over the past 20 years; and 4) the emissions induced by different 

new-building types also remained stable over the time, implying a relatively stable 

structure in China’s construction industry. Residential buildings are the major 

contributor to the overall emissions, followed by infrastructure and manufacturing 

plants. 

Then, our regional analysis of China’s cement-related CO2 emissions have significant 

implications to manage the cement industry and production capacities of every 

province; and optimize the whole country’s cement production and utilization. Four 

developed provinces belong to the early-peaked group with the lowest emission 

intensities, whose cement-related emissions peaked around 2006, and 11 provinces 

are classified as the mid-peaked group, which peaked their emissions around 2012. 

Another 10 provinces that peaked their emissions around 2014 are grouped as the 

late-peaked provinces. The remaining six provinces are still increasing their cement-

related emissions due to their increasing production capacities. The analysis of 

provincial clinker-to-cement ratio finds that the above discrepancies in provincial peak 

stages can be explained by the capacity outsourcing among provinces. The developed 

provinces have closed or outsourced their clinker production capacities to other less-

developed regions. Despite the similar outsourcing can be found in other industries 

(Shan et al. 2018b), this is certainly not a sustainable development pathway. Such 

outsourcing may effectively reduce the developed provinces’ emissions in the short 

term, but it may not be beneficial to the country’s overall emissions reduction. Moving 

the production capacities from regions with advanced technologies to less-developed 

regions will increase the country’s overall emissions. Stimulated by the “Economic 

Stimulus Plans” and other development strategies, China is still in the stage of 
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expanding infrastructure construction, especially in the currently backward cities. The 

central and local governments should co-ordinate the management of cement 

production in various provinces and cities, avoid overcapacity in the region, and large-

scale unnecessary cement production outsourcing and shift among provinces in China. 

Also, backward areas should learn from developed regions to improve their cement 

production efficiency and reduce unit output emissions. 

The decomposition analysis of the cement-related CO2 emissions illustrates the driving 

forces hidden behind the emission changes. Economic growth was the major source 

of the growth in cement-related emissions for a long time, especially in the period 

2008-2010. The emissions intensity and efficiency were two major factors offsetting 

the growth of cement-related CO2 emissions. Since 2014, the efficiency played a more 

importation role in reducing the emissions, which lead to the decoupling of economic 

growth and cement-related CO2 emissions (Wu et al. 2018). As more and more studies 

have found that China is entering a phase of decoupling economic growth from carbon 

emissions, efficiency gains can further reduce the emissions in the future. For example, 

the cement plants may consider using a cleaner energy mix to reduce the emission 

intensity or use low-cost energies (non-recycled plastics and paper as alternative fuels) 

to improve the efficiency (Huh et al. 2017; Bourtsalas et al. 2018). These low-cost 

energies should be used in a clean way. Cleaner production techniques should also be 

developed and applied to the cement plants in China, such as the “calcium looping 

CO2 capture” (Schakel et al. 2018). 

Apart from the economic driver, the changes in the structure of the construction 

industry also had significant influences on the related emissions changes since 2010. 

The proportion of new residential buildings became a negative contributor to 

emissions growth since 2014, mainly influenced by the housing price fluctuation in 

China. However, the change in house prices is highly sensitive. The governments 

should plan the construction industry and new-building construction to eliminate the 

erratic effects of housing prices on cement production. In this way, the overcapacity 

and waste of cement production can be avoided. 

In the future, we will conduct a more detailed investigation of each province’ cement 

industry to analyze the impact of the cement-related CO2 emissions. Also, further 

study could use life-cycle assessment and carbon footprint analysis to provide a more 

detailed evaluation of the emission performance of cement production and 

consumption. The LCA and carbon footprint analysis can allocate the cement-related 

environmental performance to the end use in the construction industry (Fořt and 

Černý 2018). Then, the emissions from the cement industry can be controlled from 

both the production and demand perspectives. 
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