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The new computational methodology due to Yaroslav Sergeyev (see
[25–27]) makes it possible to evaluate numerically the terminal features
of complete, sequential decision-making processes. By standard numer-
ical methods, these processes have indeterminate features or seem to
support paradoxical conclusions. We show that they are better regarded
as a class of problems for which the numerical methods based on
Sergeyev’s methodology provide a uniform technique of resolution.
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1 INTRODUCTION

Infinite decision-making processes have given rise to a rich literature over
the last twenty years (e.g. [2,6,9,10,14,15,17,22]). Several decision-making
models have been deployed to highlight problems for classical decision the-
ory in an environment with infinite features. A recurring pattern, on which I
shall focus in this paper, displays a net loss as the result of the infinite iteration
of individually advantageous actions. Such a pattern arises from a sequen-
tial process whose individual stages are standardly marked by numerals in
a finite base. This selection of numeral specifications mandates a distinctive
way of handling infinite processes, namely reasoning that focusses on finite
initial segments only. The result is a systematic failure numerically to capture
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2 DAVIDE RIZZA

certain features of infinite decision-making, most notably the fact that it
should reach a point of completion at which overall payoffs or overall features
are uniquely determined. These features are, in particular, uniformly indeter-
minate by standard numerical means. It is because they cannot be computed
that paradoxes arise. As a consequence, it is to be expected that more power-
ful numerical methods should resolve paradoxes by replacing indeterminate
values with numerically determinate ones. A toy example can usefully illus-
trate the kind of paradoxical issue discussed in this paper.

Suppose that an infinite stack of dollar bills, labelled by the numerals
1, 2, 3, . . ., which denote the finite, positive integers, is available. An agent
A is asked repeatedly to choose one of the following methods of payment:

(a) At stage n, dollar bill n is paid out;

(b) At stage n, dollar bill n is paid out if and only if n is even.

It is presupposed that, for each method of payment, there are as many stages
as there are dollar bills and that the stages about which information can be
computed are identified by a numeral label. In particular, given a numeral
n, it is possible to compute the payment made at stage n, denoted by pa(n)
in case the first method of payment is chosen, and by pb(n) otherwise. The
overall payment at stage n under a fixed (i.e. constantly chosen) method is:

n∑
i=1

p j (i), with j ∈ {a, b}.

Trivially, at an arbitrary stage n ≥ 1, it is more lucrative for agent A to
choose the first method of payment over the second. An intriguing question
is whether this remains true once an actually infinite, completed sequence of
payments is carried out. This question may be attacked by evaluating:

∞∑
i=1

pa(i) and
∞∑

i=1

pb(i).

A problem arises from the fact that both series are divergent. Divergent
behaviour reduces to the behaviour of finite partial sums at the limit and it
is not obvious that limits can accurately describe actually infinite sequences
of transactions. Suppose, for the sake of argument, that limits are accurate
enough. It is then tempting to conclude that A should treat a uniform choice
of method a and a uniform choice of method b as equivalent at infinity. A puz-
zling scenario appears, in which the persistent advantage of choosing method
a over method b seems to break down at infinity. But, if limiting behaviour
is a faithful indicator of ‘outcomes at infinity’, there is no reason to take note
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NUMERICAL METHODS FOR INFINITE DECISION-MAKING PROCESSES 3

of the sums of series only. An asymptotic comparison between the series
involved can also be carried out. The comparison yields:

limn→∞

∑n
i=1 pa(i)∑n
i=1 pb(i)

= 2 �= 1,

and thus points to the fact that the series are not asymptotically equivalent.
The last conclusion may well suggest, against the previous surmise, that agent
A should not treat the two methods of payment as equivalent even at infinity.
Thus, two equally plausible appeals to limiting processes lead to inconsistent
conjectures as to whether or not payment a is superior to payment b when
either can be uniformly chosen infinitely many times.

The last remarks throw into relief the fact that standard sequential rea-
soning on the finite stages 1, 2, 3, . . . of an actually infinite decision-making
process does not provide a uniquely determined picture of its overall features.
Two mathematical responses to this state of affairs recommend themselves.

One is to allow as meaningful models of decision-making processes only
feasible sequential processes: this can be done by e.g. exploiting the approach
of [23], which works with a version of Peano Arithmetic relativised to a finite
row of natural numbers of the form 0, . . . ,�, where � is an absolute resource
bound. In this case, it may be argued that paradoxes arise when decision-
making process are forced beyond feasible length (this is sure to happen if
infinitely long ones are taken into account). As soon as their features are
pushed beyond the reach of computation, there is no hope to recover them
other than by hinting at the lost numerical information by a symbol like ∞.
On the contrary, under suitable feasibility constraints, paradoxes are replaced
by actual numerical computations. Analogues of the results discussed in sec-
tions 1 to 3 may be obtained along these lines, when finite bounds to the
length of sequential decision-making are determined. Sazonov’s alternative
approach to feasibility (see [24]) which does not work with a bound � but
with a ‘vague’ horizon between feasible and unfeasible numbers, may also
prove helpful in a similar but less straightforward manner. If carried out in
the context of the axiomatic theory FEAS (see section 4 of [24]), however,
this latter approach severely restricts the resources that can be invoked to
build sequential decision-making models. For example, FEAS is inconsistent
with the existence of the doubling-function f (x) = x + x .

An alternative approach, which will be pursued in this paper and can be
extended beyond the arithmetic of the natural numbers, starts from the obser-
vation that certain numerical features of infinite decision-making processes
elude numerical computation by traditional means. The answer to this prob-
lem is not now to restrict attention to feasible features in an existing represen-
tation by numeral terms, but to expand computation by introducing numeral
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4 DAVIDE RIZZA

terms that can describe the characteristics of completed, infinite sequential
processes. The key point is that a mathematically serviceable notion of a
completed, infinite process, which is necessary if a notion of ‘overall payoff’
is to be numerically handled, cannot rely, in particular, on familiar sequen-
tial arguments but must make use of a new numerical standpoint. Yaroslav
Sergeyev’s new computational methodology involving infinitely large and
infinitely small numbers provides the needed standpoint, while it does not
call for any special restriction on the resources appealed to in order to build
infinite decision-making models.

2 A NOVEL COMPUTATIONAL PARADIGM

Sergeyev’s computational methodology (see [25–27]) is a fairly recent but
already very successful approach that has proved its fruitfulness in several
areas of pure and applied mathematics, including linear and nonlinear pro-
gramming ( [13,19–21]), numerical integration ( [5,18,30]), Turing machines
( [28, 29]) and cellular automata ( [11, 12]). The purpose of this paper is
to apply this methodology to infinite decision-making. Sergeyev’s key ideas
have been presented in a number of distinct ways. In this section, we follow
the axiomatic approach presented in [7]. Lolli works with a suitable conser-
vative extension of Peano Arithmetic: it follows that, if Peano Arithmetic
is consistent, then Lolli’s theory is (a proof of conservativeness is outlined
in [7], p.13.). The theory is based on second-order predicative arithmetic,
which may be thought of as a multi-sorted version of first-order Peano arith-
metic∗ . Besides the familiar axioms of Peano arithmetic (with induction for-
mulated as a single, second-order axiom, but such that only instantiations to
first-order definable subsets are allowed), Lolli introduces an infinite list of
axioms of the form n < ①, where n is a numeral denoting a finite number and
① (read: gross-one) is a new constant symbol intended to denote an infinitely
large number. Call any total function from {1, 2, 3, . . .} to some nonempty set
A a complete sequence, also symbolised as a1, a2, a3, . . .. Lolli’s axiomatic
approach aims at capturing the idea that a model of arithmetic is an envi-
ronment in which a complete sequence can be singled out as a designated,
infinitely long initial segment. More precisely, in Lolli’s framework com-
plete sequences are total functions from {0, 1, . . . , ① − 1} to A (equivalence
with the above definition can however be proved. For a more detailed dis-
cussion of complete sequences, see [28, 29]). This is in line with Sergeyev’s
idea of using the numeral ① as a symbol identifying a unit of measure for
the actually infinite collection of natural numbers. The next step in this con-
text is to use initial segments of the numeral system specifiable by means
∗ See the remarks in [7], p.9
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NUMERICAL METHODS FOR INFINITE DECISION-MAKING PROCESSES 5

of terms in the language of Lolli’s theory as abstract ‘rulers’. To this end, a
suitable function symbol μ can be introduced. The function μ takes second-
order terms (denoting sets of numbers) as arguments and first-order terms
(numerals in the arithmetical language with ①) as values. Under the assump-
tions that μ({x}) = 1, for any singleton {x}, and that μ is additive on disjoint
bounded sets† , it can be proved that μ(∅) = 0 and that X ⊆ Y implies the
inequality μ(x) ≤ μ(y). Moreover, strict inclusion implies a strict inequality.
If Sx = {y|y < x} is the initial segment of a model determined by x , then
μ(Sx ) = x . Finally, Lolli shows that every bounded set X is in one-to-one
correspondence with an initial segment Sz and, thus, has measure μ(X ) = z.
This guarantees that μ behaves like the familiar cardinality function on finite
sets and that it measures every subset of an initial segment, in particular every
subset of a complete sequence (note that universal quantifiers in the last state-
ments are instantiated by first-order definable sets). It is also guaranteed that
strict subsequences have strictly smaller measures: in short, μ satisfies the
principle that the whole is greater than the part.

However significant, the existence of measures is of relatively little value
if there are not enough computable ones. Lolli’s theory takes care of this
desideratum by introducing an infinite list of axioms that guarantee the exis-
tence of objects denoted by ①/2, ①/3, . . . , ①/n, . . ., for each finite numeral
n. In presence of these divisibility axioms it becomes possible to prove, for
instance, that the set of even numbers in a complete sequence, defined by the
condition ∃y(x < ① ∧ x = 2y), has measure ①/2, the same as the measure
of the set of odd numbers, defined by the condition ∃y(x < ① ∧ x = 1 + 2y)
(note that there is a bijection between the last two sets, but not between any
of them and a complete sequence). In general, the condition ∃y(x < ① ∧ x =
k + yn), where k, n are finite numerals with k < n, defines a part of a com-
plete sequence of size ①/n. It can be proved that two parts of a complete
sequence have the same numerical measure under μ if and only if a bijection
links them.

Before returning to the toy example from the previous section, it is conve-
nient to establish one inequality that be used in subsection 3.2. To this end,
define �log2x� as the greatest n such that 2n ≤ x . Then:

Lemma 2.1. �log2 ①� < ① − 2.

Proof. If X = {g(n) : 0 < g(n) ≤ k} is a bounded set determined by a
strictly increasing function g such that g(0) > 0, then g−1(X ) is an ini-
tial segment Sx of measure x . Because g−1 is a bijection between Sx and

† Here a set is bounded if it is included in some initial segment of a model, which is a linearly ordered
set.
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6 DAVIDE RIZZA

X , it follows that μ(g(X )) = x . Consider the special case of this situation
in which g(n) = 2n , k = ① and X = {2n : 0 < 2n ≤ ①}. Then g−1(X ) is
the initial segment S�log2①� and μ(X ) = �log2①�. Note that X is a set of
even numbers, strictly included in the set E of even numbers in {1, . . . , ①}.
Now μ(E) = ①/2 and, since μ is strictly monotonic relative to inclusion,
μ(X ) < μ(E) = ①/2 < ① − 2 (because ① = ①/2 + ①/2 > ①/2 + 2). The
result follows.

It is now possible to turn to a simple treatment of the toy example from sec-
tion 1.1.

3 EXCHANGES AND BETS

The formal apparatus from section 2 affords a way of introducing numerical
models for a process involving a complete sequence of consecutive stages.
Since the stages are in one-to-one correspondence with {0, 1, . . . , ① − 1},
there are ① of them. As a consequence, the stages may be conveniently
named by the numerals 1, 2, 3, . . . , ① − 1, ①. The toy example from sec-
tion 1.1. is now amenable to a straightforward numerical treatment. Method
a, when uniformly chosen, allocates exactly one bill per stage: its overall
payoff, allocated after a complete sequence of ① stages, amounts to ① dol-
lar bills. Because only the even stages of S① correspond to a payment under
method b, the overall payoff in this case is ①/2 < ①. Agent A is better off
choosing method a, irrespective of whether only finitely many transactions
or a completed sequence of transactions are proposed to her.

This conclusion may well look trivial, but this is because the toy example
to which it applies is trivial: this example looks like a perplexing puzzle only
when it is studied by numerical methods that leave its outcome indetermi-
nate because computationally out of reach. In other words, its troublesome
appearance is not due to the type of infinite process at hand but rather of the
limitations of the numerical resources adopted to tackle it. This is true in gen-
eral. The decision-making puzzles found in the literature are all constructed
on a numeral treatment of complete sequences that focusses exclusively on
their ‘early’, i.e. finite, stages, leaving aside the stages closer to their out-
come, let alone the outcome itself.

3.1 Infinitely many bets
The toy example from section 1.1. is a simplified version of a much more
sophisticated setting devised in [9]. This, in turn, is a nonlinear variant of
a simpler paradox presented in [6]. To handle the simpler decision-making

IJUC˙261018˙RIZZA˙V1 6



NUMERICAL METHODS FOR INFINITE DECISION-MAKING PROCESSES 7

paradox first will help clarify how the formal approach in [7] can be used and
it will make clearer how similar paradoxes can be tackled.

In the case at hand, an agent is faced with three alternatives a, b, c, where
a is highly undesirable, b highly desirable, and c indifferent to her. A com-
plete sequence of offers‡ is deployed, according to the following template:
the n-th offer proposes a regime of a for n days, followed by a regime of b
for the next n + 1 days, and a regime of c for all remaining days. Crucially,
some actually infinite sequence of days is the time-span over which offers
are made. Now it is sensible to reject the first bet (1 day of a and 2 days of
b) in favour of the second (2 days of a and 3 days of b), which provides a
longer period of highly attractive enjoyment. By the same clue, it is sensible
to reject the second bet in favour of the third, and so on. A problematic con-
clusion seems to loom: an agent who accepts the complete sequence of bets
should end up choosing a constant regime of a.

If this setting is described by a standard numerical model, individual bets
with finite features are numerically specifiable, but no numerical specification
of the overall number of days involved the offers or of the number of offers
can be given. Without these specifications, one is confronted with an endless
sequence of decisions labelled by finite numerals, whose completion is not
defined: talk of a conclusive decision on the entire system of infinitely many
offers becomes hazy. If, on the other hand, the numerical determination ①

is introduced to identify the stages of a complete sequence of bets, then its
overall features can be treated in a numerical way. The ①-th offer, modelled
on the pattern of every other offer, requires ① days to to be spent under the
regime of a and ① + 1 to be spent under the regime of b. Thus, if ① is also
the set whose number of elements determines the supply of available days,
then there cannot be ① bets, but only ①/2 − 1, a strictly smaller, infinitely
large number.

Now, a completed, infinite sequence of days has the numerical size ①.
Given this size, it is easy to realise that the last offer guarantees ①/2 − 1
days of a, followed by ①/2 + 1 days of b and no days of c. The agent who
discarded earlier offers for later ones, should be satisfied with offer ①/2 −
1, which is the last available one, if her preferences convince her that the
largest administration b she can avail herself to is worth suffering a strictly
shorter, but still rather long, administration of a. It is of the essence to remark
that there is no difference for the agent in question between going through
the offers sequentially, by discarding earlier ones in favour of later ones, or

‡ This is what [6], p.260 means, even if the less accurate reference to a countably infinite system is
used. This reference is not inappropriate, but occurs in a theoretical framework in which a complete
sequence is indistinguishable from any of its infinite subsequences. It is in fact the lack of numerical
determinations that tell such sequences apart that engenders paradoxes.
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8 DAVIDE RIZZA

considering them as a whole. The impression of a difference arises in the
absence of a computationally amenable notion of complete sequence. With
these observations in mind, it is possible better to appreciate the sophisticated
form of the toy example from section 1 devised by Barrett and Arntzenius.

3.2 Barrett and Arntzenius’ paradox
In [9, 10], Barrett and Arntzenius present and discuss a setup that involves a
choice between the following actions:

(a) receive the dollar bill with the least index from the available reserve
of bills;

(b) receive 2n+1 dollar bills and return the dollar bill with the least index
from the amount owned.

Barrett and Arntzenius further assume that, whenever the second action is
chosen, the dollar bill to be returned is eventually destroyed. A paradox now
arises from the fact that, after finitely many stages, a constant selection of the
second action yields a greater payoff, whilst, at infinity, a constant choice of
the same action seems to require that a decision maker should return every
dollar bill, ending up with none. At the same time, a less greedy decision
maker, who chooses the first action all the time, is bound to find herself ulti-
mately in possession of the whole infinite stack of dollar bills.

The problem with this account is that, once again, complete sequences of
actions are dealt with by numerical methods biassed in favour of their finite
beginnings. This critical point is already perceived in [16], but it may be fully
vindicated by the numerical approach developed so far. The central issue is
that it is not a priori clear whether there are enough stages for an agent choos-
ing action b all the time to return as many dollar bills as there are in the given
stack. In particular, if, as in subsection 3.1, a complete sequence of ① dollar
bills is available and many of them are mobilised at each transaction regu-
lated by action b, while only one of them is returned and destroyed, there
may well arise a discrepancy between the number of possible transactions
and the overall number of returned dollar bills. The possibility of such a dis-
crepancy is concealed when ∞ must be used to denote some overall features
of the decision-making process as a whole.

By contrast, the number of transactions compatible with a constant choice
of action b on a stack of ① dollar bills is a computable value in presence of
the richer numeral resources used so far. To find this value, let the quantity
Mk denote the number of bills disposed of at step k (note that the term k may
refer to a finite or infinitely large number). Once this quantity is known, the
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quantity Nk , denoting the number of bills earned at step k, can be computed.
Now, for any first-order term k in the language of Lolli’s theory, we have:

Mk =
k∑

n=1

2n+1 = 2k+2 − 4

Nk =
k∑

n=1

(2n+1 − 1) = 2k+2 − (k + 4)

When k = �log2①� − 2, Mk ≤ ① − 4. At k = �log2①�, the overall payoff
becomes:

2�log2①�+2 − 4.

Since, by definition, 2�log2①�+1 > ①, we obtain:

2�log2①�+2 − 4 = 2�log2①�+1 + (2�log2①�+1 − 4)
> 2�log2①�+1

> ①,

which guarantees that action b, if it is constantly chosen, can be chosen at
most �log2①� times. A decision maker who chooses action a for �log2①�
times earns �log2①� dollar bills, so it remains to verify that N�log2①� >

�log2①�, i.e.:

2�log2①�+2 > 2�log2①� + 4,

which is equivalent to:

2�log2①�+1 − 2 > �log2①�,

Since the left-hand side is greater than ① − 2, it suffices to show that:

① − 2 > �log2①�,

which is the last inequality from section 2. The paradox proposed by Barrett
and Arntzenius can now be accounted for in a nuanced way. An agent who
constantly chooses action a over action b receives a smaller payoff at each
decision, but she dramatically increases the number of decisions available
to her. An agent constantly choosing action b, on the other hand, can help
herself to single greater payoffs but curtails the sequence of transactions, as
well as incurring a loss of one dollar bill per stage. In other words, the con-
stant selection of action a guarantees a way of securing all available dollar
bills, whereas action b undermines that possibility. Nonetheless, the constant
selection of action b yields an infinitely large payoff, as opposed to no payoff.
This constant selection is also superior to the constant selection of action a if
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10 DAVIDE RIZZA

the latter can only be repeated �log2①� times (the former cannot be repeated
more than �log2①� times). Such an intricate picture is largely overshadowed
by classical sequential reasoning.

Before considering further instances of infinite decision-making pro-
cesses, it is worth pausing to note that, if the processes described so far
were all so timed that the decisions involved had to take place at a geometri-
cally increasing pace, they would look like what the philosophical literature
since [8] has called super-tasks, i.e. tasks completed within a finite amount
of time and constituted by infinitely many sub-tasks. In effect, the literature
on decision-making paradoxes is an outgrowth of the super-task literature.
Super-tasks that are unrelated to decision-making can be tackled using the
computational paradigm applied in this paper: this has been shown in [26]
and [4] in connection with the well-known Thomson’s Lamp super-task and
various physical super-tasks respectively. It is worth noting that, in presence
of Sergeyev’s computational methodology, the total amount of time taken by
completing an infinite, numerically specified, number of tasks is computable
even if the tasks do not succeed one another at a sufficiently fast pace (e.g. if
each task took 1 second then ①/2 would take the infinitely long time of ①/2
seconds).

4 PROBABILITY MODELS

If Peano Arithmetic is consistent, then its conservative extension in [7] is too
and, by the completeness theorem (which applies to multi-sorted first-order
logic), has a model. Let Nat be a model of Lolli’s theory. By a well-known
set-theoretic construction it is possible to use it to build an ordered ring Int
of integers in which the classical, complete sequences {. . . ,−2,−1, } and
{1, 2, . . .}, together with zero, are represented by the infinitely long segment
{−①, . . . ,−1, 0, 1, 2, . . . ①}. Moreover, the environment Int can, by familiar
means, be used to build an ordered field Frac, in which, in particular, the ele-
ments of the complete sequence {1, 2, . . . , ①} have multiplicative inverses.
Although the measure μ could easily be extended in a unique way to Int or
Frac, extensions will not be needed for present purposes. What matters is to
have a sufficiently rich collection of numerical specifications arising from a
model of Lolli’s theory. Thanks to it, field arithmetic can be made to inter-
act with the numerical methods exemplified so far. Such an outcome of is of
special interest when decision-making processes involving probabilities are
concerned. The next subsection discusses a widely debated example.

4.1 A fair lottery
A fair lottery is one in which draws are taken from the complete sequence
{1, 2, 3, . . .} and it is assumed that the event of drawing n, for any n in the
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sequence, has a fixed probability. To describe a fair lottery numerically is
impossible by classical means, because the desired uniform, discrete distri-
bution is not defined. On the other hand, by the methods employed so far, it
is easy to deploy the distribution U [1, ①], which assigns to the extraction of
any number from a complete sequence the infinitely small, nonzero probabil-
ity 1/①.

Because fair lotteries do not admit of any numerical description by clas-
sical means, they have to be handled by means of intuitive considerations,
as opposed to numerical computations. Such considerations usually lead to
problems, because they support the formulation of hypotheses that cannot be
checked by a computation.

As an illustration of this phenomenon, consider the discussion of a system
of infinitely many bets attached to a fair lottery, as it appears in [6], pp. 256–
257. Bet n between agents A and B requires that A pay B $2 if n is drawn
and that she receive $1/2n if n is not drawn. It is then argued that A:

counts each of these bets as favourable, since each offers a greater-than-
infinitesimal chance of a finite gain, and threatens a merely infinitesimal
chance of a finite loss ( [6], p.257).

It should be observed that, because only standard mathematical resources
are presupposed, the adjective ‘infinitesimal’ from the above quotation does
not correspond to any numerical specification. It should be understood as
providing an intuitive qualification, since the only standard infinitesimal is 0,
which, if deemed meaningful, does not produce a paradox¶ . If some nonzero,
infinitesimal probability is involved, then the result of any draw appears to
lead to a net loss for A: paradox resurfaces.

The question is that not ‘any’ draw in a sequence of bets may be specified,
if there are not enough numerical specifications at hand. As a matter of fact,
agent A is never in a position to evaluate other than early bets, occurring after
only finitely many have been considered. For this reason alone, it is plausible
to conjecture that she may misjudge the local features of the sequence of bets
at later stages. If, as usual, we work with a complete sequence, agent A has
to perform ① evaluations. Just before carrying out half of this task, she is
confronted with bet ①/2 − 1. The expected loss in this bet is 2/① dollars, an
infinitely small amount. Her expected gain, however, is:

1

2
①
2 −1

(
1 − 1

①

)
<

1

2
①
2 −1

.

¶ In classical terms, if the probability of drawing any finite n is zero, then the overall payoff is computed
as the sum of a geometric series. Thus it is, with certainty, $1, a net gain. No losses can occur but it is
entirely unclear what kind of event a single draw is in this case.
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12 DAVIDE RIZZA

Since, for finite n, n < 2n and n < ①/2 − 1, the last quantity is infinitely
small and, thus, the expected gain is, too. Now the ratio:

2

①
1

2
①
2 −1

= 2
①
2

①

can be evaluated by means of the following lemma, which is a theorem of
Lolli’s theory:

Lemma 4.1. 2
①
2 > 2①.

Proof. Note that 2
①
2 is the number of binary sequences of length ①/2. It suf-

fices to verify that, among these sequences, there are 2① distinct ones and that
these do not produce an exhaustive list. In particular, there are ①/2 distinct
binary sequences with exactly one entry equal to 1 and ①/2 − 1 further, dis-
tinct binary sequences can obtained from them by replacing the occurrence
of 0 in their last entry with an occurrence of 1. Adding the constant sequence
whose entries are all equal to 0, we obtain a total of ① distinct sequences. A
further supply of ①/2 − 2 sequences is provided by those with exactly three
entries equal to 1, two of which are the first and last entry. Moreover, there are
①/2 − 4 sequences with exactly five entries equal to 1 and such that their first
and last two entries are equal to 1. The total count of distinct sequences is now
2① − 6. Now the sequence with exactly the first n consecutive entries equal
to 0 and n = 1, 2, . . . , 6 provide six further distinct sequences. As a result,
there are at least 2① binary sequences of length ①/2. In fact, there must be
infinitely many more, since, for instance, the sequences with exactly the first
n consecutive entries equal to 0, for n = 7, 8, . . . ①/2 have been omitted.

The last lemma implies that the expected loss in the bet number ①/2 − 1 is
more than twice the expected gain. This situation persists in every subsequent
bet. Agent A, if put in a position that enables her to carry out numerical
computations of gains and losses for each bet, eventually realises that more
than half (i.e. ①/2) of the bets proposed by B lead to an expected loss greater
than twice the expected gain. In other words, A must conclude that more
than half of the bets offered her are unfavourable and reject the whole system
of bets because too many individual bets are unfavourable. This conclusion
contradicts what was suggested about A’s behaviour by the last quotation:
A’s hypothesis was plausible only because she lacked numerical methods to
evaluate the system of bets in a computationally accurate way. There is in
fact no conflict between her view of the whole system of bets and her view
of the individual bets, if she can intervene numerically on both.

IJUC˙261018˙RIZZA˙V1 12



NUMERICAL METHODS FOR INFINITE DECISION-MAKING PROCESSES 13

4.2 Coin tosses
We have just considered infinitely long binary sequences. These may be
regarded as outcomes of some numerically specifiable, infinite iteration of
a coin toss. In particular, since a complete sequence of coin has length ①,
there are 2① outcomes. It is possible to use their powerset as sample space for
the uniform, discrete distribution U [1, 2①]. Under this distribution, the event
of obtaining a sequence of ① heads (or tails) with a fair coin has infinitesi-
mal probability 1/2①. Working with this probability model, a betting problem
framed after the fashion of the Saint Petersburg paradox and presented in [6]
is effectively dealt with. This problem is of special interest because it shows
that, on adopting Sergeyev’s computational paradigm, it becomes possible to
find numerical values for expectations otherwise undefined.

The problem revolves around the question whether or not an agent should
accept a complete sequence of bets based on the repeated tossing of a fair
coin. What matters to each one of the bets is how soon tails comes up for
the first time. For instance, if tails comes up at the first toss, Bet 1 yields a
gain of $3 dollars, as well as a loss of $1 if tails never comes up. If the first
toss does not correspond to an event of tails, then Bet 1 is void and Bet 2
is proposed, which involves a gain of $9 if tails comes up at the second toss
for the first time, but a loss of $4 if it does not come up at the first toss. The
table below describes the first three bets. The events of the first occurrence
of tails at the first, second or third toss respectively are referred to as 1st T,
2nd T and 3rd T in the top row of the table. ‘No T’ refers to the event that
corresponds to a complete sequence of heads. The second row of the table
lists the probabilities of these events.

Occurrence of T No T 1st T 2nd T 3rd T
Probability ? 1/2 1/4 1/8

Bet 1 Lose $1 Gain $3
Bet 2 Lose $4 Gain $9
Bet 3 Lose $10 Gain $21

In Bet 1, [6] assigns a probability 0 to a loss of $1, but this numerical spec-
ification can be improved upon by means of the probability model described
at the beginning of this section, where this probability is 1/2①. The system of
bets does not stop at 3, but it is clear from the table above that each column
but the last involves a loss of $1. Given the way in which Gains and Losses
are defined, by the recursive conditions:

Gain(n + 1) = 2Gain(n) + 3 and Loss(n + 1) = 2Loss(n) − 2,

for any column labelled by a finite numeral n, the column next to it with leads
to a loss of $1. The system of infinitely many bets thus appears to imply a sure
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loss, but it is also possible to consider each bet in isolation and note that it
leads to a gain more than twice greater than its loss at half the probability. In
other words, each single bet looks advantageous. The discrepancy that these
remarks are meant to bring out is one between the system of bets as a whole
and as a sequence of individual bets. Individual bets look advantageous but,
when taken collectively, they seem to produce a net disadvantage.

This is by now the familiar situation that arises when certain features of
the process cannot be numerically evaluated. In a complete sequence of ①

bets, i.e. the model used by [6] with a numerical specification of its length,
it is possible to compute the numerical value of the (k + 1)-th gain Gk+1 for
k finite or infinitely large. Since Gk+1 = 3(2k+1 − 1) and the probability of
Gk+1 is 1/2k+1, the overall expected gain resulting from a complete sequence
of bets is:

G =
①−1∑
k=0

1

2k+1
Gk+1.

The above summation can be computed fas follows:

3
①−1∑
k=0

(
1 − 1

2k+1

)
= 3① − 3

①−1∑
k=0

1

2k+1
= 3(① − 1) + 3

2①
,

which, if one adds the loss in Bet 1 for no occurrence of tails, an event with
probability 1/2①, leads to the value:

G ′ = 3(① − 1) + 1

2①−1
.

Since Bet ① is the last bet, losses should be computed up to the last one
relative to toss number ① − 1. The k-th loss is given by:

Lk = 2k+1 + 2k−1 + 2k−2 + . . . + 22 + 2 + 1 = 2k+1 + 2k − 2.

Since 2−k Lk = 3 − 2−(k+1), it is again possible to compute the overall
expected loss:

L =
①−1∑
k=1

(
3 + 1

2k−1

)
= 3① − 5 + 1

2①−1
.

It follows that G − L > G ′ − L = 2: the full system of bets entails a net gain.
Note that, if losses had been computed up to k = ①, the last quantity would
have been −1, a net loss, but this loss could have been included only if a
system of ① + 1 bets is taken into account, with the accompanying ① + 1-th
gain, which again leads to a net overall gain.
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This outcome is not transparent in a standard numerical model because
the latter lacks the resources to discriminate between the expected values of
infinitely long sequences of bets, in particular complete ones.

5 PERSPECTIVES ON INFINITE DECISIONS

The infinite decisions examined in subsections 3.1, 4.1 and 4.2 respec-
tively illustrate each of three types of decision-making paradox discussed
in [6]. These examples were originally intended to illustrate the possibility
of decision-making scenarios in which a collection of individually attrac-
tive deals proves harmful as a whole (see [6], p. 280). It was shown that
the inconsistency between local and global evaluation of deals is in fact
a discrepancy between numerically accessible evaluations (local ones) and
numerically inaccessible evaluations (global ones). In particular, the numer-
ical methods provided by Sergeyev’s computational methodology afford a
treatment under which both the local and global features of a decision-making
process are amenable to numerical computation. In fact, something subtler
can be said. Specific mathematical properties, like the non-conglomerability
of certain probability measures or the discontinuity of certain functions, arise
in the context of paradoxes of infinite decision-making. Such properties do
not highlight absolute features of the relevant processes but the absence of
adequate numerical methods to handle them. The next two-subsections illus-
trate this phenomenon.

5.1 Non-conglomerability
In section 4.1, we introduced a probability model for a fair lottery on a com-
plete sequence. Arntzenius et al (2004) seek to set one up but, in order to do
so in the absence of a direct treatment of complete sequences and numerical
infinities, they are forced to land with a non-conglomerable probability mea-
sure(see [6], pp.274–275). Non-conglomerability on a complete sequence
amounts to the fact that there are an event X ⊆ {1, 2, 3, . . .} and a countable
partition S = {S1, S2, S3, . . .} of {1, 2, 3, . . .} such that some x ∈ (0, 1) sat-
isfies the inequalities P(X ) < x < P(X |Si ) for each i ∈ N. When this hap-
pens, a probability measure locally larger than x is globally smaller than the
same quantity. It is clear that such measures are well-suited to setting up the
kinds of conflicts between local and global decisions studied so far.

[6] get a non-conglomerable measure by exploiting a construction from
[3] in order to guarantee the existence of a fair lottery on a complete sequence.
In their lottery, the event e.g. of drawing an even number has probability
1/2, as in the numerical model from section 4.1. Set x = 7/12: the proba-
bility value 1/2 < 7/12 is assigned by the given lottery to the set X of even
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numbers but, conditional on a restriction to Si ∈ S = {S1 = {1, 2, 4}, S2 =
{3, 6, 8}, S3 = {5, 10, 12}, . . .}, the probability of picking an even number is
2/3 > 7/12.

The same choices of X and S do not lead, in presence of Sergeyev’s
numerical methods, to non-conglomerability. Since there are ①/2 even num-
bers in a complete sequence, the probability of picking one under U [1, ①] is
1/2 as above. Because there also are ①/2 odd numbers, the partition S has
①/2 distinct cells. Clearly, not all of them can contain two distinct even num-
bers. If this were the case, there would be ①/2 + ①/2 + ①/2 = ① + ①/2 >

① distinct numbers in a complete sequence, whose length is only ①. In fact,
only ①/4 cells from S contain even numbers and this means that the proba-
bility of picking an even number conditional on a restriction to Si ∈ S is 0 for
an infinitely large number of choices of Si , with i infinitely large. This result
can be achieved because the relatively inaccurate qualification ‘countable’,
applied to the size of the partition S, is replaced by more refined numeri-
cal distinctions like ①/4 and ①/2. In general, it is impossible to offer an
instance of non-conglomerability while working with Sergeyev’s numeral
system, where the standard possibility of identifying distinct, infinitely large
numbers is foreclosed.

5.2 Discontinuity
In [17], Bartha and his collaborators identify the general structure of
decision-making paradoxes by an appeal to a notion of discontinuity. We shall
show that this notion is a pointer to the employment of inadequate numeri-
cal methods or, more constructively, a pointer to the need for more effective
numerical methods.

The notion of discontinuity at play is elicited from a particular abstract
setting: given an item X , partitioned into a complete sequence X1, X2, X3, . . .

of pieces, an agent A is sequentially offered each piece but she is also told
that she will incur a large loss if she takes them all. The decision-making
problem A faces consists in selecting the most profitable moment to stop.
Equivalently, A must decide how many pieces she will accept in sequential
order. In [17] numerical specifications of utilities are employed, under which
accepting X1 increases A’s utility by 5 units, while accepting Xn , with n > 1,
produces an increase of 5/(n − 1) − 5/n units. At the same time, taking all
pieces in the sequence produces a net loss of 1000 utility units.

At each finite stage, accepting one more piece is a rational strategy, thus
[17] can represent each finite, partial sequence of favourable choices for all
pieces up to the n-th by a binary sequence with a constant initial segment
(a string of occurrences of 1, standing for acceptance). Each sequence corre-
sponds to an action an and it can be immediately verified that these actions
have a point-wise limit a, which is an infinite string of occurrences of 1. At
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the same time, utilities are strictly increasing on the sequence (an) but u(a)
is not an upper bound for (u(an)), since it falls below all of its elements. The
utility function u is discontinuous at a (a rigorous version of this statement
can be found in [17], pp. 641–642). Discontinuity, as it arises here, seems to
mark the defeat of sequential strategic behaviour.

It is noteworthy that [17] calls a ‘ALL’ and assigns it a utility, as is done
with any finite stage an . However plausible it may be to imagine A in pos-
session of a complete sequence of pieces Xi , there are no standard means
to render this situation numerically as the outcome of a complete sequential
process. This shortcoming becomes becomes even more striking when [17]
suggests an ordering of A’s actions according to utility. After observing that
a is not preferred to any ai , where i can only be a finite label, the authors
go on to consider the distinct action of taking all elements of the partition
but X1. The utility attached to this event is evaluated as -995 units, which
can only make sense if one thinks that the penalty for taking the entire par-
tition is applied before X1 is returned. If X1 had not been taken in the first
stage of the decision-making process, no penalty could have been applied.
But to take the surrender of X1 as a discrete event to follow the comple-
tion of a complete sequence of decisions, is, again, to work with the qualita-
tive notion of a completion event to which no numerical specification can be
assigned.

In order to get around this difficulty, it may be possible to envisage a pro-
cess in which X1 is rejected and then relabelled to appear as X2 with a lower
utility. Then X2 should be relabelled to appear as X3 and so on. In this case,
however, two problems arise. One concerns the opportunity of employing a
formal approach to decisions that turns distinct qualitative descriptions into
equivalent actions (returning X1 or never taking it), thus making decision-
making hopelessly ambiguous. The other problem is simply that the difficulty
with rendering completion for an infinite sequence of decisions reappears
with respect to an infinite sequence of label changes.

It is of special interest that, despite these setbacks, [17] engages as far as
possible with numerical evaluations of utilities. For instance, the action of
taking only the partition elements with an even index is evaluated as produc-
ing a utility lower than -995 (estimated at -997). In fact, the event a is posi-
tioned in the middle of a utility ordering in which an increasing sequence of
finite acquisitions of Xi follows a, carrying greater utilities, and an increasing
sequence of greater losses, produced by taking infinitely many pieces in vari-
ous ways, precedes a. Willingness to even set up this ordering presupposes an
interest in drawing numerical distinctions between infinite processes that lie
beyond the scope of standard numerical specifications. In short, the analysis
indicates a method to be desired, since handling finite numerals in computa-
tions cannot guarantee accurate estimates, if it produces any.
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18 DAVIDE RIZZA

To fulfil the desire in [17], it suffices to note that a partition of X into a
complete sequence of pieces can be represented, under Sergeyev’s numer-
ical approach, as {X1, X2, . . . , X①−1, X①}. The utility of it last element X①

is 5/(① − 1) − 5/① units and the overall utility of taking the full partition
(minus the penalty) can be found by computing the infinitely long summa-
tion below:

5 +
①∑

i=2

5

i − 1
− 5

i
= 5 + 5

①∑
i=2

1

i(i − 1)

= 5 + 5
①∑

i=2

(
1

i − 1
− 1

i

)

= 5 + 5

(
1 − 1

2
+ 1

2
− . . . + 1

① − 1
− 1

①

)

= 10 − 5

①
,

where 5/① is infinitely small (if one took only the even pieces, the third
equality above would involve the alternating harmonic series. The finite part
of the sum of its first ① terms, which is independent of the order of summa-
tion, is log2. For a thorough discussion with computations see [1], pp. 8066-
8069. It is easy to see that, whenever a number of elements from the partition
of X is taken, which is smaller than ①, only a utility bounded above by the
last utility value is gained by agent A. Her best strategy is to reject the least
valuable element X① and take every other element. This allows her to incur
no penalty while attaining a utility that is still infinitely close to 10 units. It is
also clear that taking all elements but X1 leads to no penalty and a utility of
5 − 5/① units, as opposed to the negative utility conjectured by [17].

The discontinuity identified by an appeal to standard mathematics can now
be handled by recognising that a large penalty is applied at an identifiable
stage of the infinite decision A is confronted with, provided that a condition
is satisfied (all pieces are taken). The latter condition can be specified by
numerical means (all ① pieces are taken) and overall utilities can be com-
puted both when the condition is satisfied and when it is not. The problem
faced by [17] resides in the decision to opt for the adoption of standard math-
ematics where the formulation of the problem at hand calls for the introduc-
tion of alternative resources that allow its qualitative features to be translated
into numerical specifications.
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