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Abstract: To limit the pulverization of tin-based anode materials during 

lithiation/delithiation, submicron tin oxide/tin particles are fixed on core/sheath 

carbon nanofiber/spongy carbon via hydrothermal and carbothermal reduction 

treatment in this work. During carbothermal reduction, SnO2 nanosheets are 

converted to spherical Sn submicron particles and simultaneously the hollow spongy 

carbon is produced and still enwrap on carbon nanofiber. The as-produced flexible 

film is used for a binder-free anode for lithium ion batteries, without the polymer 

binder and conductive carbon. At 0.1, 0.5, 1 and 2 A g-1, the composite electrode 

respectively displays a discharging capacity of 1393.0, 738.2, 583.6 and 382.6 mAh 

g-1. Moreover, it delivers specific capacity of 726.9 mAh g-1 and coulombic efficiency 

of 99.45 % after 300 cycles at 0.1 A g-1. The comparison sample of carbon 

nanofiber/SnOx film without the presence of spongy carbon displays much lower rate 

performance and worse cyclic performance. The integrated structure of carbon 

nanofiber/SnOx/spongy carbon results in the remarkable Li-storage performance, in 

which the carbon nanofiber and spongy carbon synergistically provide conductive 

channel and buffer zone to hinder the pulverization and peeling of SnOx particles 

during charging-discharging processes.  

 

Keywords: Hybrid materials; Integrated structure; Cyclic performance; Charge 

transport; Structure-property relationships. 
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1. Introduction 

Tin-based materials with abundant availability, environmental friendliness, and 

high theoretical capacity (Sn: 990 mA h g-1; SnO2: 780 mAh g-1), have been attracted 

widely attention as anode materials for high-performance lithium-ion batteries (LIBs). 

1-4 Nevertheless, the practical implementation of tin-based anodes (SnOx) for LIBs is 

limited by huge volume expansion which results in the unavoidable cracking of solid 

electrolyte interphase (SEI), pulverization and the subsequent poor cycling 

performance.5,6 

Nanosized SnOx and its hybrids with carbonaceous materials, such as carbon 

nanotubes, graphene, amorphous carbon and carbon nanofibers (CNF), have been 

extensively investigated to solve the problem of capacity fading.7-10 Nanosized 

particles can alleviate the volumetric change to some extent, but the nanoparticles 

result in serious side reaction and aggregation during charging/discharging.11,12 

Among the carbonaceous materials, CNF as conductive additive and elastic buffer 

substrate has been effectively improved the electrochemical properties of metal 

oxides as anode materials for LIBs.13,14 Electrospinning followed by subsequent 

carbonization is a typical industrial method to produce CNF.15 In the previous 

publications, the precursors of tin salt and polyacrylonitrile are together electrospun 

and converted to SnOx/CNF in-situ.16,17 SnOx nanoparticles encapsulated in CNF 

present enhanced electrochemical properties, because the elastic nanofibers improve 

the stability and conductivity. However, for maintaining the flexibility of composite 

film it must contain less ratio of metal oxide with the aforementioned one-step 

method. Our group once reported the relationship between the film flexibility and the 

proportion of metal oxides, the over weight ratio of metal oxide in the composite 

causes new technical challenges for electrospinning with consequences of fiber 
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breakage and losing the flexibility.18 Recently, two-step method has been used for 

preparation the composite in which CNF supported metal oxides efficiently resolve 

the aforementioned problems.24-26 In our recent work, we reported a three dimensional 

network in which carbon coated SnO2 micron-sized particles are fixed in carbon 

nanofibers (CNF/SnO2@C). However, the seriously volume change observed in the 

sample decreases the cyclic performance of the composite sample.27 By using pure 

CNF as substrate, metal oxide particles with more than 70wt% of the composite could 

be grown on the CNF network under hydrothermal condition and the film is still 

flexible. Moreover, the crystal morphology of metal oxides and the interface between 

CNF and metal oxides could be easily adjusted by the reaction parameters in 

hydrothermal system.22  

In this work, we synthesize a novel composite structure that the submicron tin 

oxide particles are fixed on core/sheath carbon nanofibers/spongy carbon 

(CNF/SnOx/SC) through hydrothermal and carbothermal reduction method. 

CNF/SnOx/SC flexible film as a binder-free anode is directly assembled in the LIB, 

without polymer binder and conductive carbon. CNF network confines submicron 

SnOx particles, meanwhile, provides fast and continuous conductive channel. The 

spongy carbon efficiently suppresses SnOx pulverization and promotes the electrons 

transfer capability of the composite film. Moreover, the synergy effect between the 

CNF and spongy carbon buffers the volumetric change of SnOx and enhances the Li+ 

diffusion rate during lithiation/delithiation processes, and thus, CNF/SnOx/SC 

possesses excellent rate performance and long term cycle stability.  

2. Experimental Section 

   Stannous chloride dehydrate (SnCl2·2H2O), trisodium citrate dihydrate 

(Na3C6H5O7·2H2O) and lithium hydroxide (LiOH) were used without further 
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purification. The starting CNF film as conductive substrate was prepared by 

electrospinning and carbonization according to the previous publications.15,22 In a 

typical procedure, polyacrylonitrile (PAN) was dissolved in N, N-dimethylformamide 

(DMF) and the solution produced PAN white film by electrospinning. The PAN film 

was preoxidized at 250 °C in air atmosphere, and then carbonized in a tube furnace at 

700 °C in N2 atmosphere to obtain black colored CNF film. The overall synthetic 

procedure of CNF/SnOx and CNF/SnOx/C flexible film was illustrated in Figure S1 

(in Supporting Information). After the first hydrothermal process, CNF/SnO2 flexible 

film was produced.  

   One batch of CNF/SnO2 film was directly treated at high temperature under N2 

atmosphere to produce the flexible film of CNF/SnOx. The other batch of CNF/SnO2 

film with glucose were together reacted in hydrothermal process again. Herein, 

spongy carbon (SC) was grown on the surface of CNF/SnO2 to produce 

CNF/SnO2/SC flexible film. The as-produced CNF/SnO2/SC film was heat-treated 

under N2 atmosphere. During the heat treatment of CNF/SnO2 and CNF/SnO2/SC 

films, SnO2 was carbothermally reduced to spherical tin particles through the reaction 

(SnO2 + C → Sn + COn). The metallic tin surface grew a passivation layer once 

exposed to air atmosphere, and thus, the final products are respective CNF/SnOx and 

CNF/SnOx/SC flexible films (in the following, Sn coated by SnO2 is simplified noted 

as SnOx). The comparison sample SnOx/C powder was synthesized through 

hydrothermal carbon coating and heat-treatment but without the CNF supporting. 

   The crystal structure of the samples were evaluated using X-ray powder 

diffractometer (XRD, Rigaku, Cu Kα radiation). The thermal behaviors of samples 

was recorded by thermogravimetric analysis and differential scanning calorimetry  

(TG/DSC) under O2 atmosphere at the temperature range from 50 to 900 °C. The 
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element weight ratio in sample was collected by Energy-dispersive X-ray 

spectroscopy and CHN elemental analysis (PerkinElmer 2400). The surface 

morphologies of samples were observed by scanning electron microscope (SEM, 

ZEISS SIGMA), and their microstructures were observed by transmission electron 

microscope (TEM) and high-resolution TEM (JEOL JEM-200CX). The valence states 

of the surface elements were acquired using X-ray photoelectron spectroscope (XPS, 

Thermo Fisher Scientific, Escalab250Xi).  

   The as-produced composite films were directly applied as binder-free electrodes 

for LIBs. The electrochemical characterizations were accomplished using CR 2016 

coin cells including Li foils as counter electrode, Celgard 2400 microporous films as 

separator, and 1 M LiPF6 in dimethyl carbonate (DMC) and ethylene carbonate (EC) 

as electrolyte (1:1 volume mixture). The cells were assembled in an Ar-filled glove 

box in which the O2 and H2O contents were maintained at below 0.1 ppm. Cyclic 

voltammogram (CV) profiles were recorded at a scan rate of 0.1 mV s−1 in the range 

of 0.001-2.5 V (CHI660E, Shanghai, China). Galvanostatic discharging and charging 

at various current rates were investigated in the voltage range of 0.001-3.0 V (LAND 

CT2001A battery testing system, Wuhan, China). Electrochemical impedance 

spectroscopy (EIS) measurements were recorded using PARSTAT2273 

electrochemical workstation in the frequency range of 10−2 Hz to 105 Hz and voltage 

amplitude was 5 mV. 
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Figure 1. The illustration of the preparation route and microstructure for CNF/SnO2, 

CNF/SnO2/SC, CNF/SnOx and CNF/SnOx/SC. 

3. Results and Discussion 

3.1 Structure and Morphology of Hybrid Composites 

Figure 1 represents the schematic preparation route for CNF/SnOx and 

CNF/SnOx/SC films. At first, using CNF as substrate and LiOH adjusting the alkanity, 

core/sheath structural SnO2 nanosheets homogeneously grown on CNF (CNF/SnO2) is 

fabricated under hydrothermal condition. One batch of CNF/SnO2 is heated at 700 °C 

in N2 atmosphere. The core/sheath structure of CNF/SnO2 is disappeared, but SnO2 

nanosheets are reduced by a part of CNF and converted to spherical Sn submicron 

particles. Meanwhile, the surface of CNF becomes smooth again but its diameter 

decreases from 300 nm (Figure S2 in Supporting Information) to the 260 nm after 

carbothermal reduction (estimated by their SEM/TEM images shown in Figure 2 and 

Figure 3). The other batch of CNF/SnO2 film is proceeded to be coated by spongy 

carbon assisted with glucose via hydrothermal process again. In subsequent heat 

treatment at 700 °C under N2 atmosphere, SnO2 is also reduced to form spherical Sn 

submicron particles but the SC with porous structure still remain on CNF in the final 

product of CNF/SnO2/SC. The as-produced SnOx submicron particles are fixed on the 
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core/sheath CNF/SC. It should be noted that the as-produced metallic tin will be 

oxidized in air atmosphere and covered by a passivation layer of SnO2. Thus, the final 

products after heat-treatment are named as CNF/SnOx and CNF/SnOx/SC, 

respectively.  
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Figure 2. The SEM and elemental mapping images of CNF/SnO2 (a, a’), 

CNF/SnO2/SC (b, b’), CNF/SnOx (c, c’) and CNF/SnOx/SC (d, d’). 

 

Figure 2 presents the SEM and elemental mapping images of the flexible films of 

CNF/SnO2, CNF/SnO2/SC, CNF/SnOx and CNF/SnOx/SC. Under hydrothermal 

condition, the as-produced SnO2 nanosheets are tightly grown around the CNF to 

form core/sheath structural CNF/SnO2 (Figure 2a). Sn, C and O elements are 

homogeneously dispersed on the fibers (Figure 2a’). The core/sheath structure of 

CNF/SnO2 is disappeared after carbothermal reduction. CNF with smooth surface is 

reappeared, and spherical Sn submicron particles are fixed on CNF network. The 

as-produced CNF/SnOx sample presents the CNF fiber with diameter of 200 – 400 nm 

and SnOx particle sizes are range of 300-1000 nm (Figure 2c, 2c’). The elemental 

mapping images of CNF/SnOx reveal C element on CNF and Sn element on spherical 

particles (Figure 2c’). The other batch of CNF/SnO2 is coated by spongy carbon after 

hydrothermal process again, and the fiber diameter in CNF/SnOx/SC sample increases 

to more than 460 nm (Figure 2d, 2d’). The product CNF/SnO2/SC is still flexible film 

and C, O and Sn elements are homogeneously dispersed on the fibers (Figure 2b and 

2b’). In subsequent carbothermal reduction, spherical Sn submicron particles are fixed 

on CNF network but the SC remains on fibers (Figure 2d). C and Sn elements are 

homogeneously dispersed on the fibers and particles, respectively (Figure 2d’). For 

comparison, SnOx/C sample without CNF supporting presents aggregated crystal 

morphology in Figure S3 (in Supporting Information). 

The crystalline structures of CNF/SnO2, CNF/SnO2/SC, CNF/SnOx and 

CNF/SnOx/SC films analysed by XRD are shown in Figure 3a and 3b. The diffraction 

peaks observed in CNF/SnO2 and CNF/SnO2/SC films all index to the rutile SnO2 
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(JCPDS No.41-1445). The characteristic diffraction peaks observed at 26.5°, 33.9°, 

37.8°, 51.9° are assigned to the crystal planes of (110), (101), (200) and (211), 

respectively. After post-heating treatment, the crystal phases of CNF/SnO2 and 

CNF/SnO2/SC are changed. Most diffraction peaks of CNF/SnOx are assigned to 

metallic Sn (JCPDS No.04-0673), and there is a broad peak at the center of 22° (2) 

attributing to the typical amorphous carbon structure of CNF. The XRD patterns of 

CNF/SnOx/SC are composed of metallic Sn, SnO2 (JCPDS No.41-1445) and trace 

amounts of SnO (JCPDS No.72-1012). The control sample SnOx/C presents almost 

the same XRD pattern with CNF/SnOx/SC (Figure S4 in Supporting Information). 
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Figure 3. XRD patterns (a, b) of samples; TEM images of CNF/SnOx (c, d) and 

CNF/SnOx/SC (e-h). 

The crystal structures of CNF/SnOx and CNF/SnOx/SC further analyzed using 

TEM and HRTEM are shown in Figure 3c-3h. It can be seen that the typical fiber 

with diameter of 260 nm and spherical particles (400 nm) in both samples (Figure 3c 

and 3e). The surface of the CNF and SnOx particle are very smooth in CNF/SnOx 
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sample (Figure 3c). The HRTEM image of CNF/SnOx reveals a clear lattice fringe of 

0.33 nm which corresponds to the (110) plane of SnO2 (Figure 3d). CNF/SnOx/SC 

sample presents the same crystal morphology of SnOx particle with CNF/SnOx, but 

there are SC sheathed on CNF and the length of the SC is about 180 nm (Figure 3e). 

The SC is porous and amorphous with a few nanometers in thickness, and it will play 

the role in buffering the pulverization and volumetric change of SnOx during 

lithiation/delithiation (Figure 3h). 

 

Figure 4. XPS survey spectra (a); high-resolution Sn 3d5/2 spectra of CNF/SnOx (b) 

and CNF/SnOx/SC (c). 

 

The surface chemical composition of CNF/SnOx and CNF/SnOx/SC evaluated by 

XPS are displayed in Figure 4. The survey spectra present C, O and Sn elements in 

CNF/SnOx and CNF/SnOx/SC samples. The typical C 1s peak can be observed at the 

center of 284.6 eV, and the presence of oxygen species observed near 531 eV 

indicates that tin oxide is formed on the surface of tin particles (Figure S5a-b in 

Supporting Information). The high-resolution Sn XPS of samples are shown in Figure 

S5c in Supporting Information, including two main peaks near 494.5 eV (Sn 3d3/2 for 

SnO2) and 486.0 (Sn 3d5/2 for SnO2) and two weak peaks close to 492.4 eV (Sn 3d3/2 

for Sn) and 484.1 eV (Sn 3d5/2 for Sn).23 The high-resolution Sn 3d5/2 spectra are 

fitted using PeakFit software and the corresponding fitted results are shown in Figure 
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4b-4c. It can be seen that the surface of both samples includes the majority species of 

Sn4+and Sn2+ and the minority of Sn0.24 Considering the detection depth of XPS, the 

XPS result of Figure 4b-4c implies that a passivation layer of tin oxide is grown on 

metallic tin. Based on the results of XRD and XPS, it can be deduced that the 

Sn/SnO2 core/shell structure is existed in CNF/SnOx and CNF/SnOx/SC samples 

though it is hard to be distinguished in their TEM images. 

 

Figure 5. TG/DSC curves of CNF/SnOx and CNF/SnOx/SC samples. 

 

The thermal behavior of CNF/SnOx and CNF/SnOx/SC samples are analyzed by 

TG/DSC and the curves are shown in Figure 5. CNF/SnOx shows the exothermic peak 

at 448 °C attributed to the burning of CNF in O2 atmosphere, and the consequent 

weight loss is about 29wt% till 482 °C. The weight loss of CNF/SnOx/SC sample 

starts from 200 °C under O2 atmosphere which corresponds to a weak exothermic 

peak at the center of 300 °C, because highly porous spongy carbon is easier oxidized 

by pure O2. Furthermore, spongy carbon as sheath covered CNF in CNF/SnOx/SC 

sample hinders the oxidation of CNF to some degree. The exothermic peak of 
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CNF/SnOx/SC shifts to 500 °C, and the consequent weight loss is close to 33wt% till 

538 °C. Subsequently, CNF/SnOx and CNF/SnOx/SC present exothermic peaks at 

681 °C and 726 °C, respectively, resulting from the oxidation process of metallic tin 

in both samples. Because of the passivation layer SnO2 formed on the particle surface, 

it prevents the oxidation of the inner side of metallic tin even at high temperature. 

Finally, the retention about 73wt% and 70wt% is observed in CNF/SnOx and 

CNF/SnOx/SC samples till 900°C, respectively. The EDX and CHN elemental 

analysis results are collected in this work. C, O, N and Sn elements are detected by 

EDX (Figure S6 in Supporting Information). However, the C:N:O ratio collected by 

EDX is deviated from that by CHN elemental analysis. Based on the quantity 

evaluated by CHN elemental analysis and TG analysis, the calculated C:O:N:Sn 

weight ratio is 24.3%:2.2%:6.7%:66.8% in CNF/SnOx sample and 

27.0%:2.3%:6.9%:63.8% in CNF/SnOx/SC sample. The elemental analysis show the 

reasonable ratio in both samples. 
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Figure 6. The 1st discharge/charge curves (a), rate curves (b), cyclic curves (c), the 

Nyquist plots (d), and the schemed energy-storage mechanisms (e, f) of CNF/SnOx 

and CNF/SnOx@C lithiated electrodes. 
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3.2 Electrochemical Performances of the Hybrid Composites 

The cyclic voltammograms (CV) curves of CNF/SnOx and CNF/SnOx/SC are 

shown in Figure S7 (in Supporting Information). In the first cathodic process, 

CNF/SnOx and CNF/SnOx/SC show two kinds of peaks. The broad peaks between 1.0 

V and 0.5 V are attributed to the lithiation of SnO2 (Li+ + SnO2 + 4e-  Sn + 2Li2O) 

and the formation of solid-electrolyte-interphase (SEI).25,26 The above two processes 

are irreversible and absent in the subsequent CV cycles. A broad peak in 0.3 - 0.001 V 

is attributed to Li-Sn alloying (xLi + Sn + xe-
  LixSn), which is reversible and can still 

be observed in the following cycles.28,29 In the subsequent anodic scan of CNF/SnOx 

and CNF/SnOx/SC, the peaks between 0.5 V and 0.8 V are attributed to the dealloying 

of LixSn. Moreover, the particular cathodic peak at 0.85 V and anodic peak at 1.25 V 

observed in CNF/SnOx/SC sample are attributed to the lithiation/delithiation of 

CNF.29 From the 2nd to the 6th cycle, the CV profiles of CNF/SnOx/SC samples 

display higher overlapped degree than those of CNF/SnOx, illustrating highly 

reversible redox reactions in the former. 

Galvanostatic charge/discharge measurements are recorded in Figure 6a-6c. In 

this work, the specific capacity is calculated based on the total mass of the binder-free 

film. Figure 4a depicts the first discharging/charging profiles at 0.1 A g-1. CNF/SnOx 

reveals discharging capacity of 1024.0 mAh g-1 and charging capacity of 714.0 mAh 

g-1, while the CNF/SnOx/SC electrode displays a higher discharging capacity of 

1345.1 mAh g-1 and charging capacity of 906.1 mAh g-1. The irreversible capacity at 

the first cycle is ascribed to the formation of SEI and other irreversible reaction. The 

difference of rate capability between the CNF/SnOx and CNF/SnOx/SC electrodes are 

exhibited in Figure 6b. CNF/SnOx/SC presents much better rate performance than 

CNF/SnOx. At 0.1, 0.5, 1 and 2 A g-1, the discharge capacities are 1074.1, 580.0, 
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473.5 and 337.9 mAh g-1 collected in CNF/SnOx electrode, as well as 1393.0, 738.2, 

583.6 and 382.6 mAh g-1 in CNF/SnOx/SC electrode, respectively. Especially, the 

capacity of CNF/SnOx/SC can be recovered to 847.9 mAh g-1 when the current 

density returns to 0.1 A g-1, in comparison, CNF/SnOx is only 538.8 mAh g-1. The 

conductive channel of CNF and porous structure of SC synergistically improve the 

rate performance of CNF/SnOx/SC. 

Long cyclic performance of samples is important for evaluating the practical 

applications. Figure 6c presents the cyclic curves and columbic efficiency of 

CNF/SnOx and CNF/SnOx/SC at 0.1 A g-1. The capacity of CNF/SnOx gradually 

decays to 244.6 mAh g-1 after 300 cycles, but the discharge capacity of CNF/SnOx/SC 

can be maintained at 726.9 mAh g-1 with columbic efficiency of 99.45 % after 300 

cycles. The intermediate product CNF/SnO2 shows low specific discharge capacity 

(about 600 mAh g-1 at the 1st cycle) and poor cyclic performance (157 mAh g-1 at the 

200th cycle) (Figure S8 in Supporting Information). The comparison sample SnOx/C 

also shows rapid capacity fading (198 mAh g-1 at the 100th cycle) (Figure S9 in 

Supporting Information). Furthermore, other control sample SnO2 with the similar 

grain size is synthesized. It is micron sized particles (0.5 1.5 m) as shown in SEM 

and TEM images (Figure S10a-10c). SnO2 sample can deliver high specific capacity 

of 1346 mAh g-1 with a coulombic efficiency of 61.2%, but the capacity rapidly 

deceases to 50 mAh g-1 at the 100th cycle due to the serious pulverization of SnO2 

particles. According to the abovementioned electrochemical performance of tin-based 

anode materials with different kinds of crystal morphologies, it can be concluded that 

elastic CNF and porous SC effectively enhance the stability and conductivity of 

submicron sized SnOx particles during lithiation/delithiation process. 
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To better understand the conductive behavior of CNF/SnOx and CNF/SnOx/SC 

samples, the Nyquist plots of the electrodes before cycling (Fig. S11 in Supporting 

information), it can be seen that both samples present similar Nyquist plots before 

cycling. Furthermore, the Nyquist plots of the electrodes at the 2nd discharged state 

are collected as shown in Figure 6d, and the inset graph is the corresponding 

equivalent circuit model. Each Nyquist plot consists of a short origin intercept in the 

high frequency, two semicircles and a sloping line, which can be analyzed by the 

components of solution resistance (Re) of the cell, the resistance of SEI (RSEI), the 

charge transfer resistance (Rct) and Warburg impedance (Zw), etc.31,32 By using the 

equivalent circuit, the aforementioned parameters for Nyquist plots are listed in Table 

S1 (in Supporting Information). The reliability factors (x2) are near 10-4, indicating the 

fitting data are reliable. Two samples exhibit similar value of Re. CNF/SnOx presents 

larger RSEI (134.8 Ω) and Rct (843.8 Ω) than CNF/SnOx/SC (109.9 and 124.5 Ω, 

respectively). It confirms that the spongy carbon effectively improves the 

conductivity of the submicron SnOx particles.  

3.3 Discharge-Charge Mechanism of the Hybrids 

Figure 6e and 6f are the schematic electrochemical behavior and mechanism 

diagrams of the CNF/SnOx and CNF/SnOx/SC electrodes after charging-discharging 

process. CNF and the SC provide fast channel for the electron transport in this design. 

Since huge volume expansion of the submicron SnOx particles arises from the 

insertion of Li ions, the SnOx particles are pulverized and peeled off resulting in a 

capacity fading in CNF/SnOx sample. However, the spongy carbon in CNF/SnOx/SC 

sample can hinder the pulverization and peeling of the submicron SnOx particles, 

because the as-produced SEI films covers the mixture of SnOx particles, spongy 
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carbon and CNF. And thus, CNF/SnOx/SC sample presents much better cyclic 

performance than CNF/SnOx sample.  

 

Figure 7. SEM and elemental mapping images of SnOx/C (a, a’), CNF/SnO2 (b, b’) 

and CNF/SnOx/SC (c, c’) electrodes at the first discharging state. 

 

The SEM and elemental mapping images of the control sample SnOx/C, 

CNF/SnOx, and CNF/SnOx/SC film electrodes after the first discharging are displayed 

in Figure 7 to show the morphology changes. The lithiated SnOx/C electrode presents 

serious aggregation of particles (Figure 7a). The diameter of CNF in lithiated 
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CNF/SnOx electrode is slightly bigger than its original size because CNF involves in 

lithiation to some extent, and the pulverized SnOx particles are covered by SEI film 

and separately dispersed in CNF network (Figure 7b). The relative XRD patterns 

indicate that the typical double peaks of metallic tin are combined to single peak due 

to lithium-tin alloying (Figure S12a in Supporting Information). For the lithiated 

CNF/SnOx/SC electrode, some of lithiated SnOx micron particles covered by SEI 

films form an aggregation of the mixed particles as shown in Figure 7c, furthermore 

the XRD patterns of the lithiated CNF/SnOx/SC electrode shows a broaden peak at the 

center of 30 assigned to amorphous carbon (Figure S12b in Supporting Information). 

Considering the structure of micron sized tin particles staying on CNF and spongy 

carbon, all of them will be mixed together, that is, the as-produced SEI film covers 

SnOx particles, spongy carbon and CNF because all of them involve in lithiation to 

different extent and form SEI films. And thus, the diameter of CNF in CNF/SnOx/SC 

electrode at the first discharging state increases to 1 m because SEI films cover on 

lithiated SnOx particles, spongy carbon and CNF together. In the integrated structure 

of CNF/SnOx/SC, submicron SnOx particles as active material provide high capacity, 

meanwhile, CNF and spongy carbon provide conductive channel and buffer zone to 

improve the electrochemical properties of SnOx. 

 

4. Conclusion 

   In summary, the integrated structure of CNF/SnOx/SC has been successfully 

synthesized by hydrothermal and carbothermal reduction treatment. SnO2 nanosheets 

that coated by spongy carbon are homogeneously grown on the substrate of CNF in 

hydrothermal field. During carbothermal reduction, SnO2 nanosheets convert to 

submicron tin oxide particles and hollow spongy carbon remains on CNF, and thus 
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the structure of the submicron tin oxide particles fixed on core/sheath structural 

carbon nanofibers/spongy carbon is successfully produced. CNF/SnOx/SC flexible 

film has been used as binder-free anode material for LIBs. CNF/SnOx/SC composite 

electrode delivers capacity of 1393.0, 738.2, 583.6 and 382.6 mAh g-1 at 0.1, 0.5, 1 

and 2 A g-1, respectively. For 300 cycles at 0.1 A g-1, CNF/SnOx/SC sample maintains 

the capacity of 726.9 mAh g-1 with columbic efficiency of 99.45 %. Herein, the 

pulverization and peeling of SnOx particles is effectively hindered because CNF and 

SC cooperatively provide conductive channel and buffer zone. 
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