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SOME STRONG LOGICS WITHIN COMBINATORIAL SET THEORY
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Dedication. This paper is dedicated to Prof. Mirjana Vuković, on the occasion
of her 70th birthday, with warmest wishes for a happy and longcontinuation of a
lifework of achievements in mathematics and selfless contributions to the mathe-
matical community.

ABSTRACT. In this note we report on a project in progress, where we study
compactness of infinitary logics, including the logic of chains. The motivation
of this project is to find logical reasons for the set-theoretic phenomenon of com-
pactness at singular cardinals.

1. INTRODUCTION

In the world of infinite cardinals, combinatorial properties of singular cardinals
are somewhat special. This is especially visible by the factthat they often exhibit
a compactness behaviour. The celebrated Shelah’s inequality [15]

[(∀n< ω)2ℵn < ℵω] =⇒ 2ℵω < ℵω4.

is an example of such a behaviour, because we can interpret itas saying that if
powers of cardinals smaller than the singular cardinalℵω are bounded, then so is
the power ofℵω. There are many compactness theorems about singular cardinals,
some of which we shall mention below. The cardinalℵ0 is also very special, often
because of the compactness. An important example is the compactness of the first
order logic. Therefore it is natural to ask if there is a compact logic associated
to singular cardinals, a question that we explore. This paper reports on results in
progress obtained as part of a larger project and representsan extended version of
a talk given by the first author at the conference “Modern Algebra and Analysis”
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organised by ANUBiH in Sarajevo in September 2018. Full exposition of the re-
sults mentioned here and other results will be written as a full length paper in the
future.

2. INFINITARY LOGIC

A logic that might serve the purpose of compactness at a singular cardinal was
discovered by Carol Karp. She introduced the chain logic in her Ph.D. thesis in
1959 with Henkin [7], and continued working on it, on her own,and with her
students, throughout her career. Her motivation was to generalise recursion theory
through the use of infinitary logics. The part which is most relevant to us concerns
the work of Ellen Cunningham from her Ph.D. thesis (1974, twoyears after Karp’s
death) [1].

The beginning of this work is to consider logics of the formLκ,λ. Hereκ andλ
are infinite cardinals and we are allowed to make conjunctions of length< κ and
iterations of< λ-quantifiers, with other logical rules transported from first order
logic, which in this notation becomesLω,ω. An interesting question is to find pairs
κ,λ which give the nice properties that we have forLω,ω, may it be completeness,
compactness and so on. This was an important research topic in the 1960s and
1970s, much about which can be found in the books by Jerry Keisler [10] onLω1,ω
and Max Dikcmann [2] onLκ,λ . It was found that if we want to recover the
properties of first order logic forκ,λ regular, most often we need to work with
κ= λ some large cardinal. Let us, for example, review the case of strongly compact
and the case of weakly compact cardinals.

We say that a set of sentences isκ-satisfiableif every subset of size< κ has
a model. Tarski [17] defined astrongly compactcardinal to be an uncountableκ
such that everyκ-satisfiable set ofLκ,κ-sentences is satisfiable. As we know, strong
compactness is a large cardinal notion, equivalently defined in various other ways.
Tarski [17] also defined aweakly compactcardinal to be an uncountableκ such that
everyκ-satisfiable set ofLκ,κ-sentences involving at mostκ non-logical symbols,
is satisfiable. This is another large cardinal notion, of course. An important ex-
ception to the large cardinal rule is the case ofLω1,ω which shares some important
properties of first order logic, notably completeness (see [10]).

2.1. Completeness and compactness

We recall the relation between the completeness and the compactness properties
of a logic. It is easy to obtain the compactness of the first order logic as a conse-
quence of its completeness. Namely, suppose thatΣ is a set of first order sentences
that it is not satisfiable. By completeness,Σ proves a contradiction. But the proof
must be finite, so it only involves a finite subsetΣ0 ⊆ Σ. HenceΣ0 is not satisfiable
and soΣ is not finitely satisfiable. Let us note that this argument works because the
notion of satisfaction and the notion of deduction are so well matched. However,
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there are logics which are complete but not compact, and thisis the case ofLω1,ω.
Karp proved that this logic is complete in [8], yet let us observe by a simple ex-
ample that this logic is not compact. Namely, letc0,c1, . . . ,cω be constant symbols
and letΣ be the following set ofLω1,ω sentences:

{(∀x)
∨

n<ω
x= cn,cω 6= c0,cω 6= c1, . . . ,cω 6= cn, . . .}.

ThenΣ is finitely satisfiable but not satisfiable.
This difference between the relative behaviour of completeness and the com-

pactness in the cases of these two different logics comes from the fact that when
changing logic we have to use different rules of inference than those of the first
order logic. For example, we, naturally, need to use the axiom

∧
Φ =⇒ ϕ for

any countable setΦ of formulas withϕ ∈ Φ. Yet, we still keep the same notion
of the finiteness in a proof, which is now less well-matched with the rules of in-
ference. In this way we obtain that for infinitary logics compactness is harder than
completeness.

Karp’s Ph.D. student Judy Green [6] considered logicsLκ,ω searching for results
analogous to those forLω1,ω, in particular completeness. She used different but
similar techniques in two cases:κ successor of a regular cardinal orκ singular or
successor of a singular. Green defined proof systems for these logics, with proofs of
length< κ in a wayLκ,ω becomes complete and shares many other nice properties
of the first order logic.

2.2. Chains

The next new idea that Karp brought to this subject is to consider not just the
logic but also the structure of the underlying model. In thisway she was able
to approach the logicLκ,κ, whereκ is a singular cardinal of countable cofinality.
See Karp’s lecture [8]. She defined the notion of a chain modelof sizeκ as an
ordinary model of sizeκ along with a decomposition of it into an increasing union
of submodels of length cf(κ). The most interesting case is that:

• cf(κ) = ω
• the chain consists of sets of strictly increasing cardinalities.

A typical chain modelA with decomposition〈An : n< ω〉 is denoted by(An)n. It
is mostly interesting whenκ is a strong limit and 2|An| < |An+1|. In order to define
the logic of chain models we need to change the definition of|=, defining the new
notion|=c, given as follows. For formulasϕ(x̄) of Lκ,κ (sox̄ is a sequence of length
< κ):

“(An)n |=
c ∃x̄ϕ(x̄)” iff there is n such that “An |= ∃x̄ϕ(x̄)” .

There is a natural way to define a logic out of this, which we denote by Lc
κ,κ.

Karp and Cunnigham [1] proved thatLc
κ,κ satisfies completeness, and has other
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nice properties, such as the Downward (toκ) Lowenheim-Skolem theorem.1 The
spirit here is thatLc

κ,κ behaves very much likeLω1,ω.
In our joint work [4], we analysed the family of chain models coded as the

elements of the topological spaceκω, κ strong limit, cf(κ) = ω (as well as other
cofinalities). Theorbit of a chain model coded byf ∈ κω is the set of allg which
code models chain-isomorphic to the model. The main theoremof [4] is:

Theorem 2.1. The orbit of a chain model A is always aΣ1
1set. The orbit is∆1

1 if
and only if there is a tree T of height and sizeκ with no branches of lengthκ such
that for any chain model B, player I has a winning strategy in EFDc,<κ

T (A,B) if
and only if A≈c B.

This theorem has since had several applications, notably asan input to the work
of Vincenzo Dimonte, Luca Moto Ross and Xianghui Shi [3] which further devel-
ops descriptive set theory of suchκω. One may say that Theorem 2.1 completed
the classical analysis of the chain logic.

3. THE PRESENT PROJECT

Completeness of the first order logic has many applications,yet the above com-
pleteness theorems seem purely abstract, and so is the case of Theorem 2.1. Our
present project is to obtain combinatorial theorems about singular cardinals such
asiω as consequence of the known properties of strong logics, in particular the
chain logic and its fragments. Fixing a singular strong limit cardinalκ of cofinality
ω, we may try to obtain the following known theorems as a test ofthe method.

Theorem 3.1. (Erdös-Tarski[5]) If a Boolean algebra has an antichain of any size
< κ, then it has an antichain of sizeκ.

Shelah’s Singular Cardinal Compactness theorem, or just some consequences of
it, such as:

Theorem 3.2. (Shelah[14]2) If every subset of size< κ of a graph G has the
coloring number≤ λ < κ, then so does G.

We would also like to address some open conjectures and questions, such as:

Conjecture3.1. If a Banach space has a (semi)-biorthogonal system of every length
< κ, then it has one of lengthκ.

or

1To understand these results properly, one has to make a distinction between weak chain models
and proper chain models, which is a bit out of the scope of thispaper.

2A much simplified version of the proof of the Singular Compactness Theorem by Shelah himself
is to appear in Sarajevo Journal of Mathematics.



SOME STRONG LOGICS WITHIN COMBINATORIAL SET THEORY AND ... 5

Question3.2. If a completeLω1,ω-sentence has a model of sizeℵn for everyn,
does it then have a model of sizeℵω?

A well known question coming from Shelah’s work is:

Question3.3. If every subset of of size< κ of a graphG has the chromatic number
≤ λ < κ, then does soG?

4. WHICH LOGICS ARE COMPACT

Our first candidate for a logic compact at a singular cardinalis chain logic.
However, the following results we were able to prove, although not completely
conclusive, indicate that this logic is not compact. Namely, we have been able to
compare the chain logic with other logics which are known notto have singular
compactness, notably the logicLκ,ω. For this we used the idea of a Chu transform,
defined as follows:

Definition 4.1. A Chu spaceover a set K is a triple(A, r,X) where A is a set of
points, X is a set of states and the function r: A×X → K is a K-valued binary
relation between the elements of A and the elements of X. WhenK = {0,1} we just
speak of Chu spaces and r becomes an ordinary relation.

A Chu transformbetween Chu spaces(A, r,X) and(A′, r,′ X′) over the same set
K is a pair of functions( f ,g) where f: A→ A′, g : X′ → X and which satisfies the
adjointness conditionr ′( f (a),x′)) = r(a,g(x′)).

This is relevant for us because of the following results.
We shall consider Chu spaces(L, |=,S) whereL is a set of sentences closed

under conjunctions,S a set or a class of structures of the same signature as the
sentences inL and|= a relation between the elements ofSand the elements ofL,
whose interpretation is a satisfaction relation which satisfies Tarski’s definition of
truth for the quantifier-free formulas.

Definition 4.2. We say that(L, |=,S)≤ (L′, |=′,S′) if there is a Chu transform( f ,g)
between(L, |=,S) and (L′, |=′,S′) where f preserves the logical operations and
such that the range of g isdensein the following sense

• for everyφ ∈ L for which there is s∈ S with s|= φ, there is s∈ ran(g) with
s |= φ.

As an example, anyg which is onto will clearly satisfy the density condition.

Theorem 4.1. Suppose that(L, |=,S) ≤ (L′, |=′,S′) and (L′, |=′,S′) is compact.
Then so is(L, |=,S).

Proof. Let ( f ,g) be the Chu transform which witnesses(L, |=,S) ≤ (L′, |=′,S′).
Suppose thatΣ ⊆ L is finitely satisfiable and letΣ′ = { f (ϕ) : ϕ ∈ Σ}. We now claim
thatΣ′ is finitely satisfiable. Namely any finiteΓ′ ⊆ Σ′ is of the form{ f (ϕ) : ϕ ∈ Γ}
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for some finiteΓ ⊆ Σ. Therefore there isM ∈ Swith M |= ϕ for all ϕ ∈ Γ. Sinceg
is not necessarily onto, we cannot use it to obtain fromM an element ofS′.

However, we have that
∧

Γ is a sentence ofL, by the closure under conjunctions.
Since|= satisfies Tarski’s definition of truth for the quantifier-free formulas, we
have that the fact thatM |= ϕ for all ϕ ∈ Γ implies thatM |=

∧
Γ. By the density re-

quirement ong, there isM′ ∈S′ such thatg(M′) |=
∧

Γ and henceM′ |=′ f (
∧

Γ). By
the preservation of the logical operations byf , we have thatf (

∧
Γ) =

∧
ϕ∈Γ f (ϕ)

so thatM′ |=′ f (ϕ) for all ϕ ∈ Γ andM′ |=′ Γ′. SoΓ′ is finitely satisfiable inS′,
which by the assumption implies that there isN′ ∈ S′ with N′ |= Σ′. Therefore
g(N′) |= Σ. �

The proof of Theorem 4.1 with easy changes goes through for the higher degrees
of compactness, let us specify.

Theorem 4.2. Suppose that(L, |=,S) ≤ (L′, |=′,S′) as witnessed by a pair( f ,g)
and that the following conditions are satisfied:

1) L,L′ are closed under conjunctions of< λ sentences,
2) |= satisfies Tarski’s definition of truth for the quantifier-free formulas, including

the conjunctions and disjunctions of size< λ,
3) f preserves the conjunctions and disjunctions of size< λ.

Then, for anyθ, if (L′, |=′,S′) is (λ,θ)-compact, so is(L, |=,S).

Chain logic comes in several different versions, which we shall not define right
now, but one of them is the logic ofweak chain models, denoted byLc,w

κ,κ. Using
Chu transforms, we were able to prove

Theorem 4.3. (Lκ,ω, |=,M )≤ Lc,w
κ,κ.

and then conclude thanks to Theorem 4.1 that

Corollary 4.1. The logic Lc,wκ,κ is notκ-compact.

We are still studying the question of the transformation of this proof which
would allow us to conclude:

Conjecture4.1. Chain logic is notκ-compact.

Some other logics are known to beκ-compact, notably two logics considered
by Keisler in [9]: the ordered logic and the logic with an extra quantifier ’exists
at leastκ’. We are considering other candidates, such as certain fragments of the
chain logic and Shelah’s logicL1

κ [16].
Once we have a supply of compact logics, we still need to see how we can get

any combinatorial theorems as a consequence. A question that we are considering
at the moment is if Theorem 5.1 is a consequence of Keisler’s ordered logic.
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5. MODEL EXISTENCE THEOREMS

Proofs of Completeness fromLω1,ω are based on a version of Henkin’s argu-
ment involving the so calledConsistency Properties. They prove Model Existence
Theorem (MET). As Keisler states in his book [10], the Model Existence Theorem
based on Consistency Properties is frequently used inLω1,ω where Compactness is
used inLω,ω. Consistency Properties were invented by Michael Makkai [12], also
using ideas from earlier work by R. Smullyan.

A consistency propertyis a judiciously chosen set of sentences of a logic. The
precise definition depends on the logic, but the point is to beable to prove the
following type of theorem:

Theorem 5.1. (Makkai [12]) A sentence of Lω1,ω has a model iff it belongs to a
consistency property.

We call such theorems MET. As an example of an application, inKeisler’s book
[10] there is a proof based on MET of the following theorem, known as the unde-
finability of Well Order):

Theorem 5.2. (Morley [13], Lopez-Escobar[11]) Let T be a countable set of sen-
tences of Lω1,ω and let U,< be a unary and binary relation symbol of Lω,ω. Suppose
that for all α < ω1, T has a modelAα = (Aα,Uα,<, ...) such that< linearly or-
ders U and(α,<) ⊆ (Uα,<). Then T has a modelB = (B,U,<, ...) such that<
linearly orders B and(U,<) contains a copy ofQ.

Consistency properties were found by Green for logics of theform Lλ,ω and
by Cunnigham forLc

κ,κ, both working with or under the influence of Karp, as ex-
plained above. The definition of a consistency property depends on the logic and
is somewhat lengthy, so we are not going into the details of such a definition here.
The point is that it is a non-trivial matter to develop the right kind of consistency
property and for a logic to have it, and the proofs are very long.

In our work in progress we are interested in the second order or restricted sec-
ond order versions ofLc

κ,κ since the application in questions, as seen above; are
sometimes expressed in that way. In this context, set variables are bounded by an
element of the chain. We are in the process of verifying the following theorem,
which at this stage we still address as a conjecture:

Conjecture5.1. L2,c
κ,κ has a consistency property, so that a sentence ofL2,c

κ,κ has a
model iff it belongs to a consistency property.

Recall that the full logicLκ,κ does not have the consistency property or MET but
Lc

κ,κ does. This is because it is easier for a sentence to have a chain model than a
full model, as the following example shows.

Example 5.1. Consider the sentence “< is a well order”. We can construct a
chain model of this sentence which is not a real model by taking increasing disjoint
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blocks of sizei1,i2 etc. and putting them below each other in the order<. The
chain model so obtained satisfies that< is a well order because no bounded piece
of it contains an infinite<-decreasing sequence, yet the actual model contains such
a sequence.

Let us finish by proving that even the chain models are not going to help us to
obtain a compact, or even countably compact second order logic.

Theorem 5.3. Second order logic is not countably compact even in chain models.

Proof. Let θ be a second order sentence which says that< is a well-order on some
predicateP. In chain models ofθ we have no guarantee that< is really a well-order
because a descending sequence may cross over all the setsAi.

Let φ be the second order sentence∃X∀y(P(y)→ X(y)). The chain models ofφ
are the chain models in whichP is contained in one level of the chain. In models
of φ we have full second order quantification over subsets ofP.

In models ofθ∧ φ we know by the above that< is really a well-order because
any potential
descending chain is a subset ofP and hence a subset of someAi. We can now
form a finitely consistent theory{θ,φ}} ∪

⋃
n<ω{P(cn)} ∪ {c0 > c1 > c2 > .. .},

which has no chain models. �
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