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Key Points: 

 Atlantic and Pacific Multidecadal Oscillations (AMO and PMO) are important 

contributors to East Asian temperature variability. 

 The combined contribution of the AMO and PMO is of similar magnitude as solar and 

volcanic forcing during 850–1999. 

 The most important drivers change between sub-periods: for 950–1250 it is the PMO, for 

1350–1850 it is solar forcing. 
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Abstract 

The drivers of multidecadal to centennial-scale variability in East Asian temperature, 

apparent in temperature reconstructions, are poorly understood. Here, we apply a multivariate 

regression analysis to distinguish the influences of large-scale modes of internal variability 

(Atlantic Multidecadal Oscillation, AMO; and Pacific Multidecadal Oscillation, PMO), and 

external natural (orbital, solar and volcanic) and anthropogenic (greenhouse gas 

concentrations, aerosols, and land use changes) forcings on East Asian warm-season 

temperature over the period 850–1999 AD. We find that ~80% of the temperature change on 

timescales longer than 30 years can be explained including all drivers over the full-length 

period. The PMO was the most important driver of multidecadal temperature variability 

during the Medieval Climate Anomaly (here, 950–1250), while solar contribution was 

important during the Little Ice Age (here, 1350–1850). Since 1850, two-thirds of temperature 

change can be explained with anthropogenic forcing, whereas one-third was related mainly to 

the AMO and volcanic forcing. 

 

Plain Language Summary 

The Atlantic Multidecadal Oscillation (AMO) and Pacific Multidecadal Oscillation (PMO) 

are suggested to be key components of internal temperature variability globally and in the 

Northern Hemisphere (NH). However, the contribution of the AMO and PMO to temperature 

at regional/continental scales in preindustrial times is still unclear. Here, we use a 

multivariate regression analysis to distinguish the AMO and PMO contributions to the East 

Asian temperature multidecadal (> 30 years) changes from the influence of external (orbital 

solar, volcanic, and anthropogenic) forcings. We find that the contribution of the AMO and 

PMO is of similar magnitude as solar and volcanic forcing during the period 850–1999 AD. 

We apply the same approach to three subperiods, and find that the PMO, solar forcing and 

anthropogenic forcing contributed most during the periods 950–1150, 1350–1850 and 

1850–1999, respectively. 
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1. Introduction 

Most of the increase in the global temperature observed since the mid-20th century was 

caused by external radiative forcings, especially by a rapid increase of anthropogenic 

greenhouse gases (Bindoff et al., 2013). However, variations in the rate of warming (e.g. 

early 20
th

 century warming, 1950s–1970s cooling and the slower rate of warming from 

1998–2013) cannot be fully explained by anthropogenic forcing, and contributions from 

internal climate variability need to be taken into consideration (Lean and Rind, 2008; Folland 

et al., 2013; Steinman et al., 2015; Meehl et al., 2016; Hegerl et al., 2018; Folland et al., 

2018). The role of internal variability tends to be larger at continental/regional scales and on 

shorter timescales and decreases in importance at hemispheric and on longer longer 

timescales (Hawkins and Sutton, 2009). 

 

Multidecadal variations of sea surface temperature (SST) in the North Atlantic (Atlantic 

Multidecadal Oscillation, AMO) and North Pacific (Pacific Multidecadal Oscillation, PMO) 

are key components of internal temperature variability even at global and Northern 

Hemisphere (NH) scales (Dai et al., 2015; Steinman et al., 2015; Cheung et al., 2017; Wang 

et al., 2017). The AMO and PMO represent a large proportion (~80%) of the NH temperature 

internal variability at lower (e.g., > 30 years) frequency since 1850 (Steinman et al., 2015; 

Cheung et al., 2017). The slower rate of global warming during 1998–2013 might be partly 

explained by a combined effect of a negative PMO phase and a modest positive AMO phase 

(Steinman et al., 2015; Meehl et al., 2016). Their combined effect over the 20th century and 

early 21st century, however, is relatively minor compared to the anthropogenic radiative 

forcing (Stolpe et al., 2017). 

 

The increasingly strong anthropogenic forcing during the instrumental period makes it 

challenging to isolate internal climate variability from external forcing and to identify the 

specific roles of the AMO and PMO. In this study, we expand such analyses beyond the 

instrumental period by using millennium-long proxy-based temperature reconstructions in 

tandem with observational evidence to carry out detection and attribution (D&A) studies 
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(Lean and Rind, 2008; Hegerl and Zwiers, 2011; Bindoff et al., 2013; Schurer et al., 2013; 

Schurer et al., 2014) during the period 850–1999. Studies using D&A with temperature 

reconstructions have been limited to decadal-scale changes of the Northern Hemispheric and 

European mean temperature (Hegerl et al., 2007; Hegerl et al., 2011; Schurer et al., 2013; 

Schurer et al., 2014). Zhang et al. (2018) provide a new, 2000-year-long, multi-proxy East 

Asian warm-season temperature reconstruction and found an important role of internal 

variability and external forcing on multidecadal timescales but without conducting a formal 

D&A exercise. 

 

Here, we use seven published East Asian temperature reconstructions together with climate 

forcing reconstructions to carry out a formal D&A study during the period 850–1999. We use 

a multiple linear regression-based approach similar to Lean and Rind (2008) and Wang et al. 

(2017) to detect the signals of external radiative drivers and the influences of specific modes 

of internally-generated variability, namely the AMO and PMO. We then attribute 

warm-season temperature changes over East Asia to a combination of individual factors. In 

particular, we examine the contribution of AMO and PMO to temperature changes during the 

Medieval Climate Anomaly (MCA), the Little Ice Age (LIA), and the Current Warm Period 

(CWP). 

 

2. Data and Methods 

2.1 Temperatures reconstructions and their composite 

We selected seven reconstructions that extend at least the full past millennium and have a 

temporal resolution of 10 years or finer (Yang et al., 2002; Wang et al., 2007; Shi et al., 2012; 

Cook et al., 2013; Ge et al., 2013; Shi et al., 2015; Zhang et al., 2018) (Table S1). The seven 

temperature reconstructions all exhibit significant variability at multidecadal timescales, with 

dominant periodicities ranging from ~32 to ~64 years (Figure S1). These reconstructions 

share a portion of proxy records, but were performed using different 

reconstruction/calibration approaches (see Zhang et al. (2018) for a detailed discussion about 

the proxies used, their spatial distribution, representativeness and validation of each 
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reconstruction). The seven reconstructions actually reflect various seasonal temperature 

signals (e.g., summer vs. annual). However, all reconstructions are to a large extent based on 

tree-ring records that more commonly record growing (warm) season climate (Wilson et al., 

2016; Anchukaitis et al., 2017). 

 

The seven reconstructions were 30-year low-pass filtered using a smoothing method in Mann 

(2008) to extract the “true smoothed behavior” for the part near boundaries of time-series. 

The filtered reconstructions were normalized to zero mean and unit standard deviation (SD) 

over their full period of overlap (1000–1989 AD), and then the composite mean and ±1 SD 

uncertainty range of the seven reconstructions were calculated for each year. 

 

We used instrumental data for the extended warm-season (April–September) mean 

temperature of East Asia (10–55°N, 60–150°E) from the CRUTS4.01 dataset (Harris et al., 

2014). Like the temperature reconstructions, the instrumental data was smoothed using a 

30-year low-pass filter. The composite of temperature reconstructions matches well with the 

instrumental record during the period 1901–1999 (r =0.96, effective degrees of freedom (Neff) 

= 6.6, p <0.001; Figure. 1c).  The Neff is calculated using the method described in Wang et al. 

(2017), by dividing the length of the time-series (e.g., 99 for 1901–1999) by the half of the 

length of the smoothing window (e.g., 30/2 here). The final composite reconstruction was 

developed by adjusting the mean and standard deviation to be the same as the instrumental 

record over the overlap period 1901–1999 (whose standard deviation is 0.18 °C). 

 

2.2 Climate forcing reconstructions 

We used a combination of reconstructions for well-mixed greenhouse gases (CO2, CH4 and 

N2O; Schmidt et al., 2012), land cover change (Kaplan et al., 2010) and tropospheric aerosols 

(Miller et al., 2014) to represent the anthropogenic forcing (Figure S2). The orbital forcing is 

the changes in April-September mean insolation at 40°N (Berger, 1978). The solar forcing 

dataset is from Steinhilber et al. (2009). The volcanic forcing is a global volcanic aerosol 

deposition reconstruction from sulfur records in both polar ice sheets (Sigl et al., 2015). 
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However, our results do not alter much by using alternative solar and volcanic 

reconstructions (Figure S3). 

 

2.3 The AMO and PMO reconstructions 

We used the AMO reconstruction from Wang et al. (2017), which was estimated by removing 

an estimate of the externally forced component from the full reconstructed variance of North 

Atlantic SST (averaged over 80° W– 0° E, 0° N–70° N), an approach we will use to isolate 

internal variability of East Asian temperatures later (see “Multiple linear regression approach 

for detection and attribution”). We also isolated the PMO from the SST reconstruction of the 

North Pacific region (averaged over 22.5° N–57.5° N, 152.5° E–132.5° W; Mann et al., 2009) 

using a same approach as in the AMO and East Asian temperature internal variability (Figure 

S5). The PMO definition used here is consistent with Steinman et al. (2015), but different to 

the Pacific Decadal Oscillation, as the former is defined by removing the estimate of forced 

variability from the North Pacific area-mean SST whereas the latter is defined as the leading 

mode of the empirical orthogonal function (EOF) analysis on the North Pacific SST (in which 

the mean global SST anomaly has been subtracted from each grid point). Since most of the 

North Pacific region shows negative loadings in the EOF-based PDO index (Newman et al., 

2016), the North Pacific area-mean SST and its internal variability (i.e., the PMO defined 

here) should be negatively correlated with the EOF-based PDO index. 

 

We used only the internal variability components of the Atlantic and Pacific SST 

reconstructions (i.e., the AMO and PMO) (Steinman et al., 2015; Wang et al., 2017) to avoid 

the risk of overestimating the contributions from the two ocean basins due to a common 

response of temperature and SST to external forcing (Frankcombe et al., 2015; Steinman et 

al., 2015; Cheung et al., 2017; Wang et al., 2017). 

 

It should be noted that the PMO reconstruction shares a number of predictors with the seven 

East Asian temperature reconstructions, as Mann et al. (2009) included some East Asian 

proxy records to obtain spatial temperature field reconstructions across the globe, from which 
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the North Pacific SST was calculated. The AMO and all the climate forcing reconstructions, 

however, are independent and do not share any common predictors with individual 

temperature reconstructions. 

 

We did not include the Mann et al. (2009) North Atlantic SST reconstruction because, 

especially prior to AD 1600, it is not independent from their PDO reconstruction, which we 

do use. This lack of independence would prevent us from adequately separating the 

influences of AMO and PMO. This may also indicate large uncertainty in their AMO 

reconstruction before AD 1300 when significant multidecadal variability seen in the 

reconstruction of Wang et al. (2017) is absent (figure S13–15 of Wang et al. 2017); the 

correlation between the two reconstructions is only 0.17 for 850–1299, but increases to 0.60 

after 1300. For North Pacific, there is no any other SST reconstruction with a high resolution 

extending back to 850. An alternative reconstruction is for the PDO in MacDonald and Case 

(2005), covering the period 993–1996 and based on two site tree-ring records from North 

America; however; the two site tree-ring records of MacDonald and Case (2005) had also 

been included in the large proxy network of Mann et al. (2009), thus we did not include this 

reconstruction in our analyses too. 

 

2.3 Multiple linear regression approach for detection and attribution 

Multiple linear regression (MLR) has been widely used in D&A studies (Lean and Rind, 

2008; Folland et al., 2013; Imbers et al., 2013; Zhou and Tung, 2013; Chylek et al., 2016; 

Wang et al., 2017; Folland et al., 2018). Here, we apply MLR to detect and attribute past 

Asian extended warm-season temperature changes since AD 850. Before performing the 

MLR, all predictor variables were smoothed using a 30-year low-pass filter and normalized to 

obtain a zero mean and unit SD. For the given time t, the 30-year smoothed East Asian 

temperature (EAT) was estimated as: 

EAT(𝑡) = β0 + β1Ant(𝑡) + β2Orb(𝑡) + β3Sol(𝑡 − Δ𝑡Sol) + β4Vol(𝑡 − Δ𝑡vol) + Residual(𝑡) ,                                                        

(1) 

We consider four external radiative drivers, including anthropogenic (Ant), orbital (Orb), 
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solar (Sol), and volcanic (Vol) forcing. For solar and volcanic forcings, we permit a lagged 

time series to obtain the highest correlation (Knudsen et al., 2014; Wang et al., 2017). In this 

case, the lags are ΔtSol = 2 years and ΔtVol = 11 years for solar and volcanic forcing, 

respectively, though the cross-correlations vary only slightly for lags that are a few years 

more or less than this (Figure S6). 

 

The scaling factors, β, and their standard errors were estimated using ordinary least squares. 

The signal of a particular forcing is considered to be detectable only if its scaling factor is 

significantly larger than zero (Schurer et al., 2013). Only those forcing factors with detectable 

signals of the a priori expected sign (i.e. positive) were used to estimate the attributable 

temperature changes (by multiplying an individual forcing by its β value). If the lower limit 

of a scaling factor’ 95% confidence range includes zero then that scaling factor is set to zero. 

This causes only small differences in the results compared to including all forcings (i.e. even 

those whose scaling factors are not significant). The residual variability in equation (1) is our 

main estimate of internal variability (Steinman et al., 2015; Wang et al., 2017). 

 

The analysis was extended to include to particular components of internal variability that 

operate on large scales by including reconstructed time-series of the AMO and PMO as 

additional predictor variables in the MLR: 

EAT(𝑡) =

β0 + β1Ant(𝑡) + β2Orb(𝑡) + β3Sol(𝑡 − Δ𝑡Sol) + β4Vol(𝑡 − Δ𝑡vol) + β5PMO(𝑡) +

β6AMO(𝑡) + Residual(𝑡),                               (2) 

 

As above, we used smoothed and normalized time-series for all predictor variables and only 

retained significantly positive β to multiply climate drivers. This means that the contribution 

of each forcing to East Asian temperature changes is proportional to its scaling factor, β, and 

the “explained variance” (EV) for an individual climate forcing is calculated as: 

EV𝑖 = 100% ∙
𝛽𝑖𝑅

2

∑ 𝛽𝑖
6

𝑖=1

,                                                 (3) 

where R
2
 is the coefficient of determination using all climate drivers; i, with a value from 1 to 
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6, means anthropogenic, orbital, solar, volcanic forcing, PMO and AMO, respectively. 

 

Our main results were obtained by applying the MLR to the composite reconstruction of 

seven East Asian temperature reconstructions. We also repeated the analysis using individual 

temperature reconstructions, and calculated the ±1 SD ranges to assess the uncertainty range 

when using different reconstructions. To do this, all individual reconstructions had been 

rescaled to the CRU temperature over the period 1901–1999. In addition, the MLR approach 

was not only performed for the full period 850–1999, but also for three subset intervals: 

MCA (950–1250), LIA (1350–1850) and CWP (1850–1999) separately. 

 

3. Results 

3.1. East Asian temperature multidecadal variability 

The seven millennial-long temperature reconstructions exhibit strong similarity on the longest 

(e.g., centennial and multicentennial) timescales, such as the generally positive anomalies 

from 950 to 1100 and after about 1900, and the generally negative anomalies from 1450 to 

1700 (Figure 1a, b). The agreement on multidecadal time-series differs between periods 

though the correlations between each individual series and the composite of the others 

averages above 0.5 since 1700 AD, above 0.4 since 1600 AD and is close to 0.3 for the rest 

of the period. 

 

The correlations between the individual reconstructions over the common period they shared 

range from r = 0.20 to 0.80, with a median value of r = 0.61 (Table S2). The reconstruction 

of Shi et al. (2015) has the highest correlation (r = 0.84) with the composite of other six 

reconstructions (Table S2, S3), presumably because it has the largest proxy network and 

includes a higher proportion of proxy records that are common with others. The 

reconstruction of Cook et al. (2013) shows the lowest correlation (r = 0.52) with the 

composite of the other reconstructions, likely because this reconstruction uses tree-ring 

records alone whereas the others are multi-proxy based. For a detailed discussion about the 

similarities and differences among the various reconstructions the reader is referred to Zhang 



 

 

© 2018 American Geophysical Union. All rights reserved. 

et al. (2018). 

 

The generally good agreement among the reconstructions makes it reasonable to use a 

composite of them to represent their common expression of East Asian temperature variations. 

Like the individual reconstructions, the composite reconstruction shows a warm MCA and 

CWP, and a cold LIA (Figure 1c). The warmest conditions occurred in the end of the 20th 

century, whereas the coldest conditions occurred in the middle of the 17th century, consistent 

with the findings from Europe and the NH (Ljungqvist et al., 2016; Luterbacher et al., 2016). 

 

3.2. The role of external forcing 

To construct the regression model, we consider external forcings used in climate models 

(anthropogenic, orbital, solar, and volcanic). This set of predictors account for ~76% of 

temperature variance at multidecadal timescales since AD 850 (Figure 2a and Table S4). If 

orbital forcing is excluded from the set of predictors, there is a significant (p <0.05) 

long-term cooling trend in the residuals (differences between the reconstructed and regressed 

temperature). This suggests that orbitally-forced cooling, usually reported in high northern 

latitude regions (Kaufman et al., 2009; Esper et al., 2012), might also contribute to a 

long-term cooling trend over East Asia. A significant contribution of anthropogenic forcing 

(which here includes pre-industrial variations in forcing agents, which might not be entirely 

anthropogenic in origin) is found since 1850, and to a lesser extent during the LIA, due to a 

combined effect of variations in greenhouse gases and land use (Figure 2b, S2a, and Table 

S4). In addition, we found minor contributions of solar and volcanic forcing compared to 

anthropogenic and orbital forcing for the full length period of 850–1999. This finding is 

insensitive to what solar and volcanic reconstructions are used (Figure S3). 

 

The same multivariate regression analyses for the MCA, LIA and CWP separately yield 

slightly different results. The external radiative forcings account for most of the recent 

warming during the CWP, but are insufficient to account for the majority of the temperature 

change during the LIA and especially during the MCA. During the MCA volcanic forcing is 
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only detected, but it accounts for only ~6% of the temperature variance (Figure 2b, c, and 

Table S4). During the LIA, solar, volcanic and anthropogenic forcings can be significantly 

detected, however they share only ~35% of the temperature variance (Figure 2b, d, and Table 

S4). The residual temperature variance points to a substantial contribution from internal 

climate variability. 

 

3.3. The role of internal variability, PMO and AMO 

The internal variability of East Asian temperature, calculated by removing the 

externally-forced component, shows persistent multidecadal variations since AD 850 (Figure 

S7). It also shares similar multidecadal behaviors with the AMO and PMO, suggesting an 

association with the AMO and PMO (D'Arrigo and Wilson, 2006; Li et al., 2008; Wang et al., 

2013; Wang et al., 2015; Fang et al., 2017; Luo et al., 2018). As Figure 3 shows, when 

adding the PMO and AMO to the set of the explanatory variables, the explained temperature 

variance increases from ~75% to ~80% for the full period 850–1999, with the largest increase 

during the MCA (from ~6% to ~30%), modest increases during the LIA (from ~35% to ~38%) 

and during the CWP (from ~93% to ~96%). The PMO and AMO contributed similar portions 

(~6% vs. ~5%) of multidecadal temperature changes for East Asia over the full length period 

850–1999, but played different roles in the sub-periods (i.e., the MCA, LIA and CWP; Figure 

4 and Table S5). 

 

During the MCA, the PMO and volcanic forcing are important drivers, with a contribution of 

~30% of temperature variance during the MCA (Figure 3c, 4, S8b, and Table S5). During the 

LIA, solar forcing is most important and accounts for ~14% of the temperature variance, 

while orbital, volcanic, anthropogenic forcing, AMO and PMO are also detected, but each 

contributes less than 7% (Figure 3d, 4, S8c, and Table S5). During the CWP, anthropogenic 

forcing accounts for two-thirds of the temperature variance since 1850, while the AMO and 

volcanic forcing together contribute one-third (Figure 3e, 4, S8d, and Table S5). If we use the 

MLR results from the full period and analyze them and calculate contributions over each 

sub-period, rather than using the MLR for each sub-period separately, the explained 
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temperature variance for each sub-period is slightly less, but the main findings are still hold 

(Figure S9). For example, we found that the PMO, solar and anthropogenic forcings are still 

the most important factors during the MCA, LIA and CWP, respectively. 

 

4. Discussion and Conclusions 

In this study, we confirm that the AMO and PMO are important forcing factors of 

multidecadal temperature variability in East Asia since AD 850. We found ~80% of the 

temperature variance explained by external drivers and the AMO and PMO. The high fraction 

of variance explained is striking given that our results are based on proxy-based 

reconstructions that are subject to uncertainties from a number of sources, i.e., possible 

time-varying climate-proxy relationships and potential spectral biases in some of the proxy 

types (Ljungqvist et al., 2016). For the period 850–1999, we found that anthropogenic and 

orbital forcing significantly contributes to long-term of temperature variations, but the effect 

of solar and volcanic forcing, especially for the latter, is minor on the timescales considered 

here. The minor signal of volcanic forcing might also be partly related to the fact that part of 

the volcanic signal is possibly already “averaged out” in some individual reconstructions with 

a decadal resolution. Nevertheless, the minor contribution of volcanic forcing found here is in 

disagreement with findings for the NH mean temperature in model simulations (Atwood et al., 

2016; Otto-Bliesner et al., 2016). This might partly be due to different responses of volcanic 

effect in reconstructions and model simulations (Hartl-Meier et al., 2017) and also possibly in 

differences between East Asia and the NH (PAGES 2k consortium, 2013). 

 

With a contribution of two-thirds of the temperature variance, external forcing is found to 

mainly control temperature changes in East Asia since 850. This contribution of external 

forcing is larger than that found in North Atlantic (Wang et al., 2017) and in its surrounding 

regions, e.g., Europe (Luterbacher et al., 2016), where the changes in ocean circulation and 

the interactions between atmosphere and ocean circulation and sea ice changes are expected 

to play a more important role than in inland regions. The AMO and PMO have similar 

contributions, and together they account for approximately 11% of temperature changes 
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during the period 850–1999. Although minor, the contribution is same as that from combined 

solar and volcanic forcing, indicating a similar importance of the AMO and PMO as solar and 

volcanic forcing on past temperature changes over East Asia. 

 

The contribution of each driver is, however, not stable over time, and shows different values 

during the MCA, LIA and CWP. During the MCA, we found a more important role of 

internal climate variability (Goosse et al., 2012), and we especially highlight the importance 

of the PMO, at least for East Asia. During the LIA, the importance of solar variability we 

found is somewhat larger than the findings from the NH temperature detection and attribution 

studies (Hegerl et al., 2007; Schurer et al., 2014). During the CWP, we suggest that the 

contribution of the internal variability related to the AMO is necessary to explain recent 

temperature changes in agreement with earlier works for the globe and NH (Steinman et al., 

2015; Stolpe et al., 2017). 

 

Our results suggest the relative contributions of the forcing factors to East Asian temperature 

changes vary between sub-periods, a similar phenomenon seen in the global mean 

temperature even for shorter (~15-35 years) intervals since AD 1891 (Folland et al., 2018). 

This implies the different contexts of external forcing may have different preferences to 

contribute or disturb the impacts of AMO and PMO. This inference is supported by our 

analyses of model simulation data (Ratna et al., in preparation), in which we found the AMO 

and PMO teleconnections with East Asian temperature show somewhat different patterns 

with or without the presence of external forcing.  

 

Although we detected relatively important drivers over the MCA and LIA, the large 

proportion of temperature change over these periods still cannot explained by the factors we 

included in analyses. This suggests additional internal and/or external forcing factors, or 

non-linear feedback mechanisms, are needed for explaining the MCA and LIA, but 

reconstruction uncertainties may also come into play here. The uncertainty for the AMO and 

PMO reconstructions may be especially large because these reconstructions mostly rely on 
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teleconnections that, might not be stable over time (McAfee, 2017). Thus, we recommend 

caution in choosing reconstructions for climate variability modes, and in considering 

attributions for the AMO and PMO. In addition, our approach has limitations as it cannot 

consider nonlinear interactions between external forcing and internal variability and dynamic 

processes, and our results are subject to sampling variability especially for the CWP because 

this is the shortest period considered here. Future work should consider using climate model 

simulations (Ratna et al., in preparation) and a more sophisticated detection and attribution 

method (Hegerl and Zwiers, 2011) to complement our approach. Nevertheless, our approach 

has an important advantage that it incorporates internal variability via the observed or 

reconstructed climate modes such as AMO and PMO, which the models may not realistically 

simulate (see discussion in Folland et al., 2018). 
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Figure 1. (a) The seven published millennia-long temperature reconstructions for East Asia, 

shown as 30-year low-pass filters and normalized anomalies. (b) The 250-year running 

correlation coefficients between each temperature reconstruction and the composite of other 

six reconstructions. Note that the Fisher transformation and its inverse function (Fisher, 1921) were 

used to calculate the mean of correlation coefficients in order to avoid the biases due to 

symmetrical sampling variability. (c) The scaled composite (black) and ±1 SD (shading) of the 

seven reconstructions and the CRUTS4.01 mean temperature for the extended warm-season 

over East Asia (red). 
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Figure 2. (a) The composite temperature reconstruction and the temperature changes 

attributed to radiative forcings by applying multiple linear regression (MLR) over the period 

850–1999. The uncertainty range (pink shading) is the ±1 standard deviation (SD) of the 

attributed temperature time series when MLR is applied to the seven individual 

reconstructions rather than the composite reconstruction. (b) Beta values (scaling factor) and 

their 95% uncertainty ranges by individual climate forcing over the full period 850–1999, or 

separately over the Medieval Climate Anomaly (950–1250), Little Ice Age (1350–1850) and 

Current Warm Period (1850–1999). (c–e) Same as (a), but for the Medieval Climate Anomaly, 

Little Ice Age and Current Warm Period, respectively. Note that all forcing time-series are 

transformed to “z-scores” when performing the MLR in each case. This corresponds to the 

regression model of equation 1, and they only show scaling factors that are significantly 

different from zero. For each sub-period in panels (c), (d) and (e), the model fitted value over 

the whole time period is also added to show as red dotted lines. 
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Figure 3. Same as Figure 2, but for the results when adding the AMO and PMO into the set 

of explanatory variables. This corresponds to the regression model of equation 2. 
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Figure 4. Variance (and its 95% uncertainty range) of the composite reconstruction that is 

explained by all climate drivers (external forcings and modes of internal variability) as well 

as by the individual drivers during the period 850–1999, Medieval Climate Anomaly 

(950–1250), Little Ice Age (1350–1850) and Current Warm Period (1850–1999). 

 


